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All that we call invention, discovery in the highest sense of 
the word, is the meaningful application and the putting 
into practice of a very original feeling of truth, which, over 
a long and secret period of formation, leads unexpectedly, 
with lightning speed, to some fertile intuition. […] It is a 
synthesis of world and spirit that offers the most sublime 
certainty of the eternal harmony of existence.
,  ’  ﹙7Q?R﹚

Poetry points to the enigmas of nature and aims to resolve 
them by way of the imagination; philosophy points to the 
enigmas of reason and tries to resolve them by way of words.

,  

3e most important thing, nevertheless, continues to be 
the contemporary, because it is what most clearly reflects 
itself in us, and us in it. 

,    ﹙7Q??﹚

Mathematicians are a bit like Frenchmen: when something 
is said to them, they translate it into their own language, 
and straight away it becomes something else entirely. 

,  
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     
 ,    
   

Drawing on the four maxims of Goethe’s that we have 
placed as epigraphs, we would like to explain, here, the 
general focus of this Synthetic Philosophy of Contemporary 
Mathematics. Ae four terms in the title have, for us, 
certain well-defined orientations: ‘synthetic’ points to 
the connective, relational environment of mathematical 
creation and to a veiled reality that contrasts with inven-
tion; ‘philosophy’, to the reflective exercise of reason on 
reason itself; ‘contemporary’, to the space of knowledge 
elaborated, broadly speaking, between )@F( and today; 
‘mathematics’, to the broad scope of arithmetical, alge-
braic, geometrical and topological constructions – going 
beyond merely logical or set-theoretical registers. Now, 
in setting the stage in this way, we have immediately 
indicated what this essay is not: it is from the outset clear 
that it will not be a treatise on the ‘analytic philosophy 
of the foundations of mathematics in the first half of the 
twentieth century’. Since the great majority of works in 
mathematical philosophy (chapter ') fall exclusively 
within the subbranch those quotation marks encapsulate, 
perhaps we can emphasize the interest that lies in an essay 
like this one, whose visible spectrum will turn out to be 
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Peirce – and that, on the one hand, many present-day 
mathematical constructions afford useful and original 
perspectives on certain philosophical problematics of the 
past (chapters C–))), while, on the other hand, certain 
fundamental philosophical insolubilia fuel great creative 
forces in mathematics (chapters W–E, )().

Ae methods utilized in this work include describing a 
particular state of affairs (‘contemporary mathematics’: 
chapters B–E), reflecting on this description (‘synthetic 
philosophy’: chapters ), W, C–))), and contrasting this two-
fold description and reflection with other related aspects 
(‘mathematical philosophy’, theory of culture, creativity: 
chapters ', C–))). We hope to make the hypotheses under-
lying those descriptions, reflections and comparisons 
explicit throughout. Note that our survey’s main endeavor 
has been to try to observe mathematical movements on 
their own terms, and that its filter of cultural reorganiza-
tion has been articulated only a posteriori, so as to try to 
reflect as faithfully as possible those complex, and oXen 
elusive, movements of mathematics.

Ae problems that mathematics have posed for philo-
sophical reflection have always been varied and complex. 
Since the beginnings of both disciplines in the Greek 
world, the advances of mathematical technique have 
perpetually provoked philosophical reflections of a fun-
damental nature. Ae privileged frontier of mathematics 
– the fluctuating, intermediary warp between the possible 

virtually orthogonal to the one usually treated in reflections 
on mathematical thought.

Aese pages seek to defend four central theses. Ae 
first postulates that the conjuncture ‘contemporary math-
ematics’ deserves to be investigated with utmost care, 
and that the modes of doing advanced mathematics 
cannot be reduced (chapters ), W) to either those of set 
theory and mathematical logic, or those of elementary 
mathematics. In this investigation, we hope to introduce 
the reader to a broad spectrum of mathematical achievements 
in the contemporary context, which might have otherwise 
remained inaccessible. Ae second thesis says that to really 
see, even in part, what is happening within contemporary 
mathematics (chapters B–E), we are practically forced to 
expand the scope of our vision and discover the new prob-
lematics at stake, undetected by ‘normal’ or ‘traditional’ 
currents in the philosophy of mathematics (chapters '–W). 
Ae third thesis proposes that a turn toward a synthetic 
understanding of mathematics (chapters W, C–))) – one 
that is largely reinforced in the mathematical theory of 
categories (chapters W–E) – allows us to observe important 
dialectical tensions in mathematical activity, which tend 
to be obscured, and sometimes altogether erased, by the 
usual analytic understanding. Ae fourth thesis asserts 
that we must reestablish a vital pendular weaving between 
mathematical creativity and critical reflection – something 
that was indispensable for Plato, Leibniz, Pascal and 

[)'] 
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the development of philosophical reflection. Perhaps 
the unavoidable crux of the entire problematic lies in 
the deep feeling of wonder and astonishment that has 
always been a product of the ‘unreasonable applicability’ 
of mathematics to the real world. How can mathematics, 
this extraordinary human invention, grant us so precise 
a knowledge of the external world? Ae responses given 
have been numerous, carefully argued and, frequently, 
convincing. On the one hand, ontological realism has pos-
tulated that the objects studied by mathematics (whatever 
they are: ideas, forms, spaces, structures, etc.) lie buried 
in the real world, independently of our perception, while 
ontological idealism has suggested that mathematical objects 
are mere mental constructions. A realist stance thereby 
simplifies our supposed access to the real, while imposing 
strong constraints on the world (existential, formal, and 
structural constraints, etc.); in contrast, an idealist stance 
dismisses the world, sparing it from reliance on dubious 
organizational scaffoldings, but it faces the problem of 
mathematics’ applicability head-on. Epistemological realism, 
on the other hand, has postulated (independently of any 
ontological position) that mathematical knowledge is not 
arbitrary and that its truth values are indices of a certain 
real stability, while epistemological idealism has regarded 
truth values as mere man-made mediations, which do 
not need to be propped up by any real correlate. An 
idealist stance again secures for itself a greater plasticity, 

(hypothesis), the actual (comparisons) and the necessary 
(demonstrations), the bridge between human inventive-
ness and a real, independent world – has spawned all 
kinds of alternative positions regarding what mathematics 
‘is’, what its objects are, and how it knows what it knows. 
Ae ontological ‘what’, the pursuit of the objects studied by 
mathematics, and the epistemological ‘how’, which concerns 
the way in which those objects should be studied, currently 
dominate the landscape of the philosophy of mathematics 
(Shapiro’s square, figure ), p.)(). But curiously, the 
‘when’ and the ‘why’, which could allow mathematical 
philosophy to form stronger alliances with historical 
and phenomenological perspectives (chapters )(, ))), 
have mostly vanished into the horizon, at least within 
the Anglo-Saxon spectrum. Ais situation, however, must 
of necessity be a passing one, since there do not seem to 
be any intrinsic reasons for reducing the philosophy of 
mathematics to the philosophy of mathematical language. 
Everything rather points toward a far broader spectrum 
of pendular practices, irreducible to imagination, reason or 
experience, through which the conceptual evolution of 
the discipline will outstrip the sophisticated grammatical 
discussions that have been promoted by the analysis of 
language. 

Ae traditional problems of the philosophy of math-
ematics have parceled themselves out around certain 
great dualities that have incessantly leX their mark upon 

[)W] 
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Ae traditional problems of the philosophy of math-
ematics have parceled themselves out around certain 
great dualities that have incessantly leX their mark upon 
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of the present work is to demonstrate that – beyond a 
binary yes/no alternation – certain mixtures are vital for 
obtaining a thorough and accurate understanding of what 
it is to do mathematics, with respect to both its general 
and global structuration and many of its highly detailed, 
particular and local constructions. 

In his excellent monograph, 3inking about Math-
ematics, Shapiro has made good use of a few of the 
aforementioned dualities in order to trace out a brilliant 
landscape of current philosophy of mathematics.' Restrict-
ing himself to the Anglo-Saxon world,W Shapiro goes on 
to classify several prominent bodies of work in virtue of 
their various realist or idealist stances (figure ), based on  
Shapiro’s text).B

Mulino, '(('). Lolli detects at least fourteen distinct currents (nominalism, realism, 
Platonism, the phenomenological tradition, naturalism, logicism, formalism, the 
semiotic tradition, constructivism, structuralism, deductivism, fallibilism, empiricism, 
schematism), in addition to a 'spontaneous philosophy' of mathematicians. 

' S. Shapiro, 3inking about Mathematics: 3e Philosophy of Mathematics (Oxford: Oxford 
University Press, '((().

W Ae restriction is not, however, explicit, and Shapiro commits the common Anglo-
Saxon sin of believing that anything that has not been published in English does 
not form part of the landscape of knowledge. Ae identification of 'knowledge' with 
'publication in English' has leX outside of the philosophy of mathematics one who, 
to our understanding, is perhaps the greatest philosopher of 'real mathematics' in the 
twentieth century: Albert Lautman. For a discussion of 'real mathematics' (Hardy, 
Corfield) and the work of Lautman, see chapters )–W.

B Shapiro, 3inking about Mathematics, W'–W. Shapiro calls realism in truth-value the vision 
according to which 'mathematical statements have objective truth values, independent 
of the minds, languages, conventions, and so on of mathematicians' (ibid., '@). To 
simplify, we will here give the name 'epistemological realism' to this realism in truth value.

with greater possibilities of access to the mathematical 
imagination, but it encounters serious difficulties at the 
junction of the imaginary and the real; a realist stance 
helps to understand mathematical thought’s material suc-
cess, but it places rigid restrictions on its creative liberty. 

Interlaced with these basic, primary polarities, several 
other important and traditional dualities have found 
themselves in mathematical philosophy’s spotlight. Ae 
necessity or contingency of mathematics, the universality 
or particularity of its objects and methods, the unity or 
multiplicity of mathematical thought, the interiority or 
exteriority of the discipline, the naturalness or artificiality of 
its constructions – each could count on having defenders 
and detractors of every sort. Ae status accorded to the 
correlations between physics and mathematics has always 
depended on the position one takes (whether consciously 
or unconsciously) with respect to the preceding alterna-
tives. At the opposite extremes of the pendulum, we may 
situate, for example, a necessary, universal, unique and 
natural mathematics, very close to strongly realist posi-
tions, and a contingent, particular, multiple and artificial 
mathematics, coming very close, here, to the idealist 
extreme. But the vast intermediate range between these 
oscillations of the pendulum is ultimately what merits the 
most careful observation.) One of the principal objectives 

) An excellent overview of the entire pluralistic explosion of philosophies of mathematics 
can be found in G. Lolli, Filosofia della matematica: L’ereditá del novecento (Bologna: il 
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therefore turns out to be only an ideal binary limit of a 
far more complicated, real state of affairs;F in an extended 
square, several new cells would appear, opening it onto 
tertiary frontiers.

Benacerraf’s famous dilemma likewise presents itself 
by way of a dual alternative: either we coherently adopt a 
realism at once ontological and epistemological, and then 
find ourselves faced with difficult problems about how 
we might have knowledge of mathematical objects that 
do not originate in our own acts of invention and cannot 
be experientially perceived in nature; or we adopt a more 
flexible idealist epistemology and then find ourselves faced 
with other, equally difficult problems, as we inquire into 
the profound harmony between mathematics and the 
external world. But this either-or dilemma would not have 
to be considered as such if we could take stock of other 
intermediate positions between realism and idealism. We 
believe, in fact, that mathematics in its entirety produces 
illuminating examples of mediations between real and 
ideal configurations, and it does so from the most varied 
and complementary points of view (chapters ), B–E). 
Considered, as it usually is, from classical and dualistic 
perspectives, Benacerraf’s Dilemma should be viewed with 
caution; however, considered within a broader metalogic, 
attentive to the dynamic evolution of mathematics – with 

F Just as, similarly, classical logic should in reality be understood as an ideal limit of 
intuitionistic logic. Cf. Caicedo’s results, discussed in chapter C.

Figure ?. Contemporary tendencies in philosophy of mathematics, according to Shapiro.

Aside from the differential details of the works included 
in the square above – a few of which we will compare 
with the results of our own investigations in part W of 
this essay – what we are interested in here is the biparti-
tion that Shapiro elaborates. Aere is no place in this 
diagram for an ontological position between realism and 
idealism, nor for an epistemological mixture of the two 
polarities. Is this because such mediations are philosophi-
cally inconsequential or inconsistent, or simply because 
they have been eliminated in order to ‘better’ map the 
landscape? One of our intentions in this essay will be to 
show that those mediations are not only consistent from 
a philosophical point of view (following Plato, Peirce and 
Lautman: chapter W), but also indispensable from the point 
of view of contemporary mathematics. Shapiro’s square 
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remarkable transformative richness that has rarely been 
philosophically assimilated. 

One of the traditional problems that mathematical 
philosophy has had to confront, in this respect, has to do 
with the general place of mathematics within culture as a 
whole. Here, a dualistic reading is again burdened with 
immediate problems: If mathematics is understood as an 
evolutive forge, internal to contingent human creativity,E 
the problem arises as to how we can explain its appar-
ently necessary character and its cumulative stability; if, 
instead, mathematics is understood as the study of certain 
forms and schemas that are independent of its cultural 
environment,C there arises the problem as to how we 
can explain the markedly historical character of math-
ematical ‘discoveries’. In practice, a middle way between 
both options seems far better adjusted to the reality of 
doing mathematics (see, in particular, the meditations 
on Grothendieck in chapter B): a fluctuating, evolving 
activity, full of new possibilities, springing from disparate 
cultural realms, but always managing to construct precise 
invariants for reason behind the many relative obstructions 
that the mathematical imagination is always encounter-
ing. What drives both mathematical creativity and its 
subsequent normalization is a to and fro that tightly 

E Ais is the case, for example, in R. L. Wilder, Mathematics as a Cultural System (Oxford: 
Pergamon Press, )@C)). 

C M. Resnik, Mathematics as a Science of Patterns (Oxford: Oxford University Press, )@@E).

its progressive osmoses and transferences between the 
real and the ideal – the dilemma falls apart, since there 
is no longer any reason to adopt dual exclusions of the 
either-or variety (chapters C, @).

It is important, here, to point out the dubious worth 
of fixing one’s ontology and epistemology in advance, 
adopting them a priori before any observation of the 
mathematical universe, and presuming to impose certain 
rigid partitions upon the latter. At the very least, such 
an adoption of philosophical presuppositions prior to 
even setting eyes on the mathematical world has limited 
our perspective and has led to the perception of a rigid, 
static and eternal mathematics, a perception that has little 
or nothing to do with the real mathematics that is being 
done every day. Instead, a living mathematics, in incessant 
evolution, should be considered the basic presupposition 
of any subsequent philosophical consideration whatsoever. 
Ae study of the continuities, obstructions, transfers and 
invariants involved in doing mathematics should then – and 
only then – become an object of philosophical reflection. 
Ae elaboration of a transitory ontology and epistemology, 
better matched to the incessant transit of mathematics, is 
the order of the day.D Ae peerless strength of mathemat-
ics lies precisely in its exceptional protean capacity, a 

D Alain Badiou explores this idea in his Court traité d’ontologie transitoire (Paris: Seuil, 
)@@C). [Tr. N. Madarasz as Briefings on Existence: A Short Treatise on Transitory Ontology 
(Albany, NY: SUNY Press, '((D).] Part W of the present study makes further inroads 
into that 'transitory philosophy' that, we believe, mathematics demands. 
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Both Wilder and Resnik, to point to just one complementary 
polarity, have much to offer us. A hypothesis (chapter )),  
a program (chapter W) and a few detailed case studies 
(chapters B–E) will prepare us with some outlines for a 
synthesis (chapters C–))) by which various central aspects 
of complementary perspectives, like those of Wilder 
and Resnik, can come to be ‘glued’ together in a unitary 
whole. We may point out that one of the essential and 
basic motivations of this work is the desire to elaborate, in 
order to reflect on mathematics, a sort of sheaf that would 
allow us to reintegrate and ‘glue together’ certain comple-
mentary philosophical viewpoints. As will become clear 
in part ', the notion of a mathematical sheaf is probably 
the fundamental distinguishing concept around which 
the elaboration of contemporary mathematics, with new 
impetus, begins, with all of its extraordinary instruments 
of structuration, geometrization, gluing, transfer and uni-
versalization – and so the attempt to look at mathematics 
from a sheaf of equally complex perspectives turns out to be a 
rather natural one. To achieve this, we will have to delimit 
certain ‘coherence conditions’ between complementary 
philosophical perspectives (chapters ), W) in order to then 
proceed with a few sketches of ‘sheaving’ or of ‘structural 
synthesis’ (chapters C–))).

weaves together certain sites of pure possibility and certain 
necessary invariants, within well-defined contexts. 

Without this back-and-forth between obstructions and 
invariants, mathematics cannot be understood.  Ae 
wish to reduce, a priori, the doing of mathematics to one 
side of the balance or the other is, perhaps, one of the 
major, basic errors committed by certain philosophers 
of mathematics. Ae transit between the possible, the 
actual and the necessary is a strength specific to mathemat-
ics, and one that cannot be neglected. To consider that 
transit as a weakness, and to therefore try to eliminate 
it, by reducing it either to contingent or to necessary 
circumstances (another version of an either-or exclusion), 
is an unfortunate consequence of having taken sides in 
advance, before observing the complex modal universe of 
mathematics. In fact, as we shall demonstrate in part ' 
of this book, on the basis of the case studies of part ', in 
mathematics, discovery (of necessary structural schemas) 
is just as indispensable as invention (of languages and 
possible models). Ae tight mathematical weave between 
the real and the ideal cannot be reduced to just one of its 
polarities, and it therefore deserves to be observed through 
a conjunction of complementary philosophical points of 
view. We believe that any reduction at all, or any preemp-
tive taking of sides, simply impedes the contemplation 
of the specificities of mathematical transit. 
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It is well known that mathematics is presently enjoying 
something of a boom. Even conservative estimates suggest 
that the discipline has produced many more theorems in 
the last three decades than it has in its entire preceding 
history, a history stretching back more than two thousand 
years (including the very fruitful nineteenth and twentieth 
centuries, and all the way up to the )@E(s). Ae great 
innovative concepts of modern mathematics – which 
we owe to Galois, Riemann and Hilbert, to cite only the 
three major foundational figures – have been multiplied 
and enriched thanks to the contributions of a veritable 
pleiad of exceptional mathematicians over the last fiXy 
years. Proofs of apparently unattainable theorems – like 
Fermat’s Last Aeorem, or the Poincaré conjecture – 
have been obtained, to the surprise of the mathematical 
community itself, thanks to the unrelenting struggle 
of mathematicians who knew how to carefully harness 
the profound explorations already undertaken by their 
colleagues. Ae boom in mathematical publications and 
reviews appears unstoppable, with an entire, flourish-
ing academic ‘industry’ behind it; though the excessive 
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twentieth), and, a fortiori, those of contemporary mathemat-
ics (from the middle of the twentieth century onwards), 
can be avoided by hiding behind the supposed ontological 
and epistemological invariability of the discipline. Ais 
deliberate neglect of the discipline’s (technical, thematic, 
creative) landscape is a situation that would be seen as 
scandalous in the philosophy of other scientific disciplines,@ 
but to which the philosophy of mathematics seems able 
to resign itself, with a restrictive security and without the 
least bit of modesty. 

Two great extrapolations – equivocal by our lights, 
as we shall attempt to demonstrate throughout this essay 
– support the idea, ubiquitous in the philosophy of math-
ematics, according to which it is unnecessary to observe 
the current advances of the discipline. On the one hand, 
the objects and methods of elementary mathematics and 
advanced mathematics are considered not to essentially 
differ from one another; on the other hand, the develop-
ment of mathematics is presupposed to have a markedly 
necessary character and an absolute background. If, from 
an epistemological and ontological point of view, the 
exploration of the Pythagorean Aeorem offers nothing 

@ A philosophy of physics that does not take stock of the technical advances in physics, 
for example, would be unthinkable. B. d’Espagnat, Le réel voilé. Analyse des concepts 
quantiques (Paris: Fayard, )@@B), for instance, performs an admirable philosophical 
study of quantum physics, in which the notable technical advances of the discipline 
are carefully observed, and in which it is demonstrated that, in order to understand 
quantum physics, new ontological and epistemological approaches, adapted to the new 
methods and objects of knowledge, are required. 

number of publications could be taken to discredit their 
quality (it is tempting to say that publication should be 
cause for penalty rather than promotion), the immense 
liveliness of mathematics is made manifest in the frenetic 
activity of publishing houses. Meanwhile, mathemat-
ics’ relations with physics again seem to have found a 
moment of grace, as the two are profoundly interlaced 
in the study of superstrings, quantizations, and complex 
cosmological models.

Strangely, however, the philosophy of mathematics has 
rarely taken stock of the genuine explosion that mathemat-
ics has witnessed in the last fiXy years (chapter '). Two 
reasons may be given for this: firstly, the view that, in 
spite of the advance and evolution of mathematics itself, 
mathematics’ methods and the types of objects it studies 
remain invariable; secondly, the simple myopia before 
the new techniques and results, because of a certain 
professional incapacity to observe the new thematics 
at stake. In practice, in fact, there seems to be a mutual 
feedback between these two tendencies; on the one hand, 
the conviction that set theory (and with variants of first-
order logic) already provide sufficient material for the 
philosophy of mathematics to shore up an unwillingness to 
explore other environments of mathematical knowledge; 
on the other hand, the inherent difficulty involved in the 
advances of modern mathematics (from the second half 
of the nineteenth century through the first half of the 
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on the practice of the discipline, and as a framework that 
can be effectively contrasted with the physical world. 
Both elementary mathematics and set theory, the object 
of extensive considerations in analytic philosophy, are 
thus but slight fragments of ‘real’ mathematics. Aey 
considerably extend the scope of classical mathematics 
(midseventeenth to midnineteenth century), but in view 
of the totality (figure ', overleaf), it must be observed 
that, nowadays, modern and contemporary mathematics 
largely make up the core of the discipline. Let us take as 
a basic supposition the insufficiently appreciated fact that 
apprehending the totality of mathematical production 
with greater fidelity and technical precision may turn out 
to be of great relevance for philosophy. 

different than the exploration of Fermat’s, then making the 
effort to (philosophically) understand all the instruments 
of algebraic and complex variable geometry that opened 
a way to proving Fermat’s Aeorem would, of course, be 
pointless. If, from a historical and metaphysical point of 
view, the evolution of mathematics is considered not to 
give rise to new types of ‘entities’, then it would be equally 
absurd to try to entangle oneself in the complexities of 
contemporary mathematical creativity. We nevertheless 
believe that these two ubiquitous suppositions – that there 
is no distinction between elementary and advanced math-
ematics; that there is no duality of transits and invariants 
in mathematics – are only valid, in part, in determinate, 
restrictive contexts, and we consider the extrapolations 
of these suppositions into the ‘real’ totality of mathemat-
ics (and contemporary mathematics, in particular), to 
constitute a profound methodological error. 

Following David Corfield, we will call ‘real mathemat-
ics’ the warp of advanced mathematical knowledge that 
mathematicians encounter daily in their work,)( a warp that 
can be seen as perfectly real from several points of view: 
as a stable object of investigation for a broad community, 
as an assemblage of knowledge with a visible influence 

)( D. Corfield, Towards a Philosophy of Real Mathematics (Cambridge: Cambridge University 
Press, '((W). As Corfield has pointed out, Hardy, in his polemical A Mathematician’s 
Apology, called ‘real mathematics’ the mathematics constructed by figures like Fermat, 
Euler, Gauss, Abel and Riemann (G.H. Hardy, A Mathematician’s Apology [Cambridge: 
Cambridge University Press, )@B(], F@–D(; cited in Corfield, ').
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Classical mathematics (midseventeenth to midnine-
teenth centuries): sophisticated use of the infinite 
(Pascal, Leibniz, Euler, Gauss); 

Modern mathematics (midnineteenth to midtwen-
tieth centuries): sophisticated use of structural and 
qualitative properties (Galois, Riemann, Hilbert);

Contemporary mathematics (midtwentieth century 
to present): sophisticated use of the properties of 
transference, reflection and gluing (Grothendieck, 
Serre, Shelah).

In particular, there accumulated in modern mathematics 
an enormous quantity of knowledge, which evolved and 
went on to make up to the current body of mathematics: 
set theory and mathematical logic, analytic and algebraic 
number theory, abstract algebras, algebraic geometry, 
functions of complex variables, measure and integration, 
general and algebraic topology, functional analysis, differ-
ential varieties, qualitative theory of differential equations, 
etc.)) Even if a series of important mathematical theorems 
have succeeded in proving that any mathematical con-
struction can be represented inside a suitable set theory 

)) Ae Mathematical Subject Classification '((( (MSC 7888) includes some sixty principal 
entries in a tree that goes on to rapidly branch out. Above, we indicate only a few of 
the initial indispensable entries in the tree.  

Figure D. Correlations between the areas of mathematics: elementary, advanced, 
classical, modern, contemporary.

Ae boundaries that allow us to distinguish the afore-
mentioned areas are clearly historical, since leading 
mathematical research becomes progressively more complex 
throughout its evolution. Nevertheless, the boundaries 
can also be associated with certain types of mathematical 
instruments, introduced by great mathematicians, whose 
names still serve to characterize each epoch:

advanced (=‘real’)

mathematics

contemporary

modern

classical

elementary
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Ae environment of advanced mathematics, already clearly 
delimited by the middle of the twentieth century, found 
an exceptional philosopher in Albert Lautman.)' For 
Lautman, mathematics – beyond its ideal set-theoretical 
reconstruction – hierarchizes itself into real environments 
of dramatically varying complexity, where concepts and 
examples are interlaced  through processes that bring the 
free and the saturated into structural counterpoint with 
one another, and where many of the greatest mathemati-
cal creations emerge through the mediation of mixtures. 
Entering into the vast conglomerate of the mathematics 
of his time, Lautman was able to detect certain features 
specific to advanced mathematics,)W features that do not 
appear in elementary mathematics:

)' Ae work of Albert Lautman ()@(C–)@BB) deserves to be understood as the most incisive 
philosophical work of the twentieth century that both situated itself within modern 
mathematics and sought to outline the hidden mechanisms of advanced mathematical 
creativity, while synthesizing the structural and unitary interlacings of mathematical 
knowledge. Lautman’s writings, forgotten and little understood at present, have 
resurfaced in a new French edition (A. Lautman, Les mathématiques, les Idées et le Réel 
physique, [Paris: Vrin, '((D]), a recent English translation (tr. S. Duffy as Mathematics, 
Ideas and the Physical Real [London: Continuum, '())]) and in the first complete 
translation of his works into another language (tr. F. Zalamea as Ensayos sobre la 
dialéctica, estructura y unidad de las matemáticas modernas [Bogotá: Universidad Nacional 
de Colombia, '())]). For a critical presentation of Lautman’s work, see my extensive 
scholarly introduction to the Spanish edition. In the present essay, I aim to develop 
Lautman’s work somewhat, and extend its scope from modern mathematics (as known 
to Lautman) to contemporary mathematics (which now lie before us). 

)W Ae critical works attending to the multiplicity of advanced mathematical creations are 
few in number, and so it’s worth calling attention to a work so kindred to Lautman’s as 
that of Javier de Lorenzo, who has always been attentive to the deep strata and diverse 
ramifications of modern mathematical invention. Among his works, see, in particular, 
Introducción al estillo mathemático (Madrid: Tecnos, )@E)); La matemática y el problema de 
su historia (Madrid: Tecnos, )@EE); El método axiomático y sus creencias (Madrid: Tecnos, 
)@C(); Filosofías de la matemática fin de siglo XX (Valladolid: Universidad de Valladolid, 
'(((). Lorenzo does not seem to be familiar with Lautman, nor does he mention him 
in his writings. 

(and that the enormous majority of mathematics can be 
represented inside the Zermelo-Fraenkel theory, with its 
underlying first-order classical logic), it is nevertheless 
clear, within mathematical practice, that what value these 
‘facsimiles’ have is merely logical, and far removed from 
their genuine mathematical value. We believe the fact that 
mathematical constructions can be reduced, theoretically, 
to set-theoretical constructions has been enlisted as yet 
another prop by means of which, in the philosophy 
of mathematics, one could, for so long, avoid a more 
engaged inspection of ‘real mathematics’. Nevertheless, 
as we shall soon see, the structures at stake and the ways of 
doing things differ dramatically between set theory and 
other mathematical environments, and  the ontology and 
epistemology we propose should, consequently, differ as 
well (to say nothing of history or ‘metaphysics’ – chapters 
)(–))). Ae possibility of reducing the demonstration of a 
complex mathematical theorem to a series of purely set-
theoretical statements (a possibility existing only in theory 
and never executed in practice, as soon as certain rather 
basic thresholds are crossed) has, in the philosophy of 
mathematics, been elevated to a fallacious extrapolation, 
an extrapolation that has allowed certain philosophical 
perspectives to shirk any investigation into the present 
of ‘real mathematics’, beyond mathematical logic or  
set theory. 
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spectrum of elementary propositions. For example, the 
extremely anodyne ‘2+2=4’ would, from a logical point 
of view, be equivalent to the significant and revealing 
Hahn-Banach Aeorem (HB), since both propositions are 
deducible from the Zermelo-Fraenkel system of axioms 
(ZF). Nevertheless, the ‘trivial’ tautological equivalence 
ZF=HB)2+2=4 is as far from exhausting the mathemati-
cal content of the theorems as it is from exhausting their 
logical status. Ae equivalence effectively collapses as 
soon as, instead of starting with ZF, we opt for intermedi-
ate axiomatic systems. In fact, Friedman and Simpson’s 
reverse mathematics )B show that the basic propositions of 
arithmetic (which, for example, Wittgenstein repeatedly 
studies in his Lectures on the Foundations of Mathematics))F 
show up on the lowest levels of mathematical develop-
ment (in the system RCA0, reduced to demonstrating 
the existence of recursive sets), while the HB  not only 
requires more advanced instruments (a WKL0  system 
with weak forms of König’s lemma), but is fully equiva-
lent to those instruments. To be precise, it turns out that 
RCA0EHB)2+2=4, since we have RCA0=HB)WKL0, 
RCA0=2+2=4 and RCA0EWKL0.

Ae consequences of this state of affairs are obvious, 
but they have not been sufficiently considered in the phi-
losophy of mathematics. First of all, it seems absurd to 

)B S. G. Simpson, Subsystems of Second Order Arithmetic (New York: Springer, )@@@).

)F L. Wittgenstein, Lectures on the Foundations of Mathematics, Cambridge 9:;: (Chicago: 
University of Chicago Press, )@C@). 

). a complex hierarchization of diverse mathemati-
cal theories, irreducible to one another, relative to 
intermediary systems of deduction;

'. a richness of models, irreducible to merely linguistic 
manipulations;

W. a unity of structural methods and conceptual polari-
ties, behind their effective multiplicity;

B. a dynamics of mathematical activity, contrasted 
between the free and the saturated, attentive to divi-
sion and dialectics;

F. a theorematic interlacing of what is multiple on 
one level with what is one on another, by means of 
mixtures, ascents and descents. 

We should contrast elementary mathematics – the privi-
leged focus of analytic philosophy – with the advanced 
mathematical theories that make up the sweeping spec-
trum of modern mathematics. An oXen-repeated argu-
ment for the possibility of reducing the scope of  inquiry 
to that of elementary mathematics comes down to assur-
ing us that every mathematical proposition, since it is 
a tautology, is equivalent to every other, and so, from 
a philosophical perspective, it is enough to study the 
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are fundamental to the expression of the theorems’ true 
mathematical value. Airdly, the vital presence, in the dis-
cipline, of certain logical and mathematical irreducibilities 
becomes palpable. Mathematics’ richness takes root in 
its weave of demonstrations (the impossibility of evading 
certain obstructions and the possibility of effecting certain 
transfers), something that unfortunately disappears in the 
light of extreme perspectives – whether from an absolutely 
tautological perspective (ZF, where all is transferable) or 
from elementary perspectives (subsystems of RCA0 , where 
all is obstruction).

Ae complex hierarchization of advanced mathematics 
(point ), noted above) gives rise to a panoply of con-
structive scales, inverse correspondences and gradations 
of every kind (particularly visible in Galois theory and 
in the generalized theories of duality), which allow the 
emergence of mathematical creativity to be studied with 
greater fidelity. Ae blooming and genesis of mathemati-
cal structures, hidden from a static, analytic approach, 
are better seen from a dynamic perspective, in light of 
which a problem, concept or construction is transformed 
by the problem’s partial solutions, the concept’s refined 
definitions, or the construction’s sheaf of saturations and 
decantations.)D In that eminently living and incessantly 

)D Ae images of decantation, transfusion and distillation that recur throughout this work 
indicate those creative gestures by way of which, as we shall see, mathematical ideas 
or structures are ‘poured’ – sometimes with the help of others, as ‘filters’ – from one 
register to another, oXen leaving behind, as a kind of ‘sediment’, features previously 
thought to be integral to them.

compare pairs of mathematical propositions with respect 
to excessively powerful base systems. In the eyes of ZF, all 
demonstrable propositions are logically trivialized (as pairs 
of equivalent tautologies) – not because the propositions 
contain an identical logical (or mathematical) value in 
themselves, but because the differences are not appreciated 
by ZF. ZF is a sort of deductive absolute, in which both those 
who study the set-theoretical universe and those who wish 
to restrict themselves to elementary mathematics alone 
can be quite comfortable; nevertheless, the intermediate 
thresholds of deductive power in ZF (like the systems stud-
ied in reverse mathematics) constitute the genuinely relevant 
environments from the point of view of ‘real’ mathemat-
ics, with the multiple hierarchies and differences in which 
one may carry out a mathematically productive study of 
logical obstructions and transfers. Secondly, the idea of a 
tautological mathematics, fully expressible within the nar-
row scope of elementary mathematics, seems untenable. 
Ae moment we cross the complexity thresholds of system 
RCA0 (and pass over into system ACA0, in which we can 
prove the first important results of abstract algebra, like 
the existence of maximal ideals in commutative rings), we 
enter into a relative web of partial equiconsistencies where 
the (supposedly stable and absolute) notion of tautology 
is deprived of any real mathematical sense. Mathematics 
goes on producing necessary theorems, but within vari-
able deductive contexts, whose oscillations and changes 
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monumental trivialization to extrapolate that situation 
to ‘real’ mathematics, where classes of models start to 
behave in an altogether erratic fashion (see chapter F, 
on Shelah’s works). Ae attempt to reduce mathematics 
to grammar, in short, assumes a (fallacious) reduction of 
mathematics to elementary mathematics and then applies 
the (plausible) identification of elementary mathematics 
with finitary grammatical rules. 

Ae richness of modern mathematics is, to a large 
extent, rooted in the enormous diversity of structures and 
models that have been constructed (or discovered – we 
won’t get into the question for now, though we believe 
that both construction and discovery are indispensable; see 
c,hapters C, @). Structures of every sort have indelibly fur-
rowed the current landscape of mathematics, and a clear 
and distinctive mark of advanced mathematics consists 
in having to simultaneously consider multiple structures 
in any comprehensive inspection of a mathematical phe-
nomenon. Ae phenomenon frequently demands to be 
considered under complementary points of view, whereby 
quite diverse arithmetical, algebraic, topological and 
geometrical instruments crisscross each other. A funda-
mental characteristic of modern mathematics is its capacity 
to operate transfusions between a multiplicity of appar-
ently discordant structures, exploiting remarkable sets of 

evolving field of thought that is mathematics, a profound 
hierarchization is not only indispensable to, but is the very 
engine of creation. Any philosophy of mathematics that 
fails to take stock of the complex, hierarchical richness 
of advanced mathematics will be led to neglect not only 
such delicate ‘intermittencies of reason’ (differences in 
logical contrast), but the even subtler ‘intermittencies of 
the heart’ (differences in mathematical creativity). 

Among the features that distinguish modern from 
elementary mathematics, Point ' likewise harbors robust 
philosophical potential. Modern mathematics has pro-
duced, in all of its fields of action, really remarkable 
conglomerates of models, extremely diverse and original, 
with significant structural distinctions. It deals, in fact, 
with semantic collections that greatly surpass the more 
restrained syntactic theories that these collections help 
shape, as can be seen, for example, when we compare the 
explosive and uneven universe of simple finite groups with 
the elementary axiomatization that underlies the theory. 
Advanced mathematics contains a great semantic richness, 
irreducible to merely grammatical considerations, though 
a fallacious extrapolation has presumed to identify the mak-
ing of mathematics with the making of certain grammatical 
rules. Indeed, the supposed reduction of mathematical 
thought to a deductive grammar is understandable from 
the point of view of elementary mathematics, where 
the models tend to be few and controlled, but it is a 
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which the All is reconstituted (set theory), but – before 
all else – in the convergence of its methods and in the 
transfusing of ideas from one to another of its various webs. 
Ae penetration of algebraic methods into analysis, itself 
subordinated to topology, the ubiquitous geometrization 
of logic and the structural harmony of complex analysis 
with arithmetic, are all examples in which mathematics’ 
global unity can be perceived in its local details. A pro-
found epistemological inversion shows how – contrary to 
what we might think at first – an attentive observation of 
practical diversity permits a later reintegration of the One 
behind the Multiple. In fact, a full awareness of diversity 
does not reduce to the disconnected, but rather turns 
back to unity, whether in Peirce’s pragmatism, Benjamin’s 
montage, Francastel’s relay or Deleuze’s difference. Simi-
larly – and with great technical precision, as we shall see 
in chapters B and E – modern mathematics seeks (and 
finds) ways to concatenate a prolific multiplicity of levels 
into great towers and unitary frameworks. 

Aat reconstruction of the One behind the Multiple is 
another of the fundamental marks allowing us to separate 
elementary mathematics from advanced mathematics. 
Elementary mathematics is ‘one’ from the outset, because 
it has not yet managed to multiply or differentiate itself; 
advanced mathematics, by contrast, having already passed 
through explosively creative processes, has had to relearn 
and reconstruct common ties and warps in the midst of 

instruments that succeed in harmonizing the diversity.)E 
Without variety, multiplicity and complexity, modern 
mathematics would not have even been able to emerge; 
and, as we shall see, without interlacing and unity, it would 
not have been able to consolidate itself. Ae situation 
is very different than that of elementary mathematics, 
where structures are strictly determined – the integers, 
the real plane, and little else – and, for that reason, are 
unable to give rise to either a variability of models or a 
fluxion between mathematical subdisciplines. Ais, again, 
is a key observation: Aough a restriction to elementary 
mathematics might allow for a conflation of models and 
language, and the elimination of semantics’ variability 
and fluxion, this sort of thing must be abandoned as 
soon as we enter into advanced mathematics, where the 
landscape is firmly governed by collections of (mathemati-
cal) structures and (physical) facts, oXen independently 
of any syntactic or linguistic considerations. 

Ae multiplicative and differential richness of modern 
mathematics is accompanied by a complementary, pendu-
lar tendency toward the unitary and the integral (point W, 
indicated above). Ae dialectical tensions between the One 
and the Multiple have found, in modern mathematics, a 
fertile field of experimentation. Ae unity of mathematics 
expresses itself, not only in virtue of a common base upon 

)E Aus responding to the first epigraph by Goethe that appears at the beginning of  
this study. 
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a series of global organizational schemas. Ae dynamic 
transit between the local and the global is one of the major 
successes of modern mathematics, a transit that is hard 
to perceive in elementary mathematics, in which a clear 
preponderance of the local takes precedence. Again, there 
seems to be an unwarranted extrapolation at work when 
one presumes to take the eminently static, finished, stable 
and ‘smooth’ character of elementary mathematics as char-
acteristic of all of mathematics in its entirety. Advanced 
mathematics are, by contrast, essentially dynamic, open, 
unstable, ‘chaotic’. It is not by chance that, when one 
asks mathematicians about the future of their discipline, 
almost all of them leave the landscape completely open; 
with a thousand forces pulling in different directions, 
the ‘geometry’ of mathematical creativity is replete with 
unpredictable singularities and vortices. 

Ae back-and-forth between diverse perspectives (con-
ceptual, hypothetical, deductive, experimental), diverse 
environments (arithmetical, algebraic, topological, geo-
metrical, etc.) and diverse levels of stratification within 
each environment is one of the fundamental dynamic 
features of modern mathematics. When that pendular 
back-and-forth partially concretizes itself in theorematic 
warps and interlacings, and when the transit of ascents and 
descents between certain levels of stratifications – along 
with a great arsenal of intermediate mixtures to guide the 
transit – is systematized, we then find ourselves faced 

diversity. Ae firmness and solidity produced by that 
double weaving movement – differentiation/integration, 
multiplication/unification – are virtues proper to advanced 
mathematics, which can be only very faintly detected in 
elementary mathematics. In fact, some of the great unitary 
theories of contemporary mathematics – generalized 
Galois theory, algebraic topology, category theory – are 
trivialized on the elementary level, since the structures at 
play fail to achieve enough differential richness to merit 
any subsequent reintegration. It is factually impossible, 
therefore, to claim to observe the same kinds of conceptual 
movements in reasoning over tally marks as one finds 
when, for example, one enters into the theory of class 
fields. We believe that failures to understand or assume 
this sort of distinction have done quite enough damage 
to the philosophy of mathematics.

Immediately bound up in the weave between mul-
tiplicity and unity in modern mathematics, we find the 
inescapable dynamism of doing mathematics (point B). 
Mathematics, developing as it has from the middle of the 
nineteenth century up to the present day, has not ceased to 
create new spaces for the understanding. A pendular pro-
cess – in which, on the one hand, meticulous saturations 
within particular structures accumulate, and on the other, 
the free behavior of generic structures is set loose – allows 
for the simultaneous contemplation of an uncommonly 
precise spectrum of local obstructions/resolutions and 
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Beyond points )–F, which we have just discussed,)C and 
which constitute an initial plane of separation between 
elementary and modern mathematics (from the middle 
of the nineteenth century to the middle of the twenti-
eth, as we have defined it), we believe that contemporary 
mathematics ()@F( to the present) incorporates additional 
criteria that reinforce its specificity. Beyond conserving those 
distinctively modern characteristics ()–F),)@ contemporary 
mathematics bears new, distinctive elements, as compared 
to elementary mathematics, among which we may point 
out the following:

D. the structural impurity of arithmetic (Weil’s conjec-
tures, Langlands’s program, the theorems of Deligne, 
Faltings and Wiles, etc.);

E. the systematic geometrization of all environments 
of mathematics (sheaves, homologies, cobordisms, 
geometrical logic, etc.);

)C Lautman’s work (see note )' and chapter ') provides a great variety of technical 
examples, concretizing the aforementioned tendencies, as well as other formulations 
of points )–F.

)@ Aere is no  ‘postmodern break’ in mathematics. Following Rodriguez Magda, it is far 
more appropriate to speak of transmodernity than of a dubious ‘post’-modernity, when 
seeking to characterize our age. (R. M. Rodriguez Magda, Transmodernidad [Barcelona: 
Anthropos, '((B]). In mathematics – and, in fact, in culture as a whole, as we have 
remarked in our essay Razón de la frontera y fronteras de la razón (F. Zalamea, Razón de 
la frontera y fronteras de la razón: pensamiento de los límites en Peirce, Florenski, Marey, y 
limitantes de la expresión en Lispector, Vieira da Silva, Tarkovski [Bogotá: Universidad 
Nacional de Colombia, '()(]) – continuous notions connected with traffic and 
frontier are indispensable. Ae prefix ‘trans-’ seems, therefore, far more indicative of 
our condition (and of the mathematical condition) than a premature ‘post-’.

with (point B) other peculiarities, specific to advanced 
mathematics. In fact, at low levels of complexity, such 
as those found in elementary mathematics, the eleva-
tions (ascents/descents) and intermediate constructions 
(mixtures) naturally tend to trivialize away and vanish. It 
was necessary, for example, for obstructions in infinitary 
systems of linear equations and in classes of integral 
equations to be confronted in order for the notion of a 
Hilbert space, one of modern mathematics’ most incisive 
mixtures, to emerge, just as certain singularities in com-
plex variable functions had to be confronted for another 
paradigmatically modern construction, the notion of 
Riemann surfaces, to emerge. Similarly, Galois theory – 
one of the great buttresses of mathematics’ development, 
with remarkable conceptual transfers into the most varied 
mathematical domains – would be unthinkable had impor-
tant obstructions between webs of notions associated with 
algebraic solutions and geometrical invariants not been 
taken into account. In order to tackle problematics of 
great complexity – stretched over highly ramified dialecti-
cal warps – modern mathematics finds itself obliged to 
combine multiple mathematical perspectives, instruments 
and bodies of knowledge, something that rarely happens 
in the realms of elementary mathematics. 
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Figure E. A few great mathematicians and their contributions to the major lines of 
development of contemporary mathematics. 

Behind arithmetical mixing (D), geometrization (E), 
schematization (C), structural fluxion (@) and reflexivity 
()(), we find some modes of conceptualization and con-
struction pertaining to contemporary mathematics that 
are not in evidence (or that appear only in nuce) in the 
period from )@((–)@F(. An initial, fundamental inversion 
consists in studying fragments of mathematics, by setting 
out not from partial axiomatic descriptions (as in Hil-
bert’s program), but from classes of correlated structures.  

C. the schematization, and the liberation from set-
theoretical, algebraic and topological restrictions 
(groupoids, categories, schemas, topoi, motifs, etc.);

@. the fluxion and deformation of the usual boundaries 
of mathematical structures (nonlinearity, noncom-
mutativity, nonelementarity, quantization, etc.);

)(. the reflexivity of theories and models onto themselves 
(classification theory, fixed-point theorems, monstrous 
models, elementary/nonelementary classes, etc.).

Many of the major innovative works of the great con-
temporary mathematicians'( can be situated, grosso modo, 
along the aforementioned lines, as we suggest in the 
following table:') 

'( Ae selection is, inevitably, personal, though the list indubitably includes some of the 
fundamental figures of mathematics since )@F(. We only include in the table those 
mathematicians whom we are studying in the second part of this essay. (Ae order of 
appearance in the table corresponds to the order in which each author is studied in the 
second part of our essay.) Other indispensable figures of contemporary mathematics do 
not appear here (such as Borel, Chevalley, Dieudonné, Drinfeld, Eilenberg, Gelfand, 
Margulis, Milnor, Smale, Aom, Aurston and Weil, to name just a few), since, in most 
cases, we mention them only in passing, without dedicating a specific section to their 
works.

') Ae marks indicate a clear preponderance of works along each line, and not mere 
incursions that might be considered limited in comparison with the remainder of the 
work of the mathematician in question. Grothendieck is clearly situated above all 
other mathematicians of the last half century, as is faintly indicated by the five marks 
that serve to register the enormous presence of his work. Ae other marks should be 
understood as merely indicative, though they are also adequately representative. 

Grothendieck

6 7 8 9 10

Lawvere

Lax

Serre

Shelah

Connes

Langlands 

Atiyah

Kontsevich

Freyd

Simpson

Gromov

Zilber
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the perspectives available to analytic philosophy or the 
philosophy of language in the twentieth century. 

A second essential inversion has to do with contem-
porary mathematics’ tremendous capacity to construct 
incisive technical breaches of apparently insuperable 
boundaries – nonelementary classes (Shelah), noncommu-
tative geometry (Connes), nonidempotent logic (Girard’s 
nonperennial, or linear, logic), etc. – going beyond the 
normalized environments that had arisen naturally in the 
discipline during the first half of the twentieth century. 
Instead of progressing from a positive interior, in which 
knowledge is accumulated, toward a negative, somehow 
unknowable exterior, contemporary mathematics sets 
itself within the determinate boundaries of the ‘non-’ from 
the outset, and, setting out from those frontiers, goes on 
to constructively explore new and astounding territories. 
A third inversion consists in considering mathematical 
mixtures, not as intermediary entities that are useful in 
a deduction, but as proper, original entities, in which 
the very construction of the discipline is at stake. Aere 
is no space of contemporary mathematics that does not 
find itself mongrelized by the most diverse techniques; 
the mediatory (‘trans-’) condition, which in the first half 
of the twentieth century could be seen as one step in 
the path of demonstration, is today becoming the very 
core of the discipline. Ae extraordinary combination 
of arithmetical structuration, algebraic geometrization, 

For both mathematical logic (with the unprecedented 
blossoming of model theory) and pure mathematics (with 
category theory), the objects studied by mathematics 
are not only collections of axioms and their associated 
models, but also, from an inverse perspective, classes of 
structures and their associated logics (a point of view 
that is indispensable for the emergence of abstract model 
theory and generalized quantifiers, aXer Lindström). In 
cases where the class of structures is very extensive and 
runs transversally through many fields of mathematics 
(such as the intermediate categories between regular 
categories and topoi), the breadth of perspective oXen 
provides for new global theorems (synthetic hierarchiza-
tion, delimitation of frontiers, transference – as in Freyd’s 
representation theorems). In cases where the class arises 
on the basis of certain particular structures and their 
infinitesimal deformations (as in quantization), a precise 
and profound apprehension of the class brings with it 
local technical advances of a remarkable nature (analytic 
decomposition, fluxion, asymptotic control – as in Perel-
man’s proof of the Poincaré conjecture). In either case, 
however, mathematics explicitly comes back to precede 
logic. Ae situation we are dealing with here is a basic one 
(broadly prefigured by Peirce, to whom we shall return), 
which may, in fact, have always subsisted in mathematical 
practice, but which was, again and again, hidden from 
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rather wrongheaded to carry on with the same old instru-
ments in the study of other mathematical environments 
(other environments that constitute the majority: set 
theory occupies only a very limited space of mathemati-
cal investigation, as can be seen in the MSC 7888). As 
we shall see later on, certain dialectical instruments are 
indispensable for capturing schematization and fluxion, 
just as it is only from a synthetic and relational perspective 
that the great currents of contemporary structuration can 
be understood, and only from a fully modal perspective 
that the inexhaustible richness of the continuum can be 
observed. Ae specificity of modern and contemporary 
mathematics forces us to keep changing our filters of philo-
sophical observation, and so we find the elaboration of a 
new philosophical optics coming into play, one that – with 
a pragmatic machinery of lenses to insure a minimum 
of distortions – will allow us to survey the landscape of 
‘real’ mathematics. 

schematization, fluxion and reflexivity in Grothendieck’s 
work is a prime example, in which every instrument is 
simply directed toward controlling the transit of certain 
global mathematical conceptions through an enormous 
spectrum of local environments. 

We should note that, in every case, the oscillations and 
inversion remarked upon do not appear in elementary 
mathematics, and indeed cannot appear in the latter’s 
restricted fields of action. Moreover, before a sweeping set-
theoretical landscape such as ZF with first-order classical 
logic, many of the aforementioned currents become ‘non-
observables’ of some sort. One of the basic deficiencies of 
mathematical philosophy has consisted in not coupling its 
philosophical instruments of observation with the environ-
ments observed, and in attempting to paint standardized 
landscapes of the whole. Another methodology (one more 
in tune with the development of contemporary mathemat-
ics) could consist in observing certain environments of 
mathematics through philosophical filters more adequate 
to them – and then trying to synthetically glue the diverse 
philosophical observations thus obtained. (See chapter W 
for the pragmatic – in Peirce’s sense – program that can 
be sketched out in this way, and chapters C–)) for the 
realization of certain partial gluings.)

If it is entirely natural to use the instruments of analytic 
philosophy in order to view the set-theoretical universe, 
with its underlying first-order classical logic, it seems 
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In this chapter we will review the reception that advanced 
mathematics has enjoyed in mathematical philosophy. As 
we shall see, the absences clearly outnumber the presences, 
though there have been significant efforts to be open to 
modern and contemporary mathematics. Ais chapter seeks 
only to carve out a few bibliographic footholds in a global 
descriptive landscape. In part W of this essay, we will come 
back to several of the authors mentioned here, concentrating  
on far more specific and constrained local problematics. 

Ae first section, ‘Ae Place of Lautman’, tries to 
sum up some of the main contributions made by Albert 
Lautman’s work, as a paradigm for a philosophical per-
spective attentive to modern mathematics. Ae second 
section, ‘Approaching Real Mathematics’, surveys, in 
chronological order, a modest number of appearances 
of advanced mathematics in philosophy since Lautman, 
and the even slighter presence there of contemporary 
mathematics. Ae third section, ‘More Philosophy, Less 
Mathematics’, explores the spectrum of modern and 
contemporary mathematics that appears in certain tracts 
of analytic philosophy of mathematics, and that is summed 
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In the arts it would be unthinkable – almost atrocious – to 
neglect the great creations of the genre while aspiring to 
elaborate an aesthetics. In the philosophy of mathemat-
ics, however, it has apparently proved rather easy to skip 
over the emblematic creations of advanced mathematics. 
In the introduction and chapter ), we have indicated a 
few of the reasons why such ‘oblivion’ has been so very 
comfortable and so rarely disquieting: the belief that con-
templating the world of elementary mathematics equals 
contemplating the world of advanced mathematics; the 
standardization of perspectives based on philosophies 
of language, the assumption that perceiving modern 
and contemporary technical advances would not lead to 
major changes in the philosophy of mathematics. As we 
understand it, this has to do with preemptively taking up 
positions in such a way that access to the ‘real’ world of 
mathematics, in its continuous and contemporary devel-
opment, is impeded. Given that, as we have indicated 
in chapter ), advanced mathematics hinges on peculiar 
specificities that distinguish it from elementary mathe-
matics, to limit mathematical philosophy to elementary 
mathematics – however philosophically sophisticated our 
reasons for doing so might be – presupposes a dubious 
reductionism. We will take up, in the first two sections of 
this chapter, the works of a few philosophers of mathemat-
ics who have indeed attempted to access the ‘wild heart’  
of the discipline.

up in the Oxford Handbook of Philosophy of Mathematics and 
Logic, where a deepening of philosophical aspects takes 
precedence over the advanced mathematics themselves, 
which are neglected. Ais is, of course, a valid option, but 
one that must be acknowledged as such: a choice that 
results in a vast panorama being disregarded. 

Ae heart of mathematics has its reasons  of which lin-
guistic reason knows nothing. Just like Stephen, in Joyce’s 
A Portrait of the Artist as a Young Man, who must confront 
the ‘wild heart of life’ and must choose whether to avoid 
it or rather to immerse himself in it, the philosopher of 
mathematics cannot avoid having to confront the ‘wild 
heart’ of mathematics. She may elude it, if that is what she 
wants, but her reflections would then fail to take stock of 
many of mathematics’ central aspects; in particular, an 
understanding of mathematical creativity that neglects 
advanced mathematics cannot be anything other than 
a limited and skeletal understanding. What would we 
say of a historian or philosopher of art who took it upon 
himself to elaborate meticulous chromatic distinctions 
while solely restricting himself to a set of mediocre paint-
ings, leaving aside, for example, the complex colorations 
of Turner, Monet or Rothko? What would we make of a 
literary critic who presumed to circumscribe the ‘whole’ 
of literary invention while reducing it to the short story 
or novella, without, for example, taking Proust or Musil 
into consideration? 
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assertions regarding the mathematics of his epoch – that 
modern mathematics has a structural character (a pre-
figuration of the Bourbaki group – Lautman was close 
friends with Chevalley and Ehresmann) and consequently 
mathematical creativity (the genesis of objects and con-
cepts) is interlaced with the structural decomposition of 
many mathematical domains.

For the first time in the history of modern math-
ematical philosophy, a philosopher had conducted a 
sustained, profound and sweeping survey of the groundbreaking  
mathematics of his time; confronting its technical aspects 
without ambiguity or circumlocution, and  ‘dividing’ it 
into basic concepts that he painstakingly explains to the 
reader, Lautman presents a strikingly rich landscape of 
the great inventive currents of modern mathematics.'W 
Aus breaking with the usual forms of philosophical 
exposition – which used to (and, unfortunately, still do) 
keep the philosopher at a distance from real mathematics 
– Lautman opens an extraordinary breach in an attempt 
to seize upon the problematics of mathematical creativity. 

'W What follows is a brief summary of the mathematical themes reviewed by Lautman in his 
principal thesis. Chapter ): complex variable, partial differential equations, differential 
geometry, topology, closed groups, functional approximations. Chapter ': differential 
geometry, Riemannian geometry, algebraic topology. Chapter W: Galois theory, fields 
of classes, algebraic topology, Riemann surfaces. Chapter B: mathematical logic, first-
order arithmetic, Herbrand fields, algebraic functions, fields of classes, representations 
of groups. Chapter F: Herbrand fields, Hilbert spaces, normal families of analytic 
functions. Chapter D: operators in Hilbert spaces, differential equations, modular 
functions. Entering into the landscape that Lautman draws, the reader is then really 
able to feel the multiple modes and creative movements of modern mathematics, never 
present in the elementary examples usually adduced in the philosophy of mathematics.

F.C    

Albert Lautman perhaps came closer than any other 
twentieth-century philosopher to understanding the 
creative world of modern mathematics. Ae ‘Essay on 
Notions of Structure and Existence in Mathematics’ '' is 
the principal thesis for a doctorate in letters (philosophy), 
defended by Lautman at the Sorbonne in )@WE. Ae work, 
dedicated to the memory of his friend and mentor Her-
brand, constitutes a genuine revolution, as much in the 
ways of doing philosophy of mathematics, as in the depth 
– the undercurrent – of the ideas set down and the hori-
zons anticipated. Lautman graXs together structural and 
dynamical conceptions of mathematics, interlacing the 
‘life’ of modern mathematics with a sweeping spectrum 
of dialectical actions: the local and the global (chapter ));  
the intrinsic and the induced (chapter '); the becom-
ing and the finished – closely tied to the ascent and the 
descent of the understanding (chapter W); essence and 
existence (chapter B); mixtures (chapter F); the singular 
and the regular (chapter D). Lautman divides his thesis 
into two large parts (‘Schemas of Structure’ and ‘Schemas 
of Genesis’) so as to emphasize one of his fundamental 

'' A. Lautman, Essai sur les notions de structure et d’existence en mathématiques. I. Les schémas 
de structure. II. Les schémas de genèse (Paris: Hermann, )@WC, ' vols.). Republished in A. 
Lautman, Essai sur l’unité des mathématiques et divers écrits (Paris: )(/)C, )@EE), ')–)FB. 
Recently republished in A. Lautman, Les mathématiques les idées et le réel physique (Paris: 
Vrin,'((D). [Tr. S. Duffy as Mathematics, Ideas and the Physical Real (London: Continuum, 
'())), CE–)@W.]
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In his complementary thesis for the doctorate of letters, 
‘Essay on the Unity of the Mathematical Sciences in 
their Current Development’ ,'B Lautman explores the 
profound unity of modern mathematics with more bril-
liant case studies. He believes he has detected that unity 
in the burgeoning infiltration of algebra’s structural and 
finitary methods into all the domains of mathematics: 
dimensional decompositions in the resolution of inte-
gral equations (chapter )), non-euclidean metrics and 
discontinuous groups in the theory of analytic functions 
(chapter '), methods from noncommutative algebra in 
differential equations (chapter W), modular groups in 
the theory of automorphic functions (chapter B). Laut-
man thereby stresses the tense union of the continuous-
discontinuous dialectic within modern mathematics, a 
union that takes on aspects of ‘imitation’ or ‘expression’ 
as it alternates between finite and infinite structures: imi-
tation when, in order to resolve a problem, one seeks to 
trace a simple property of finite structures in the infinite; 
expression when the emergence of a new infinite construc-
tion includes a representation of the finite domains that 
prompted its emergence. Ae ‘analogies of structure of 
reciprocal adaptations’ between the continuous and the 
discontinuous are, for Lautman, among the basic engines 
of mathematical creativity, a fact that seems to have been 

'B Lautman, Essai sur l’unité des mathématiques et divers écrits, )FF–'('. Les mathématiques 
les idées et le réel physique C)–)'B; translation, BF–CW.

Breaking, too, with the common canons that are funda-
mentally accepted in the works of his contemporaries (with 
their epistemological or linguistic emphases), Lautman 
seeks to repair the complex dialectico-hermeneutic tissue 
that forms the backdrop of those works (with as many ties 
to Plato as to Heidegger), far removed from the ‘naïve’ 
Platonism that he repeatedly criticizes.

Attending to the most innovative mathematics of his 
time, and open to a reinterpretation of the Ideas in their 
original Platonic sense (as ‘schemas of structure’ that 
organize the actual), Lautman exhibits the main lines 
of support of mathematics’ modern architectonic in his 
‘Essay on the Notions of Structure and of Existence in 
Mathematics’. Dialectical oppositions, with their partial 
saturations, and mixtures constructed to saturate struc-
tures, are linked to one another and to the underlying 
living processes of mathematical technique. Ae unitary 
interlacing of mathematical methods, through the ever-
permeable membranes of the discipline’s various branches, 
is a dynamical braiding in perpetual development. Math-
ematics, far from being merely one and eternal, is an 
indissoluble ligature of contraries: it is one-multiple and 
stable-evolutive. Ae richness of mathematics is largely 
due to that elastic duplicity that permits, both technically 
and theoretically, its natural transit between the ideal 
and the real.
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regarding the transit of the structural and the existential 
within modern mathematics. 

In the second subsection of the first part of ‘New 
Investigations’, ‘Ae Genesis of Mathematics out of the 
Dialectic’, Lautman explicitly defines some of the fun-
damental terms that, in his thesis, are audible only in 
whispers: the pairs of dialectical notions (whole/part, 
extrinsic/intrinsic, system/model, etc.), and the associated 
dialectical ideas, which should be understood as partial 
resolutions of oppositions between ‘notions’. For example, 
the understanding of the continuum as a saturation of 
the discrete (the Cantorian completion of the real line) 
is a Lautmanian ‘idea’ that partially responds to the 
pair of ‘notions’, continuous/discrete, but it is clear that 
there can likewise be many other alternative ‘ideas’ for 
delimiting the notions at stake (like Brouwer’s primordial 
continuum, from which the discrete is detached, revers-
ing Cantor’s process). In virtue of Lautman’s synthetic 
perception, mathematics exhibits all of its liveliness, and 
the nonreductive richness of its technical, conceptual and 
philosophical movements becomes obvious. And so the 
harmonious concord of the Plural and the One, perhaps 
the greatest of mathematics’ ‘miracles’ shines forth. 

Ae war years slowed the tempo of Lautman’s writing 
– he was deeply involved in military activities and in the 
Resistance – but he nevertheless found time to try to liX 
his work above the horror that surrounded him. In )@W@, 

borne out by the entire second half of the twentieth cen-
tury, both in the unitary entanglement of the methods of 
algebraic geometry that brought about the demonstration 
of Fermat’s Aeorem (Wiles), and in the geometrical and 
topological adaptations that appear to be on the verge of 
proving the Poincaré conjecture (Perelman).

If, in his complementary thesis, Lautman’s emphasis 
primarily tends in the discrete $  continuous direction 
(the direction in which the tools of modern algebra help 
to generate the concepts and constructions of analysis), 
a study of the other direction, continuous $  discrete, 
can also be found in his reflections on analytical number 
theory in ‘New Investigations into the Dialectical Struc-
ture of Mathematics’.'F In this brief pamphlet – the last 
work Lautman published in his lifetime – he remarks on 
how ‘reflections on Plato and Heidegger’ are conjugated 
with ‘observations on the law of quadratic reciprocity 
and the distribution of prime numbers’, in an effort to 
sustain, once again, one of his fundamental theses: to 
show ‘that that rapprochement between metaphysics and 
mathematics is not contingent but necessary’. In the Hei-
deggerian transit between pre-ontological understanding 
and ontic existence, Lautman finds, in channels internal 
to philosophy, an important echo of his own reflections 

'F A. Lautman, Nouvelles recherches sur la structure dialectique des mathématiques (Paris: 
Hermann, )@W@). Republished in Lautman, Essai sur l’unité…, '(W–''@. Les 
mathématiques…, )'F–''); translation, )@E–')@.



TY

  

T=

  

regarding the transit of the structural and the existential 
within modern mathematics. 

In the second subsection of the first part of ‘New 
Investigations’, ‘Ae Genesis of Mathematics out of the 
Dialectic’, Lautman explicitly defines some of the fun-
damental terms that, in his thesis, are audible only in 
whispers: the pairs of dialectical notions (whole/part, 
extrinsic/intrinsic, system/model, etc.), and the associated 
dialectical ideas, which should be understood as partial 
resolutions of oppositions between ‘notions’. For example, 
the understanding of the continuum as a saturation of 
the discrete (the Cantorian completion of the real line) 
is a Lautmanian ‘idea’ that partially responds to the 
pair of ‘notions’, continuous/discrete, but it is clear that 
there can likewise be many other alternative ‘ideas’ for 
delimiting the notions at stake (like Brouwer’s primordial 
continuum, from which the discrete is detached, revers-
ing Cantor’s process). In virtue of Lautman’s synthetic 
perception, mathematics exhibits all of its liveliness, and 
the nonreductive richness of its technical, conceptual and 
philosophical movements becomes obvious. And so the 
harmonious concord of the Plural and the One, perhaps 
the greatest of mathematics’ ‘miracles’ shines forth. 

Ae war years slowed the tempo of Lautman’s writing 
– he was deeply involved in military activities and in the 
Resistance – but he nevertheless found time to try to liX 
his work above the horror that surrounded him. In )@W@, 

borne out by the entire second half of the twentieth cen-
tury, both in the unitary entanglement of the methods of 
algebraic geometry that brought about the demonstration 
of Fermat’s Aeorem (Wiles), and in the geometrical and 
topological adaptations that appear to be on the verge of 
proving the Poincaré conjecture (Perelman).

If, in his complementary thesis, Lautman’s emphasis 
primarily tends in the discrete $  continuous direction 
(the direction in which the tools of modern algebra help 
to generate the concepts and constructions of analysis), 
a study of the other direction, continuous $  discrete, 
can also be found in his reflections on analytical number 
theory in ‘New Investigations into the Dialectical Struc-
ture of Mathematics’.'F In this brief pamphlet – the last 
work Lautman published in his lifetime – he remarks on 
how ‘reflections on Plato and Heidegger’ are conjugated 
with ‘observations on the law of quadratic reciprocity 
and the distribution of prime numbers’, in an effort to 
sustain, once again, one of his fundamental theses: to 
show ‘that that rapprochement between metaphysics and 
mathematics is not contingent but necessary’. In the Hei-
deggerian transit between pre-ontological understanding 
and ontic existence, Lautman finds, in channels internal 
to philosophy, an important echo of his own reflections 

'F A. Lautman, Nouvelles recherches sur la structure dialectique des mathématiques (Paris: 
Hermann, )@W@). Republished in Lautman, Essai sur l’unité…, '(W–''@. Les 
mathématiques…, )'F–''); translation, )@E–')@.



TRTQ

   

problem of interlacing the ideal with the real, by way of the 
complex conceptual constructions of quantum mechan-
ics, statistical mechanics and general relativity.'E Laut-
man establishes some remarkable correlations ‘between 
dissymmetrical symmetry in the sensible universe and 
antisymmetric duality in the world of mathematics’, dis-
covers the potential of the recently developed lattice theory 
(Birkhoff, Von Neumann, Glivenko) and meticulously 
shows that any conception of time must simultaneously 
account for both the global form of the entire universe 
and its local evolutions. Seeking an explanation of time’s 
sensible duality (as both an oriented dimension and a fac-
tor of evolution), Lautman uncovers the duality’s ‘ideal’ 
roots in a profound and original structural investigation of 
time’s twofold behavior in differential equations. Raising 
mathematics and physics to the point where they are seen 
as higher-order ‘notions’ linked to symmetry (predomi-
nantly mathematical) and dissymmetry (predominantly 
physical), Lautman thus successfully completes the first 
circumnavigation of his theory of ‘ideas’. 

Among Lautman’s many contributions, both his stud-
ies of the mixtures of modern mathematics and his explica-
tion of the ideas/notions that facilitate the incarnation of 
obstructions and resolutions in mathematical creativity are 

'E A. Lautman, Symétrie et dissymétrie en mathématiques et en physique (Paris: Hermann, 
)@BD); Republished in Lautman, Essai sur l’unité…, 'W)–C(. Les mathématiques… 'DF–@@; 
translation ''@–D'. 

during a memorable session of the French Philosophy 
Society, Lautman defended, alongside Jean Cavaillès, the 
theses the two friends had recently submitted. A transcript 
of Lautman’s intervention is preserved in ‘Mathematical 
Aought’,'D where he insists on the structural character of 
modern mathematics, and points to how contrary ‘notions’ 
(local/global, form/matter, container/contained, etc.) 
dwell within groups, number fields, Riemann surfaces 
and many other constructions, and how ‘the contraries 
are not opposed to one another, but, rather, are capable 
of composing with one another so as to constitute those 
mixtures we call Mathematica’. At the end of his interven-
tion, in an homage to Plato and a return to the <maeus, 
Lautman proposes an ambitious reconstruction of the 
‘theory of Ideas’ for mathematical philosophy, in three 
great stages: a description of the inexhaustible richness 
of effective mathematics; a hierarchization of mathemati-
cal geneses; a structural explanation of mathematics’ 
applicability to the sensible universe.

Lautman’s last two works take up, in part, this final 
task and thereby serve to bring his philosophical labor to 
a coherent closure. Chapters from a monograph on the 
philosophy of physics that Lautman was unable to com-
plete, ‘Symmetry and Dissymmetry in Mathematics and in 
Physics’ and ‘Ae Problem of ]me’, aggressively tackle the 

'D A. Lautman, 'La pensée mathématique', Bulletin de la Société Française de Philosophie 
XL, )@BD: W–)E. 



TRTQ

   

problem of interlacing the ideal with the real, by way of the 
complex conceptual constructions of quantum mechan-
ics, statistical mechanics and general relativity.'E Laut-
man establishes some remarkable correlations ‘between 
dissymmetrical symmetry in the sensible universe and 
antisymmetric duality in the world of mathematics’, dis-
covers the potential of the recently developed lattice theory 
(Birkhoff, Von Neumann, Glivenko) and meticulously 
shows that any conception of time must simultaneously 
account for both the global form of the entire universe 
and its local evolutions. Seeking an explanation of time’s 
sensible duality (as both an oriented dimension and a fac-
tor of evolution), Lautman uncovers the duality’s ‘ideal’ 
roots in a profound and original structural investigation of 
time’s twofold behavior in differential equations. Raising 
mathematics and physics to the point where they are seen 
as higher-order ‘notions’ linked to symmetry (predomi-
nantly mathematical) and dissymmetry (predominantly 
physical), Lautman thus successfully completes the first 
circumnavigation of his theory of ‘ideas’. 

Among Lautman’s many contributions, both his stud-
ies of the mixtures of modern mathematics and his explica-
tion of the ideas/notions that facilitate the incarnation of 
obstructions and resolutions in mathematical creativity are 

'E A. Lautman, Symétrie et dissymétrie en mathématiques et en physique (Paris: Hermann, 
)@BD); Republished in Lautman, Essai sur l’unité…, 'W)–C(. Les mathématiques… 'DF–@@; 
translation ''@–D'. 

during a memorable session of the French Philosophy 
Society, Lautman defended, alongside Jean Cavaillès, the 
theses the two friends had recently submitted. A transcript 
of Lautman’s intervention is preserved in ‘Mathematical 
Aought’,'D where he insists on the structural character of 
modern mathematics, and points to how contrary ‘notions’ 
(local/global, form/matter, container/contained, etc.) 
dwell within groups, number fields, Riemann surfaces 
and many other constructions, and how ‘the contraries 
are not opposed to one another, but, rather, are capable 
of composing with one another so as to constitute those 
mixtures we call Mathematica’. At the end of his interven-
tion, in an homage to Plato and a return to the <maeus, 
Lautman proposes an ambitious reconstruction of the 
‘theory of Ideas’ for mathematical philosophy, in three 
great stages: a description of the inexhaustible richness 
of effective mathematics; a hierarchization of mathemati-
cal geneses; a structural explanation of mathematics’ 
applicability to the sensible universe.

Lautman’s last two works take up, in part, this final 
task and thereby serve to bring his philosophical labor to 
a coherent closure. Chapters from a monograph on the 
philosophy of physics that Lautman was unable to com-
plete, ‘Symmetry and Dissymmetry in Mathematics and in 
Physics’ and ‘Ae Problem of ]me’, aggressively tackle the 

'D A. Lautman, 'La pensée mathématique', Bulletin de la Société Française de Philosophie 
XL, )@BD: W–)E. 



=7

  

=>

  

and explains why mathematical creativity has a natural 
tendency to require such mixtures and mediations:

the demonstration of certain results pertaining to 
the integers depends upon the properties of cer-
tain analytic functions, because the structure of the 
analytical means employed turns out to be already 
in accordance with the structure of the sought aXer 
arithmetical results.'C

In fact, the great interest of the mixtures lies in their 
capacity to partially reflect properties from one extreme 
to another, and to serve as relays in the transmission of 
information.'@ Whether they occur in a given structure 
(Hilbert space), in a collection of structures (Herbrand 
ascending domains) or in a family of functions (Montel 
normal families), mixtures, on the one hand, imitate the 

'C Lautman, Les mathématiques… 'BF–D; translation, '(C (translation modified).

'@ Francastel’s relé (from the French relais, meaning ‘relay’) affords – for the work of 
art – another mixture or junction of great value; one where the perceived, the real 
and the imaginary are conjugated. ‘Ae plastic sign, by being a place where elements 
proceeding from these three categories encounter and interfere with one another, is 
neither expressive (imaginary and individual) nor representative (real and imaginary), 
but also figurative (unity of the laws of the brain’s optical activity and those of the 
techniques of elaboration of the sign as such).’ (P. Francastel, La realidad figurative 
[)@DF]  [Barcelona: Paidós, )@CC], ))F). If we contrast a definition of the work of art as 
a ‘form that signifies itself’ (Focillon) with a definition of the work of mathematics as 
a ‘structure that forms itself’  (our extrapolation, motivated by Lautman), we can have 
some intuition, once again, of the deep common ground underlying aesthetics and 
mathematics. For a remarkable recuperation of a history of art that takes stock of the 
complex and the differential, but that recomposes it all in a stratified and hierarchical 
dialogue, attentive to the universal and to ‘truth’ (an eminently Lautmanian task), see 
J. Auiller, 3éorie générale de l’histoire de l’art (Paris: Odile Jacob, '((W). For Focillon’s 
definition, and an extensive subsequent discussion, see p. DF.

of particular relevance. Mathematical mixtures are legion; 
the ones most studied by Lautman include algebraic 
topology, differential geometry, algebraic geometry, and 
analytical number theory. Aese interlacings of a noun (the 
main subdiscipline) with an adjective (the ‘infiltrating’ 
subdiscipline) are just faint echoes of the real procedural 
osmoses of modern mathematics; the rigid delimitations 
of the past fade away, to emerge again as pliable folds 
within a new classification that resembles not so much a 
tree as a vast liquid surface over which information flows 
between mobile nuclei of knowledge. Albert Lautman 
is the only philosopher of modern mathematics who 
has adequately emphasized and studied the advent of 
mathematical mixtures in actuality, on the one hand, and 
the ‘ideas’ and ‘notions’ that allow the transit of those 
mixtures to be understood in potentiality, on the other. 
Given the inescapable importance of mixed constructions 
in contemporary mathematics, it is of no surprise to say 
that Lautman’s philosophy of mathematics would be of 
great worth to our time, if only it were better known. To 
break with an imagined ‘tautological’ mathematics, the 
dubious ‘pure’ invention of analytic philosophy, and to 
open onto a contaminated, and much more real, mathemat-
ics, is the order of the day. 

Lautman exalts the richness won by the introduction 
of ‘transcendent’ analytical methods into number theory, 
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but composed as a mixed form whose fertility is due to 
its double nature’.W' Ais clear intuition of the mixed 
forms of logic, in the thirties, when logic, by contrast, 
tended to see itself as a ‘pure form’, is evidence of the 
young philosopher’s independence and acumen. Indeed, 
it now seems obvious that those mixed forms of logic 
were the underlying cause of the late twentieth-century 
blossoming of mathematical logic, happily infiltrated by 
algebraic, topological and geometrical methods. In that 
sense, Lautman never presupposes an a priori logic, prior 
to mathematics, but considers it as a constituent part 
of doing mathematics, with a prescient sense of today’s 
pluralistic conception of logic, whereby a logical system 
accommodates a collection of mathematical structures 
rather than installing itself beneath it. 

In a text on the ‘method of division’ in modern axi-
omatics (his first published article), Lautman already 
moves to link the mention of mixtures with the great 
philosophical tradition:

It is not Aristotelian logic, the logic of genera and 
species, that intervenes here [i.e., in mathematical 
creation], but the Platonic method of division, as it 
is taught in the Sophist and the Philebus, for which the 
unity of Being is a unity of composition and a point 

W' Ibid, W)F; BD; translation, C (translation modified).

structure of underlying domains and, on the other, serve 
as partial building blocks for the structuration of higher 
domains. Without this kind of sought-a=er contamination, 
or premeditated alloying, contemporary mathematics 
would be unthinkable. A remarkable result like the proof 
of Fermat's Aeorem ()@@B) was only possible as the 
final exertion in a complex back-and-forth in which an 
entire class of mathematical mixtures had intervened – a 
problem concerning elliptical curves and modular forms 
resolved by means of exhaustive interlacings between 
algebraic geometry and complex analysis, involving the 
zeta functions and their Galois representations.

‘Mixtures’ show up in Lautman’s earliest surviving 
manuscript – his posthumously published work on math-
ematical logic.W( At twenty-six, Lautman describes the 
construction of Herbrand ‘domains’ and shows that ‘the 
Hilbertians succeeded in interposing an intermediary 
schematic of individuals and fields considered not so 
much for themselves as for the infinite consequences that 
finitary calculations performed on them would permit’.W) 
Comparing that ‘intermediary schematic’ with Russell’s 
hierarchy of types and orders, Lautman points out that 
‘in both cases, we are faced with a structure whose ele-
ments are neither entirely arbitrary nor really constructed, 

W( A. Lautman, ‘Considérations sur la logique mathématique’, in Lautman, Essai sur l’unité…, 
W(F–)F. Republished in Lautman, Les mathématiques… , W@–BD; translation )–C.

W) Ibid., W)F; BD; translation, E–C (translation modified).
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extrinsic/intrinsic, continuous/discrete, etc.), but it is 
in his ‘New Investigations into the Dialectical Structure 
of Mathematics’ that Lautman introduces the terms that 
govern those dialectical interlacings. Lautman defines a 
notion as one of the poles of a conceptual tension and an 
idea as a partial resolution of that polarity. Ae concepts 
of finitude, infinity, localization, globalization, calcula-
tion, modeling, continuity and discontinuity (Lautman’s 
examples) are Lautmanian ‘notions’. A few Lautmanian 
‘ideas’ (our examples) would be the proposals according 
to which the infinite is grasped as nonfinite (the cardinal 
skeleton), the global as gluing of the local (compactness), 
the model-theoretic as realization of the calculative (set-
theoretical semantics), or the continuous as completion 
of the discrete (the Cantorian line). 

Ae interest of ‘notions’ and ‘ideas’ is threefold: they 
allow us to filter out (liberate) unnecessary ornaments and 
decant the grounds of certain mathematical frameworks; 
they allow us to unify various apparently disparate con-
structions from the perspective of a ‘higher’ problematic 
level; and they allow us to open the mathematical spectrum 
to various options. Whether the mathematical landscape 
is being filtered or unified (duality theorems in algebraic 
topology and lattice theory) or being opened towards a 
fuller scope of possibilities (‘non-standard ideas’, which 
resolve in another way oppositions between fundamental 
‘notions’: the infinite as the immeasurable in Robinson, 

of departure for the search for the principles that are 
united in the ideas.WW 

Lautman accentuates the dynamical interest of a mixture, 
‘which tends to liberate the simple notions in which that 
mixture participates’, and thereby situates mathematical 
creativity in a dialectic of liberation and composition. In 
terms foreign to Lautman, but which situate his position 
on better-known terrain, on the one hand, the making 
of mathematics divides a concept’s content into defini-
tions (syntax) and derivations (grammar), and liberates 
its simple components; on the other hand, with models 
(semantics) and transfers (pragmatics), it constructs 
intermediary entities that resume the existence of those 
simple threads, recomposing them into new concepts. 
When the mixture succeeds in simultaneously combin-
ing a great simplicity and a strong power of reflection in 
its components – as with Riemann surfaces or Hilbert 
spaces, the subject of admiring and exemplary studies 
by Lautman – mathematical creation reaches perhaps 
its greatest heights. 

In Lautman’s theses, the philosopher’s entire reflec-
tive movement is propelled by a pendular contrasting 
of complementary concepts (local/global, whole/part, 

WW A. Lautman, ‘L’axiomatique et la méthode de division', in Recherches philosophiques 
VI, )@WD–WE: )@)–'(W; republished in Lautman, Essai sur l’unité…, '@)–W(B. Les 
mathématiques…, D@–C(; translated in Lautman, Mathematics, Ideas…, W)–B'.
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on the same level as any other mathematical theory, thus 
anticipating the current conception of logic, which has 
been accepted in the wake of model theory. Follow-
ing Lautman, ‘logic requires a mathematics in order to 
exist’, and it is in the weaving together of blended logical 
schemata and their effective realizations that the force of 
doing mathematics lies. 

It is in the tension between a ‘universal’ (or ‘generic’) 
problematic and its ‘concrete’ (or ‘effective’) partial resolu-
tions, according to Lautman, that the better part of the 
structural and unitary weaving of mathematics may take 
root. As we will see in chapter E, this is precisely the para-
digm proposed by the mathematical theory of categories.WB 
When Lautman looks at Poincaré and Alexander’s duality 

WB Lautman never lived to know category theory, the rise of which began at the very 
moment of his death (S. Eilenberg, S.Mac Lane, 'Natural isomorphisms in group 
theory', Proc. Nat. Acad. Sci. 'C, )@B': FWE–BW; S. Eilenberg, S. Mac Lane, 'General 
theory of natural equivalences', Trans. Amer. Math. Soc. FC, )@BF: 'W)–@B). It is difficult 
to know to what extent conversations with his friend Ehresmann – who introduced the 
general theory of fiber spaces in the forties and promoted category theory in France 
from the end of the fiXies on – could have influenced, in its implicit depths, a conception 
of mathematics so clearly recognizable (in retrospect) as categorical as Lautman’s is. 
Nevertheless, in the session of the French Philosophy Society in which Cavaillès and 
Lautman defended their work, and in which Ehresmann participated, the latter already 
pointed out precisely how a number of Lautman’s philosophical conceptions should 
be technically filtered and converted into equipment internal to mathematics itself: ‘If I 
have understood correctly, in the domain of a supramathematical dialectic, it would 
not be possible to specify and investigate the nature of those relations between general 
ideas. Ae philosopher could only make the urgency of the problem evident. It seems 
to me that if we preoccupy ourselves with speaking about those general ideas, then we 
are already, in a vague way, conceiving of the existence of certain relations between 
those general ideas. From that moment, we can’t then just stop in the middle of the 
road; we must pose the problem, the genuinely mathematical problem, that consists in 
explicitly formulating those general relations between the ideas in question. I believe 
that a satisfactory solution can be given to that problem, regarding the relations between 
the whole and its parts, the global and the local, the intrinsic and the extrinsic, etc. […] 
I believe that the general problems that Lautman poses can be stated in mathematical 
terms, and I would add that we can’t avoid stating them in mathematical terms.’ Ae 
entire rise of category theory effectively bears out Ehresmann’s position. 

the discrete as demarcation of a primordial continuum 
in Brouwer, the calculative as system of coordinates for 
the model-theoretic  in Lindström), Lautmanian ‘notions’ 
and ‘ideas’ let us roam transversally over the universe of 
mathematics and explicate not only the breadth of that 
universe, but its harmonious concord between the One 
and the Many.

For Lautman, ‘notions’ and ‘ideas’ are situated on a 
‘higher’ level, where the intellect is capable of imagining 
the possibility of a problematic, which, nevertheless, acquires 
its sense only through its immediate incarnation in real 
mathematics. Lautman is conscious of how an a priori 
thereby seems to be introduced into the philosophy of 
mathematics, but he explains this as a mere ‘urgency of 
problems, prior to the discovery of solutions’. In fact, a 
problem’s ‘priority’ itself should be only considered as 
such from a purely conceptual point of view, since, as 
Lautman himself points out, the elements of a solution 
are oXen found to have already been given in practice, only 
later to incite the posing of a problem that incorporates 
those data (none of which prevents, in a conceptual 
reordering, the problem from ultimately preceding the 
solution). In parallel with his strategy of apprehending 
the global structure of a theory rather than predefining its 
logical status, Lautman consistently situates mathemati-
cal logic as an activity within mathematics that should 
not arbitrarily precede it and that should be situated 
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Ae Lautmanian language of ‘notions’, ‘ideas’ and dia-
lectical hierarchies finds, in category theory, a definite 
technical basis. ‘Notions’ can be specified by means of 
universal categorical constructions (diagrams, limits, free 
objects), ‘ideas’ by means of elevations of classes of free 
objects and functorial adjunctions, dialectical hierarchies 
by means of scales of levels of natural transformations. In 
this way, for example, Yoneda’s Lemma technically expli-
cates the inevitable presence of the ideal in any thorough 
consideration of mathematical reality (one of Lautman’s 
basic contentions), showing that every small category can 
be immersed in a category of functors, where, in addition 
to the representable functors that form a ‘copy’ of the 
small category, there also inevitably appear additional 
ideal functors (‘presheaves’), that complete the universe. 
What is at issue here is the ubiquitous appearance of 
the ‘ideal’ whenever the capture of the ‘real’ is at stake, 
a permanent and pervasive osmosis in every form of 
mathematical creativity.

Ae majority of the schemas of structure and genesis 
that Lautman studies in his principal thesis can be cat-
egorically specified and, most importantly, extended. For 
example, the ‘duality of local and global investigations’ 
is graXed onto a complex set of instruments of functo-
rial localizations and global reintegrations (Freyd-style 
representation theorems), the ‘duality of extrinsic and 
intrinsic points of view’ feeds into the power of a topos’s 

theorems, and describes how ‘the structural investiga-
tion of a space that receives a complex is reduced to 
the structural investigation of that complex’,WF when he 
analyses the ascent toward a universal covering surface 
and contemplates the hierarchy of isomorphisms ‘between 
the fundamental groups of different covering surfaces of 
a given surface F and the subgroups of the fundamental 
group F’, when he mentions an inversion between Gödel’s 
completeness theorem and Herbrand’s theorem, which he 
later extends to an alternation between form and matter 
by way of certain mediating structures, or when – bolder 
still – he asks if ‘it is possible to describe, at the heart 
of mathematics, a structure that would be something 
like a initial sketch of the temporal form of sensible 
phenomena’,WD Lautman is in each case anticipating certain 
techniques in categorical thought. Aese include functors 
in algebraic topology, representable functors in variet-
ies, adjunctions in logic, and free allegories. In fact, by 
‘admitting the legitimacy of a theory of abstract structures, 
independent of the objects linked to one another by those 
structures’, Lautman intuits a mathematics of structural 
relations beyond a mathematics of objects – which is to say, 
he prefigures the path of category theory. 

WF Lautman, Les mathématiques…, '(); translation, )D' (translation modified).

WD Ibid., )EW; translation )W' (translation modified).
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order to specify and incarnate the content of the ‘ideas’ at 
stake. One of the great merits of Lautman’s work consists 
in its having shown how those processes of ascent and 
descent must be indissolubly connected in the philosophy 
of mathematics in extenso, just as they are in a Galois 
correspondence in nuce.

F.F  ‘ ’

In the following pages we will perform a brief survey of 
the works of other authors who have tried to approach the 
‘heart’ of ‘real mathematics’. Ae survey will be chrono-
logical, and may be considered adequately representative, 
but it is certainly not exhaustive. For each work, we will 
indicate, firstly, what spectrum of mathematics it exam-
ines, and secondly, what global accounts obtain in light 
of such an examination. As we shall see, these approaches 
for the most part appear to concern classical mathematics 
(Pólya, Lakatos, Kline, Wilder, Kitcher), though other 
endeavors seek to examine modern (de Lorenzo, Mac 
Lane, Tymoczko, Châtelet, Rota), and even contemporary 
(Badiou, Maddy, Patras, Corfield), mathematics. We do 
not find a comprehension of modern mathematics as 
precise and broad as that achieved by Lautman in any of 
the cases of which we are aware.

internal logic (Lawvere-style geometrical logic), and the 
‘interest of the logical scheme of Galois theory’ is extended 
into a general theory of residuality (categorical Galois 
connections in the style of Janelidze). So, when we see 
how Lautman observes that ‘certain affinities of logical 
structure allow us to approach different mathematical 
theories in terms of the fact that each offers a different 
sketch of a solution for the same dialectical problem’, 
that ‘we can speak of the participation of distinct math-
ematical theories in a common Dialectic that dominates 
them’, or that the ‘indetermination of the Dialectic […] 
simultaneously secures its exteriority’, it seems natural 
to situate his ideas in a categorical context, whether in 
the weaving between abstract categories (‘common Dia-
lectic’) and concrete categories (‘distinct mathematical 
theories’), or in  terms of free objects (‘indetermination 
of the Dialectic’) whose extensive external applicability 
throughout the entire spectrum of mathematics is precisely 
a consequence of their schematic character. 

Ae mutual enrichment of effective Mathematics and 
the Dialectic (Lautman’s capitalizations) is reflected in the 
natural ascent and descent between Lautmanian notions 
and ideas, on the one hand, and mixtures, on the other. In 
fact, in ascending from the mixtures, the ‘notions’ and 
‘ideas’ that allow us to situate the place of those mixtures 
within an amplified dialectic are liberated; while descend-
ing from the ‘notions’, new mixtures are elaborated in 
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modus ponens, corresponding to Peirce’s ‘retroduction’, 
which Pólya, however, does not mention). Ae problem 
of plausible inference [A$B, B__A] consists in speci-
fying the conditions on the deduction A$B and on 
the possible truth of B that must obtain in order for the 
retroduction __ to A to be as plausible as possible. Pólya 
goes on to tackle the progressive gradations of proof, 
the small internal variations that allow us to overcome 
the obstructions encountered in the solution process, 
inventive chance, and the back-and-forth of hypotheses 
and intermediate lemmata by which a demonstration 
continuously takes shape. Arough a close inspection of 
classical mathematics, he detects a complex hierarchiza-
tion, which was later exploited in modern mathematics. 
Ae other modern characteristics (semantic richness, 
theorematic mixtures, structural unity) nevertheless fail 
to appear within the classical horizon. 

In Mathematical Discovery, Pólya restricts himself to 
examples from elementary mathematics (basic geometrical 
forms, numerical sums, Pascal’s triangle) – though he 
also includes a few classical references related to limits 
and power series –  to illustrate the gradual emergence 
and concretization of mathematical ideas, from the vague 
and apparently contradictory to the measured control of a 
proof.WC By means of processes of figuration, superposition 

WC G. Pólya, Mathematical Discovery (New York: Wiley, )@D').

George Pólya

Pólya’s works constitute a mine of examples for bringing 
the reader closer to the processes of discovery and inven-
tion (both processes being indispensable) at work within 
classical and elementary mathematics. Mathematics and 
Plausible Reasoning  presents an important collection of 
case studies that concern two major themes: analogical 
and inductive constructions in mathematics, and modes 
of probable inference.WE Volume ) (Induction and Analogy 
in Mathematics) explores classical analysis (primarily 
concerning the figure of Euler, gloriously resurrected), the 
geometry of solids, elementary number theory, the study 
of maxima and minima, and certain elementary problems 
from physics. Pólya carefully examines the weavings 
between generalization and specialization, certain classes 
of analogical hierarchies, the construction of the multiple 
steps of a demonstration and conjecture confirmation. 
He includes numerous, thoughtful exercises (with solu-
tions), which should be seen as a means for opening 
the (philosophical or mathematical) reader’s mind to a 
nondogmatic understanding of mathematical practice. 
Volume ' (Patterns of Plausible Inference) confronts the 
problem of the plausibility of certain hypotheses from 
which one deduces further statements (a sort of inverted 

WE G. Pólya, Mathematics and Plausible Reasoning, ' vols. (Princeton: Princeton University 
Press, )@FB).
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WC G. Pólya, Mathematical Discovery (New York: Wiley, )@D').
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forms – explicit uses of the thesis-antithesis-synthesis 
triad, expository games in Platonic dialogue, an incessant 
back-and-forth between obstructions and resolution – run 
through the work, which thereby discerns the emergence 
of the dialectical dynamic that will govern the develop-
ment of modern mathematics. 

Mathematics, Science and Epistemology posthumously 
assembles Lakatos’s articles on the philosophy of math-
ematics.B( Ae spectrum observed is once again the envi-
ronment of classical mathematics (from the Greeks up 
to Abel and Cauchy, on whom Lakatos’s considerations 
are centered), but the book also contains various com-
mentaries on the modern foundations (Russell, Tarski, 
Gödel), following the line preponderantly adopted by 
twentieth-century philosophy of mathematics. Contem-
porary mathematics makes an appearance only in the 
form of Robinson’s nonstandard analysis, as a result of 
Lakatos’s interest in connecting it with a recuperation of 
the infinitesimals utilized by Cauchy. Various hierarchies 
are proposed, dealing with the steps of a proof (prefor-
mal, formal, postformal), and examples dealing with the 
method of conjectures, proofs and refutations are refined. 
Ae profound instruments of algebraic geometry which, by 
the sixties, had already been constructed (by Grothendi-
eck), and which later led to proofs of the great theorems 

B(  I. Lakatos, Mathematics, Science and Epistemology; vol ' of Philosophical Papers (Cam-
bridge: Cambridge University Press, )@EC).

and amplification, Pólya shows how webs of auxiliary 
notions and problems gradually take shape, converging 
toward the solution of an initial problem, and how a 
surprising interlacing of chance and discipline is oXen 
found lurking behind various demonstrations. Numerous 
examples and exercises with solutions once again bring 
the reader closer to mathematical practice. Ais practi-
cal approach offers us a sense, however faint, of modern 
mathematics’ dynamical richness. 

Imre Lakatos

Lakatos systematically introduces, into the philosophy of 
mathematics, the method of conjectures and refutations 
that Popper had applied to the philosophy of science as a 
whole. In Proofs and Refutations: 3e Logic of Mathematical 
Discovery, Lakatos explores the fluctuating mechanisms of 
mathematical discovery, the changing norms of proofs, the 
interlacing of counterexamples and lemmata in the con-
struction of a demonstration and the back-and-forth of a 
mathematics understood as an experimental science.W@ Ae 
examples adduced are eminently classical and are treated 
with patience and care: Euler’s Polyhedron Aeorem, Cau-
chy and the problems of uniform convergence, bounded 
variation in the Riemann integral. Many dialectical  

W@ I. Lakatos, Proofs and Refutations: 3e Logic of Mathematical Discovery  (Cambridge: 
Cambridge University Press, )@ED). Ae book extends earlier articles from )@DW-DB.
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to which it grows by accumulation and progress in a verti-
cal ascent. He proposes instead a conceptual amplification 
of the discipline, in which new realms interlace with one 
another horizontally, without having to be situated one 
on top of the other. 

In La matemática y el problema de su historia, De Lorenzo 
postulates a radical historicity of doing mathematics.B' 
Ae references to advanced mathematics are classified 
in terms of three primary environments, within which, 
according to De Lorenzo, the major ruptures and inver-
sions that gave rise to modern mathematics were forged: 
the environment of 9>7?, in which the program for the 
resolution of mathematical problems is inverted, setting 
out ‘from what seems most elusive in order to account for 
why [problems] can or cannot be resolved’, and in which 
mathematics begins to feed on itself and its own limita-
tions; the environment of 9>?@, in which the mathematical 
tasks of the previous half century are unified (groups, sets) 
or transfused from one register to another (geometrical 
methods converted into algebraic or axiomatic methods), 
generating the important constructions (Lie groups, 
point-set topology, algebraic geometry, etc.) that drove 
mathematics’ development at the outset of the twentieth 
century; the environment of 9:;:, in which the Bourbaki 
group fixed the orientation of contemporary mathematics 

B'  J. de Lorenzo, La matemática y el problema de su historia (Madrid: Tecnos, )@EE).

of arithmetic, such as the Weil conjectures (Deligne, )@EW), 
go unmentioned. Instead, somewhat dubious speculations 
are entertained regarding the undecidability of Fermat’s 
Aeorem – yet another example of the distance between 
the philosopher of mathematics and the mathematics of his 
epoch, preventing him from taking anything like snapshots 
of the mathematical thinking being forged around him. 

Javier de Lorenzo

In his first monograph, Introducción al estilo matemático 
[Introduction to Mathematical Style], De Lorenzo immedi-
ately shows himself to be awake to the modes of ‘doing’ 
advanced mathematics.B) With creative verve, the author 
confronts the great figures of modern mathematics (Cau-
chy, Abel, Galois, Jacobi, Poincaré, Hilbert, the Bourbaki 
group, etc.) and argues that certain fragments of advanced 
mathematics – group theory, real analysis, and abstract 
geometries are his preferred examples – bring with them 
distinct ways of seeing, of intuition, of handling operations 
and even distinct methods of deduction, in each of their 
conceptual, practical and formal contexts. De Lorenzo 
points out how mathematics ‘grows through contradis-
tinction, dialectically and not organically’, and thereby 
breaks with a traditional vision of mathematics, according 

B)  J. de Lorenzo, Introducción al estilo matemático (Madrid: Tecnos, )@E)).
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Raymond L. Wilder

Mathematics as a Cultural System puts forward a valuable 
and original conception of mathematics as a ‘vectorial 
system’ in which various tendencies of mathematics 
counterpose, superpose, interlace and consolidate with 
one another, as if they were situated in a web of vecto-
rial operations.BB Rather than understanding the realm 
of mathematics according to the dispersive model of a 
‘tree’, the vectorial system permits the introduction, with 
greater finesse, of the fundamental ideas of directional-
ity, potentiality, normalization and singularity associ-
ated with vector fields. Wilder explores many examples 
in classical mathematics (Leibniz, Fermat, Gauss and, 
in particular, Desargues), and in modern mathematics 
(Bolzano, Lobachevski, Riemann, Hilbert), where a liv-
ing dialectic is established between potential fields (e.g., 
the resolution of algebraic equations), normal vectors 
(e.g., ad hoc manipulations by radicals) and singulari-
ties (e.g., the ‘ingenious’ emergence of Galois). Wilder’s 
great knowledge of modern topology and algebra – he 
is one of the few active mathematicians (together with 
Pólya and Mac Lane) to appear in this chapter’s biblio-
graphical survey – allows for a detailed demonstration of 
the fact that mathematical ‘reality’ is a sort of changing 

BB  R. Wilder, Mathematics as a Cultural System (Oxford: Pergamon Press, )@C)). 

around the notions of structure and morphism, inverted 
the focus of mathematical research, and moved toward a 
primordial search for relations between abstract structures 
(algebras, topologies, orders, etc.). In this and other works 
(see note )W), De Lorenzo also exhibits a subtle attention 
to contemporary mathematics (with detailed citations 
of Weil, Schwartz and Lawvere, for example), though 
modern mathematics remains his primary focus.BW To sum 
up, De Lorenzo argues that mathematical knowledge is 
produced through very different contexts and branches, 
following many tempos and rhythms. Incessant incorpora-
tions, transfers, osmoses, translations and representations 
are aXerward produced between the various environments 
of mathematical knowledge; already-constructed notions 
then give rise to new constructions by means of diverse 
deformations and transfigurations. 

BW Regarding Lawvere, for example, De Lorenzo points out – only seven years (!) aXer  
Lawvere introduced elementary topoi ()@E() – that ‘the interlacing of the theory of 
categories with that of topoi, presheaves and algebraic geometry is showing itself to 
be essential for the intentions of Lawvere and those working in the same direction, to 
achieve a foundation, which he qualifies as “dialectical”, for mathematical work, while 
recognizing that such a foundation can only be of a descriptive character, achieving 
in this way a revision of Heyting’s intuitionistic logic as the one best adapted to topos 
theory.’  Ae investigation of the mathematical in progress (‘is showing itself to be…’, 
‘those working…’) not only surfaces in these unusual meditations of a historian and 
philosopher, but is made in the most fitting possible way, successfully detecting the 
conceptual kernel of the situation: the interlacing of topoi with algebraic geometry and 
with the underlying intuitionistic logic.

[B@]
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the perception of an ‘unsatisfactory’ state of mathematics, 
the proclamation of an ‘end to the Age of Reason’, the 
sense of a shattered multiplicity of mathematics with no 
possibility for unification and the indication of a growing 
isolation bringing about ‘disasters’ in the discipline. It is 
surprising to find such a negative vision of mathematics 
take shape in the )@C(s, when the discipline found itself 
in full bloom. Once again, the preemptive occupation of a 
philosophical position – Kline’s postmodern predilection 
for the supposed ‘loss of certainty’ – clouds the vision  
and obscures the dynamic technical life that presents itself 
all around the observer. If some of the critical points are 
valuable (the place of error, multiplicity, relativity), to 
carry them to the extreme and separate them from their 
natural polar counterparts (proof, unity, universality) 
brings about an excessive oscillation of the pendulum, 
which impedes any detection of a far more complex 
relational warp. 

Philip Kitcher

3e Nature of Mathematical Knowledge  continues the focus 
on episodes of classical mathematics in the tradition of 
Pólya and Lakatos.BD Ae examples investigated include 
Newton, Leibniz, Bernoulli, Euler, Cauchy, and an 

BD  P. Kitcher, 3e Nature of Mathematical Knowledge (New York: Oxford University Press, )@CW).

flux in the conceptual field of associated vectors, and 
that various tendencies undergo constant modification 
in accordance with their historical position in the web. 
An evolution of collective mathematical intuition and a 
search for invariants in that evolution allow us to see how 
mathematical knowledge naturally modifies and stabilizes 
itself, perduring despite its own plasticity. 

Morris Kline

In Mathematics: 3e Loss of Certainty, the vision of a great 
connoisseur of the history of mathematics takes flight, 
accompanied by philosophical speculations that, however, 
are quite a bit weaker.BF Kline proves to be particularly 
attentive to four principal registers: Greek mathematics; 
classical analysis (rise, development, disorder, founda-
tions, crisis, limitations); modern mathematics (reviewing 
various works of Poincaré, Weyl, Borel, Hilbert, von 
Neumann, Stone, Dieudonné, etc.); the foundations of 
mathematics (Cantor, Brouwer, Gödel, etc.). Curiously, 
for all his profound and extensive historical knowledge, 
the reflections that such knowledge gives rise to are 
debatable to say the least: an insistence on an ‘illogical’ 
development of mathematics (in which errors, conceptual 
shiXings and the recourse to intuition play a leading role), 

BF  M. Kline, Mathematics: 3e Loss of Certainty (New York: Oxford University Press, )@C().
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other themes to study within mathematics, aside from 
foundations.BC Ae second part (‘Mathematical Practice’) 
points out that the philosopher should also be inclined 
to observe mathematical practice, the evolutions of stan-
dards such as ‘truth’ and ‘proof’, the oscillation between 
informal and rigorous proofs, and the complexity of the 
mathematical architectonic. It is in the second part that 
the articles coming closest to modern and contemporary 
mathematics appear (Tymoczko on the four-color prob-
lem; Chaitin on computational complexity). But the texts 
for the most part continue to evoke classical examples 
(as Grabiner does, with respect to the development of 
analysis in the eighteenth and nineteenth centuries).B@ 
Ae sort of ‘quasi-empiricism’ that Tymoczko adopts indi-
cates that a deeper knowledge of mathematical practice 
could help to resolve certain philosophical controversies 
regarding realism and idealism, and that therefore (and 

BC Paul Bernays, one of the great champions of the foundations of mathematics, already 
pointed out in 9:A8, in a little-known review of Lautman’s works, that ‘it is to be said 
in favor of Lautman’s method that it is more suited than foundational discussions to 
give to a philosopher an impression of the content and nature of modern mathematics. 
Indeed it is worthwhile to emphasize that foundational problems by no means constitute 
the only philosophically important aspect of mathematics’ (P. Bernays, ‘Reviews of 
Albert Lautman’, Journal of Symbolic Logic F, )@B(]: ''). Ais admirable display of 
conscience by a genuine architect of the foundations of mathematics is something of 
which too many philosophers of the foundations have stood in need.

B@ Ae inclusion of an ‘interlude’ with two of Pólya’s texts  – written thirty years earlier 
– is indicative of the meekness that has emerged in philosophy with respect to 
approaching ‘mathematical practice’. Of course, as is oXen the case in the Anglo-Saxon 
academy, there is an obvious ignorance of anything not translated into English: to 
speak of mathematical ‘practice’ without mentioning Lautman or De Lorenzo is 
genuinely misguided, notwithstanding the ease with which this is done by anglophone 
philosophers.

extensive case study (chapter. )() reviews the development 
of analysis ()DF(–)CE(). Modern mathematics shows up 
much more intermittently, and the ‘elementary’ references 
to Galois (reduced to the problem of the insolubility of 
equations) and Riemann (with respect to the construction 
of his integral) are symptomatic in that sense. Focused 
fully on the classical spectrum, several of Kitcher’s reflec-
tions prefigure with great acumen the complex web of 
ideal constructions and operations that will appear in 
modern mathematics, as well as its incessant evolution and 
its coupling between conceptual fragments and real data. 
Particularly sensitive to mathematical change, Kitcher 
succeeds in evoking the dynamism of mathematics and 
the discipline’s unpredictable transit between the ideal 
and the real as well as between the possible, the actual 
and the necessary. 

Thomas Tymoczko

Tymoczko’s work as editor of New Directions in the Phi-
losophy of Mathematics  helps to clearly explicate the two 
great cascades into which the philosophy of mathematics 
might flow, following analytic philosophy’s many decades 
of dominance.BE Ae first part of the book (‘Challenging 
Foundations’) reminds us that philosophy has many 

BE  T. Tymoczko, ed., New Directions in the Philosophy of Mathematics (Boston: Birkhäuser, )@CD).
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mathematical constructions arise by virtue of a network 
of analogies, examples, proofs and shiXs in perspective, 
which let us encounter and define certain invariants amid 
the change. If there is not an absolute ‘truth’, external to 
the network, there nevertheless exist multiple gradations of 
relevance, of correctness, approximation and illumination 
inside the network. It has become one of mathematics’ 
central tasks to achieve the harmonious concord of those 
gradations, to overcome multiple obstructions, to construct 
new concepts with the residues.

Gian-Carlo Rota

Indiscrete 3oughts  consists of an irreverent series of reflec-
tions, of great interest,F) by another leading mathemati-
cian of the second half of the twentieth century.F' It is an 
uneven compilation, which includes anecdotes, historical 
fragments, mathematical and philosophical reflections, 
critical notes and brilliant, incendiary ideas. Above all, 
and in the order of the compilation itself, Rota dedicates 
a great deal of space to the biographies of mathematicians 
(Artin, Lefschetz, Jacob Schwartz, Ulam) as creative 

F) I am grateful here to the teachings of Alejandro Martín and Andrés Villaveces, who 
explained to me one memorable aXernoon the importance of Rota’s ideas, several 
of which we will return to (by different routes) in part W of this book. F. Palombi, 
La stella e l’intero. La ricerca di Gian-Carlo Rota tra matematica e fenomenologia (Torino: 
Boringhieri, '((W) presents several ideas of utmost relevance to our focus, and upon 
on which we will later comment. 

F' G.-C. Rota, Indiscrete 3oughts (Basel: Birkhäuser, )@@E).

this is one of the central foci of the present work) not 
only more philosophy, but more mathematics, could be 
of great assistance in resolving certain quandaries in 
mathematical philosophy. 

Saunders Mac Lane

Mathematics: Form and Function synopsizes the perspective 
of an outstanding mathematician of the second half of 
the twentieth century.F( Ae main part of the monograph 
– which should be seen more as a presentation, a bird’s 
eye view, of classical and modern mathematics, than as a 
volume of mathematical philosophy – confronts head-on 
the legacy of Galois and Riemann, and provides excellent 
introductions to central themes in mathematics: groups, 
algebraic structures, complex analysis, topology. Con-
temporary mathematics appears with respect to category 
theory (Mac Lane was one of its founders) and sheaf 
theory (a paradigm of contemporary methods). Chapter 
)', ‘Ae Mathematical Network’, explores the progres-
sive emergence of mathematical constructions (origins, 
ideas, formal versions), and the incessant back-and-forth 
between, on the one hand, themes, specialties, and sub-
divisions of mathematical knowledge, and, on the other, 
transits, transformations and changes. For Mac Lane, 

F( S. Mac Lane, Mathematics: Form and Function (New York: Springer, )@CD).
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the illusion of precision, axiomatic absolutism, the illu-
sion of permanence, conceptual reducibility. Paradoxical 
as it may seem, Rota observes that analytic philosophy, 
‘perniciously influenced’ by classical logic and by set 
theory, has turned its back on and has abandoned high 
mathematical creativity, be it geometrical, topological, 
differential, algebraic or combinatorial, thereby estranging 
itself from the real center of the discipline that helped it to 
emerge. Ae philosophy of mathematics should therefore 
turn back to examine, without prejudices and without 
taking preestablished theoretical positions, the phenom-
enological spectrum of mathematical activity. Here, Rota’s 
reading – in three central articles on ‘Ae Phenomenology 
of Mathematical Truth’, ‘Ae Phenomenology of Math-
ematical Beauty’, ‘Ae Phenomenology of Mathematical 
Proof’, and, in four complementary texts, ‘Ae Primacy 
of Identity’, ‘Fundierung as a Logical Concept’, ‘Kant 
and Husserl’, and ‘Ae Barber of Seville or the Useless 
Precaution’ – poses some vital problematics to which a 
philosophy of mathematics aiming at a ‘real’ (in Corfield’s 
sense) understanding of the discipline should be open. 
Aese include the emergence of mathematical creativity, 
mathematics understood as the history of its problems, 
the varieties of proof and the evolution of concepts, the 
interlacings between the ‘facts’ of mathematics and their 
constant functional reinterpretations, the superpositions 
and nonreductive iterations of mathematical objects, and 

individuals. For Rota, mathematics emerges in very spe-
cific vital and academic contexts (see the beautiful text 
on ‘Ae Lost Café’), giving rise to a dynamic, oscillating, 
fluctuating discipline, with multiple concrete tensions, 
indissolubly bound to personalities firmly situated in 
place and time. Ae weaving between a generic mathemat-
ics and its particular incarnations, and the idea accord-
ing to which ‘mathematics is nothing if not a historical 
subject par excellence’ (something that Jean  Cavaillès had 
forcefully underscored half a century earlier), underlie 
the whole of Rota’s thought and permeate some of his 
most original conceptions: a ‘primacy of identity’, which 
aims to define the ‘essence’ of an object as its very web of 
factual superpositions, and which would help to replace 
an obsolete mathematical ontology (the ‘comedy of exis-
tence’ of mathematical objects); a reappropriation of the 
Husserlian notion of Fundierung (founding) in order to 
rethink the mathematical transits between the factual 
and the functional; a phenomenology of mathematics 
open to forms of doing mathematics (beauty, varieties of 
proof, imagination) usually neglected by the traditional 
perspectives of mathematical philosophy.

Ae caustic and polemical article ‘Ae Pernicious 
Influence of Mathematics upon Philosophy’ reveals 
the excesses of a philosophy of mathematics oriented 
toward formal juggling acts and bastardized by various 
‘myths’ that have little to do with mathematical practice:  

[FW] 
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of what is, insofar as it is), in virtue of the sheer force of 
axiomatic set theory, which lets us name all the multiplici-
ties of mathematics and develop a (hierarchical, complex, 
demonstrative) study of those multiplicities insofar as 
they ‘are’. Badiou’s text includes a great many ‘chronicles 
of proofs’ (the author’s expression – i.e., proofs decon-
structed from the formal language and reconstructed in a 
conceptual and philosophical language) which detail an 
unusually broad landscape of modern and contemporary 
set theory.

In his Short Treatise on Transitory Ontology,FF Badiou 
continues his ontological ‘subversion’, so as to involve 
an incisive re-envisioning of category theory and the 
theory of elementary topoi. Ae construction of a dia-
logue between great figures of philosophy (Aristotle, 
Plato, Descartes, Spinoza, Leibniz, Kant), contemporary 
philosophers (Deleuze), poets (Mallarmé) and math-
ematicians both modern and contemporary (Cantor, 
Gödel, Cohen, Lawvere) is supremely original. We find 
suggestions of the primacy of ‘real’ mathematics and a 
consequent subordination of logic (topoi and associated 
logics, classes of structures and associated logics, the 
emergence of geometrical logic, an irreducible logical 
weaving between the global and the local), which should 

FF  A. Badiou, Court traité d’ontologie transitoire (Paris: Seuil, )@@C). [Tr. N. Madarasz as 
Briefings on Existence: A Short Treatise on Transitory Ontology (Albany, NY: SUNY Press, 
'((D).]

the ubiquitous transits between forms of analysis and 
forms of synthesis. Rota’s style – brief, distilled, caustic – 
is not conducive to a systematic elaboration of his ideas, 
but we will develop a few of them in part '. 

Alain Badiou

Being and EventFW offers a sophisticated example of how 
to construct new philosophical meditations on the basis 
of a patient observation of aspects of advanced math-
ematics.FB Badiou carefully explores Cohen’s technique 
of forcing – going beyond the mathematicians themselves 
in the profundity and originality of his analysis – and 
encounters one of the great contemporary supports by 
means of which the Many and the Oone may be soundly 
reintegrated. Ae investigation of the continuum hypoth-
esis, with its contrast between indiscernibility (Easton’s 
Aeorem) and linguistic control (Gödel’s constructible 
universe), exhibits certain oscillations of mathematical 
thought in fine detail. A profound ontological subversion 
is suggested – the identification of ‘mathematics’ (the 
science of pure multiplicities) and ‘ontology’ (the science 

FW A. Badiou, L’être et l’événement (Paris: Seuil, )@CC). [Tr. O. Feltham as Being and Event 
(London: Continuum, '((F).]

FB Badiou explicitly declares himself Lautman’s admirer and heir. It is a unique case of 
recognition and shared labor, even if the mathematical spectrum covered by Lautman 
is much broader. Both Lautman and Badiou aim, however, to rethink and return to 
Plato, setting out from the exigencies of contemporary thought.

[FB]
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to the same mathematical spectrum: twentieth-century 
set theory. In Realism in Mathematics, Maddy explores 
descriptive set theory, the large cardinal axioms and the 
continuum hypothesis, and she performs a detailed survey 
of the contributions of the field’s leading figures, from 
Borel and Lusin to Martin, Moschovakis and Solovay.FD 
Maddy shows that the richness of the set-theoretical 
universe (new methods and models, new connections and 
perspectives, the possibility of obtaining verifiable con-
sequences) allows us to uphold a certain ‘realism’ – close 
to some of Gödel’s ideas – and to dismantle Benacerraf’s 
dilemma, since the notions of causality associated with the 
dilemma lose their traction in set theory’s sophisticated 
relative consistency proofs. Aough Maddy finds a certain 
set-theoretical stability exactly where Badiou underscores 
continuous transition above all else, we should point out 
that both, specifically regarding the mathematics of their 
time, succeed in proposing new questions and resolutions 
for mathematical philosophy (the dissolution of Benacer-
raf’s dilemma, the program for a transitory ontology). Ae 
labor of the philosopher attentive to the mathematics of 
her epoch is thus far from negligible. 

In Naturalism in Mathematics, Maddy explores the 
status of additional axioms for set theory, from the dou-
ble point of view of realism (the existence of objective  

FD P. Maddy, Realism in Mathematics (Oxford: Oxford University Press, )@@().

bring about certain ‘turns’ in mathematical philosophy, 
beyond analytic philosophy and the philosophy of lan-
guage. Badiou’s nontrivial Platonic orientation (that is to 
say, one not reduced to the ‘external’ existence of math-
ematical ideas and objects), an orientation that accords 
with the ‘condition of modern mathematics’, is summed 
up in three points: Mathematics is a thought (entailing, 
against Wittgenstein’s Tractatus, the existence of dynamic 
processes that cannot be reduced to language); mathemat-
ics, like all thought, knows how to explore its boundaries 
(undecidability, indiscernibility, genericity – entailing 
the irreducibility of mathematics to a set of intuitions 
or rules fixed in advance); mathematical questions of 
existence refer only to the intelligible consistency of the 
intelligible (entailing a marked indifference to ‘ultimate’ 
foundations, and the adoption, instead, of a criterion of 
‘maximal extension’ for all that is ‘compossible’, quite 
similar to the richness of contemporary model theory). 
Mathematics – and ontology, with which it is identified 
– is thereby understood as a sophisticated sheaf of meth-
ods and constructions for the systematic exploration of  
the transitory. 

Penelope Maddy

Ae contrast between the works of Badiou and those 
of Maddy could not be greater, even though both refer 
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Gilles Châtelet

Les enjeux du mobile: Mathématique, physique, philoso-
phie  [Ae stakes of the mobile: Mathematics, physics, 
philosophy]F@ directly confronts the fundamental prob-
lems of mathematical thought’s mobility, and of its natural 
osmoses with physics and philosophy. Châtelet’s text puts 
several sui generis perspectives to work on the spectrum 
of mathematical philosophy: an opening onto a sort of 
primacy of the visual in mathematical practice (thereby 
bringing to bear part of Merleau-Ponty’s general phenom-
enological program in the context of mathematics);D( a 
special sensitivity to the mobile emergence of mathematical 
concepts and ‘things’, owing to a study of the gestures and 
processes on the border of the virtual and the actual; 
careful attention to and subtle analysis of the metaphori-
cal webs that accompany the doing of mathematics, and 
govern its interlacings with physics and philosophy; 
meticulous study, with detailed concrete cases, of the 
modes of articulation of mathematical knowledge and of 

F@ G. Châtelet, Les enjeux du mobile: Mathématique, physique, philosophie (Paris: Seuil, 
)@@W). [Tr. R. Shore & M. Zagha as Figuring Space: Philosophy, Mathematics and Physics 
(Springer, )@@@).]

D( On this recuperation of the diagram for the philosophy of mathematics, following the 
clear French line of filiation – Lautman-Deleuze-Châtelet – see N. Batt, ed., Penser par 
le diagramme: De Gilles Deleuze à Gilles Châtelet  3éorie-Littérature-Enseignement '' (Saint-
Denis: Presses Universitaires de Vincennes, '((B) and S. Duffy, ed., Virtual Mathematics: 
3e Logic of Difference (Bolton: Clinamen Press, '((D). Ae latter compilation includes, 
amid various articles dedicated to logic and mathematics in Deleuze, a posthumous 
text of Châtelet’s (edited by Charles Alunni), ‘Interlacing the Singularity, the Diagram 
and the Metaphor’.

universes of sets) and naturalism (the internal sufficiency 
of mathematics and set theory, without need of external 
justifications).FE Maddy reviews various axioms of great 
mathematical interest (choice, constructibility, determi-
nacy, measurability, supercompactness, etc.), and set theo-
ry’s major modern architects (Cantor, Dedekind, Zermelo, 
Gödel) appear extensively in her monograph, as do some 
of its greatest contemporary practitioners (Cohen, Martin, 
Moschovakis, Woodin, etc.). An emphatic observation of 
practice runs through the entire text; a naturalist vision of 
set theory is sustained through the direct contemplation 
of how the set theoretical axioms emerge, are put to the 
test and combined with one another inside mathematical 
webs (being submitted to various combinatorial, deduc-
tive, conceptual and harmonic controls, until they are 
either discarded or partially accepted).FC Ae search for 
appropriate axioms and criteria of plausibility can thus 
be seen as self-sufficient, without any need to invoke an 
external ontology. (A brilliant example of such a method-
ology is presented in the final chapter of Maddy’s book, in 
studying the axiom of constructibility V=L and showing 
that the axiom internally clashes with basic principles of 
maximality, ubiquitous in mathematical practice.) 

FE P. Maddy, Naturalism in Mathematics (Oxford: Oxford University Press, )@@E).

FC If the explicit term ‘mathematics’ appears in the titles of both of Maddy’s monographs, 
this is nevertheless restricted to set theory, a fragment of mathematical inquiry. 
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self-reference (‘comprehension of comprehension’) and 
how the apparent oppositions continuous/discrete and 
equal/different consist in fluxes of mathematical inventive-
ness that serve to articulate its various, partial modes of 
knowing (numbers, combinatorics, functions, extension 
theory). Going further still, a magisterial thirty-page sec-
tion on Grassmann products explains, in vivid detail and 
with the constant presence of diagrams, the great lines of 
tension of Grassmann’s system, which Châtelet explicates 
in the first part of the chapter. Ae entire work constitutes 
a major contribution to the philosophy of mathematics, 
a contribution to which we will repeatedly return in the 
third part of this study and that is, to our mind, the most 
original work on the subject since Lautman’s.   

Frédéric Patras

La pensée mathématique contemporaine [Contemporary 
mathematical thought]D) provides an important leap for-
ward in the effort to approach contemporary mathematics. 
Ae spectrum traversed is no longer the universe of set 
theory – which, at the end of the day, is the customary 
spectrum, for all of Badiou’s originality and Maddy’s 
expertise – but includes genuinely mathematical aspects 
(abstract algebra, algebraic geometry, topology, category 

D)  F. Patras, La pensée mathématique contemporaine (Paris: PUF, '(()).

its dialectical balances. Ae titles of the work’s five chapters 
are indicative of Châtelet’s originality: ‘Ae Enchantment 
of the Virtual’, ‘Ae Screen, the Spectrum and the Pen-
dulum: Horizons of Acceleration and Deceleration’, ‘Ae 
Force of Ambiguity: Dialectical Balances’, ‘Grassmann’s 
Capture of the Extension: Geometry and Dialectic’, and 
‘Electromagnetic Space’. Châtelet’s array of examples 
is concentrated in the modern period (Argand, Cauchy, 
Poisson, Grassmann, Faraday, Maxwell, and Hamilton, 
among others), but timeless interlacings recur as well 
(Oresme, De Broglie). In the introduction, Châtelet 
quotes André Weil’s lengthy explanation of the primordial 
role that ‘obscure analogies’ play in mathematical investi-
gation – the threshold of creative penumbra that Châtelet 
explores in approaching the ‘gestures that inaugurate 
dynasties of problems’, the articulations and torsions 
between reason and intuition, the ‘rational capture of 
allusions’, and the structural and hierarchical deploy-
ment of the diagrams of thought. Ae fourth chapter is 
something of a gem in the philosophy of mathematics. 
Châtelet patiently reviews how Grassmann constructs 
the ‘synchronous emergence of the intuitive and the 
discursive’ in a living unity that is neither a priori nor a 
posteriori, how the dialectic engenders new forms by way 
of a careful hierarchy of scales in Grassmann’s exterior 
products, how Grassmann’s very style leads to a natural 
approach to the processes that enable the capture of 

[FE]
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David Corfield

From its polemical title onwards, Towards a Philosophy 
of Real Mathematics aims to break the normative preju-
dices that the philosophy of mathematics makes use of,D' 
in particular the ‘belief amongst philosophers to the 
effect that the study of recent mainstream mathematics 
is unnecessary’.DW A lengthy introduction argues for the 
value of a philosophical perspective oriented toward 
nonelementary mathematics, and exhibits some of the 
major problems that this approach encounters, but that 
the ‘foundationalist filter’ still fails to detect: the status of 
the structural borders of mathematics (beyond binarisms 
and alternatives of the ‘all-or-nothing’ variety), the con-
nectivity of different mathematical theories, the evolution 
of mathematical concepts, the contingency of mathematical 
thought, and the progressive recursive richness of math-
ematical constructions. Ae subtitle of the introduc-
tion, ‘A Role for History’, indicates the path adopted by 
Corfield – a junction of mathematics, philosophy and 
history, in which current reflections on the discipline’s 
development take on a real relevance for the philosopher 
of mathematics. Indeed, the text broaches various themes 
from contemporary mathematics – automated proofs of 

D'  D. Corfield, Towards a Philosophy of Real Mathematics (Cambridge: Cambridge University 
Press, '((W).

DW  Ibid., Towards a Philosophy of Real Mathematics, F.

theory) and incorporates the rise of modern mathematics 
(chapters )–B, with excellent introductions to Galois, 
to Dedekind’s algebra and to the ‘universal’ Hilbert), 
as well as aspects of the works of central figures of con-
temporary mathematics (chapters F–C, on Bourbaki, 
Lawvere, Grothendieck, Aom). Chapter E, dedicated to 
Grothendieck, is particularly valuable, owing to its sheer 
singularity among treatises of mathematical philosophy. 
It should be considered a monumental aberration that 
a figure who, in all likelihood, is the most important 
mathematician of the second half of the twentieth century 
never seems to be seriously considered in ‘mathematical 
philosophy’, and Patras seeks to put an end to this error. 
Ae author shows that a comprehension of the modes of emer-
gence of mathematical creativity should constitute one of the 
indispensable tasks of mathematical philosophy, and indicates 
that some of the great forces underlying Grothendieck’s 
work (aesthetic schematization, universal definition, 
logical cleanliness, inventive ‘innocence’, ‘listening’ to 
the ‘voice of things’, dialectical yin-yang) can help us 
understand the mathematical imagination as a form of 
complex thought, in which multiple structural polarities 
and bordering tensions interlace. [FC]



RY

  

R=

  

David Corfield

From its polemical title onwards, Towards a Philosophy 
of Real Mathematics aims to break the normative preju-
dices that the philosophy of mathematics makes use of,D' 
in particular the ‘belief amongst philosophers to the 
effect that the study of recent mainstream mathematics 
is unnecessary’.DW A lengthy introduction argues for the 
value of a philosophical perspective oriented toward 
nonelementary mathematics, and exhibits some of the 
major problems that this approach encounters, but that 
the ‘foundationalist filter’ still fails to detect: the status of 
the structural borders of mathematics (beyond binarisms 
and alternatives of the ‘all-or-nothing’ variety), the con-
nectivity of different mathematical theories, the evolution 
of mathematical concepts, the contingency of mathematical 
thought, and the progressive recursive richness of math-
ematical constructions. Ae subtitle of the introduc-
tion, ‘A Role for History’, indicates the path adopted by 
Corfield – a junction of mathematics, philosophy and 
history, in which current reflections on the discipline’s 
development take on a real relevance for the philosopher 
of mathematics. Indeed, the text broaches various themes 
from contemporary mathematics – automated proofs of 

D'  D. Corfield, Towards a Philosophy of Real Mathematics (Cambridge: Cambridge University 
Press, '((W).

DW  Ibid., Towards a Philosophy of Real Mathematics, F.

theory) and incorporates the rise of modern mathematics 
(chapters )–B, with excellent introductions to Galois, 
to Dedekind’s algebra and to the ‘universal’ Hilbert), 
as well as aspects of the works of central figures of con-
temporary mathematics (chapters F–C, on Bourbaki, 
Lawvere, Grothendieck, Aom). Chapter E, dedicated to 
Grothendieck, is particularly valuable, owing to its sheer 
singularity among treatises of mathematical philosophy. 
It should be considered a monumental aberration that 
a figure who, in all likelihood, is the most important 
mathematician of the second half of the twentieth century 
never seems to be seriously considered in ‘mathematical 
philosophy’, and Patras seeks to put an end to this error. 
Ae author shows that a comprehension of the modes of emer-
gence of mathematical creativity should constitute one of the 
indispensable tasks of mathematical philosophy, and indicates 
that some of the great forces underlying Grothendieck’s 
work (aesthetic schematization, universal definition, 
logical cleanliness, inventive ‘innocence’, ‘listening’ to 
the ‘voice of things’, dialectical yin-yang) can help us 
understand the mathematical imagination as a form of 
complex thought, in which multiple structural polarities 
and bordering tensions interlace. [FC]



RRRQ

   

Corfield tries to make the complex life of mathematics 
heard (so that we may ‘listen to the voice of things’, as 
Grothendieck would write in his Récoltes et semailles), 
beyond which ‘one can say with little fear of contradiction 
that in today’s philosophy of mathematics, it is the phi-
losophy that dictates the agenda’. According to Corfield, 
a healthy inversion of perspectives, to the point where 
a happy medium can be constructed, could help today’s 
philosophy of mathematics emulate the mental openness 
of the great Russell by encouraging philosophers to:

). Believe that our current philosophy is not adequate 
to make proper sense of contemporary mathematics; 
'. Trust that some mathematicians can give us insight 
into a better philosophical treatment;
W. Believe that the emerging picture will revitalize 
philosophy.DB 

Some of the examples studied by Corfield indicate how 
fixing our attention on more mathematics (and not nece-
sarily more philosophy, as might narrowly be thought) 
could help philosophy: the Hopf algebras at the heart of 
the reasons for mathematics’ applicability to quantum 
physics, the groupoids that display novel interlacings 
between symmetry (abstract equivalence) and asymmetry 

DB Ibid., 'E(.

theorems, modes of indeterminacy, theory of groupoids, 
n-categories – and elaborates an epistemological model 
in which an intermingling of webs and hierarchies helps 
to explicate the simultaneously multivalent and unitary 
development of advanced mathematics. Chapters ' and W 
deal with logical automata and serve to contrast the limits 
of automatic proof with groundbreaking mathematical 
creativity (chapter B), where the role of analogy turns out 
to be indispensable for the invention of new concepts, 
techniques and interpretations (with valuable examples 
from Riemann, Dedekind, Weil, and Stone). Chapters F 
and D review problems of plausibility, uncertainty and 
probability in mathematics (Bayesian theories) and in 
science in general (quantum fields). Chapters @ and )( 
approach ongoing developments in mathematics (grou-
poids, n-categories) and the corresponding works of the 
current investigating mathematicians (Brown, Baez), 
concretely demonstrating how a mathematics can be 
observed in utero from a philosophical point of view in 
which certain traditional ontological and epistemological 
obstacles have been dissolved. Chapters E and C focus 
on the problem of the growth of mathematics (with an 
appraisal and critique of Lakatos), the importance of 
opposed mathematical practices living together, and the 
consequent necessity of not discarding from the philoso-
phy of mathematics the supposed residues of conceptions 
of mathematics no longer in vogue.
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DB Ibid., 'E(.
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We have indicated, in sections '.) and '.', how vari-
ous philosophers, mathematicians and historians have 
approached advanced mathematics (in its three great 
realms: classical, modern and contemporary) thereby 
opening new perspectives for mathematical philosophy 
that have been inexistent or ‘effaced’ from the point 
of view of foundations or of elementary mathematics. 
Ae pretension to exhaust the horizons of mathematical 
philosophy with the ‘fundamental’ and the ‘elementary’, 
and the unwillingness to see in modern and contemporary 
mathematics an entire arsenal of problematics irreducible 
to elementary examples or logical discussions (chapter )),  
has limited the reach of the traditional mathematical 
philosophy inherited from analytic philosophy. Aough 
it has neglected the universe of advanced mathematics, 
traditional mathematical philosophy has been able to pin-
point complex ontological and epistemological problems 
(with respect to the notions of number, set and demon-
stration), which it has then treated with great precision.

A broad and current vision of traditional mathemati-
cal philosophy can be found in 3e Oxford Handbook of 
Philosophy of Mathematics and Logic.DD As we will see in 
reviewing the text, the focus is clearly analytical, logical 

DD  Shapiro, Oxford Handbook…

(noncommutativity), and the categorical languages of 
Makkai that eliminate poorly posed ontological ques-
tions. Altogether, the work supplies an interesting coun-
terweight to the dominant forces in the philosophy of 
mathematics, which are very attentive to language but far 
removed from ‘real’ mathematics. Ae text concludes with 
an important plea for today’s philosophy of mathematics: 
‘Mathematics has been and remains a superb resource for 
philosophers. Let’s not waste it.’DF

DF  Ibid., 'E(.
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positivism (Skorupski); an introduction to Wittgenstein’s 
philosophy of logic and ‘mathematics’ (Floyd); three 
chapters regarding versions of logicism (Demopoulos 
and Clark, Hale and Wright, Rayo); one text on formal-
ism (Detlefsen); three chapters on forms of intuitionism 
(Posy, McCarty, Cook); a text on Quine (Resnik); two 
chapters on naturalism (Maddy, Weir); two chapters on 
nominalism (Chihara, Rosen and Burgess); two chapters 
on structuralism (Hellman, MacBride); one text on the 
problem of the applicability of mathematics (Steiner), one 
text on predicativity (Feferman); two chapters on logi-
cal consequence, models and constructibility (Shapiro, 
Prawitz); two chapters on relevance logic (Tennant, Bur-
gess); and two chapters on higher-order logic (Shapiro, 
Jané). All of the works demonstrate a high level of analysis, 
extensive argumentative rigor and great professionalism. 
Nevertheless, what seems to have been created here is an 
extensive web of cross-references between the authors’ 
professional works and the stratum of logics linked to 
those works: a secondary web that has been substituted for 
the primary, underlying mathematics. Once this interest-
ing and complex web has been taken up – by means of 
logical forms, problems associated with foundations, 
detailed philosophical disquisitions and self-references 
among specialists – very few of the authors included in 
the handbook seem sufficiently self-critical to consider 
that, perhaps, many other (possibly even more interesting 

and Anglo-Saxon. Modern and contemporary mathemat-
ics, as we have defined these terms, and those who forged 
modern and contemporary mathematics – Galois, Rie-
mann and Grothendieck, to name only the indispensable 
figures – make minimal appearances or do not appear 
at all.DE By contrast, another of the fundamental figures 
of modern mathematics, Georg Cantor, is broadly stud-
ied throughout the volume, thus underscoring analytic 
philosophers’ interest in set theory. And so the range 
of mathematics reflected upon in the volume is reduced 
to a lattice of logics and classical set theory. Ais curi-
ous deformation of the mathematical spectrum, which 
has been repeated for decades now in the Anglo-Saxon 
world, should no longer be accepted. It would be another 
matter if, with somewhat more humility, the volume in 
question had been called 3e Oxford Handbook of Analytic 
Philosophy of Logic. 

Starting with Shapiro’s excellent general introduc-
tion (where he elaborates on certain remarks from his 
earlier text, 3inking about Mathematics, mentioned in 
our introduction), the compilation includes a review 
of the philosophy of mathematics between Descartes 
and Kant (Shabel); a chapter on empiricism and logical 

DE Ae indexes (of both subjects and proper names) at the end of the volume refer only 
two pages (of the CWW in the volume) to Galois and Riemann; Grothendieck does not 
even appear. Aough the indexes are less than reliable (since, for example, in Steiner’s 
article, which concerns the problem of the applicability of mathematics, Riemann and 
Galois are studied with greater patience), they are sufficiently indicative of the factual 
situation. 

[D(]
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the second and third parts of this essay, that the situation 
we are dealing with here is unsustainable.

With respect to Benacerraf and Putnam’s compilation, 
Shapiro’s opens perspectives onto two particular new 
horizons for mathematical philosophy: naturalism and 
structuralism. In her article, ‘Aree Forms of Naturalism’, 
Maddy explores the roots of naturalism in Quine, and 
the later modifications of Quinean positions in Burgess 
and in Maddy’s own work.D@ Quine’s self-referential natu-
ralist position, according to which the foundations of a 
science and its fragments of certainty should be sought 
in the science itself, and not in a first philosophy that 
is external and alien to the science, provokes a robust 
intramathematical perspective in Maddy, according to 
which a naturalist philosopher of mathematics should 
not slide into extramathematical metaphysical debates, 
but must meticulously track the dynamics of concept 
formation within her own discipline. Maddy has satisfied 
this program with vigor and originality within set theory, 
showing, in particular, that the supposedly Quinean natu-
ralist position in favor of a reduced universe of sets (V=L)  
receives no sympathy from the ‘natural’ arguments in 
favor of large cardinals, conducted by the theory’s chief 
creators (Martin, Woodin and Shelah, among others). 
Nevertheless, the ‘mathematics’ that the philosopher deals 

D@  Shapiro, Oxford Handbook…, BWE–F@.

and complex) forms of mathematics have escaped their 
attention. Of course, we cannot (and should not) ask 
the specialist to go beyond his field of knowledge, but 
neither can we (nor should we) confuse the student or 
professional interested in the topic, fooling him into think-
ing that the text covers the ‘philosophy of mathematics 
and logic’ in its entirety. Ae disappearance of mathematics 
and its supposed reducibility to logic make up the least 
fortunate global perspective that Anglo-Saxon analytic 
philosophy has (consciously or unconsciously) imposed 
upon the philosophy of mathematics. 

It seems surprising that, forty years aXer the publica-
tion of Benacerraf and Putnam’s staple anthology Philoso-
phy of Mathematics,DC the problems examined in Shapiro’s 
new compilation remain the same ones treated in the four 
parts of the )@DB compilation: foundations, mathematical 
objects, truth, and sets. Ae tools included in Shapiro’s 
compilation include a much broader and pluralistic web 
of logics, as well as new unifying perspectives. But the 
gigantic advances made by mathematics in the last fiXy 
years are dazzling in their absence. Again, it seems as if 
mathematics has not evolved, as if the problems of the 
philosophy of mathematics were fixed in time, leaving 
room only for scholastic variations. We hope to show, in 

DC P. Benacerraf & H. Putnam, eds., Philosophy of Mathematics: Selected Readings, 'nd 
edition (Cambridge: Cambridge University Press, )@CB).
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best way possible to the problems confronted in the article. 
We shall see, in part W of this book, how to construct and 
significantly extend that mixture, which is suggested by 
Hellman and reclaimed by the extensive case studies that 
we will undertake in the second part. 

Ae analytic school of philosophy of mathemat-
ics, including, in particular, the great majority of its 
Anglo-Saxon practitioners (with important exceptions, 
of courseE)), could feel at home under the slogan, ‘more 
philosophy, less mathematics’. Ais has always been a per-
fectly valid option, but a restrictive one as well, no doubt. 
Ae danger – which has always existed, and continues to 
exist, and which Rota emphatically opposed – is that in 
many academic environments, this option is the only one 
available. Returning to behold, again, the complexity 
of the mathematical world – as Lautman admirably suc-
ceeded in doing, along with many of the authors reviewed 
in section '.', and which Corfield has again proposed as 
an imperative – should reset the balance, and put forward 
a new plan of greater equality: ‘as much mathematics as 
philosophy.’ Part ' of this work aims to cover the leX side 
of the balance; part W, the right. 

E) In addition to the authors mentioned in section '.', we could point out other Anglo-
Saxon philosophers and historians who try to cover a broad mathematical spectrum 
(methodological, technical and creative), such as Jeremy Gray, Michael Hallett, Mark 
Steiner and Jamie Tappenden, among others. 

with here is restricted, once again, to forms of logic and 
set theory, without making any inroads into geometrical, 
algebraic or differential domains, and without coming 
close to mentioning any of the Fields medalists (except 
for Cohen, of course) who, presumably, have changed the 
course of the discipline over the last fiXy years. 

In his ‘Structuralism’ article, Geoffrey Hellman pro-
poses four versions of a structural focus on mathemat-
ics (set-theoretical structuralism, generic structuralism, 
categorical structuralism and modal structuralism), and 
goes on to compare the advantages of each version with 
respect to certain philosophical problems that arise within 
the structural aspects themselves. Aese problems include 
the following: the contrast between ‘set’ and ‘structure’  
and the choice of natural axiom-concepts; '. the handling 
of ‘totalities’; the emergence of intractable ‘ontologies-
epistemologies’; the handling of rigid and nonrigid struc-
tures from a philosophical perspective; the presence of 
circularities in structures; the problems of theoretical 
under-determination; the presence of primitive, undefined 
conceptual substrata.E( Hellman’s conclusions (carefully 
delimited, in the style of all the authors of the handbook, 
with sound lines of argumentation and with reference to 
a minimum of mathematical cases) indicate that a mixture 
of categorical and modal structuralism could respond in the 

E( Ibid., FWD–D'.
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In the introduction and preceding chapters we saw that a 
contrasting (and oXen contradictory) multiplicity of points 
of view traverse the field of the philosophy of mathematics. 
Also, we have delineated (as a first approximation, which 
we will go on to refine throughout this work) at least five 
characteristics that separate modern mathematics from 
classical mathematics, and another five characteristics 
that distinguish contemporary mathematics from modern 
mathematics. In that attempt at a global conceptualiza-
tion of certain mathematical tendencies of well-defined 
historical epochs, the immense variety of the technical 
spectrum that had to be traversed was evident. Never-
theless, various reductionisms have sought to limit both 
the philosophical multiplicity and mathematical variety 
at stake. Far from one kind of omnivorous philosophical 
wager, or one given reorganization of mathematics, which 
we would then try to bring into a univalent correlation, 
we seem to be fundamentally obliged to consider the 
necessity of constructing multivalent correspondences 
between philosophy and mathematics, or rather between 
philosophies and mathematics in the plural.
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at stake. Far from one kind of omnivorous philosophical 
wager, or one given reorganization of mathematics, which 
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progressively combined. In this ‘architecture’ of vision, the 
levels are never fixed or completely determined; various 
contextual saturations (in Lautman’s sense) articulate 
themselves here (since something mixed and saturated 
on a given level may be seen as skeletal and in the process 
of saturation in another, more complex context) and a 
dynamic frontier of knowledge reflects the undulating 
frontier of the world. An adequate integration of dia-
grams, correlations, modalities, contexts and frontiers 
between the world and its various interpretants is the 
primordial object of pragmatics. Far from being the mere 
study of utilitarian correlations in practical contexts of 
action-reaction (a degeneration of the term ‘pragmat-
ics’ that corresponds to the disparaging way in which 
it gets used these days), pragmatics aims to reintegrate 
the differential fibers of the world, explicitly inserting 
the broad relational and modal spectrum of fibers into 
the investigation as a whole. Ae technical attention to 
contextualizations, modulations and frontiers affords 
pragmatics – in the sense which Peirce, its founder, gave 
it – a fine and peculiar methodological timbre. Just as 
vision, like music, benefits from an integral modulation 
through which one interlaces tones and tonalities so as to 
create a texture, so pragmatics benefits from an attentive 
examination of the contaminations and osmoses between 
categories and frontiers of knowledge so as to articulate 
the diversity coherently.

In a manner consistent with this situation, we will not 
assume any a priori philosophical position until we have 
carefully observed the contemporary mathematical land-
scape. We will, however, adopt a precise methodological 
framework, which, we believe, will help us better observe 
that landscape. Of course, that methodological schema-
tization will also influence our modes of knowing, but 
we trust that the distortions can be controlled, since the 
method of observation we will adopt and the spectrum we 
presume to observe are sufficiently close to one another. 
Ae philosophical and mathematical consciousness of 
multiplicity at stake, in fact, requires a minimal instru-
mentarium that is particularly sensitive to the transit 
of the multiple, that can adequately take stock of that 
multiplicity, and that allows us to understand its processes 
of translation and transformation. To those ends, we 
will adopt certain minimal epistemological guidelines, 
furnished in philosophy by Peirce’s pragmatism, and in 
mathematics, by category theory. 

A vision moderately congruent with the multiformity 
of the world should integrate at least three orders of 
approximations: a diagrammatic level (schematic and 
reticular) where the skeletons of the many correlations 
between phenomena are sketched out; a modal level 
(gradual and mixed) where the relational skeletons acquire 
the various ‘hues’ of time, place and interpretation; and 
a frontier level (continuous) where webs and mixtures are 
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– appears to have been formulated several times through-
out the intellectual development of the multifaceted North 
American sage. Ae statement usually cited is from )CEC, 
but other more precise statements appear in )@(W and )@(F:

Consider what effects that might conceivably have 
practical bearings, we conceive the object of our 
conception to have. Aen our conception of those 
effects is the whole of our conception of the object.  
()CEC)EW

Pragmatism is the principle that every theoretical 
judgment expressible in a sentence in the indicative 
mood is a confused form of thought whose only mean-
ing, if it has any, lies in its tendency to enforce a corre-
sponding practical maxim expressible as a conditional 
sentence having its apodosis in the imperative mood. 
()@(W)EB

Ae entire intellectual purport of any symbol 
consists in the total of all general modes of ratio-
nal conduct, which, conditionally upon all the 
possible different circumstances and desires, 

EW Peirce, 'How to Make Our Ideas Clear' ()CEC), in Collected Papers, vol. F,  B('. 

EB Peirce, 'Harvard Lectures on Pragmatism' ()@(W), in Collected Papers, vol. F,  )C.

Various natural obstructions are encountered on the way 
to any architectonic system of vision seeking to reintegrate 
the Many and the One without losing the multivalent 
richness of the differential. One obvious obstruction 
is the impossibility of such a system’s being stable and 
definitive, since no given perspective can capture all the 
rest. For, from a logical point of view, whenever a system 
observes itself (a necessary operation if it seeks to capture 
the ‘whole’ that includes it), it unleashes a self-referential 
dynamic that ceaselessly hierarchizes the universe. As 
such, a pragmatic architectonic of vision can only be 
asymptotic, in a very specific sense interlacing evolution, 
approximation and convergence, but without requiring 
a possibly nonexistent limit. An ‘internal’ accumulation 
of neighborhoods can indicate an orientation without 
having to invoke an ‘external’ entity that would represent 
a supposed ‘end point’ – it has the power to orient ourselves 
within the relative without needing to have recourse to the 
absolute. Ais fact harbors enormous consequences, whose 
full creative and pedagogical force is just beginning to 
be appreciated in the contemporary world. 

Ae maxim of pragmatism – or ‘pragmaticism’ (a 
name ‘ugly enough to escape the plagiarists’E') as Peirce 
would later name it in order to distinguish it from other 
behaviorist, utilitarian and psychologistic interpretations 

E'  C. S. Peirce, Collected Papers (Harvard: Harvard University Press, )@W)–)@FC),  
vol. F, B)F.
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possible, the actual and the necessary turns out to be 
one of the specificities of mathematical thought, as we 
will repeatedly underscore throughout this work. In that 
transit, the relations between possible contexts (situated 
in a global space) and the relations between the fragments 
of necessary contradistinction (situated in a local space) 
take on a primordial relevance – something that, of 
course, finds itself in perfect tune with the conceptual 
importance of the logic of relations that Peirce himself 
systematized. In this way, the pragmaticist maxim indi-
cates that knowledge, seen as a logico-semiotic process, 
is preeminently contextual (versus absolute), relational 
(versus substantial), modal (versus determined), and 
synthetic (versus analytic). 

Ae maxim filters the world through three complex 
webs that allow us to differentiate the One into the Many 
and, inversely, integrate the Many into the One: the 
aforementioned modal web, a representational web and a 
relational web. In effect, besides opening onto the world 
of possibilities, the signs of the world should, above all, 
be representable in the languages (linguistic or diagram-
matic) utilized by communities of interpretants. Ae 
problems of representation (fidelity, distance, reflexiv-
ity, partiality, etc.) are thus immediately bound up with 
the differentiation of the One and the Many: the reading 
of an identical fact, or an identical concept, dispersed 
through many languages, through many ‘general modes’ 

would ensue upon the acceptance of the symbol. 
()@(F)EF

What is emphasized in the )@(F statement is that we come 
to know symbols according to certain ‘general modes’, 
and by traversing a spectrum of ‘different possible circum-
stances’. Ais modalization of the maxim (underscored in 
the awkward repetition of ‘conception’ in )CEC) introduces 
into the Peircean system the problematic of the ‘interlac-
ings’ between the possible contexts of interpretation that 
may obtain for a given symbol. In the )@(W statement, on 
the one hand, we see that every practical maxim should be 
able to be expressed in the form of a conditional whose 
necessary consequent should be adequately contrastable, 
and on the other hand, that any indicative theoretical 
judgment, in the actual, can be specified only through a 
series of diverse practices associated with that judgment. 

Expanding these precepts to the general field of semi-
otics, to know a given sign (the realm of the actual) we 
must traverse the multiple contexts of interpretation 
capable of interpreting that sign (the realm of the pos-
sible) and, in each context, study the practical imperative 
consequences associated with each one of those interpre-
tations (the realm of the necessary). Within that general 
landscape, the incessant and concrete transit between the 

EF Peirce, 'Issues of Pragmaticism' ()@(F), in Collected Papers, vol. F, BWC.
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condense the preceding remarks. Ais diagram (figure A) 
will be indispensable for naturally capturing the maxim’s 
structuration from the perspective of mathematical cat-
egory theory. Reading from leX to right, the diagram 
displays an actual sign, multiply represented (that is, 
underdetermined) in possible contexts of interpretation, 
and whose necessary actions-reactions in each context 
yield its partial comprehensions. Ae terms ‘pragmatic 
differentials’ and ‘modulations’ evoke the first process 
of differentiation; the latter term reminds us of how a 
single motif can be extensively altered over the course 
of a musical composition’s development. Ae process of 
reintegration proper to Peircean pragmatics is evoked by 
the terms ‘pragmatic integral’ and ‘correlations’, ‘gluings’, 
‘transferences’, which remind us of the desire to return 
that which has been fragmented to a state of unity. Ae 
pragmatic dimension seeks the coalition of all possible 
contexts and the integration of all the differential modu-
lations obtaining in each context, a synthetic effort that 
has constituted the fundamental task of model theory 
and category theory in contemporary logic. 

of utilizing information, and through many rules for the 
organization and stratification of information. 

One of the strengths of Peircean pragmatism, and in 
particular of the fully modalized pragmaticist maxim, is 
that it allows us to once again reintegrate the Multiple into 
the One through the third web that it puts in play: the rela-
tional web. In fact, aXer decomposing a sign into subfrag-
ments in the various possible contexts of interpretation, 
the correlations between fragments give rise to new forms 
of knowledge that were buried in the first perception of 
the sign. Ae pragmatic dimension emphasizes the coali-
tion of some possible correlations, discovering analogies 
and transfusions between structural strata that, prior to 
effecting that differentiation, had not been discovered. 
In this way, though the maxim detects the fundamental 
importance of local interpretations, it also insists on the 
reconstruction of global approximations by means of 
adequate gluings of the local. We shall later see how the 
tools of the mathematical theory of categories endow these 
first vague and general ideas with great technical preci-
sion. Ae pragmaticist maxim will then emerge as a sort 
of abstract differential and integral calculus, which we will 
be able to apply to the general theory of representation, 
that is to say – to logic and semiotics in these sciences’ 
most generic sense, the sense foreseen by Peirce.

Overleaf we present a diagrammatic schematization 
of the pragmaticist maxim, in which we synthetically 
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certain plausibility for the claim that knowledge may be 
sufficiently rich and multivalent. Ae Peircean pragmati-
cist maxim may come to play an extraordinarily useful 
role in the philosophy of contemporary mathematics. Its 
first upshot consists in not privileging any point of view or 
any fragment of language over another, thereby opening 
the possibility of considering what Susan Haack called 
‘rival, incompatible truths’, without supposing them to 
be ‘reducible to a privileged class of truths in a privileged 
vocabulary’.ED In a pendular fashion, the second crucial 
strength of the maxim consists in the power to compare 
very diverse levels within the multiplicity of perspectives, 
languages and contexts of truth that it has succeeded in 
opening up. Indeed, the unwillingness to restrictively 
assume any privileged ‘foundation’ does not oblige us 
to adopt an extreme relativism without any hierarchies 
of value. In questions of foundations, for example, not 
reducing things to discussions referring to the supposedly 
‘absolute’ base ZF or the dominant force of first-order 
classical logic, but opening them instead to discussions 
in other deductive fragments (‘reverse mathematics’), 
semantic fragments (abstract model theory) or structural 
fragments (category theory) of ZF, is a strategy that broad-
ens the contexts of contradistinction – and, therefore, 

ED S. Haack, C. Bo, ‘Ae Intellectual Journey of an Eminent Logician-Philosopher’, in 
C. de Waal, ed., Susan Haack: A Lady of Distinctions (Amherst, NY: Prometheus Books, 
'((E), 'E.

 

Figure H. Sketch of Peirce's pragmaticist maxim.

Ae pragmaticist maxim thus serves as a sophisticated 
‘sheaf of filters’ for the decantation of reality. Ae crucial 
role of the sheaf secures an amplified multiplicity of 
perspectives which, for that matter, filters information 
in more ways than one, thus establishing from the outset a [DC]
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ED S. Haack, C. Bo, ‘Ae Intellectual Journey of an Eminent Logician-Philosopher’, in 
C. de Waal, ed., Susan Haack: A Lady of Distinctions (Amherst, NY: Prometheus Books, 
'((E), 'E.

 

Figure H. Sketch of Peirce's pragmaticist maxim.
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maxim can serve as a remarkable methodological sheaf to 
compare and then interlace the diverse. Ae Peircean web 
of webs, in effect, opens onto the modal realms in their 
entirety, and systematically attends to contrasting given 
facts (within the phenomenological world) and necessary 
behaviors (within well-defined contextual systems), so 
as to then reintegrate them in an extended spectrum of 
possible signs. 

Differentiation and reintegration reach a high degree 
of methodological precision in the mathematical theory 
of categories. As a counterpart to the set-theoretical ana-
lytic championed by Cantor’s heirs,E@ category theory no 
longer dissects objects from within and analyses them in 
terms of their elements, but goes on to elaborate synthetic 
approaches by which objects are studied through their 
external behavior, in correlation with their ambient milieu. 
Categorical objects cease to be treated analytically and are 
conceived as ‘black boxes’ (with local Zermelo-Von Neu-
mann elements becoming invisible, while global elements 
emerge). Aeir movement through variable contexts is 
observed by means of the significant accumulative effort 
of synthetic characterizations. Within certain classes of 
structures (logical, algebraic, ordered, topological, dif-
ferentiable, etc.), category theory detects general synthetic 

E@ Cantor himself is better situated in terms of a sort of general organicism (with 
considerable and surprising hopes that his alephs would help us understand both the 
living realm and the world around us), where analytic and synthetic considerations 
relate to one another. 

the mathematical richness at stake – without, for all that, 
spilling into epistemological disorder. Our contention 
is just the contrary: it is in virtue of being able to escape 
various ‘ultimate’ foundations, and in virtue of situating 
ourselves in a relative fabric of contradistinctions, obstructions, 
residues and gluings, that a genuine epistemological order 
for mathematics asymptotically arises and evolves.

Ae Peircean pragmaticist maxim can be seen as a 
sophisticated way of weaving between analysis/differ-
entiation and synthesis/integration. Ae contemporary 
world requires new conceptual instruments of ‘collation’ 
or ‘gluing’ (which respond with new arguments to the 
‘primordial’ differentiation/integration dialecticEE), and, to 
a large extent, the Peircean pragmaticist maxim provides 
one of those gluing instruments. As we understand it, if 
there is any mathematical concept capable of serving as 
a threshold between modern and contemporary math-
ematics, it is that of a mathematical sheaf, which is indis-
pensable for reintegrating adequate local compatibilities 
into a global gluing.EC Correlatively, within the scope of 
epistemology, we believe that the Peircean pragmaticist 

EE A good presentation of the analysis/synthesis polarity and its subsumption into the 
‘greater’ differentiation/integration polarity, can be found in Gerald Holton’s article, 
‘Analisi/sintesi’, for the Enciclopedia Einaudi (Torino: Einaudi, )@EE), vol. ), B@–F''.

EC We will study, in detail, the multiple facets of sheaves in topology, algebraic geometry 
and logic in the second part of this work. Ae mobile plasticity of sheaves not only 
lets us pass from the local to the global, but, in a natural fashion, allows for multiple 
osmoses between very diverse subfields of mathematics. In a certain way, since their 
very genesis, sheaves have acquired an incisive reflexive richness that has rendered them 
extraordinarily malleable. 

[D@]
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osmoses and obstructions (= ‘natural transformations’) 
are studied systematically. Category theory, as we will see 
in chapters B–E, has acquired considerable mathematical 
value in its own right, but for the moment we are inter-
ested only in accentuating its methodological interest for 
a philosophy of mathematics open to incessant pendular 
processes of differentiation and reintegration. 

Indeed, if the philosophy of mathematics could make use 
of the synthetic lessons on differentiation and reintegration 
codified in both the Peircean pragmaticist maxim and in the 
functorial processes of category theory, many of the funda-
mental problems in philosophy of mathematics might 
acquire new glints and twists that, we believe, could enrich 
philosophical dialogue. Ae objective of this essay’s third 
part will be precisely to discuss those problems, in light of 
the contributions of contemporary mathematics, and in 
light of a synthetic graXing of the Peircean pragmaticist 
maxim onto the methodological lineaments of category 
theory. However, in posing the same problematics from 
the complementary perspectives of analysis and synthesis, 
we can already indicate certain fundamental inversions 
(see figure F, overleaf) in the demands forced upon us by 
analytic and synthetic perspectives. 

invariants and defines them by means of certain ‘universal 
properties’. Aose properties, in the first instance, hold for 
given universes of classes of structures (= ‘concrete’ cat-
egories), but can oXen be extended to more general fields 
in which the minimal generic properties of those classes 
are axiomatized (= ‘abstract’ categories). Between abstract 
and concrete categories, multiple weaves of information  
(= ‘functors’) are then established. An incessant process of 
differentiation diversifies the universal constructions given 
in abstract categories and, in contrasting forms, ‘incar-
nates’ them in multiple concrete categories. Inversely – in 
a pendular fashion, we might say – an incessant process 
of integration seeks out common constructors and roots, 
at the level of abstract categories, for a great variety of the 
special constructions showing up in concrete categories. 

In this way, a quadruple synthetic strategy takes shape 
in category theory. First of all, internally, in each concrete 
category, we seek to characterize certain special construc-
tions in terms of their environmental properties in the 
given class. Aen, externally, in the general field of abstract 
categories, we seek out certain universal constructions 
that can account for the characterizations obtained in the 
concrete categories. In the third stage, in a remarkable 
weaving between concrete and abstract categories, we 
go on to define adequate functors of differentiation and 
reintegration. Finally, the same functors become the object 
of investigation from a synthetic point of view, and their 
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Figure I (facing page). Complementary perspectives on the ‘pure’ setting out of 
problematics in the philosophy of mathematics.

As we shall see and discuss in part W, some of the above 
requirements seem too strong and go against the grain of 
various advances achieved in contemporary mathematics. 
For example, from a synthetic point of view – which is 
better suited than an analytic one to mathematical practice 
– an idealist ontology that dissociates linguistic categories 
(à la Lambek) from categories of mathematical physics 
(à la Lawvere) seems inviable, because it places itself in 
immediate contradiction with advances in n-categories (à 
la Baez) that allow us simultaneously to account for com-
plex torsors in linguistics and physics. Another example, 
again with a synthetic focus, seems to show that an idealist 
epistemology is similarly inviable, since it would conflict 
with the (already actualized) possibility of constructing 
classifier topoi and initial allegories (à la Freyd). In this 
manner, it is thus easy to see how our alternative, double 
strategy – to make use of ‘synthetic’ methodological foci and 
work closely with contemporary mathematics – can bear con-
siderable philosophical fruit. We hope to show, further 
on, that directing our attention to more mathematics (and 
not necessarily ‘more philosophy’) represents a reasonable 
strategy, and one that opens attractive and unexpected 
channels for philosophical dialogue.
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Ae Peircean pragmaticist maxim and the methodological 
lineaments of category theory help to provide a vision of 
mathematical practice that is fuller and more faithful than 
what an analytic vision offers. Ae reasons are varied and 
have to do with the meanings ordinarily given to the terms 
‘full’ and ‘faithful’ – provided we extend their scope in the 
direction of the meanings they take on in the technical con-
text of category-theoretic functors. Observing that every 
construction that is realized in a given mathematical envi-
ronment (topological, algebraic, geometrical, differential, 
logical, etc.) is necessarily local in an adequate context,C( 
we will call a context in which the construction can be 
locally realized, but which does not, in addition, invoke 
redundant global axioms, a minimal context of adequation. 
When a vision of a determinate mathematical environment 
allows us to associate a minimal context of adequation with 
every mathematical construction in the environment, we 
will say that the vision is full. We will say that a vision of a 
mathematical environment is faithful when it allows us to 
reconstruct every mathematical construction of the envi-
ronment in a minimal context of adequation. Ae fullness 
of the vision ensures that the local richness of the theories 
will not be diluted in a global magma; the faithfulness of 

C( Ae context of adequation can be very large: If the mathematical construction is, for 
example, the cumulative universe of sets, a context rendering the cumulative hierarchy 
local will have to reach some inaccessible cardinal or other. Nevertheless, the majority 
of ‘real’ mathematical constructions (in Hardy’s sense, taken up again by Corfield) 
live in mathematical contexts that are under far greater control, with respect to both 
cardinal and structural requirements.

the vision ensures that the local richness is really sufficient 
for its full development. For example, the usual analytic 
vision of mathematics – based on ZF set theory and its 
underlying first-order classical logic – turns out to be 
neither full nor faithful in this sense. Given the broad global 
reach of the ZF axiomatic, the vision is not full, precisely 
because the minimal contexts of adequation are forcibly 
lost (a situation of information loss – that is to say, a loss of 
fullness – for which reverse mathematics proposes a pal-
liative); nor is it faithful, since most of the constructions 
are realized by means of an uncontrolled invocation of the 
full force of the axioms. 

By contrast, mathematical practice turns out to be 
much closer to a vision that genuinely and persistently 
seeks to detect, between minimal contexts of adequation, 
both transferences and obstructions alike. Ae notions of 
obstruction and residue are fundamental here, since the 
incessant survey of obstructions, and the reconstruction 
of entire maps of mathematics on the basis of certain 
residues attached to those obstructions, is part and parcel 
of both mathematical inventiveness and its subsequent 
demonstrative regulation.C) Now, the obstructions and 

C) Riemann’s g(s) function provides an exemplary case, here. From its very definition 
(by analytic extension, surrounding its singularities in the line Re(s)=1), to its still 
mysterious applicability in number theory (clustered around the proof that the zeros 
of the Z-function lie on the line Re(s)=1/2), the g extends its domains of invention and 
proof in virtue of the obstructions – as much definitional as structural – on which mixed 
constructions of great draught are dashed (here, the g function as a ‘hinge’ between 
number theory, complex analysis and algebraic geometry).

[EW]
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residues acquire meaning only locally, with respect to 
certain contexts of adequation – something of which the 
usual analytic vision oXen loses sight, and of which, by 
contrast, a synthetic vision helps us take stock. As we saw 
in the ‘map’ of the Peircean pragmaticist maxim (figure 
B, p. ))C), we are also dealing with a situation that is 
particularly susceptible to being detected by the maxim, 
insofar as the latter attends to local differentials and 
contextual singularities, no less than to the subsequent 
modal reintegration of local fractures.

A synthetic philosophy of contemporary mathematics must 
therefore seek to capture at least the following minimal 
characteristics that naturally arise in a sort of generic ‘dif-
ferential and integral methodology’, in which mathemat-
ics, philosophy and history are interlaced:

). a contextual and relational delimitation of the field 
of contemporary mathematics with respect to the 
fields of modern and classical mathematics;

'. a differentiation of the plural interlacings between 
mathematics and philosophy, followed by a rein-
tegration of those distinctions in partial, unitary 
perspectives;

W. a presentation of a full and faithful vision of math-
ematical practice, particularly sensitive to a pendular 

weaving between transferences and obstructions, and 
between smoothings and residues;

B. a diagramming of the multivalences, ramifications 
and twistings between spectra of mathematical theo-
rems and spectra of philosophical interpretations.

In what follows, we will take up precise case studies in 
contemporary mathematics, by means of which we will 
be able to repeatedly emphasize these four points, before 
returning, in part W, to additional ‘skeletal’C' consider-
ations concerning the philosophy of mathematics. 

C' In our strategy, one can observe an approximate analog to the practice in category 
theory whereby, firstly, a category is delimited from other neighboring categories, 
secondly, tvarious concrete constructions of the category are studied in detail, and 
thirdly, its skeleton and its free constructions are finally characterized. Ae three parts 
of our work correspond – by an analogy that is not overly stretched – to the study of 
the ‘category’ of contemporary mathematics and its various adjunctions with respect 
to the various ‘categories’ of philosophical interpretations.
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In this second part, we present brief case studies from the 
landscape of contemporary mathematics ()@F(–'(((). 
Our strategy will consist in providing mathematical infor-
mation (primarily conceptual and, to a lesser extent, tech-
nical information) that is usually taken to fall outside the 
scope of philosophy – information whose philosophical 
distillation and discussion will occupy us in part W. Nev-
ertheless, although the primary objective of this second 
part is to expand the concrete mathematical culture of the 
reader, we will also go on to indicate and briefly discuss 
a few generic lines of tension, both methodological and 
creative, that a complete philosophical understanding 
of mathematics will have to confront. Contemporary 
mathematics has given rise to new forms of transit in 
knowledge, which, in turn, generate new philosophical 
problems, and new partial solutions of those problems. 
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M.C ’   :   


Alexander Grothendieck was born in Berlin ()@'C), 
where, during his early childhood ()@WW–W@), he is edu-
cated under the care of a Lutheran minister (Heydorn), 
while his parents actively dedicate themselves to political 
agitation. His father, Alexander Shapiro, Russian anar-
chist, radical in Germany and France during the twen-
ties and thirties, Brigadista in the Spanish Civil War, is 
murdered in Auschwitz. His mother, Hanka Grothendieck 
– journalist for leX-wing magazines, Shapiro’s comrade 
in France and Spain – is reunited with her son aXer the 
defeat of the Spanish Republic.CW Between )@B( and )@B', 
Alexander and his mother are interned in the Rieucros 
Concentration Camp, which he will later able to leave 
for Le Chambon in order to be placed under the care of 
another protestant pastor (Trocmé) until the end of the 
war. Reunited with his mother, Alexander completes his 
degree in mathematics at the University of Montpellier, 
where several of his teachers remark on his ‘extraordinary 
ability, unsettled by suffering’. It is then that the brilliant 
young man, unhappy with the calculus being taught 
to him at the university, proposes a complete theory of 

CW A good overview of Grothendieck’s life can be found in A. Jackson, ‘Comme Appelé 
du Néant – As if Summoned from the Void: Ae Life of Alexander Grothendieck’, 
Notices of the AMS F) No. B, )(, '((B: )(WE–FD, ))@D–)')'. A forthcoming biography of 
Grothendieck, by Colin McLarty, should begin to fill in an inexcusable lacuna.

integration which, although he doesn’t know it, turns out 
to be equivalent to Lebesgue’s theory. 

From that day forward, it is the incessant making 
of mathematics, rather than its study, that occupies 
Grothendieck.CB He is initiated into higher mathematics 
while participating (in )@BC) in the Cartan Seminar at the 
Ecole Normale Supérieure, completes his doctoral thesisCF 
under Dieudonné and Schwartz at Nancy between )@B@ 
and )@FW, and then visits America (São Paolo, )@FW–FB; 
Kansas, )@FF), where he becomes a well-known specialist 
in topological vector spaces.CD He then invents K-theory in 
)@FE and proposes a profound generalization of the Rie-
mann-Roch Aeorem, with important consequences for 
the mathematics of the late fiXies and early sixties. (We will 
expand on K-theory and the Riemann-Roch-Grothendieck 

CB Aere is a famous anecdote about a visitor who had been to the Institut des Hautes 
Études Scientifiques (IHES), (created for Grothendieck in the sixties) and had been 
struck by the poverty of the library at such a Mecca of mathematics. Grothendieck 
answered him, ‘We don’t read mathematics, here; we make mathematics.’

CF According to Dieudonné – an expert on analysis, if there ever was one – Grothendieck’s 
thesis could only be compared, in the field of topological vector spaces, with the works 
of Banach. 

CD Nuclear spaces, introduced by Grothendieck in his doctoral thesis, are topological 
vector spaces defined by families of seminorms with a telescopic property (every 
unit ball of a seminorm can be embedded in the balls of the remaining seminorms 
by means of adequate multiplications). What is at stake here are spaces that capture, 
in a natural way, important families of functions in complex and differential analysis 
(entire holomorphic functions, smooth functions over compact differential varieties), 
and that trace, in the infinite, certain good properties of finite-dimensional spaces. Ae 
treatments of those properties by means of tensorial products begins to concretize 
some of Grothendieck’s later grand strategies: to study the properties of an object by 
inserting it in a class (category) of similar objects; to construct transmitters of information 
for the properties of an object; to compare similar behaviors in other categories, and 
reutilize all of the pendular information accumulated in order to capture the initial 
object in a new light. 
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theorem in chapter D, as we approach Atiyah’s work.) In 
)@FE he also publishes his treatise-article, ‘On a Few Points 
of Homological Algebra’ (on which we shall comment 
in section B.W), where he presents his program for the 
renovation of algebraic geometry.CE 

In the sixties, the IHES, with Grothendieck at the 
helm, becomes the world’s leading center for mathematical 
inquiry. What ensues is a decade of creation, on the basis 
of his central, driving ideas – schemes, topoi, motifs – with 
the production of the two great series of writings that 
would completely renovate the mathematics of the age: 
the Elements of Algebraic Geometry (EAG)CC and the Seminar 
on Algebraic Geometry (SAG).C@ Grothendieck receives the 
Fields Medal in )@DD, and in the panorama of subsequent 
medalists, his spectrum of influence is enormous (figure D).  
Although he surprisingly retires from the mathemati-
cal world in )@E( (at B' years of age!), aXer having leX 
behind a body of work that whole schools of mathemati-
cians would be hard-pressed to produce in a century, he 
goes on to write great mathematical manuscripts@( and 

CE A. Grothendieck, ‘Sur quelques points d’algèbre homologique’, Tohoku Math. Journal 
@, )@FE: ))@–''). Ae article is usually known as ‘Tohoku’, aXer the periodical in which 
it was published. 

CC A. Grothendieck (edited in collaboration with J. Dieudonné), Éléments de Géométrie 
Algébrique, B vols., C parts (Paris: IHES, )@D(–DE). 

C@ A. Grothendieck et al., Séminaire de Géométrie Algébrique du Bois-Marie, E vols., )' parts 
(Berlin: Springer, )@E(–W), original mimeographed fascicles, )@D(–@. 

@( La longue marche à travers la 3éorie de Galois  [Ae Long March through Galois Aeory], 
)@C), ),C(( pages. Esquisse d’un programme [Sketch for a Program], )@CW, a sort of 
mathematical testament, F( pages. Les dérivateurs [Derivators], )@@(, ',((( pages.

interminable (self-)critical reflections@) on the world (both 
mathematical and theological). In sum, the body of work 
leX behind by Grothendieck is gigantic, both in terms 
of its depth (the mathematics of the period )@E(–'(((, 
particularly the Fields panorama, can to a large extent 
be seen as a sort of ‘commentary’ on Grothendieck) and 
its quantity (about ten thousand manuscript pages). 
What we are dealing with here is a genuine gold mine 
for commentators and philosophers, who have barely 
begun to approach it.@'

Figure N. Grothendieck’s lines of influence in the panorama of Fields medalists.

@) Récoltes et Semailles [Reaping and Sowing], )@CF–D, ),((( pages. La clef des songes [Ae 
Key to Dreams], W)F pages.

@' Several digitized fragments of Grothendieck’s work, accompanied by a few studies, 
can be found on the website http://www.grothendieckcircle.org, maintained by Leila 
Schneps and Pierre Lochak.

Grothendieck ()@DD) Deligne ()@DD) Faltings ()@DD)

Atiyah ()@DD) Connes ()@C')

Perelman ('((D)

Drinfeld ()@@()
Kontsevich ()@@C)

Voevodsky ('((')

[E@]
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AXer the remarkable fiXies (nuclear spaces, K-theory, 
homological algebra), Grothendieck’s first great driving 
idea during the golden age of the IHES would propel 
a profound renovation of algebraic geometry. Situating 
himself within what Aom would later call the ‘found-
ing aporia of mathematics’@W (that is to say, within the 
irresolvably contradictory dialectic, discrete/continuous), 
Grothendieck invents his schemes as a very powerful tool 
in an attempt to resolve the Weil Conjectures ()@B@). A 
precise graXing of the discrete and the continuous, the 
conjectures seek out a way to measure the number of 
points in certain algebraic varieties over finite fields, by 
means of certain generating functions, such as the zeta 
functions originating in Riemann’s continuous, complex-
topological intuition.@B Dwork ()@D() demonstrated the 
rationality of the zeta functions, Grothendieck ()@DD) 
the functional equation that governs them, and Deligne 
()@EB), Grothendieck’s greatest student, the adequate 
distribution of their zeros (which gives us combinato-
rial control of the points in a variety). Deligne’s result, 
which won him the Fields Medal, is a genuine technical 
tour de force.

Modern mathematics, in the first half of the twentieth 
century, culminates in Weil’s astonishing exploration.

@W R. Aom, ‘L’aporia fondatrice delle matematiche’, Enciclopedia Einaudi (Torino: 
Einaudi, )@C'), ))WW–BD.

@B A. Weil, ‘Numbers of solutions of equations in finite fields', Bul.Am.Math.Soc. FF, )@B@: B@E–F(C.

Driven by a very subtle and concrete intuition, as well 
as an unusual capacity for uncovering analogies at the 
crossroads between algebraic varieties and topology, Weil 
succeeded in stating his conjectures with great precision. 
Contemporary mathematics, in the second half of the 
twentieth century, emerges with the work of Grothendieck, 
giving rise to the entire apparatus of algebraic geometry 
that will allow it, in turn, to resolve those conjectures. 
While Zariski’s topologies serve as mediations at the 
algebraic varieties/topologies crossroads, and allow the 
conjectures to be stated, the (‘étale’, l-adic) cohomologies 
of Grothendieck and his school serve as mediations at the 
schemes/topos crossroads, by means of which they can 
now be resolved. Extending the algebraic varieties into 
the field of schemes, the richness of Grothendieck’s generic 
invention is not the outcome of gratuitous generaliza-
tions. At no point is generalization carried out without 
adequate particularizations in mind, and what is really 
at stake is a complex process of ascent and descent that, 
as we shall see in greater detail in section B.', turns out 
to be constantly governed by concrete consequences of 
ever greater mathematical significance.

Indeed, with the creation of his schemes, Grothendi-
eck graXs together two of the major currents of modern 
mathematics: the vision of Riemann, which allows us to 
understand a curve X by means of the ring M(X) of the 
meromorphic functions over that curve, and the vision 
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of Galois-Dedekind, which allows us to understand an 
algebraic variety V by means of the spectrum Spec(V) of 
its maximal ideals. In effect, Grothendieck generalizes 
the situation so as to be able to envelope both visions at 
once, and suggests that we might understand an arbitrary 
(commutative, unitary) ring by means of a hierarchy of 
three extremely mathematically rich objects: the spectrum 
of its prime ideals, the Zariski topology over the spectrum 
of primes, and the natural sheaves over the topologized 
spectrum. Aose sheaves, with certain additional condi-
tions on their fibers, turn out to be the ‘schemes’ (schémas) 
of Grothendieck, who thus succeeds not only in unifying 
some of modern mathematics’ deepest intuitions (Galois, 
Riemann), but in doing so, broadens the very conception of 
space, such that we are no longer concerned with points, 
but with positions and movement (sections of the sheaf). 

From its broad, general outlines to its most particular 
technical concretizations (as we shall see in section B.W), 
Grothendieck’s work yields a fundamental paradigm, 
which we should like to call the practice of a relative math-
ematics. Grothendieck’s strategies can indeed be under-
stood, in a conceptual sense, as close to the relativistic 
modulations that Einstein introduced into physics. In 
a technical manner, both Einstein and Grothendieck 
manipulate the frame of the observer and the partial 
dynamics of the agent in knowledge. In Grothendieck’s 
way of doing things, in particular, we can observe, firstly, 

the introduction of a web of incessant transfers, transcrip-
tions, translations of concepts and objects between appar-
ently distant regions of mathematics, and, secondly, an 
equally incessant search for invariants, protoconcepts and 
proto-objects behind that web of movements. In their 
technical definitions, sheaves and schemes incarnate both 
flux and repose. Beyond sheaves as singular objects, the 
‘protogeometry’ that underlies certain classes of sheaves 
then gives rise to the Grothendieck topoi. 

Grothendieck topoi ()@D') are categories of sheaves 
issuing from certain ‘natural’ abstract topologies.@F Topoi, 
which are something like parallel universes for the develop-
ment of mathematics, are categorical environments suf-
ficiently vast for the development of an entire sophisticated 
technology of the relative to be possible. Generalizing 
the action of certain groupoids on the fibers of a sheaf, 
Grothendieck seeks to move the topoi (environments that are 
no longer just set-theoretical but topological, algebraic, 
differential, combinatorial, etc.) and study, in a generic 
fashion, the actions of various functors on enormous 

@F In categories with certain good properties of compositionality and covering, an 
abstract topology (Grothendieck topology) can be defined by means of (sub)collections 
of morphisms that are ‘well matched’ with one another. Ae categories of presheaves 
(categories of functors to values in the category of sets) verify those good properties 
of compositionality and covering, and abstract topologies can be defined there. 
Grothendieck topoi issue from categories of presheaves that are ‘situated’ around 
a given abstract topology. (Aose categorical environments are also called sites.)  
A simplification of Grothendieck topoi is provided by Lawvere’s elementary topoi 
()@E(), where the abstract topologies (by means of Yoneda’s lemma) can be easily 
described thanks to a single endomorphism of the subobject classifier, which registers 
the algebraic properties of a closure operator. 
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classes of topoi. Ae results come without delay, and it is in 
the generic geometrical realm of topoi that certain cohomological 
obstructions disappear: it is there that Grothendieck and his 
school could develop the étale cohomology that would 
allow Deligne to resolve the Weil conjectures. In topoi, 
objects are no longer ‘fixed’ but ‘unfold through time’. 
We are dealing here with variable sets, whose progressive 
parametric adjustments allow us to resolve a multitude of 
obstructions that seemed irresolvable from within a ‘punc-
tual’, classical or static mathematics. From this alone, one 
can intuit the enormous philosophical impact that such 
a relative mathematics might have – a mathematics atten-
tive to the phenomenon of shi=ing, but with the capacity 
to detect invariants behind the flux, a mathematics that 
goes against the grain of supposedly ultimate founda-
tions, absolute truths, unshakable stabilities, but which is 
nevertheless capable of stabilizing asymptotic webs of truth. 

In Grothendieck’s work, objects tend to be situated 
over certain ‘bases’ (the sheaf over its underlying topo-
logical space, the scheme over its spectrum), and many 
important problems arise when base changes are carried out. 
‘Relative’ mathematics then acquires a great mathematical 
incisiveness, in inquiring as to which properties are trans-
ferred in the effectuation of base changes (descent theory: 
the search for the conditions under which one is able to 
carry out transfers; and its counterpart, the detection of 
the conditions of obstruction in base changes). Conditions 

of coherence and abstract gluing arise quite naturally from 
these processes of transference/translation – conditions 
that, it seems, can be easily defined only in the context of 
Grothendieck topoi. In particular, Zariski’s ‘site’, which 
allows us to articulate the Weil conjectures, is replaced 
by Grothendieck’s ‘étale site’,@D in which is constructed 
– following a general procedure that we will come back 
to in the Tohoku, according to which certain categories 
of sheaves give rise to natural cohomology groups – the 
étale cohomology that Deligne will later need in order 
to resolve the conjectures.@E

In reality, the conceptual dynamics of topoi far sur-
pass the theory’s first technical objectives, as brilliant as 
they were. Indeed, surfacing behind the Grothendieck 
topoi Lawvere’s elementary topoi, where we see that the 
number-theoretic, algebraic, topological and geometrical 
considerations advanced by Grothendieck also possess 
surprising logical counterparts.@C As we will see in chapters 
F and E, as we approach Lawvere and Freyd, the categories 

@D Étale: smooth, without protuberances (the term comes from a poem of Victor Hugo’s, 
about an ‘étale’ sea). Grothendieck’s metaphorical use of ‘étale’ condenses the idea of 
the nonramified, where Grothendieck combines, once again, some of the central ideas 
of Galois and Riemann’s: extensions of nonramified fields (Galois’s separability) and 
nonramified Riemann surfaces, enveloped in a generic unifying concept. 

@E See P. Deligne, ‘Quelques idées maîtresses de l’oeuvre de A. Grothendieck’, in 
Matériaux pour l’histoire des mathématiques au XXe siècle, Séminaires et Congrès W, 
Société Mathématique de France, )@@C, ))–)@. 

@C Oddly, Grothendieck, who explored almost every field of mathematics with tremendous 
penetration, hardly bothered with mathematical logic. Aat disquieting logico-
mathematical separation – by one of the two or three major mathematicians of the 
twentieth century – should give logic-centered philosophers of mathematics much to 
think about. 

[C']



7U87U?

 

classes of topoi. Ae results come without delay, and it is in 
the generic geometrical realm of topoi that certain cohomological 
obstructions disappear: it is there that Grothendieck and his 
school could develop the étale cohomology that would 
allow Deligne to resolve the Weil conjectures. In topoi, 
objects are no longer ‘fixed’ but ‘unfold through time’. 
We are dealing here with variable sets, whose progressive 
parametric adjustments allow us to resolve a multitude of 
obstructions that seemed irresolvable from within a ‘punc-
tual’, classical or static mathematics. From this alone, one 
can intuit the enormous philosophical impact that such 
a relative mathematics might have – a mathematics atten-
tive to the phenomenon of shi=ing, but with the capacity 
to detect invariants behind the flux, a mathematics that 
goes against the grain of supposedly ultimate founda-
tions, absolute truths, unshakable stabilities, but which is 
nevertheless capable of stabilizing asymptotic webs of truth. 

In Grothendieck’s work, objects tend to be situated 
over certain ‘bases’ (the sheaf over its underlying topo-
logical space, the scheme over its spectrum), and many 
important problems arise when base changes are carried out. 
‘Relative’ mathematics then acquires a great mathematical 
incisiveness, in inquiring as to which properties are trans-
ferred in the effectuation of base changes (descent theory: 
the search for the conditions under which one is able to 
carry out transfers; and its counterpart, the detection of 
the conditions of obstruction in base changes). Conditions 

of coherence and abstract gluing arise quite naturally from 
these processes of transference/translation – conditions 
that, it seems, can be easily defined only in the context of 
Grothendieck topoi. In particular, Zariski’s ‘site’, which 
allows us to articulate the Weil conjectures, is replaced 
by Grothendieck’s ‘étale site’,@D in which is constructed 
– following a general procedure that we will come back 
to in the Tohoku, according to which certain categories 
of sheaves give rise to natural cohomology groups – the 
étale cohomology that Deligne will later need in order 
to resolve the conjectures.@E

In reality, the conceptual dynamics of topoi far sur-
pass the theory’s first technical objectives, as brilliant as 
they were. Indeed, surfacing behind the Grothendieck 
topoi Lawvere’s elementary topoi, where we see that the 
number-theoretic, algebraic, topological and geometrical 
considerations advanced by Grothendieck also possess 
surprising logical counterparts.@C As we will see in chapters 
F and E, as we approach Lawvere and Freyd, the categories 

@D Étale: smooth, without protuberances (the term comes from a poem of Victor Hugo’s, 
about an ‘étale’ sea). Grothendieck’s metaphorical use of ‘étale’ condenses the idea of 
the nonramified, where Grothendieck combines, once again, some of the central ideas 
of Galois and Riemann’s: extensions of nonramified fields (Galois’s separability) and 
nonramified Riemann surfaces, enveloped in a generic unifying concept. 

@E See P. Deligne, ‘Quelques idées maîtresses de l’oeuvre de A. Grothendieck’, in 
Matériaux pour l’histoire des mathématiques au XXe siècle, Séminaires et Congrès W, 
Société Mathématique de France, )@@C, ))–)@. 

@C Oddly, Grothendieck, who explored almost every field of mathematics with tremendous 
penetration, hardly bothered with mathematical logic. Aat disquieting logico-
mathematical separation – by one of the two or three major mathematicians of the 
twentieth century – should give logic-centered philosophers of mathematics much to 
think about. 

[C']



7UT



7UU

  

and allegories that situate themselves between cartesian 
categories and topoi encode an entire legion of intermedi-
ary logics, whose relative web reflects a good part of the 
greater mathematical movements that are based on them. 
Base changes in underlying logics thus give rise to a complex 
landscape – we could call it relative logic – that allows us 
to return to the historical origins of mathematical logic 
(Peirce’s ‘logic of relatives’) and reinterpret, in a new 
light, many of the problematics concerning foundations, 
which were taken up in a conventional way by analytic 
philosophy.

Ae Grothendieckian attention to the movement of 
mathematical concepts and objects is accompanied by an 
oscillating search for archetypes for mathematical reason 
and imagination. Between the One (the ‘form’) and the 
Many (the structures: schemes, topoi, etc.), Grothendieck 
discovers and invents@@ suitable invariants of form: the 
cohomologies. Although the homology and cohomology 
groups for algebraic topology tend to satisfy certain con-
ditions of univocity, the possibilities for cohomological 
invariants multiply as we move through algebraic geom-
etry (Hodge, De Rham, crystalline, étale, l-adic, etc.). It 
is for this reason that Grothendieck proposes his motifs, 

@@ We will deepen, in section B.', the dialectic of discovery and invention in Grothendieck, 
a dialectic that cannot be reduced to either of its two poles; and we will study with 
greater care, in part W, the fact that a position as much realist (‘discovery’) as idealist 
(‘invention’), is indispensable in advanced mathematics, once the latter goes beyond 
a certain threshold of complexity for structures, languages and the transits/obstructions 
at stake. 

deep generic structures underlying distinct cohomologies. 
Reading Grothendieck’s own words is well worth the 
trouble, since we will be taking up several ideas from the 
following quotation throughout this essay:

Ais theme [that of motifs] is like the heart or the soul, 
the most hidden part, the most concealed from view, 
of the schematic theme, which is itself at the heart 
of a new vision. […] Contrary to what happens in 
ordinary topology, [in algebraic geometry] we find 
ourselves faced with a disconcerting abundance of 
different cohomological theories. One gets the very 
clear impression that, in a sense that at the beginning 
remains somewhat vague, all of these theories should 
‘turn out to be the same’, that they ‘give the same 
results’. It is to be able to express this intuition of 
‘kinship’ between different cohomological theories 
that I have extracted the notion of a ‘motif ’ associ-
ated with an algebraic variety. By this term I mean to 
suggest that what is at stake is the ‘common motif’ 
(or the ‘common reason’) underlying this multitude 
of different cohomological invariants associated 
with the variety, thanks to the entire multitude of 
cohomological theories that are possible a priori. 
Aese different cohomological theories would be 
something like different thematic developments, 
each in its own ‘tempo’, ‘key’ and ‘mode’ (‘major’ 
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or ‘minor’), of the same ‘basic motif’ (called ‘motivic 
cohomological theory’), which would be at the same 
time the most fundamental, or the most ‘fine’, of all 
these different thematic ‘incarnations’ (that is to say, 
of all these possible cohomological theories). And so, 
the motif associated with an algebraic variety would 
constitute the ‘ultimate’ cohomological invariant, the 
cohomological invariant ‘par excellence’, from which 
all the others […] would be deduced, as so many 
different musical ‘incarnations’ or ‘realizations’. All 
the essential properties of ‘the cohomology’ of the 
variety would already be ‘read off’ (or ‘heard in’) the 
corresponding motif, so that the properties and struc-
tures familiar to the particularized cohomological 
invariants (l-adic or crystalline, for example), would 
simply be the faithful reflection of the properties and 
structures internal to the motif.)(( 

Both homologies (mathematical constructions that help 
us resolve ‘the discrete/continuous aporia’ [Aom] and 
that consist of chains of abelian groups with which  one 
captures ample information about the topological object 

)(( Grothendieck, ‘Prélude’, in Récoltes et Semailles BF–D (quotation marks and italics are the 
author’s). Ae (conceptual, mathematical, stylistic, methodological, phenomenological) 
richness of this paragraph will give rise to many reflections in our work. For the 
moment, it is enough to underscore the movement between the One and the Many, 
the tension between the ‘ultimate’ and the differences, the problematic of fidelity and 
variation, the dialectic between the internal and the external, the modal spectrum of 
possibilities and realizations, the interlacing of vagueness and precision, the graXing 
of corazón and razón (heart and reason), the aesthetic equilibrium.

under investigation) and cohomologies (dual construc-
tions involving more familiar set-theoretical limits [prod-
ucts, pullbacks, etc.]) become, thanks to Grothendieck, 
some of the ‘most powerful [mathematical] instruments 
of the century’.)() At the end of his research at the IHES, 
aXer his work on schemes and topoi, Grothendieck 
envisioned the difficult and ambitious motivic program. 
Retiring from the world of mathematics and ceasing to 
publish, the major lines of development of Grothendieck’s 
program went on to circulate as manuscripts, and many 
of his suggestions were considered excessively vague.)(' 
Nevertheless, Voevodsky introduced motivic cohomol-
ogy ()@@(–'(((), a contribution that, in part, answered 
Grothendieck’s expectations, and that won him the Fields 
Medal ('(('). Instead of working, as in algebraic topol-
ogy, with algebraic surgeries on space (singular cohomol-
ogy, ring of cohomology groups), Voevodsky proposed a 
more delicate collection of surgeries on an algebraic variety, 
introducing new forms of topology for algebraic objects 
(fine Grothendieck topologies over sites of schemes), 

)() Grothendieck, Récoltes et Semailles, BW. 

)(' Ae same could be said of another very influential ‘vision’ of Grothendieck’s, the 
‘moderate program’ that he sketched out in his )@CW Esquisse d’une programme. 
Grothendieck sought new forms of topology, which would turn out to be natural and 
would smooth over the singularities that a set-theoretical topology must endure (replete 
with artificial examples coming from analysis). Grothendieck had the intuition that 
a sort of deconstruction (‘dévissage’, Esquisse, 'F) of stratified collections of structures 
would be tied to the discovery of a ‘moderate topology’. Amid the developments of the 
‘moderate program’ one can find tame model theory or (-minimality in contemporary 
model theory – another unsuspected resonance of Grothendieck’s ideas with logic. 

[CB]



7UY7U=

 

or ‘minor’), of the same ‘basic motif’ (called ‘motivic 
cohomological theory’), which would be at the same 
time the most fundamental, or the most ‘fine’, of all 
these different thematic ‘incarnations’ (that is to say, 
of all these possible cohomological theories). And so, 
the motif associated with an algebraic variety would 
constitute the ‘ultimate’ cohomological invariant, the 
cohomological invariant ‘par excellence’, from which 
all the others […] would be deduced, as so many 
different musical ‘incarnations’ or ‘realizations’. All 
the essential properties of ‘the cohomology’ of the 
variety would already be ‘read off’ (or ‘heard in’) the 
corresponding motif, so that the properties and struc-
tures familiar to the particularized cohomological 
invariants (l-adic or crystalline, for example), would 
simply be the faithful reflection of the properties and 
structures internal to the motif.)(( 

Both homologies (mathematical constructions that help 
us resolve ‘the discrete/continuous aporia’ [Aom] and 
that consist of chains of abelian groups with which  one 
captures ample information about the topological object 

)(( Grothendieck, ‘Prélude’, in Récoltes et Semailles BF–D (quotation marks and italics are the 
author’s). Ae (conceptual, mathematical, stylistic, methodological, phenomenological) 
richness of this paragraph will give rise to many reflections in our work. For the 
moment, it is enough to underscore the movement between the One and the Many, 
the tension between the ‘ultimate’ and the differences, the problematic of fidelity and 
variation, the dialectic between the internal and the external, the modal spectrum of 
possibilities and realizations, the interlacing of vagueness and precision, the graXing 
of corazón and razón (heart and reason), the aesthetic equilibrium.

under investigation) and cohomologies (dual construc-
tions involving more familiar set-theoretical limits [prod-
ucts, pullbacks, etc.]) become, thanks to Grothendieck, 
some of the ‘most powerful [mathematical] instruments 
of the century’.)() At the end of his research at the IHES, 
aXer his work on schemes and topoi, Grothendieck 
envisioned the difficult and ambitious motivic program. 
Retiring from the world of mathematics and ceasing to 
publish, the major lines of development of Grothendieck’s 
program went on to circulate as manuscripts, and many 
of his suggestions were considered excessively vague.)(' 
Nevertheless, Voevodsky introduced motivic cohomol-
ogy ()@@(–'(((), a contribution that, in part, answered 
Grothendieck’s expectations, and that won him the Fields 
Medal ('(('). Instead of working, as in algebraic topol-
ogy, with algebraic surgeries on space (singular cohomol-
ogy, ring of cohomology groups), Voevodsky proposed a 
more delicate collection of surgeries on an algebraic variety, 
introducing new forms of topology for algebraic objects 
(fine Grothendieck topologies over sites of schemes), 

)() Grothendieck, Récoltes et Semailles, BW. 

)(' Ae same could be said of another very influential ‘vision’ of Grothendieck’s, the 
‘moderate program’ that he sketched out in his )@CW Esquisse d’une programme. 
Grothendieck sought new forms of topology, which would turn out to be natural and 
would smooth over the singularities that a set-theoretical topology must endure (replete 
with artificial examples coming from analysis). Grothendieck had the intuition that 
a sort of deconstruction (‘dévissage’, Esquisse, 'F) of stratified collections of structures 
would be tied to the discovery of a ‘moderate topology’. Amid the developments of the 
‘moderate program’ one can find tame model theory or (-minimality in contemporary 
model theory – another unsuspected resonance of Grothendieck’s ideas with logic. 

[CB]



7UR



7UQ

  

and defining a sophisticated concrete category for the H(V) 
homologies functorially associated with varieties V. A 
central trunk of cohomologies had then begun to ‘surface’, 
concordant with Grothendieck’s extraordinary mathemati-
cal intuition. 

M.F , , 

In this section we analyze some of the major metaphors 
that Grothendieck himself used in explicating his modes 
of creation and work methods, and we observe some of 
the resonances we encounter between Grothendieck’s math-
ematical production (in its imaginative phase no less than 
its definitional and theorematic phase), the mathemati-
cian’s reflection on that production, and the formal expres-
sion of that reflection. All of these resonances constitute 
what could be called the peculiar style of Grothendieck. 

Ae metaphors of the ‘hammer’ and of the ‘rising tide’ 
preside over much of Grothendieck’s conceptual vision.)(W 
For Grothendieck, a problem can be imagined as a sort 
of ‘nut’, whose hard shell has to be penetrated in order 
to get to its ‘soX flesh’. In Grothendieck’s conception, 
there are two essentially distinct strategies for opening 
the shell: hitting it with a hammer and chisel – sometimes 
slipping and sometimes smashing the inside to pieces 

)(W Grothendieck, Récoltes et Semailles, FF'-W.

along with the shell – and immersing it in a liquid (‘the 
tide’) in such a way that, aXer weeks or months, its exte-
rior soXens and opens up ‘with a squeeze of the hands 
[…] like a ripe avocado’. Ae first strategy (yang) aims 
to resolve the problem; the second strategy (yin) aims to 
dissolve it. Arough an adequate immersion in a natural, 
ambient medium, the solution should emerge within a generic 
landscape that outstrips the particular irregularities of 
the shell. Ae metaphors capture a precise mathematical 
methodology that Grothendieck had constantly put into 
practice over at least thirty years: immersing a problem 
in an appropriate general category (K), performing a 
profound labor of conceptual and definitional prescission104 
inside that category, decomposing examples and objects 
inside that general frame, and proceeding finally to the 
study of the correlations, transits and osmoses within the 
category. AXer an incessant abstract (de)construction 
(‘dévissage’), the problem can be resolved with the great-
est possible so=ness (‘a ripe avocado’), without blows and 
without artificial ruses, as the direct testimony of Deligne 
indicates.105 

Going further still, Grothendieck’s strategy of the ‘ris-
ing tide’ goes on to place questions, notions and points 

)(B Prescission, in Peirce’s sense, at once cuts and specifies the boundaries of the entity under 
analysis.

)(F Deligne, ‘Quelques idées maîtresses…’, )'. 
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of view at the center of mathematical attention, above 
and beyond the resolutions themselves:

More than anything, it’s really through the discovery 
of new questions, and likewise new notions, and even 
new points of view – new ‘worlds’, in fact – that my 
mathematical work has turned out to be fruitful, 
rather than through the ‘solutions’ that I have con-
tributed to questions already posed. Ais very strong 
drive, which has carried me toward the discovery of 
good questions, rather than toward answers, and 
toward the discovery of good notions and statements, 
much more than towards proofs, is another strong 
‘yin’ trait in my approach to mathematics.)(D

Behind a problem, Grothendieck always seeks out the 
wellsprings (the sources) of natural questions associated 
with the problem. What is at issue, therefore, is a vision 

)(D Grothendieck, Récoltes et Semailles, FFB. Of course, such a paragraph can only be 
appreciated from a great height, seeking to clarify the most salient movements of the 
topography. We must not forget the (literally) thousands of pages that Grothendieck 
devoted to ‘answers’ and ‘demonstrations’ in his major fields of production: ‘tensorial 
products and nuclear spaces, cohomologies of sheaves as derived functors, K-theory 
and the Grothendieck-Riemann-Roch Aeorem, emphasis on work relative to a base, 
definition and construction of geometrical objects via the functors to that which 
must represent them, fibered categories and descent, stacks, Grothendieck topologies 
(sites) and topoi, derived categories, formalisms of local and global duality (the “six 
operations”), étale cohomology and cohomological interpretation of L-functions, 
crystalline cohomology, “standard conjectures”, motifs and the “yoga of weights”, 
tensorial categories and motivic Galois groups’ (following a ‘brief’ list of contributions, 
in P. Cartier et al., 3e Grothendieck Festschri= [Basel: Birkhäuser, )@@(], vol. ), viii). 
As Dieudonné points out (ibid., )B), ‘there are few examples in mathematics of so 
monumental and fruitful a theory, built up in such a short time, and essentially due 
to the work of a single man’. 

of the foundations of mathematics that differs radically 
from the one proposed by set theory. Grothendieck’s 
‘reading’ is a transversal one, in which an ultimate base 
is of no importance. What is under investigation, instead, 
is the base’s movement (its shi=ing),)(E and what matters, 
more than an accumulative resolution of knowledge, is 
the mobile interlacing of natural questions underlying 
the solutions.)(C

In fact, it is not even a question of a ‘reading’ in 
Grothendieck, but rather a listening. An articulation 
between images, intuition and ear, as opposed to other 
merely formal manipulations of language, seems to be 
fundamental for him. In addition to the metaphor of 
the nut and the rising tide, another of Grothendieck’s 
central metaphors is, in fact, the image of the creative 
mathematician attending to ‘the voice of things’.)(@  

)(E For Merleau-Ponty, the ‘height of reason’ consists in feeling the ground slip away, detecting 
the movement of our beliefs and our supposed knowledge: ‘every creation changes, 
alters, elucidates, deepens, confirms, exalts, recreates or precreates all the rest’ (M. 
Merleau-Ponty, Notes des cours de Collège de France [9:@>–@:, 9:B8–B9] [Paris: Gallimard, 
)@@D], @'). In L’oeil et l’esprit (Paris: Gallimard, )@DB), Merleau-Ponty describes the 
body as operating in the domains of knowledge as a ‘sheaf of functions interlacing 
vision and movement’. Arough incessant levels of self-reference, the sheaf permits the 
conjugation of inner and outer, essence and existence, reality and imagination. And, 
moreover, it is in the murky and antinomic frontiers of such apparent contradiction that 
the sheaf gives rise to invention and creation. We shall return, in part W (chapter )() to 
certain connections between Grothendieck, Merleau-Ponty and Rota, as regards the 
apparently fundamental opposition between invention and discovery in mathematical 
philosophy.

)(C Recall, here, the similar position of Lautman, who pointed to an ‘urgency of problems, 
behind the discovery of their solutions’ (ppDD–C, above). 

)(@ Grothendieck, Récoltes et Semailles,  'E.

[CE]
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Ae ‘hidden beauty of things’))( appears to be the hidden 
beauty of mathematical structures, an intrinsic beauty 
that the mathematician discovers by means of the extrinsic 
invention of sufficiently expressive languages. And so, 
in Grothendieck’s perspective, mathematical structures 
appear in the phenomenological spectrum of the world, 
and so they are discovered – but these are discoveries that 
can only be made by inventing, in an almost synchronic 
dialectic, adequate representations of the structures in 
question. Ae (musical, cohomological) metaphor of 
the motif itself shores up the idea that there exist hidden 
germs of structuration, which a good ‘ear’ should be able to 
detect. And so Grothendieck’s motifs appear to be already 
present in the dynamic structure of forms, independent 
of their future discoverers (Voevosdky, Levine, Morel, 
etc.), whose work would consist essentially in creating the 
adequate languages, the theoretico-practical frameworks, 
and the sound boxes required to register their vibrations. 
Again, it is instructive to listen to Grothendieck himself:

Ae structure of a thing is not in any way something 
that we can ‘invent’. We can only patiently, humbly 
put it in play – making it known, ‘discovering it’. If 
there is inventiveness in this work, and if we happen 
to perform something like the work of the blacksmith 

))( Ibid., 'C.

or the tireless construction worker, this is not at all to 
‘fashion’ or ‘build’ structures. Aey do not wait for 
us in order to be, and to be exactly what they are! 
It is rather to express, as faithfully as we can, these 
things that we are in the midst of discovering and 
sounding out – that reticent structure toward which 
we try to grope our way with a perhaps still-babbling 
language. And so we are lead to constantly ‘invent’ 
the language that can express, ever more finely, the 
intimate structure of the mathematical thing, and 
to ‘construct’, with the help of that language, thor-
oughly and step by step, the ‘theories’ charged with 
accounting for what has been apprehended and seen. 
Aere is a continual and uninterrupted back-and-forth 
movement here, between the apprehension of things 
and the expression of what has been apprehended, by 
way of a language that has been refined and recreated 
as the work unwinds, under the constant pressure of 
immediate needs.)))

Ae incessant recreation and invention through the disci-
pline’s unwinding environs, the step-by-step construction, 
and the groping expression all evince Grothendieck’s 
eminently dynamical and dialectical perception. What we 
are dealing with here, in effect, is a ‘continual weaving’ 

))) Ibid., 'E. Ae quotation marks and italics are Grothendieck’s.
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the language that can express, ever more finely, the 
intimate structure of the mathematical thing, and 
to ‘construct’, with the help of that language, thor-
oughly and step by step, the ‘theories’ charged with 
accounting for what has been apprehended and seen. 
Aere is a continual and uninterrupted back-and-forth 
movement here, between the apprehension of things 
and the expression of what has been apprehended, by 
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Ae incessant recreation and invention through the disci-
pline’s unwinding environs, the step-by-step construction, 
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))) Ibid., 'E. Ae quotation marks and italics are Grothendieck’s.
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in mathematical thought, back and forth with a probing 
instrumentarium, whose ontological and epistemological 
categories cannot be stabilized in advance, independently 
of the (practical, historical) action of the discipline. In 
that ubiquitous transit in which mathematics returns to 
itself, in that always-moving and oXen enigmatic sea, 
Grothendieck’s manner nevertheless provides a profound 
orientation and a surprising relative anchorage.

In effect, Grothendieck relies on multiple mathemati-
cal methods in order to maintain an orientation within 
the variable scenery that looms up ahead. Above all, a 
persistent ascent and descent allows him to overcome the 
obstructions that lay in wait in local and excessively par-
ticularized labyrinths. Ae ascent to the general is never, 
in Grothendieck, a gratuitous operation, but is controlled 
by certain crucial modes of mathematical practice: the 
insertion of a particular local situation (object, property, 
example) into a universal, global environment (category) 
– with subsequent osmoses between manifestations of 
the singular and forms of the continuous; the plural 
construction of webs and hierarchies so as to collate the 
particular within wider relational universes; the discovery 
of proximities in a topography with clearly defined eleva-
tions and projections of various types. Generalization is 
then a weapon of contrast, a method for elevating vision, 
that helps us to orient ourselves in a complex terrain.

 

On the other hand, Grothendieck’s ‘manner’ is entirely 
governed by a ubiquitous (conceptual, linguistic, techni-
cal) dialectic. From the most vague (the yin and the yang) 
to the most precise (functorial adjunctions), passing 
through incessant tensions between polar regions of 
mathematics, Grothendieck’s thought comes and goes 
without the slightest rest. Many of his great technical 
constructions – nuclear spaces, K-theory and generalized 
Riemann-Roch, cohomologies, schemes, topoi, motifs 
– straddle apparently distant mathematical nuclei, cul-
minating in )@CW in the dessins d’enfants (children’s draw-
ings), which propose strange combinatorial invariants 
for number theory, by way of surprising mediations on 
analysis (Riemann surfaces) and algebra (Galois groups). 
Ae dialectic functions on multiple levels, from the vague 
and imaginary to the technically restrained, in a ‘vast 
counterpoint – in a harmony that conjugates them’.))'

Restricting the dialectic to the subdefinition of transits 
and obstructions within mathematical activity, the genericity 
of mathematical concepts and objects (à la Grothendieck) 
gives rise to other original concretizations in the spectrum 
of the arbitrary – arbitrariness being understood as a 
simultaneous topos of mediation (‘arbiter’, transit, continu-
ity) and opposition (‘arbitrary’, imposition, discretion).))W 

))' Ibid., 'W.

))W I owe this beautiful dialectical and etymological reading of the ‘arbitrary’ to Roberto Perry 
and Lorena Ham, in whose work it gives rise to a complex ‘therapeutic of the arbitrary’.

[CC]
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In effect, a generic entity combines its implicit definability 
within a horizon of possibility with its explicit concretiza-
tion within a horizon of stratification (Desanti),))B so as 
to project its abstract capacity for transit (amid possibilia) 
onto the concrete panorama of impositions that it encoun-
ters (in the hierarchies of the actual). Whence a third 
method emerges, one that is very much present in all of  
Grothendieck’s works, in the ‘art’ of making mathematics. 
What we are dealing with here is, indeed, a new ars combi-
natoria, which proposes to explicate, in four well-defined 
steps, mathematics’ unity in multiplicity, which is to say, 
‘the very life and breath’))F of the discipline: the incessant 
stratification of mathematical activity; the ramification of 
ambient categories of interpretation; the recursive decon-
struction (‘dévissage’) of the concepts at stake, throughout 
the many available categorical hierarchies; the framing 
of relational interlacings (diagrams of transferences and 
obstructions) between realized deconstructions.

Grothendieck’s manner ))D – a mixture of vertical 

))B J.-T. Desanti, Les idéalités mathématiques (Paris: Seuil: )@DC).

))F Grothendieck, Récoltes et Semailles, )D. 

))D In the artistic theory of the sixteenth and seventeenth centuries, maniera appears at the 
nucleus of critical discussions on great painter’s ‘ways of doing things’ (of inventing, 
creating). With the degeneration of maniera into mannerism, the notion of style later 
emerged as a conceptual substitute for capturing the major categories of the history 
of art (baroque, classical, romantic, etc.). In part W of this work, we will take up the 
problematic of how we may try to define – intrinsically, and not just diachronically, as 
we have done so far – some of the great demarcations of mathematical styles: classical, 
modern, romantic, contemporary. Ae maniera of Grothendieck opens important 
channels for attempting to approach such intrinsic demarcations. It is something 
that we have already begun in our chapter ) – with conditions )–F in terms of which 
Lautman investigated modern mathematics, and with conditions D–)(, closely tied 

(ascent/descent), horizontal (dialectics/polarities) and 
diagonal (reflections between stratified hierarchies) weav-
ings – gives rise to a style that allows us to naturally express 
these ways of making mathematics. By ‘style’, here, we 
will understand the superposition of webs of ‘inscriptions’ 
(recalling the stylus with which the Babylonian tablets 
were inscribed) and the intermeshing ‘gears’ between the 
webs, in three fundamental mathematical registers: (i) the 
initially vague invention, (ii) the subsequent delimitation 
of that vagueness and consequent demonstrative expres-
siveness, (iii) the critical reflection on the demonstrative 
body whose elaboration has been made possible.))E From 
this perspective, Grothendieck’s style is of the great-
est interest because it amply extends through the three 
registers,))C and, in the epistemological sense of the word 
‘style’, it effects a genuine ‘saying-thinking’ conjugation 
(lexis)))@ in each field. Grothendieck, in fact, describes his 
‘particular genius’)'( as a capacity for introducing great 
new themes and unifying points of view amid diversity; and 

to Grothendieck’s maniera, regarding which we have approached the ‘contemporary’ 
– which we shall study more carefully, however, in Chapter )). 

))E Aese three registers correspond to forms of the three Peircean categories: (i) firstness 
and abduction; (ii) secondness and contradistinction; (iii) thirdness and mediation. 
Ae logic of scientific inquiry, extensively studied by Peirce, links together precise modes 
of transforming information between these three categories. We will return to these 
questions in chapter )(.

))C (i) : Correspondence; (ii): EGA, SGA, articles; (iii) Récoltes et Semailles. In each register, 
the studious reader can count on hundreds of pages for developing her observations. 

))@ See the entry on ‘Style’ in B. Cassin, ed., Vocabulaire européen des philosophies (Paris: 
Seuil, '((B), ),''D.

)'( Récoltes et Semailles, )F.

[C@]

[@(]
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his skill in ‘saying’ – that is, the rich traces of his style – is 
a vital instrument for his unitary capacity for ‘thought’. 

Ae correspondence with Serre reveals Grothendieck’s 
indomitable energy, his potent mathematical inventive-
ness, his staggering capacity for abstraction and con-
centration, but also his doubts and errors, his desire to 
‘cultivate himself’ with the help of his correspondent’s 
enormous breadth of mathematical knowledge, as well as 
the melancholy twilight of his great critical brilliance (in 
the final letters of )@CF–)@CE, around the time of Récoltes 
et Semailles).)') Ae enormous technical complexity of the 
correspondence)'' does not prevent us from being able 
to detect many moments in which Grothendieck’s ideas 
continually emerge over the course of days. From the point 
of view of style, let us underscore, among other things, 
the ‘cohomology deluge’ ()@FD) that gave rise to the 
article ‘submitted to Tannaka for the Tohoku’, the writ-
ing of which is contrasted with ‘Weil’s truly intimidating 
demonstrations’;)'W Grothendieck’s incessant preoccupa-
tion with defining ‘clearly natural’ concepts and ideas, 
which distinguish his manner of making mathematics from 
other artificial practices;)'B the presence of a ‘plausible  

)') P. Colmez, J.-P. Serre, eds., Correspondance Grothendieck-Serre (Paris: Société 
Mathématique de France, '(()). 

)'' Extramathematical remarks make no appearance in the correspondence, with the 
exception of a brief Grothendieck-Serre-Cartan exchange ()@D)) about the problems 
that military service is causing for young mathematicians. Ibid., )')–C.

)'W Ibid., WC, B@. 

)'B Ibid., ))).

yogical reason’ that helps to specify and orient cer-
tain general speculations;)'F the explosion of gigantic 
‘river letters [lettres fleuve]’ in )@DB, at the moment of 
the invention of the Grothendieckian ideas about l-adic 
cohomology (which ten years later would lead to the 
resolution of the Weil conjectures). Ae nourishing cor-
respondence – which would be accompanied by hours (!)  
of telephone conversations between Grothendieck and 
Serre, an entirely original way (and one incomprehensible 
to mere mortals) of sharing high mathematics – allows us 
to glimpse a gestating mathematics: mobile, imbued with 
a remarkable vigor, replete with approximations between 
distant concepts, in a process of refinement, with a per-
petual correction of (natural) errors between one letter 
and the next. Being able to spy on the blacksmith at his 
forge, we can now see a real mathematics, so far from that 
which the predominant currents of analytic philosophy 
have taught us to appreciate.

As a counterpart to his rare talent for ‘discovery’ and 
his facility for training the ear to listen to the ‘voice of 
things’, Grothendieck also had a rare sensitivity for the 
use of language, which he succeeded in concretizing in 
terminological ‘inventions’ as explosive as his mathematical 
inventiveness itself. An integral part of Grothendieck’s 

)'F Ibid. Ae comical neologism ‘yogical [yogique]’ invokes Grothendieckian yoga (the 
‘vague’ interlacings of yin-yang dialectics) and is contrasted with a supposedly formal 
and precise logic. 
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mathematical style, the terminology, in fact, formed an 
entire universe in itself. With the same fascination that 
Proust expresses in ‘Place Names: Ae Name’,)'D Grothend-
ieck declares that ‘one of my passions has constantly been 
to name the things that discover themselves to me, as a 
first means of apprehending them’,)'E and points out that 

from a quantitative point of view, my work during 
those years of intense productivity has principally 
concretized itself in some twelve thousand pages of 
publications, in the form of articles, monographs 
and seminars, and by means of hundreds, if not 
thousands, of new notions that have entered into 
the common patrimony with the same names that I 
gave them when I delivered them. In the history of 
mathematics, I believe I am the one who has intro-
duced the greatest number of new notions into our 
science, and the one who has been led, by that very 
fact, to invent the greatest number of new names in 
order to express those notions with delicacy, and in 
as suggestive a fashion as I could.)'C 

)'D ‘Du côté de chez Swann [Swann’s Way]’, in M. Proust, À la recherche du temps perdu 
(Paris: Gallimard, )@@E). Ae latest edition, by J.-Y. Tadié, collates all the variants 
of the original manuscript and thereby thoroughly explores the place of Proustian 
inventiveness. [Tr. C. K. Scott Moncrieff & T. Kilmartin, In Search of Lost <me (New 
York: Modern Library, )@@C).]

)'E Récoltes et Semailles,  'B.

)'C Ibid., )@.

Ae ‘delicacy’ of the name, the ‘suggestiveness’ of meta-
phors, the profusion of names that go on to modify a 
‘common patrimony’ are not contemplated in the treatises 
of mathematical philosophy. Even in schools ensnared 
by a fascination with language, no study of the language 
of real mathematics has been undertaken, even though 
lengthy disquisitions have been elaborated on a language 
supposedly capable of supplanting mathematics itself. 
It is not our intention to go further into mathematical 
language, but it must be pointed out that Grothendieck’s 
terminological inventiveness ought to be explored, else-
where, with the care that it deserves.

M.G   : , , 
 

In this final section, we will review three specific texts by 
Grothendieck, aiming to unveil some of the great lines of 
tension in Grothendieck’s production, as underscored in 
the first section, as well as some of the methodological, 
metaphorical and stylistic procedures indicated in the 
second. We will look at three paradigmatic texts:
). the Tohoku (published in )@FE, but which emerges from 
)@FF on, as we see mentioned in the correspondence with 
Serre);
'. the first chapters of the great treatise, Elements of Alge-
braic Geometry (published in )@D(, but already in gestation 
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Ae ‘delicacy’ of the name, the ‘suggestiveness’ of meta-
phors, the profusion of names that go on to modify a 
‘common patrimony’ are not contemplated in the treatises 
of mathematical philosophy. Even in schools ensnared 
by a fascination with language, no study of the language 
of real mathematics has been undertaken, even though 
lengthy disquisitions have been elaborated on a language 
supposedly capable of supplanting mathematics itself. 
It is not our intention to go further into mathematical 
language, but it must be pointed out that Grothendieck’s 
terminological inventiveness ought to be explored, else-
where, with the care that it deserves.

M.G   : , , 
 

In this final section, we will review three specific texts by 
Grothendieck, aiming to unveil some of the great lines of 
tension in Grothendieck’s production, as underscored in 
the first section, as well as some of the methodological, 
metaphorical and stylistic procedures indicated in the 
second. We will look at three paradigmatic texts:
). the Tohoku (published in )@FE, but which emerges from 
)@FF on, as we see mentioned in the correspondence with 
Serre);
'. the first chapters of the great treatise, Elements of Alge-
braic Geometry (published in )@D(, but already in gestation 
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a few years earlier, as we can also deduce from the cor-
respondence with Serre);
W. the extraordinary series of expositions in the Cartan 
Seminar of )@D(–D), concerning themes in ‘analytic geom-
etry’ (understood, in Cartan and Dieudonné’s manner, 
as the geometry of analytic functions).

As Grothendieck points out at the beginning of the 
article, the Tohoku aims to explicate a ‘common frame-
work’ that would allow us to nourish the ‘formal analogy’ 
between the cohomology of a space with coefficients 
in a sheaf and the series of derived functors of a func-
tor on a category of modules.)'@ Ae work was written 
at the very moment when the notion of sheaf came to 
constitute an indispensable component of mathematical 
investigation,)W( an investigation during the development 
of which Grothendieck made a point of mentioning his 
‘conversations’ with Cartan, Godement and Serre.)W) Now, 
from the very beginning of the Tohoku, vague ‘analogies’ 
and dynamic forms of mathematical creativity appear in 

)'@ Grothendieck, ‘Sur quelques points d’algèbre homologique’, ))@. 

)W( Ae concept of mathematical sheaf emerges in the work of Jean Leray, in a course on 
algebraic topology in the Oflag XVII-A* ()@BW–F), a series of notes in the Comptes Rendus 
de l’Académie des Sciences ()@BD), courses on spectral successions at the Collège de France 
()@BE–F(), and reaches its definitive development in the Henri Cartan Seminar at l’École 
Normale Supérieure ()@BC–F)). (Oflag XVII-A was an unusual German prisoner-of-war 
camp in which officers were imprisoned during WWII; Jean Leray directed the camp’s 
university.) A sheaf is a type of mathematical object that allows for the global gluing of 
whatever proves to be coherently transferable in the local. Certain mathematical objects 
can then be better understood, thanks to a logic of neighborhoods and mediations over 
a continuous space (getting away from yes-no binarisms), and to the natural actions 
of groupoids in the fibers of the sheaf.

)W) Ibid., )'(–). Grothendieck also spoke of the ‘interest’ of his colleagues. 

the text, and Grothendieck immediately proceeds to invent 
the language (additive and abelian categories) and discover 
the richness of the mathematical structures (sheaves, 
injective objects via products and infinite sums, actions 
of a group) that explicate the initial ‘formal analogy’. In 
particular, the actions of the groups at stake are stratified 
in a precise hierarchy of levels – action on a space X (first), 
action on a sheaf O of rings over X (second), action on a 
sheaf of modules over O (third) – thereby concretizing 
one of the typical forms of the Grothendieckian process. 
Ais strategy gives rise to the article’s various parts:  
(I) abelian categories (language); (II) homological algebra 
in abelian categories and (III) cohomology with coeffi-
cients in a sheaf (structures); (IV) Ext calculi for sheaves of 
modules and (V) cohomologies with spaces of operators 
(transferences and actions).

Ae ‘grand vision’ of category theory proposed by 
Grothendieck in section (I) remains extraordinarily fresh 
aXer fiXy years.)W' It is dealt with in the lengthy introduc-
tory section of the text, where Grothendieck establishes 
the three clear levels of categorical thought – morphisms, 
functors, natural transformations (called ‘functorial 

)W' We could consider the present essay (originally published in '((E), to a large extent, 
as an homage to the Tohoku, fiXy years aXer its publication. It would perhaps be too 
much of an exaggeration to describe contemporary mathematics as a series of footnotes 
to the work of Grothendieck, but the exaggeration would have an unquestionable 
grain of truth to it. 

[@']
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particular, the actions of the groups at stake are stratified 
in a precise hierarchy of levels – action on a space X (first), 
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sheaf of modules over O (third) – thereby concretizing 
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(I) abelian categories (language); (II) homological algebra 
in abelian categories and (III) cohomology with coeffi-
cients in a sheaf (structures); (IV) Ext calculi for sheaves of 
modules and (V) cohomologies with spaces of operators 
(transferences and actions).

Ae ‘grand vision’ of category theory proposed by 
Grothendieck in section (I) remains extraordinarily fresh 
aXer fiXy years.)W' It is dealt with in the lengthy introduc-
tory section of the text, where Grothendieck establishes 
the three clear levels of categorical thought – morphisms, 
functors, natural transformations (called ‘functorial 
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morphisms’ in the text).)WW In the same section, he also 
introduces his additive and abelian categories, compares 
existence axioms for infinite products, establishes the 
existence of sufficient injectives (via diagrams, generators 
and products) and develops the quotient categories.)WB 
In the process, Grothendieck produces some remarkable 
examples, placing them like little crystalline gems in the 
weave of ascent and descent between the universal and the 
concrete. As instances of additive non-abelian categories,)WF 
for example, we are shown separated topological modules, 
filtered abelian groups, and holomorphic fiber spaces over 
a )-dimensional manifold. In this way, the topographical 
richness of Grothendieck’s mathematical thought is never 
gratuitous, its ascent is never driven by an artificial impulse 
to generalize, and it always contemplates a vivid landscape 
of specific hills and valleys. Ais is something that receives 
further corroboration with the comparison of various axi-
oms for infinite products in terms of the classes of concrete 

)WW Ibid., )'B.

)WB Grothendieck gives the name ‘Serre’s module language C ’ to the idea of variation 
over the base (ibid., )WE). Given that what is at issue here is one of the central ideas 
governing a good deal of ‘relative mathematics’ and the Grothendieckian ‘tide’, it is 
very interesting to observe how, in the very movement of the idea’s emergence, Grothendieck 
sees Serre as the ‘creator’ of ‘modulation through C ’. Ais is one more proof of the 
incessant contamination of mathematics, with every sort of residue in a web of mixtures 
and impurities, that falls outside of analytic philosophy’s modes of observation. 

)WF Ibid., )'E.

categories that they distinguish,)WD with a ‘fun example’)WE 
having to do with cohomologies over an irreducible space, 
with a profound example dealing with sheaves of germs 
and differential forms over holomorphic manifolds,)WC 
and with further examples of functorial manipulations 
that allow us to reconstruct earlier arguments in which 
Grothendieck utilizes the machinery of Cech coverings.)W@

Ae ‘common framework’ emerging from the Tohoku 
– constructed in order to allow for the study of natural 
interlacings between algebraic geometry, topology, com-
plex analysis and cohomological calculi – went on to 
modify the mathematical landscape. Focusing his efforts 
on a pivotal mathematical concept/object (the mathemati-
cal sheaf), defining the general environments in which 
sheaves can be studied in their unity/multiplicity (abelian 
categories), and putting this entire instrumentarium at 
the service of comprehending the deep forms of structures 
(the cohomologies), Grothendieck brings about not only a 

)WD Ibid., )'@. Ae category of abelian groups, its dual category of compact topological 
abelian groups, and the category of sheaves of abelian groups over a given topological 
space all make appearances. Ae instruments of transfer (the Pontrjagin duality) and of 
integral leaps from one level to another (sheaves) are put in the service of a differential 
understanding between categories – germs of a very abstract, contemporary, differential 
and integral calculus. 

)WE ‘Un exemple amusant’, ibid., )D(. ‘Fun’ is not well represented in ‘formal’ mathematics, 
but is, without a doubt, among the important motors of the creative mathematician, 
something which, of course, appears to be indiscernible in both ‘normal’ mathematics 
(the series of texts published in the community) and in philosophical discussions of 
this normal tradition. 

)WC Ibid., )DF–D.

)W@ Ibid., )D), ')W. Ae interlacing between functorial descriptions and Cech-style coverings 
can probably be seen as the very origin of the Grothendieck topologies.
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very interesting to observe how, in the very movement of the idea’s emergence, Grothendieck 
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incessant contamination of mathematics, with every sort of residue in a web of mixtures 
and impurities, that falls outside of analytic philosophy’s modes of observation. 
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categories that they distinguish,)WD with a ‘fun example’)WE 
having to do with cohomologies over an irreducible space, 
with a profound example dealing with sheaves of germs 
and differential forms over holomorphic manifolds,)WC 
and with further examples of functorial manipulations 
that allow us to reconstruct earlier arguments in which 
Grothendieck utilizes the machinery of Cech coverings.)W@

Ae ‘common framework’ emerging from the Tohoku 
– constructed in order to allow for the study of natural 
interlacings between algebraic geometry, topology, com-
plex analysis and cohomological calculi – went on to 
modify the mathematical landscape. Focusing his efforts 
on a pivotal mathematical concept/object (the mathemati-
cal sheaf), defining the general environments in which 
sheaves can be studied in their unity/multiplicity (abelian 
categories), and putting this entire instrumentarium at 
the service of comprehending the deep forms of structures 
(the cohomologies), Grothendieck brings about not only a 
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abelian groups, and the category of sheaves of abelian groups over a given topological 
space all make appearances. Ae instruments of transfer (the Pontrjagin duality) and of 
integral leaps from one level to another (sheaves) are put in the service of a differential 
understanding between categories – germs of a very abstract, contemporary, differential 
and integral calculus. 

)WE ‘Un exemple amusant’, ibid., )D(. ‘Fun’ is not well represented in ‘formal’ mathematics, 
but is, without a doubt, among the important motors of the creative mathematician, 
something which, of course, appears to be indiscernible in both ‘normal’ mathematics 
(the series of texts published in the community) and in philosophical discussions of 
this normal tradition. 
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‘Copernican turn’ in mathematics, but a genuine ‘Einstei-
nian turn’, if we allow ourselves to stretch the metaphor a 
little.)B( Grothendieck’s vision even comes to transcend the 
framework that he himself elaborates, when, in a brilliant 
premonition, he observes that ‘it would be a good idea 
to provide a treatment of “noncommutative homologi-
cal algebra”’ in a context of functors and categories that 
envelopes the theory of fibrations and the extensions of 
Lie groups)B) – a startling anticipation of fragments of 
Connes’s program of noncommutative geometry, which 
we will review in chapter D.

Like the Tohoku, the Éléments de Géométrie Algébrique 
(EGA) incorporate the most visible characteristics of 
Grothendieck’s procedure. Although the metaphorical, 

)B( For his part, Peirce brings about what could be called an ‘Einsteinian turn’ in philosophy. 
Of course, although Peirce preceded Einstein and the label is therefore paradoxical, 
the universal Peircean semiosis and its associated construction of relational invariants 
is precisely fitted to the ‘revolution’ in modern physics that Einstein would bring about 
just one decade later. In Peircean semiosis,  subject and object are considered not as 
monadic predicates but as relational webs of various signs, inserted in scaffoldings of 
reference subject to a perpetual dynamism (‘unlimited semiosis’). In that dynamism of 
relative movements, even the observation of an object can undergo modification. Peirce 
therefore tries to find invariants in that complex relational flux: the ‘Einsteinian turn’ 
of his philosophy seeks (and finds) what we could call the philosophical invariants of 
a general logic of relations and higher-order logic. Ae relativity of perspective, the 
unlimited dynamism of interpretation and the modification of interpretants are some 
of the great conquests of the Peircean system – conquests that the twentieth century 
repeatedly corroborates in the most diverse guises. Nevertheless, with his system’s 
permanent processes of reintegration and gluing, Peirce overcomes the extreme relativism 
into which certain rehabilitations of the ephemeral and the local in the last stages 
of the twentieth century can be seen to have led. We will take these ideas regarding 
a supposed ‘Einsteinian turn’ in philosophy (Peirce) and an ‘Einsteinian turn’ in 
mathematics (Grothendieck) further in part W. If those approximations are more or 
less correct, the philosophy of mathematics should, in turn, undergo a considerable 
turn. 

)B) Ibid., ')W.

analogical and stylistic levels are reduced to a minimum in 
the EGA (an asepsis owing, to a large extent, to Dieudon-
né’s steely coauthorship), they incorporate a ‘grand vision’ 
(a mathematics in action that would provide the bases from 
which to attack the Weil conjectures, ‘a labor scarcely 
undertaken’)B' in )@D(), an open way of propelling and 
presenting the discipline,)BW a clear global landscape with 
some well-delineated local techniques,)BB a general way of 
doing mathematics within contexts (categories) sensitive 
to the transit/obstruction of information (functors, natural 
transformations),)BF and a persistent search for the natural 
notions governing those osmoses.)BD

)B' EGA, I, @.

)BW ‘All of the chapters are considered to be open’, ibid., D. Observe, indeed, how chapter 
( ends with the phrase ‘A suivre [to be continued]’ (ibid., EC), something rather 
uncommon in the mathematical literature, where texts are usually presented as 
‘finished’. Mathematics in gestation always ends by emerging (more obscurely than it 
sometimes seems) in Grothendieck’s works. 

)BB Given two algebraic varieties X,Y (or, more generally, given two schemes), the study 
of the properties of a problem P in a neighborhood of y ! Y is approached by way 
of its transformations/obstructions through a (proper) morphism between X and Y, 
following precise steps in the analysis of the problem: introducing the study of an 
adequate local ring A over y; reducing that study to the artinian case (with which 
one moves to a ‘greater understanding of the problem, which on this level is of an 
‘infinitesimal’ nature’ [ibid., C]); effecting adequate passages by means of the general 
theory of schemes; permitting the discovery of algebraic extensions of A (the primordial 
task of algebraic geometry) by means of adequate multiform sections of the schemes.

)BF Several sections of chapter ) (‘Ae Language of Schemes’) answer precisely to the study 
of schemes from the categorical point of view of the preschemes that envelop them: 
products (§W); subobjects (§B); separability conditions (§F); and finitude conditions 
(§D). As in the Tohoku, sophisticated examples are introduced (in polynomial rings, 
ibid., )W@) in order to distinguish, by means of suitable models, the various conditions 
of separability.

)BD ‘Ae usual constructions suggested by geometrical intuition can be transcribed, 
essentially in a single reasonable manner, into this language [of schemes]’ (ibid., @, our 
italics). Grothendieck once again expresses one of his deep convictions: behind the 
plurality of structures and signs, the construction (invention) of an adequate language 
should allow for the naturalness of certain ‘One’-structures (discovery) from which 
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)BD ‘Ae usual constructions suggested by geometrical intuition can be transcribed, 
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italics). Grothendieck once again expresses one of his deep convictions: behind the 
plurality of structures and signs, the construction (invention) of an adequate language 
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As we saw in section B.), schemes let us elaborate an 
important unification of the visions of Galois and Rie-
mann, a global fact that gets countersigned locally when 
Grothendieck and Dieudonné explain that the ‘lag in con-
ceptual clarification’ in the theory of schemes may have 
been largely due to the identification between the points 
of a proper scheme X over a discrete valuation ring A and 
the points of the tensorial X7A K over the field of fractions 
K of A.)BE In fact, the usual analytic perspective – busy-
ing itself with the observation of points and far from the 
synthetic reading that would attend to the sections in a 
sheaf (which do not, in general, proceed from points) – is 
one that impedes scheme theory’s emergence, and obstructs 
the natural change of category that should have led us to 
work on rings rather than fields. We thus encounter ways 
of seeing that are apparently vague and general (analysis 
versus synthesis), but that take on an enormous richness 
and technical importance that profoundly affects the 
development of precise and well-defined theories. Amid 
many other examples that we will later review, this concrete 
fact within universal tensions, this material residue within 
ideal dialectics, shows the importance – delineated, instru-
mental, traceable – of a fundamental analytic/synthetic 

one should be able to project the remaining ‘Many’-structures that are at stake. What 
we are dealing with here is neither more nor less than a surprising rebirth of a sort of 
mathematical metaphysics that seeks (and finds) new archetypes behind the relative. We 
will have a chance to discuss this situation at length in part W. 

)BE Ibid., ))@.

opposition that certain currents of philosophy, following 
Quine, would rather see disappear. 

In a footnote in the EGA, Grothendieck and Dieudonné 
point out that algebraic geometry, extended to the uni-
verse of schemes, should be able to serve ‘as a sort of 
formal model’ for analytic geometry (that is to say, for 
the theory of analytic or holomorphic spaces).)BC Shortly 
thereaXer, Grothendieck will develop his ‘Construction 
Techniques in Analytical Geometry’, a remarkable series 
of notes from the ‘seminars’, written up in the heat of the 
moment and surfacing in a matter of days.)B@ Grothendi-
eck’s objective is made explicit at the very beginning of 
his expositions: to extract (‘dégager’) a general functorial 
mechanism for the manipulation of modules, applied in 
particular to the case of complex variables; to extract a 
‘good formulation’ of the problems of modules within 
the framework of analytic spaces; to interlace projectivity 
properties with existence theorems within that frame-
work (Teichmüller space); to bring the framework of 
schemes (algebraic geometry) and the framework of holo-
morphic manifolds (analytical geometry) closer to one 
another, in both cases making particular use of the crucial 
properties of certain nilpotent elements in local rings.)F(  

)BC Ibid., E.

)B@ A. Grothendieck, ‘Techniques de construction en géométrie analytique I–X’, Séminaire 
Henri Cartan, vol. )W (Paris: Secrétariat Mathématique, )@D(–)). Aey cover about two 
hundred pages in total.

)F( Ibid., exp. E, ).
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Once again, Grothendieck’s generic methods are incar-
nated in the concrete: the processes of ascent (general 
functoriality, problematics in abstraction, global frame-
works) and descent (projectivity, complex modules, local 
rings, nilpotence); the dialectic of the One and the Many 
(the drawing together of frameworks, the specific func-
toriality of modules, interlacings between projectivity 
and existence); and, in sum, the hierarchical structuration 
of mathematical knowledge in circulating levels, in which are 
combined the rich conceptual multiplicity of each object 
(or morphism), the collection of functors that allows us  
to ‘measure’ the differential multiplicity of each level, 
and the collection of (natural) transformations that let 
us reintegrate the differential frameworks encountered. 

Aough we cannot go into excessive technical details 
here, we may note that Grothendieck’s first paper in his 
‘Techniques of Construction in Analytic Geometry’ on its 
own encapsulates the entire richness of his mathemati-
cal thought. Ae objective is to construct an analytical 
space of universal representation (Teichmüller space) 
that classifies all other algebraic curves over analytical 
spaces;)F) Grothendieck goes on to axiomatically describe 
the functorial properties)F' that this space should satisfy, 
and theorematically derives its (global) existence from 

)F) Ibid., exp. E, ).

)F' Ibid., exp. E, D. Grothendieck first describes these properties ‘vaguely’, and only later 
gives them precise technical descriptions. 

the existence of a (local) echeloned hierarchy of adequate 
fibering functors (‘Jacobi functors’) that let us control 
the number of automorphisms of the structures in play 
(rigid functors).)FW Aese technical conditions are, in turn, 
explicated through coverings, group actions, base changes 
and free operators over the same rigid functors.)FB We thus 
encounter a genuine mathematics in motion, a relative 
mathematics that, nevertheless, allows us to encounter 
certain universal invariants (‘Teichmüller space’) in virtue 
of the sheer variation of the local mathematical objects, 
through the subtle hierarchy of mediations that give rise 
to the global mathematical object.

Grothendieck’s legacy in the landscape of contempo-
rary mathematics is becoming increasingly evident as the 
discipline unfolds and technical advances corroborate 
many of French mathematician’s major intuitions.)FF In 
the following chapters, we will try to amplify that con-
temporary spectrum, as we review the works of other  
mathematicians of the first rank, works that partly con-
tinue and partly complement Grothendieck’s own, so 
that later, in the third part of this essay, we may try to 
reflect – in ontological, epistemological, methodological 

)FW Ibid., exp. E, W'.

)FB Ibid., exp. E, )C–') (coverings and groups), 'ff. (bases), 'Eff. (functors). 

)FF Ais is particularly conspicuous when it comes to his ‘Sketch of a Program’, with the 
connections inaugurated there between combinatorics, number theory and functional 
analysis, which have been extended, to the great surprise of the scientific community, to 
theoretical physics and cosmology. We will return to this in chapter D, as we approach 
Connes and Kontsevich. 
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and cultural realms – on that extensive spectrum, which is 
usually ignored in the tracts of mathematical philosophy.

 O

 : , ,  
, 

In the next three chapters we will review other examples 
of high mathematics in action, in the conviction that 
advanced mathematics – and, in this case, contemporary 
mathematics – provides philosophy with new problematics 
and instruments, as we shall see in part W of this work. 
But firstly, in order to present the mathematical landscape 
more commodiously, we will sort a few of its striking 
creative contributions into three complementary spectra: 
eidal, quiddital and archeal mathematics. Of course, these 
mathematical realms (and the neologisms that denote 
them) do not exist in a well-defined way as such, and must 
be understood only as expository subterfuges for easing 
the presentation and to help us get our bearings in a 
complex terrain. 

In fact, behind the central question of phenomenol-
ogy – How do we transit between the Many and the 
One? – along with its polar subquestions: How do we 
unify phenomena by means of categories, and how do we 
multiply the universal in the diverse? – lie crucial modes of 
transformation of knowledge and the natural world. Media-
tions, hierarchizations, concatenations, polarizations, 
inversions, correlations, and triadifications, for instance, 
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are series of transformations leading to the partial expli-
cation of certain universal categories,)FD in  knowledge 
(reorganizing the Kantian inheritance as regards the 
transit between the noumenon and the phenomenon) and 
the physical world alike.)FE Within that universal trans-
formism – present since the very beginnings of Greek 
philosophy and, in the field of mathematics, now codified 
in the mathematical theory of categories – it has always 
been possible to detect a double movement in perpetual 
readjustment: an oscillating series of ascents and descents 
in the understanding; and a search for invariants behind 
those natural oscillations. We will call movements of 
ascent eidal (from eidos [idea]), movements of descent 
quiddital (from quidditas [what there is]), and the search 
for conceptual invariants in the various forms of transit 
archeal (from arkhê [principal]). 

In its very etymology, eidos involves an interlacing of 
seeing (idein) and knowing (oida). In ‘raising’ herself from 
the world toward the ideas, the observer contemplates an 
open landscape from a higher perspective and can ‘see’ 

)FD Ais transformational operation can be seen in great detail, for example, in the emergence 
of the three Peircean categories, as shown in the doctoral thesis of André de ]enne, 
L’analytique de représentation chez Peirce. La genèse de la théorie des catégories (Brussels: 
Publications des Facultés universitaires Saint-Louis, )@@D). 

)FE Ais is particularly visible in contemporary physics and biology, which are becoming ever-
more imbued with dynamical considerations, linked to the description-comprehension 
of ‘diagrams of transit’. As we have indicated throughout this work, mathematics – 
straddling the ‘pure’ understanding and the physical world – incorporates to an even 
greater extent, in a visible and conspicuous manner, the study of general and particular 
problematics of transit. 

eidos

transfusions of form

‘idea’

seeing (idein) knowing (oida)

further. Extended vision thus implies a greater breadth 
knowledge. In mathematics, the interest in great ‘ideas’ 
is no different: they open an immense field of action, 
by which work programs can be organized, horizons 
uncluttered, and subspecialists oriented. Ae ideas, in 
turn, combine with images (eidola), and so oXen comprise 
surprising transfusions of form. In what follows, we shall 
see how certain incisive contemporary contributions in 
mathematics respond, in a technical manner, to sophis-
ticated distillations of form in the conceptual world of 
mathematical ideas. 

Figure P. 3e Eidal Realm.
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Ae great interlocutor and proponent of Grothendieck’s 
work, Jean-Pierre Serre (France, b. )@'D) – a sort of 
sparring partner for his friend, as we have seen in the 
previous chapter – may be considered one of the greatest 
mathematicians of the twentieth century in his own right. 
Awarded the Fields Medal ()@FB) and the Abel Prize 
('((W),)FC Serre has received the mathematical commu-
nity’s highest distinctions, in recognition of his brilliant 
investigative beginnings,)F@ as well as his mature work as 
an exemplary creator and scientist. Serre’s main works 
cover a very broad mathematical spectrum: the study 
of the homotopy groups of hyperspheres by means of 
pathspace fibration (with spectacular calculations, such as 
the determination of the twelve continuous applications 
between a D-dimensional and a W-dimensional sphere);  
foundational works at the intersection of algebraic geom-
etry and analytic geometry, based on the emerging theory 
of sheaves, FAC )D( and GAGA;)D) the Galois representa-
tions associated with formal groups, abelian varieties and 
modular forms (which, among other conjectures, would 
interlace Fermat’s Aeorem with key advances in algebraic 

)FC Ae Abel Prize citation honors him ‘for playing a central role in shaping the modern form 
of several parts of mathematics, including topology, algebraic geometry and number 
theory’. Note the importance of form in the citation. Ae casual use of the adjective 
modern, however, turns out to be inadequate according to our own delineations. 

)F@ Serre remains one of the youngest Fields medalists in history.

)D( J.-P. Serre, ‘Faisceaux algébriques cohérents’ (FAC), Annals of Mathematics D), )@FF: )@E–'EC.

)D) J.-P. Serre, ‘Géométrie algébrique et géométrie analytique’ (GAGA), Annales de l’institut 
Fourier D, )@FD: )–B'.

geometry and number theory). Serre indicated how his 
works, despite their apparent eclecticism, responded to 
the same way of observing and transforming problemat-
ics, thanks to the use of transversal instruments and the 
emergence of mixtures (recall Lautman) in which the One 
and the Many are technically conjugated:

I work in several apparently different topics, but in 
fact they are all related to each other. I do not feel 
that I am really changing.  For instance, in number 
theory, group theory and algebraic geometry, I use 
ideas from topology, such as cohomology, sheaves 
and obstructions.
From that point of view, I especially enjoyed working 
on l-adic representations and modular forms: one 
needs number theory, algebraic geometry, Lie groups 
(both real and l-adic), q-expansions (combinatorial 
style)… A wonderful mélange.)D'

)D' M. Raussen, C. Skau, ‘Interview with Jean-Pierre Serre’, Notices of the American 
Mathematical Society F), '((B: ')). Regarding the mode of creation underlying the 
emergence of that ‘wonderful mélange’, it is interesting to point out that Serre speaks 
of how ‘you have some ideas in mind, which you feel should be useful, but you don’t 
know exactly for what they are useful’, and of working ‘at night (in half sleep)’, which 
‘gives to the mind a much greater concentration, and makes changing topics easier’ 
(in C.T. Chong, Y.K. Leong, ‘An Interview with Jean-Pierre Serre’, Mathematical 
Medley )W, )@CF, http://sms.math.nus.edu.sg/smsmedley/smsmedley.aspx#Vol-)W). Ae 
combination of the fuzzy boundary and the great potential for exactitude is a fascinating 
theme for mathematical philosophy, which an analytic approach is unable to take 
up. In chapter )(, we will see how a broader mathematical phenomenology (which 
incorporates the instruments of Peirce, Merleau-Ponty and Rota, among others) can 
help us better understand those transits of creation. 
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works, despite their apparent eclecticism, responded to 
the same way of observing and transforming problemat-
ics, thanks to the use of transversal instruments and the 
emergence of mixtures (recall Lautman) in which the One 
and the Many are technically conjugated:

I work in several apparently different topics, but in 
fact they are all related to each other. I do not feel 
that I am really changing.  For instance, in number 
theory, group theory and algebraic geometry, I use 
ideas from topology, such as cohomology, sheaves 
and obstructions.
From that point of view, I especially enjoyed working 
on l-adic representations and modular forms: one 
needs number theory, algebraic geometry, Lie groups 
(both real and l-adic), q-expansions (combinatorial 
style)… A wonderful mélange.)D'

)D' M. Raussen, C. Skau, ‘Interview with Jean-Pierre Serre’, Notices of the American 
Mathematical Society F), '((B: ')). Regarding the mode of creation underlying the 
emergence of that ‘wonderful mélange’, it is interesting to point out that Serre speaks 
of how ‘you have some ideas in mind, which you feel should be useful, but you don’t 
know exactly for what they are useful’, and of working ‘at night (in half sleep)’, which 
‘gives to the mind a much greater concentration, and makes changing topics easier’ 
(in C.T. Chong, Y.K. Leong, ‘An Interview with Jean-Pierre Serre’, Mathematical 
Medley )W, )@CF, http://sms.math.nus.edu.sg/smsmedley/smsmedley.aspx#Vol-)W). Ae 
combination of the fuzzy boundary and the great potential for exactitude is a fascinating 
theme for mathematical philosophy, which an analytic approach is unable to take 
up. In chapter )(, we will see how a broader mathematical phenomenology (which 
incorporates the instruments of Peirce, Merleau-Ponty and Rota, among others) can 
help us better understand those transits of creation. 
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Various concrete cases of the ‘transfusion of forms’ emerge 
in Serre’s work. When, for example, in GAGA, Serre estab-
lishes an equivalence between algebraic (coherent))DW 
sheaves over a projective variety and (coherent) analytic 
sheaves over the analytic space associated with that vari-
ety, an equivalence whereby cohomological groups appear 
as invariants,)DB he is precisely pinpointing the transit 
between algebraic and analytic forms, while carefully con-
trolling the osmoses and obstructions in play. When, at the 
end of the fiXies, Serre tests various structures in an effort 
to produce a ‘good’ cohomology for varieties defined over 
finite fields (trying to make some headway on the Weil 
conjectures in this way), and when the cohomology group 
with values in a sheaf of Witt vectors shows up)DF (some of 
the transpositions and obstructions of which will become 
the very inspiration for Grothendieck’s l-adic, crystal-
line and étale cohomologies), Serre once again brings 
a tremendous labor of precision to bear on the manipu-
lation and transference of forms. In the environment  

)DW Coherence codifies a finite type of property in sheaves. Coherent sheaves come from 
both analytic geometry (the sheaf of germs of holomorphic functions), and from 
algebraic geometry (the structural sheaf of a Noetherian scheme). A common ideal form 
thus hides behind coherence. Ais has to do with a technical stratum of unification that 
allows for a still-greater unity on the higher level of cohomology groups. 

)DB We are drawing here (and in what follows) on the excellent overview, P. Bayer, ‘Jean-
Pierre Serre, Medalla Fields’, La Gaceta de la Real Sociedad Matemática Española B, '((): 
'))–BE. Ais is perhaps the best survey of Serres’s work in any language. 

)DF Witt vectors ()@WD) are infinite successions of elements in a ring, by means of which sums 
and products of p-adic numbers can be represented in a natural manner. Aey therefore 
have to do with  underlying forms, hidden behind certain incomplete representations. 
Here, one can see how it is that, though only certain hierarchies of eidal adequation 
are under consideration, new mathematics are already emerging.

of eidal mathematics, one can thus catch a glimpse of 
a complex dialectic that delineates both the movement 
of concepts/objects (the functorial transit between the 
algebraic, the geometrical, and the topological) and the 
relative invariants of form (cohomologies). At stake is a 
profound mathematical richness – a richness that vanishes 
and collapses if one restricts oneself to thinking in terms 
of elementary mathematics.

Serre underscores a deep continuity in his creative career, 
beyond certain apparent cuts or ruptures:)DD an interlacing 
of homotopy groups and C-theory (see p. )DB, n. )WB);  
a natural osmosis between certain structures from both 
complex analysis (sheaf cohomologies in the range of 
functions of various complex variables or complex pro-
jective varieties) and algebra (cohomology-sheaves in 
the range of rational functions or algebraic varieties); a 
study of algebraic geometry over arbitrary fields (from 
algebraic closures to finite fields, by way of generaliza-
tions of the theory of class fields) in terms of groups 
and Lie algebras as ‘mother’ structures, where we find 
an intersection of the extant contextual information. 
Indeed, looking over certain contiguities/continuities 
between the Riemann hypothesis, certain calculations over 
modular forms and certain calculations of characteristics 
of discrete subgroups of the linear group, Serre exclaims, 

)DD Chong, Leong, ‘An Interview with Jean-Pierre Serre’.
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‘such problems are not group theory, nor topology, nor 
number theory: they are just mathematics’.)DE Advanced 
mathematics thus contemplates a series of sophisticated 
technical transits over a continuous conceptual ground, 
something that, again, is lost from view when we restrict 
our perspective to the (essentially discrete) fragment of 
elementary mathematics.

Ais continuity of mathematical knowledge has been 
energetically emphasized in the work of Robert Lang-
lands (Canada, b. )@WD). Ae Langlands program, in fact, 
consists of an extensive web of conjectures by which 
number theory, algebra, and analysis are interrelated in a 
precise manner, eliminating the official divisions between 
the subdisciplines. Ae program first emerges in a long 
letter ()@DE) from the young (and unknown) Langlands 
to the eminent master of the epoch, Weil. Ae letter turns 
out to be full of admirable conjectures that approach the 
world of the complex variable and the world of algebraic 
extensions functorially, by way of group actions. Langlands 
arrives at these surprising approaches by following the 
precise elevations of group actions in the eidal realm.)DC  
In effect, Langlands’s intuition emerges through a 

)DE Ibid.

)DC Ae extremely meticulous Weil is somewhat irritated by the young Langlands’s 
flights of fancy, and he immediately sends the reckless young man’s interminable, 
handwritten letter to be typeset. Ae letter to Weil, along with a great deal of additional 
material by (and on) Langlands, can be found online: http://www.sunsite.ubc.ca/
DigitalMathArchive/Langlands/intro.html.

correlative contemplation of two ascending paths: the transit 
from modular forms (analytic functions of complex vari-
ables respecting certain actions of the group SL2(R)) to 
automorphic forms (analytic functions respecting actions 
of Lie groups), passing through the intermediate actions 
of the Fuchsian group on Poincaré’s modular forms and 
those of the symplectic group on Siegel’s modular forms; 
the transit in the hierarchy of L-representations)D@ of the 
Galois group Gal(K*: K).)E(

Ae correspondences between the forms of that transit 
come to express the celebrated Langlands correspondence: 
the automorphic forms associated with the linear group 
Gal(n: K) correspond (functorially) to the n-dimensional 
L-representations of the Galois group Gal(K*: K). Ae 
series of conjectures thus achieved concretize the continu-
ity of mathematical thought in a remarkable manner.)E)  

)D@ Ae L-series (Dirichlet) appear as analytic objects for representing Riemann’s g 
function. Ae L-functions (Artin, Hecke) are analytic continuations of the L-series that 
serve to measure the ramification of prime ideals in algebraic extensions. Ae abstract 
construction (eidal elevation) of the concept of L-function therefore integrates analytic, 
algebraic and arithmetical considerations.

)E( K is an arbitrary field and (K*: K) need not be commutative. Ae commutative case had 
already been resolved, before Langlands, in class field theory (Hilbert, Takagi, Hasse, 
Herbrand), and, in fact, considerations pertaining to class fields guided a great deal 
of the Canadian mathematician’s intuition. 

)E) It is worth the trouble to reproduce the beginning of the letter to Weil here: ‘While 
trying to formulate clearly the questions I was asking you before Chern’s talk, I was led 
to two more general questions. Your opinion of these questions would be appreciated. 
I have not had a chance to think over these questions seriously and I would not ask 
them except as the continuation of a casual conversation. I hope that you will treat 
them with the tolerance they require at this stage.’ Ae combination of informality 
(supposed lack of seriousness, casual conversation, tolerance) and profundity (as the 
seventeen-page letter is far from lighthearted or frivolous) should remind us of Serre’s 
observations regarding mathematical thought ‘in the middle of the night’. 

[)(F]
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Just as Grothendieck sensed the existence of motifs 
beneath the various manifestations of cohomologies, 
Langlands senses the existence of structural forms of transit 
beneath the various natural manifestations of group 
actions in complex analysis and number theory. In con-
temporary mathematics, as we shall see in chapter E, 
this leads to the recognition of a series of archetypes, a 
series of structures/concepts lying in the depths of the 
mathematical continuum, from which many other partial 
forms, deriving from the archetype, are extracted through 
representational ‘cuts’. 

From the point of view of the global concepts in play, 
the Langlands correspondence proposes an unexpected 
equivalence between certain differentiable structures associ-
ated with an extended modularity (the automorphic forms 
associated with the linear group) and certain arithmetical 
structures associated with analytic continuations (the 
L-representations of the Galois group). Ae profound 
proximity of the differentiable and the arithmetical, in the 
restricted context of modular action and analytic continu-
ation, constitutes a truly major discovery for contemporary 
mathematics. In fact, the Langlands program has given 
impetus to many highly technical results, including vari-
ous proofs of the correspondence, for every n and for 
specific cases of the field K under consideration: for fields 
of formal series over finite fields (Laumon, Rapoport, 
Stuhler )@@W); for p-adic fields (Harris, Taylor )@@C); for 

fields of rational functions over curves defined over finite 
fields (Lafforgue '(((, work which won him the '((' 
Fields Medal).

Nevertheless, the program is currently encountering 
a formidable obstruction in tackling the ‘natural’ fields of 
characteristic zero (Q, R, C), for whose study, it seems, the 
indispensable instrumentarium is yet to be constructed. 
Here, technique encounters one of those paradigmatic 
conceptual fissures that may be of the greatest interest 
for the philosophy of mathematics. Now, the leap to the 
analytic (L-functions) gives us a better understanding of 
certain fragments of number theory, but then, once this 
leap has been made, we encounter major obstructions in 
returning to what should be the natural structures of the 
analytic (fields of characteristic zero). And so we find 
ourselves faced with new obstructions in transit (obstruc-
tions that are carefully maintained, in the scope of the 
Langlands program, through a sophisticated theory of 
the structural transfusions of form), revealing once again 
the incessant presence of what, according to Aom, is the 
‘founding aporia of mathematics’: that inherent contradic-
tion between the discrete and the continuous that drives 
the discipline. Fundamentally, nothing could therefore be 
further from an understanding of mathematical inven-
tion than a philosophical posture that tries to mimic the 
set-theoretical analytic, and presumes to indulge in such 
‘antiseptic’ procedures as the elimination of the inevitable 
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contradictions of doing mathematics or the reduction of the 
continuous/discrete dialectic. In approaching the works of 
a few of the great contemporary mathematicians, we see 
how the labor of the ‘real’ mathematician (in Corfield’s 
sense) points in the exact opposite direction: toward the 
multiplication of the dialectic, and the contamination of the 
spaces of mathematical knowledge. At stake is a tremen-
dous leveraging of knowledge, which the philosophy of 
mathematics should begin to take stock of. 

Given an algebraic group)E' G and an L-function, one 
can construct a new group LG (the Langlands group) that 
combines the absolute Galois group over the field underly-
ing G and a complex Lie group associated with L. What is 
at issue here is a mixture (in the full Lautmanian sense) – a 
mixture that helps us control the theory of representations 
of G. Within this framework, some of the underlying tran-
sits in the Langlands program correspond to the functorial 
fact (plausible, correct in particular cases but generally 
undemonstrated) that every morphism LG  " LG  issues 
from a morphism between the associated automorphic 
forms, which is well behaved in every p-adic stratum of 
representation, for almost every p.)EW We are faced here with 

)E' An algebraic group is an algebraic variety that has, in addition, the structure of a 
group. Examples of algebraic groups include finite groups, linear groups GL(n), and 
elliptical curves. 

)EW See R. Langlands, ‘Where Stands Functoriality Today’, in T.N. Bailey & A.W. Knapp, 
Representation 3eory and Automorphic Forms, Proceedings of the Symposium on Pure 
Mathematics D), (Providence: American Mathematical Society, )@@E), BFE–E). 

a recurring situation in advanced mathematics, one that 
cannot be contemplated in mathematical contexts of a lower 
level of complexity – a situation in which the general forms 
of knowledge (universality, functoriality) and the restricted 
calculations underlying them)EB  (particularity, diophantine 
objects) depend on a complex intermediary hierarchy that 
forcibly structures both the generic transits (going up) and 
the specific obstructions (going down). 

In an interview, Langlands sums up his perception 
of mathematics:

I love great theories, especially in mathematics and 
its neighboring domains. I fell in love with them, 
but without really grasping their significance, when 
I was still a student. […] What I love is the romantic 
side of mathematics. Aere are problems, even big 
problems, that nobody knows how to tackle. And 
so we try to find a footpath that leads to the summit, or 
that lets us approach it. […] I love having the impres-
sion of standing before a virgin continent. I love 
the problems whose solutions require unpublished 

)EB We cannot evoke, here, the enormous concrete richness of the calculations, but it is enough 
to imagine that they include the entire, enormous tradition of nineteenth-century and 
early twentieth-century German arithmetic (Jacobi, Dirichlet, Eisenstein, Kummer, 
Hilbert, Hecke, Artin, Hasse, etc.).
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cannot be contemplated in mathematical contexts of a lower 
level of complexity – a situation in which the general forms 
of knowledge (universality, functoriality) and the restricted 
calculations underlying them)EB  (particularity, diophantine 
objects) depend on a complex intermediary hierarchy that 
forcibly structures both the generic transits (going up) and 
the specific obstructions (going down). 

In an interview, Langlands sums up his perception 
of mathematics:

I love great theories, especially in mathematics and 
its neighboring domains. I fell in love with them, 
but without really grasping their significance, when 
I was still a student. […] What I love is the romantic 
side of mathematics. Aere are problems, even big 
problems, that nobody knows how to tackle. And 
so we try to find a footpath that leads to the summit, or 
that lets us approach it. […] I love having the impres-
sion of standing before a virgin continent. I love 
the problems whose solutions require unpublished 

)EB We cannot evoke, here, the enormous concrete richness of the calculations, but it is enough 
to imagine that they include the entire, enormous tradition of nineteenth-century and 
early twentieth-century German arithmetic (Jacobi, Dirichlet, Eisenstein, Kummer, 
Hilbert, Hecke, Artin, Hasse, etc.).
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and unsuspected theories. In other words, I love the 
mathematics that make us dream.)EF

Ae ascent to the peaks of the eidal thus grants us privi-
leged visions, like the one which Langlands had at age 
thirty-one, and which he looks back upon with admira-
tion: ‘Aat I had nevertheless arrived somewhere always 
seemed to me a miracle […] that I had seen so much in 
a single blow, I do not think that this will ever cease to 
astonish me.’)ED His astonishment is sincere and, to a cer-
tain extent, tied to the marvels of his discovery (a ‘virgin 
continent’), but one can already observe (though we will 
make this more precise in chapters )( and ))) that, in con-
temporary mathematics, many great creators are able to 
climb to the summits precisely in virtue of their capacity 
to correlatively transit the world of the eidal, approaching 
polarities, hierarchies, relative invariants and intermediary 
structural correspondences in a systematic manner. What 
we are dealing with here is a dynamics of the mathemati-
cal world that is completely different from what we can 
find in elementary mathematics, whose low threshold 
of complexity does not allow for those aforementioned 
transformations to emerge. It is also completely different  

)EF S. Durand, ‘Robert Langlands. Un explorateur de l’abstrait’, Québec Science '(((, 
http://www.crm.umontreal.ca/math'(((-)/pub/langlands.html (italics ours). We 
will come back to the indispensable romantic side of mathematics in our final chapters. 

)ED Response to the Gold Medal of the French Academy of Sciences ('(((), http://sunsite.ubc.
ca/DigitalMathArchive/Langlands/misc/gror.ps .

from what is ordinarily discussed in the analytic phi-
losophy of mathematics, whose dismemberment of math-
ematical objects, in order to procure a static and ultimate 
foundation that would sustain them, does not allow us to 
take stock of their incessant torsions – and so impedes 
any approach to mathematics’ transitory specificity (on three 
levels: phenomenological, ontological and epistemologi-
cal, as we shall see later on).

Langlands’s revealing commentary on the difference 
between the Taniyama-Shimura Aeorem)EE and Fermat’s 
Aeorem, shows the importance of a mathematical think-
ing that is attentive to eidal generic structures: 

Fermat’s Aeorem is an unexpected consequence 
of another theorem (Taniyama-Shimura-Weil). Ae 
latter has to do with a coherent framework, whose 
beauty in my eyes comes from the fact that it cor-
responds to an order I’m used to seeing in number 
theory. On the other hand, according to my intuition 
or imagination, Fermat’s Aeorem could have turned 
out to be false without that order being disturbed’.)EC 

)EE Ae Taniyama-Shimura conjecture ()@FF) suggests the equivalence (modulo L-series) 
of elliptic curves with modular forms. Frey ()@CF) conjectured that a nontrivial Fermat-
style solution x n+y n=x n would yield a nonmodular elliptic curve (a ‘Frey curve’). Ribet 
demonstrated ()@CD) the Frey conjecture, thus establishing the implication Not (Fermat) 
( Not (Taniyama-Shimura), or, equivalently, Taniyama-Shiumura ( Fermat. Wiles 
()@@W–B) demonstrated the Taniyama-Shimura conjecture for semistable elliptic curves 
(among which appears Fermat’s curve), thereby proving Fermat’s Aeorem. Ae full 
proof of Taniyama-Shimura, for all elliptic curves, was finally obtained in )@@@ (Breuil, 
Conrad, Diamond, Taylor). 

)EC Durand, ‘Robert Langlands…’ (italics ours). 
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to correlatively transit the world of the eidal, approaching 
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cal world that is completely different from what we can 
find in elementary mathematics, whose low threshold 
of complexity does not allow for those aforementioned 
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from what is ordinarily discussed in the analytic phi-
losophy of mathematics, whose dismemberment of math-
ematical objects, in order to procure a static and ultimate 
foundation that would sustain them, does not allow us to 
take stock of their incessant torsions – and so impedes 
any approach to mathematics’ transitory specificity (on three 
levels: phenomenological, ontological and epistemologi-
cal, as we shall see later on).

Langlands’s revealing commentary on the difference 
between the Taniyama-Shimura Aeorem)EE and Fermat’s 
Aeorem, shows the importance of a mathematical think-
ing that is attentive to eidal generic structures: 

Fermat’s Aeorem is an unexpected consequence 
of another theorem (Taniyama-Shimura-Weil). Ae 
latter has to do with a coherent framework, whose 
beauty in my eyes comes from the fact that it cor-
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theory. On the other hand, according to my intuition 
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( Not (Taniyama-Shimura), or, equivalently, Taniyama-Shiumura ( Fermat. Wiles 
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[)(E]General counterweights, pendular oscillations, coun-
terpoints in an abstract order, and hidden aesthetic har-
monies therefore guide the theoretical vision, whereas the 
particularity of the concrete case may come to distract 
it. It is in the equilibrium between the broadest abstract 
universality and the most restricted concrete particular-
ity – that is to say, in the broad register of mediations 
– that mathematical inventiveness emerges with all its 
force, haloed with ‘order and beauty, luxury, peace and 
voluptuousness’.)E@

William Lawvere (USA, b. )@WE) has been one of the 
main proponents of a broad hierarchy of mediations within 
the general horizon of category theory. Since his doctoral 
dissertation,)C( Lawvere has consistently insisted on think-
ing differently, and has succeeded in situating himself in a 
conceptual underground where the synthetic and the global 
take precedence, setting himself at some distance from the 
usual analytic and local approaches. Lawvere’s thought 
combines various strategies that aim to fully capture the 
movement of mathematical concepts, thereby following the 
lines of Grothendieck’s work. Whether through an ‘inver-
sion of the old theoretical program of modeling variation 
within eternal constancy’, or by breaking the ‘irresolvable  

)E@ C.Baudelaire, ‘L’invitation au voyage,’ Fleurs du mal ()CFE).

)C( F. W. Lawvere, Functorial Semantics of Algebraic 3eories (New York: Columbia University 
Press, )@DW). A summary is given in 3e Proceedings of the National Academy of Sciences 
F(, )@DW: CD@–E'. Lawvere was a student of Eilenberg and Mac Lane, the creators of 
category theory (Eilenberg, Mac Lane, ‘General Aeory of Natural Equivalences’)

contradiction’ that is the ‘metaphysical opposition 
between points and neighborhoods’, or by constructing 
a topos theory that allows for a back-and-forth between 
constant and variable sets,)C) Lawvere seeks to build a 
dynamic conception of mathematics, capable of captur-
ing both the physical world’s continuous becoming and 
the continuous enfolding of the relational canopy spread 
over it.)C' As we shall see, Lawvere’s procedure consists in 
elevating, into the eidal, a sophisticated web of weavings 
and oppositions between concepts, calculi and models, 
extending them both vertically (hierarchically) and hori-
zontally (antithetically). Ae synthetic comprehension of 
that web, ‘under the guidance of that form of objective 
dialectics known as category theory’,)CW is a fundamental 
contribution to contemporary thought – one that is still 
in the process of transcending the strictly mathematical 
horizon of its origin.  

One of the few great contemporary mathematicians 
who has dared to interpolate his writings with vague and 

)C) F. W. Lawvere, ‘Continuously Variable Sets; Algebraic Geometry = Geometric Logic’, 
in Proceedings of the Logic Colloquium 9:?; (Amsterdam: North-Holland Publishing Co., 
)@EF), )WF–FD.

)C' Lawvere was, first, a student of Truesdell in continuous mechanics; although he later 
directed himself toward the categorical foundations of mathematics and logic, he has 
always given preference to the categorical instruments dealing with transit and flux 
(variable sets and sheaves, beyond the static and the punctual) as being better suited 
for an understanding of the physical world.

)CW F. W. Lawvere, ‘Introduction’, in Proceedings of the Halifax Conference on Toposes, Algebraic 
Geometry and Logic, (New York: Springer, )@E'), ).
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One of the few great contemporary mathematicians 
who has dared to interpolate his writings with vague and 
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[)(C]nondisciplinary)CB references as a source of subsequent 
technical refinements, Lawvere has been able to construct 
an uneasy equilibrium between the seer, who peers into 
abysses (‘gauging to some extent which directions of 
research are likely to be relevant’)CF), and the climber, 
who secures every step in his ascent (confronting some of 
the major technical challenges of the age). In a remark-
able article on the ‘future’ of category theory,)CD Lawvere 
characterizes the theory of categories as 

the first to capture in reproducible form an incessant 
contradiction in mathematical practice: we must, 
more than in any other science, hold a given object 
quite precisely in order to construct, calculate, and 
deduce; yet we must also constantly transform it into 
other objects.7QY

Category theory’s capacity to axiomatize, with great 
precision,)CC the fundamental weaving between static con-
siderations (states, points, objects) and dynamic ones 
(processes, neighborhoods, morphisms) is one of the deep 

)CB Including up-front and provocative mentions of Engels, Lenin, or Mao.

)CF F. W. Lawvere, ‘Adjointness in Foundations’ in Dialectica 'W, )@D@: 'C)–@D: 'C)).

)CD F. W. Lawvere, ‘Some Aoughts on the Future of Category Aeory’, in Proceedings of 
the Como Meeting on Category 3eory, (New York: Springer, )@@)), )–)W.

)CE Ibid., ).

)CC Lawvere speaks of the ‘crystalline philosophical discoveries that still give impetus to 
our field of study’, ibid.

reasons for its success. Ae theory presents a permanent 
back-and-forth between the three basic dimensions of 
the semiotic, emphasizing translations and pragmatic 
correlations (functorial comparisons, adjunctions)C@) over 
both semantic aspects (canonical classes of models) and 
syntactic ones (orderings of types). In Lawvere’s vision, 
we find opposed – and, in fact, springing from that very 
opposition – two classes of categories corresponding to 
‘Being’ and ‘Becoming’, between which is set to vibrat-
ing a ‘unity and identity of opposites’)@( that gives rise to 
remarkable mathematical conjectures in an intermediate 
terrain between the ascent to the general (‘from below, 
from real space’) and the descent to the particular (‘from 
above, by classifying abstract algebra’).)@) A ‘descending’ 
functor sends a given category to a smaller one and, in 
two linked movements of oscillation (two adjunctions, 
see figure C), two skeletal counterpoints appear (in ‘posi-
tive’ and ‘negative’)@') as extreme images of Becoming.  
Ae category is set free by this back-and-forth: the skeleton 
surfaces as a static filtration (in Being) a=er its immersion 

)C@ A categorical adjunction generalizes a residuation in an ordered set (which is to say, 
a pair of morphisms f, g, such that fx # y iff x # gy). Adjunction consists in a pair of 
functors F, G, such that Mor(FX,Y)cMor(X,GY) (natural isomorphism). Residuations 
run through all of algebra, and, in particular, the algebra of logic, giving rise to 
implication and the existential quantifier. In category theory, adjunctions, linked to 
free objects, appear even more ubiquitously. 

)@( Ibid., '.

)@) Ibid., )'.

)@' Ibid., E.
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above, by classifying abstract algebra’).)@) A ‘descending’ 
functor sends a given category to a smaller one and, in 
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in a dynamic fluid (in Becoming). Ae skeletons (positive 
and negative), together with the descending functor, form 
a ‘unity and identity of opposites’, in which what appears 
as contradictorially fused on one level can be separated and 
distinguished on another. Ae descent to the abyss hap-
pens to be perfectly controlled by a hierarchical strategy 
– levels and contexts, which is to say, functors and catego-
ries – in a way that is quite close to Peircean pragmatism.

Figure Q. ‘Unity and identity of opposites’: descents, levels, and skeletons, according 
to Lawvere.

Lawvere’s examples cover a multitude of modern and 
contemporary mathematical fields: general and algebraic 
topology; algebraic and differential geometry; abstract 
algebraic structures – categories, lattices, rings – nonclas-
sical logics; functional analysis; mathematical physics; etc. 
Within the framework of that collection of concrete situ-
ations, Lawvere nevertheless performs  an incessant eidal 
exercise: knowledge emerges in the wake of a meticulous 
strategy of descent and ascent, combined with a dialectic 
of contrapositions. In Lawvere’s words, ‘Ais explicit use 
of the unity and cohesiveness of mathematics sparks the 
many particular processes whereby ignorance becomes 
knowledge’.)@W Ae processes of weaving, the progressive 
freeing of objects,)@B the contraposition of opposite skel-
etons allows us to stand at a distance, decant the objects, 
and look on with other eyes.

Ae union between the static and the dynamic antici-
pated by Novalis is realized with the greatest originality 
in the theory of categories. A natural combinatorics of 
levels allows a single object to be represented as simultane-
ously fixed (in a given category) and variable (through 

)@W Ibid., '.

)@B A free object in a category has a precise technical definition, but can be seen as a universal 
object – disincarnate and skeletal – with astonishing projective ductility; it has the 
capacity to project, in a unique manner, its entire formal structure onto any other object 
in the category having no more than a similar basis. Free objects allow for a remarkable 
formal passage from the part to the whole, in mathematical situations involving rich 
possibilities of transit (which are not always given, since not every category possesses 
free objects). Within this framework, an adjunction can be seen as a generic, uniform 
and cohesive process of constructing free objects.  

negative skeleton positive skeleton
higher

category
(large)

lower
category
(small)

level

leX   adjoint right   adjoint

descent

unity and identity of opposites
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in the category having no more than a similar basis. Free objects allow for a remarkable 
formal passage from the part to the whole, in mathematical situations involving rich 
possibilities of transit (which are not always given, since not every category possesses 
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its functorial transformations). Schlegel’s aphorism that 
links universality and transformation – ‘the life of the Uni-
versal Spirit is an unbroken chain of inner revolutions’,)@F 
yet another form of the ‘Great Chain of Being’ and the 
infinite ‘Tree of Knowledge’ studied by Lovejoy – is, in 
category theory, incarnated with precise sophistication. 
Ae universals of the theory are always dynamic univer-
sals, never rigidified in a fixed Absolute. Ae entire set 
of categorical instruments – composition, morphisms, 
natural transformations, sketches, limits, adjunctions, 
sheaves, schemes, etc. – is converted into an enormously 
powerful technical arsenal that unexpectedly revitalizes 
the romantic dialectic between Being and Becoming. We 
are not far here from the ‘romantic side’ of mathematics 
divined by Langlands.

Within this very general dynamic framework, Lawvere’s 
work manifests concrete distillations of forms in multiple man-
ners. An admirably simple fixed-point argument in closed 
cartesian categories lets us interlace Cantor’s Aeorem 
card(X) < card(℘X) , Gödel’s Incompleteness Aeorem, 
Tarski’s satisfiability theory and the occurrence of fixed 
points in complete lattices.)@D A subtle understanding of 
certain exactness properties in topoi allows us to interpret 

)@F F. Schlegel, Philosophical Fragments, tr. P. Firchow (Minneapolis: University of Minnesota 
Press, )@@)), @W (fragment BF)). 

)@D F. W. Lawvere, ‘Diagonal Arguments and Cartesian Closed Categories’, in Lecture Notes 
in Mathematics @' (New York: Springer, )@D@), )WB–BF.

quantifiers as adjoints, describe the logical behavior of 
sheaves, and launch a program for the geometricization 
of logic in which, to everyone’s surprise, intuitionism 
takes a central place.)@E An elementary axiomatization 
of topoi (with regard to the subobject classifier) allows 
us to reinterpret topologies as modal operators, abstract 
the properties of Grothendieck topologies by means 
of closure operators j over the subobject classifier, and 
define an abstract notion of sheaf with respect to those  
‘topologies’ j.)@C Aese are all examples of how the various 
subfields of mathematics tend to contaminate one another, 
and how certain formal subspecializations transit simul-
taneously through logic, geometry and algebra. Indeed, 
we find ourselves before a genuine ontic/epistemic break, 
emerging in modern mathematics and fully defined in 
contemporary mathematics, in which the old subdivisions 
of the discipline tend to disappear. 

)@E F. W. Lawvere, ‘Quantifiers and Sheaves’, in Actes du Congrès international des 
mathématiciens 9:?8, (Paris: Gauthier-Villars, )@E)) W'@–WB. Lawvere explicitly indicates 
that ‘in a sense, logic is a special case of geometry’ (W'@). Ais is the announcement 
of a growing geometricization of logic, some of the manifestations of which we will 
review in chapter E (Freyd, Zilber), and which constitutes a renewed geometricization 
of contemporary mathematics, as we have indicated in chapter '. It may be noted that 
the Nice Congress, where Lawvere proposed his program, is also where Grothendieck 
announced his premature abandonment of the mathematical world. Aough it could 
not be clearly seen at the time, the Frenchman’s ideas were to undergo a dramatic 
reincarnation at the hands of the North American. 

)@C F. W. Lawvere, ‘Introduction’, in Lecture Notes in Mathematics 'EB, (New York: Springer, 
)@E'), )–)'. Lawvere and ]erney axiomatized the topoi (coming from the Grothendieck 
school) in elementary terms, which is to say, without requiring conditions of infinity 
or choice. A subobject classifier generalizes the idea of power set, and allows the 
subconstructions of ordinary set-theoretical mathematics to be governed through the 
universal behavior of the morphisms in play. 
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Ae work of Saharon Shelah (Israel, b. )@BF) offers 
new and profound technical arguments for understand-
ing a powerfully stratified mathematics, imbued with 
multiple transversal tensions, and attends to the study 
of that stratification’s structural limitations, both in its 
horizontal levels and along its vertical skeleton. Lying 
far beyond the Gödel’s Incompleteness Aeorem (regard-
ing the deductive limitations of theories whose threshold 
of complexity meets or exceeds that of Peano arithme-
tic), Shelah’s nonstructure theorems ()@C(–@() uncover 
the semantic limitations of natural classes of models in 
advanced mathematics.)@@ Shelah’s results reveal an unex-
pected polarization in the study of classes of models for a 
classical theory T. His Main Gap Aeorem shows that the 
number of nonisomorphic models (of a given size) for 
T faces an abrupt alternative: either it literally explodes, 
reaching the maximum possible number of models, or 
else it turns out to be perfectly controllable. Aere is no 
place for semicontrol or semi-explosion: either the class 
of models for T cannot count on having any structure 
at all (all of the possible models are given, everything 
that can possibly exist also exists in actuality); or else the 
class can be fully structured (all that actually exists also 
exists in a ‘coordinated’ form, according to subtle scales 

)@@ See the works collected in the monumental (EW@-page) text, S. Shelah, Classification 
3eory and the Number of Nonisomorphic Models, (Amsterdam: North-Holland, )@@(). 

of invariants). Indeed, the impetus behind Shelah’s most 
original ideas is ultimately the acquisition of a general 
theory of dimension (subtle invariants for the structured 
case). His ‘theory of excellence’, in particular (the but-
tress of the difficult part of the Main Gap proof, which 
took ten years to complete) requires a series of ‘algebraic’ 
interactions in arbitrarily high finite dimensions, which 
by far transcends the usual '-dimensional interactions 
that show up in the independence proofs of traditional 
algebraic geometry.'(( We thus find ourselves faced with 
yet another situation in advanced mathematics where a 
leap in complexity gives rise to new mathematics, which 
are not at all reflected in the lower strata. 

AXer detecting the generic presence of the gap in the 
set-theoretical universe, the tremendous labor of Shelah 
and his team'() was devoted to describing many observ-
able concrete conditions, in order to be able to detect 
whether an arbitrary theory can be classified as structure 

'(( Aanks to Andrés Villaveces for these clarifications. According to Villaveces (personal 
communication), ‘Aere is a quantity of structures “waiting to be discovered”, in 
geometry and in algebra, that demand that the algebraic interaction accounts for all 
those high-dimensional diagrams. […] Already in group  theory they’re beginning to 
make W-dimensional amalgams. Aey are very difficult and correspond to group-theoretic 
properties that are truly more profound than most of the traditional ones. […] It is sort 
of as if, in geometry, we had been working, up to now, with a “'-dimensional projection” 
of phenomena that would have seemed more natural if we had contemplated them in 
their true dimension.’

'() Shelah’s charisma has given rise to a genuine logic workshop, distributed over numerous 
countries. Ae work of Shelah and his collaborators is nearing a thousand articles, 
almost altogether implausible in the mathematical world. In virtue of the profundity 
of his general ideas, his technical virtuosity, the tenacity of his daily work, and his 
influence in the community, Shelah can easily be seen as the greatest logician of the 
twenty-first century. 
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or nonstructure. Ae classes of models for such a theory 
range, in principle, between two extremes: proximity to 
a Morley-style categoricity theorem, where the models 
turn out to be isomorphic by strata,'(' or else freedom 
from any structural restriction. A first dichotomy for 
classifying classes of models distinguishes between stable 
and unstable theories. Ae deep mathematical meaning of 
stable theories comes from the structure of the complex 
numbers C, with addition and multiplication, and from the 
algebraic geometry that can be undertaken within it. Ae 
current notions of dimension and algebraicity extend to 
stable theories and can be used as natural logico-algebraic 
invariants for ‘coordinating’ the models of those theories. 
By the same token, unstable theories are theories in which 
certain generic orders can be defined;'(W in that case the 
classes of models tend to disintegrate and their diversity 
explodes. One example that is now being thoroughly 

'(' Ae Morley Aeorem ()@DF) asserts that a denumerable first-order theory that is 
categorical in a nondenumerable cardinal κ (that is to say, such that all of its models 
of size κ are isomorphic) is likewise categorical in every cardinal greater than κ. Ais 
is the strongest possible result of the ‘collapse’ of the infinite for first-order theories 
(collapse by strata), since, by contrast, from one stratum to another, far from collapsing, 
the models are multiplied, due to the properties of first-order logic (compactness, 
Löwenheim-Skolem). 

'(W We face a situation contrary to that of C, in which we cannot define an order congruent 
with the operations. Ae fact that complex numbers are not an ordered field, for 
many decades seen as an important limitation in the architectonic construction of 
sets of numbers, has today come to be seen as a strength (as a reason for stability). 
Ae pendularity of the mathematical understanding is evident here. No description 
of the ontic richness of C should be allowed to neglect this fundamental oscillation. 
Nevertheless, not only has this pendular movement gone unstudied in the analytic 
tradition; its existence has not even been registered! Ais is one example, among many 
others in advanced mathematics, that forces us to change our philosophical perspective, 
if we are really to be in a position to accept the advances of the discipline. 

studied (and that we will come back to in chapter E, 
when dealing with Zilber) is the structure of the complex 
numbers, with addition, multiplication and exponentiation 
added on; the complex exponential in fact introduces a 
sophisticated hierarchy of analytic submodels that remains 
beyond the control of first-order logic, and the theory 
turns out to be profoundly unstable.'(B

Beyond the stable/unstable dichotomy, Shelah’s pro-
gram broaches the problematic of describing and studying 
many other dividing lines by which the Main Gap may 
be refined, with important mathematical (and not just 
logical) content on each side of the division. One robust 
dividing line is the dichotomy: superstable + non-DOP + 
non-OTOP / not superstable or DOP or OTOP, with pow-
erful structure theorems on the superstable + non-DOP 
+ non-OTOP side, where the models can be analyzed by 
means of trees of countable models.'(F We then see that a 
general eidal polarity can come to be incarnated in multiple 
concrete polarities. 

'(B For complements and clarifications, see the existent overview, A. Villaveces, ‘La tensión 
entre teoría de modelos y análisis matemático: estabilidad y la exponencial compleja’, 
Boletín de Matemáticas Nueva Serie XI, '((B: @F–)(C.

'(F Omitting types order property (OTOP) indicates that a certain order that is not definable 
in first-order logic becomes so through the omission of types (in the logic L~1~ of 
the greatest expressive power). Dimensional order property (DOP), is another form 
under which an order that is hidden from the eyes of first-order logic may be expressed. 
Aanks to Andrés Villaveces for this information. 
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In a prospectus on the future of set theory,'(D Shelah 
reflects that the main sources of interest in the theory’s 
development have their roots in its beauty (earning it nine 
points), its generality (six points), its concrete proofs (five 
points), and its wealth of internal developments (four 
points).'(E He shores up this polemical vision by adding, 
‘My feeling, in an overstated form, is that beauty is for 
eternity, while philosophical value follows fashion’.'(C 
For Shelah, beauty is rooted in ‘a structure in which 
definitions, theorems and proofs each play their part 
in the harmony’.'(@ Even though many of Shelah’s major 
theorems exhibit, analyze and synthesize the inharmo-
nious and nonstructured behavior of certain classes of 
models, it should be observed that, in its entire concep-
tion, there nevertheless exists a pendular counterpoint 
between the structured and the lack of structure, and 
that oscillation is in itself profoundly harmonious. Once 
again, transfusions and obstructions of forms, with global 
equilibria and incessant local tensions, govern the main 
outlines of a decisive body of work in contemporary 

'(D S. Shelah, ‘Ae Future of Set Aeory’ ('(('), http://arxiv.org/pdf/math.LO/('))W@E.pdf.

'(E Shelah completes the list with other minor sources of interest (in descending order): 
applications, history, ‘sport’, foundations, philosophy.

'(C Ibid., '. Note that the major exponent of set theory neglects its supposed philosophical 
value. Ais fact should cause philosophers who see the philosophy of mathematics 
only in the philosophy of set theory to seriously question their perspective.

'(@ Ibid. As examples of beauty, Shelah proposes Galois theory (and ‘more exactly what is 
in the book of  Birkhoff-Mac Lane’) and the Morley Aeorem (with its proof). Observe 
how a great mathematician insists on the form of proofs and on their exposition; once 
again the fundamental pertinence of style in mathematics enters the scene. 

mathematics. As oXen happens with great creative math-
ematicians, advances in one direction of thought find 
a counterpoint in unexpected advances in the opposite 
direction. AXer becoming a specialist in relative consistency 
results in set theory,')( and above all aXer his very difficult 
demonstration of the independence of the Whitehead 
problem,')) Shelah turns toward a new understanding 
of approximations in the infinite, with an ambitious 
program of cardinal arithmetic in which he proposes to 
redesign adequate invariants for the operations.')' Given 
that cardinal exponentiation effectively turns out to be 
a great obstruction to cardinal arithmetic – due to the 
‘wild’ behavior of 2κ for an infinite cardinal κ (Cohen’s 
)@DW independence results) – Shelah proposes to seek 
out a robust alternative skeleton for infinitary operations. 
Shelah finds the supports of that skeleton in his  
theory (an acronym for ‘possible cofinalities’), in which 

')( Given a statement { and a subtheory T of the ZF set theory, { is relatively consistent 
with T if Con (T)&Con ( T+{), where Con(R) means that the theory is consistent, which 
is to say, that one cannot deduce a contradiction from R. { is independent from T if 
both { and J{ are relatively consistent with T. Gödel ()@WC) began this line of study, 
with the relative consistency of the continuum hypothesis with respect to ZF. By other 
routes, relative strategies later came to be converted into one another, as we have seen, 
in one of Grothendieck’s major predominant tendencies. 

')) Ae Whitehead problem ()@F() aimed to characterize a free abelian group A by means 
of a condition on its contextual behavior (residual A condition: for every morphism 
g over the group A, with nucleus Z, there exists a section s such that gs = idA). Shelah 
demonstrated that, for abelian groups, the conjecture i (A is residual & A is free) is 
independent of ZF set theory, since, on the one hand, V = L implies i (hence Con (ZF+i)), 
and, on the other hand, MA+JHC implies Ji (hence Con(ZF +Ji)). 

')' S. Shelah, Proper and Improper Forcing, (Amsterdam: North-Holland, )@@'); S. Shelah, 
Cardinal Arithmetic (Oxford: Oxford University Press, )@@B). 
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points), its generality (six points), its concrete proofs (five 
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'(D S. Shelah, ‘Ae Future of Set Aeory’ ('(('), http://arxiv.org/pdf/math.LO/('))W@E.pdf.

'(E Shelah completes the list with other minor sources of interest (in descending order): 
applications, history, ‘sport’, foundations, philosophy.

'(C Ibid., '. Note that the major exponent of set theory neglects its supposed philosophical 
value. Ais fact should cause philosophers who see the philosophy of mathematics 
only in the philosophy of set theory to seriously question their perspective.

'(@ Ibid. As examples of beauty, Shelah proposes Galois theory (and ‘more exactly what is 
in the book of  Birkhoff-Mac Lane’) and the Morley Aeorem (with its proof). Observe 
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mathematics. As oXen happens with great creative math-
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')) Ae Whitehead problem ()@F() aimed to characterize a free abelian group A by means 
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g over the group A, with nucleus Z, there exists a section s such that gs = idA). Shelah 
demonstrated that, for abelian groups, the conjecture i (A is residual & A is free) is 
independent of ZF set theory, since, on the one hand, V = L implies i (hence Con (ZF+i)), 
and, on the other hand, MA+JHC implies Ji (hence Con(ZF +Ji)). 

')' S. Shelah, Proper and Improper Forcing, (Amsterdam: North-Holland, )@@'); S. Shelah, 
Cardinal Arithmetic (Oxford: Oxford University Press, )@@B). 
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he introduces a web of tame algebraic controls')W for cardinal 
cofinalities,')B and discovers that, beneath the erratic and 
chaotic behavior of exponentiation, lies a regular behavior 
of certain reduced products by means of which the upper 
reaches of the cardinals can be approximated. What we 
encounter here, again, is the construction of an intermedi-
ate hierarchy that allows for the relative adequation of 
transit and the discovery of its proper invariants. 

A sort of correlation (/cardinals / algebraic topol-
ogy/topology) issues from Shelah’s works. In fact, the 
search for a robust skeleton (cofinalities) and a tame 
algebraic calculus (reduced products) in the theory of 
singular cardinals corresponds to the idea of seeking 
natural algebraic invariants (homotopies, homologies) for 
topology. Ais closes one of the circles we entered in this 
chapter, beginning with Serre’s works on the homotopy of 
spheres.')F If perpetual transfusions of form have been the 

')W Ae strategy of a ‘tame’ mathematics, which neglects certain singularities (such as those 
artificial counterexamples of general topology, based on the axiom of choice, or such 
as cardinal exponentiation), goes back to Grothendieck (see p. )BE n. )(').

')B Ae cofinality co(κ) of a cardinal κ is defined as the minimal cardinal of the cofinal subsets 
in (the order of) κ. A cardinal is regular if it is equal to its cofinality (example: "a+1) and 
singular otherwise (example: "~). PCF theory helps to control the subsets of a singular 
cardinal through cofinalities, something which cannot be done through exponentials. 

')F Ae circle is closed even tighter if we observe (Villaveces, personal communication) the 
parallel PCF/cardinals / schemes/varieties. In effect, cardinal arithmetic is localized in 
PCF, by controlling cofinalities around fixed cardinals and then ‘gluing’ the information 
together – in a manner similar to that by which schemes help to localize the arithmetic 
of varieties, by controlling local rings over primes and then ‘gluing’ the information 
together. In the third part of this essay, we will come back to the crucial importance 
of sheaves – underlying processes of localization and gluing, or, more generally, of 
differentiation and reintegration – in order to try to capture the passage from modern 
to contemporary mathematics in an intrinsic fashion (and not merely diachronically, 
in the environment )@B(–F(). 

fundamental motif of this chapter, we have also been able 
to contemplate a rich multiplicity of concrete modulations 
in which this motif is diversely incarnated. Ae majority 
of these transits have taken place in the world of the eidal, 
in the vast space of the mathematical imaginary.

In the next chapter we will see how, in turn, those 
ascents of mathematical inventiveness succeed in descending 
once again into the physical world, in the most unsettling 
ways possible. In fact, in the last thirty years, mathematical 
physics has been impregnated with an extraordinary host 
of abstract methods from high mathematics (to a large 
extent through a rejuvenated perspective on Grothendi-
eck’s work, thanks to the Russian school), the technical 
consequences of which we are just now beginning to 
glimpse, and the philosophical consequences of which 
may turn out to be utterly explosive.
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Since its very beginnings, mathematics has been very 
close to physics. Ae observation of natural phenomena 
has sought to avail itself of the mathematical apparatus 
at every moment of history. Mathematics, which has 
always been described as the universal language of the 
sciences, had, at the beginnings of modern mathematics 
(thanks to Riemann’s spectacular revolution) come to 
understand itself as a sort of structural machinery for the 
sciences. In Riemann’s vision, far from being reduced to 
a mere language, an expedient that would serve only to 
display what other sciences had discovered, mathematics 
would in fact be the discipline that allows us to codify 
the deep structures underlying the natural world. Ae 
situation was complicated even further in the last half of 
the twentieth century, with some of the most formidable 
advances in contemporary mathematics. As we shall 
see, certain arithmetico-combinatorial structures (the 
Grothendieck-Teichmüller group) may come to govern 
certain correlations between the universal constants of 
physics (the speed of light, the Planck constant, the 
gravitational constant), while, conversely, certain math-
ematical theories originating in quantum mechanics 
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quidditas

transfusions of reality

‘that which is’

essence (ousia) existence (huparxis)

(noncommutative geometry) may help to resolve difficult 
problems in arithmetic (the Riemann hypothesis). We are 
dealing here with absolutely unanticipated results, which 
bring together the most abstract mathematical inventions 
and the most concrete physical universe. Ae problems 
that these new observations pose for the ontology of 
mathematical objects are enormous: Where do these 
objects ‘live’ – in arithmetic or in the physical world? Can 
this alternative really be contemplated? Can we instead 
elaborate a transitory, nonbipolar ontology? We will be 
sure to tackle them in part ' of this work. 

In this chapter, we will use the neologism quiddital 
(from quidditas [what there is]) to designate the process of 
descent from the highly abstract constructions of contem-
porary mathematics and their application to the physical 
world (what there is). Ais Being is subdivided by a tense 
contraposition between essence (ousia) and existence 
(huparxis), and by a counterpointing')D of transfusions of the 
real that should remind us of the mathematical dialectic 
between essence and existence studied by Lautman. 

')D A fundamental neologism introduced by Fernando Ortiz ()@B(), in his understanding 
of Latin America. See his Contrapunteo cubano del tabaco y el azúcar (Havana: Jesús 
Montero, )@B() [Tr. H. de Oníz as Cuban Counterpoint: Tobacco and Sugar (New York: 
Alfred A. Knopf, )@BE)].

 
Figure T. 3e Quiddital Realm.

Ae works of Sir Michael Atiyah (England, b. )@'@) have 
given a decisive impulse to the possible application of 
contemporary mathematics’ sophisticated instruments 
to the understanding of associated physical phenomena. 
Awarded the Fields Medal ()@DD)')E and the Abel Prize 
('((B), Atiyah is best known for his famous Index Aeo-
rem (in collaboration with Singer, )@DW),')C a very deep 
result that can be considered one of the major theorems of 

')E Ae )@DD Fields medalists were Atiyah, Cohen, Grothendieck and Smale: an impressive 
mathematical revolution in full bloom! 

')C M. Atiyah & I. Singer, ‘Ae Index of Elliptic Operators on Compact Manifolds’, 
Bulletin of the American Mathematical Society D@, )@DW: W''–BWW. Further developed in 
M. Atiyah & I. Singer, ‘Ae Index of Elliptic Operators I-V’, Annals of Mathematics CE, 
)@DC: BCB–D(B and @W, )@E): ))@–B@. 
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the twentieth century. Ae theorem effectively combines:  
a statement of great simplicity and universality (a pre-
cise interlacing of transferences and obstructions in the 
domain of elliptic equations); a very diverse collection 
of proofs, drawn from apparently contrasting realms of 
mathematics (K-theory, Riemann-Roch theory, cobord-
ism, heat equation, etc.); a remarkable radiation into a 
very broad mathematical spectrum (differential equations, 
mathematical physics, functional analysis, topology, com-
plex analysis, algebraic geometry, etc.).

In rough, conceptual terms, the Index Aeorem states 
that the balance between transits and obstructions in 
certain changes in nature is completely characterized by 
the geometry of the environment where this change takes 
place. In more precise terms, given an elliptic differential 
operator (‘change’), the index (‘balance’) – defined as 
the number of solutions (‘transits’) minus the number of 
restrictions (‘obstructions’) for the operator – is completely 
determined by adequate topological invariants (‘geometry 
of the environment’). In still more precise terms, if we 
give ourselves an elliptical differential operator')@ D, and 
if we define an analytic index for D with indanalyt(D)=dim 

Ker(D) - dim coKer(D) (kernel Ker(D): ‘solutions’ – that is,  

')@ Elliptic operators (whose coefficients in higher-order partial derivatives satisfy a suitable 
condition of positivity) appear ubiquitously in mathematics: the Laplace operator  
(y21 + ...  y2n) associated with the heat equation; the Toeplitz operator (given a continuous 
f, take the holomorphic part in the multiplication of f by a holomorphic), associated 
with the Cauchy-Riemann equations; the Fredholm operator (derivation in the tangent 
bundles of a manifold), associated with ellipticity equations in fibers. 

harmonic functions; cokernel coKer(D): ‘obstructions’ – 
that is, restrictions in nonhomogeneous equations of the 
type Df=g), the Index Aeorem asserts that the analytic 
index can be characterized by means of a topological index 
indtop(D) linked to purely cohomological invariants''( of 
the operator’s geometrical environment. A fact of the 
greatest interest that follows from this theorem is that we 
can observe how the solutions and obstructions, which 
are separately completely unstable (owing to the great local 
variation in the differential equations), nevertheless turn 
out to be stable in their difference (global unification of the 
indices). We will come back to the profound philosophical 
interest in results like this, which, again, do not exist in 
elementary mathematics. But we can already sense the 
richness of a philosophical approach that really takes 
seriously the dialectic of contrapositions of mathematical 
flows, demonstratively incarnated in the Index Aeorem.

Ae Index Aeorem affords a striking quiddital transit 
between analysis and topology, with all sorts of appli-
cations, since elliptic equations serve to model many 
situations in mathematical physics. But even more aston-
ishing is that transit’s eidal support, rooted in the hidden 

''( Ais is a sophisticated invariant that involves, among other constructions, the Aom 
isomorphism between the homology groups of a manifold and their cotangent space 
(modulo boundary), the Chern characters coming from K-theory, and the Todd 
classes of a manifold. Without being able to enter into technical details, we can see 
how eminently abstract concepts thus appear, typical of the transfusions of form that 
we were able to contemplate in the previous chapter, and which are here applied to 
the transfusions of the real. 
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algebraic-geometrical foundations underlying the theorem’s 
proof. Ae genesis of the Index Aeorem is revealing in 
this sense. Ae Riemann-Roch Aeorem ()CF() proposes 
to algebraically (dimensionally) control the space of 
meromorphic functions associated with a curve through a 
topological control (the genus) of the Riemann surfaces 
associated with the curve. It thus presents a first great trans-
lation of mathematical concepts, which yields the general 
problematic of how the solutions to certain linear systems 
of algebraic parameters can be controlled through appro-
priate topological invariants. Ae generalizations of the 
Riemann-Roch Aeorem would later turn out to be legion, 
and they are situated at the (diachronic) frontier between 
modern and contemporary mathematics: Schmidt ()@'@, 
for algebraic curves); Cartan-Serre-Hirzebruch ()@F(–FD, 
for one system of sheaves); Grothendieck ()@FE, for all 
systems of sheaves with algebraic parameters: K-theory);'') 
Hirzebruch-Atiyah ()@FC, for all sheaves with continuous 
parameters: topological K-theory). As a consequence of 
these advances in the generic problematic of transit between 

'') Grothendieck’s K-theory (K for Klassen: the study of classes in their totality) aims to 
study algebraic classes of sheaves, and shows how to pass from natural structures of 
monoids of sheaves to certain rings of sheaves (by way of formal inversions in the 
sheaf’s vectorial fibers). Out of K-theory emerges the famous conjecture of Serre 
()@F@) – every finitely generated projective module over K(X) is free – which was 
settled in the affirmative in )@ED, by Quillen and Suslin. (Quillen’s )@EC Fields Medal 
was, in part, due to that proof.) Compare the fortune of Serre’s conjecture with that 
of Shelah’s work on the undecidability of the Whitehead conjecture: we should be 
struck by the complexity of a universe in which such apparently similar statements 
nevertheless find themselves so profoundly demarcated. It is a (romantic) abyss into 
which the philosophy of mathematics must enter. 

the algebraic and the topological on the basis of complex 
analysis (Riemann-Roch), Gelfand, in )@D(, proposes a 
generic statement concerning the homotopy invariance 
of the index. Ae rupture finally emerges in )@DW, when, 
working with elliptic differential equations instead of 
linear systems with parameters, and considering algebraic 
functions as holomorphic functions satisfying ellipticity 
(Cauchy-Riemann equations), Atiyah and Singer intro-
duce the radical shiX in perspective that leads them 
to combine the statement of the Index Aeorem (à la 
Gelfand) with the entire instrumentarium of concepts 
inherited from Riemann-Roch (à la Grothendieck).

In Cartan’s presentation on Atiyah’s work,''' which 
he gave when the latter was awarded the Fields Medal, 
and in Atiyah’s later retrospective,''W both mathematicians 
underscore the importance of the analytic index ind analyt 
being stable under perturbations and how it is that we can, 
thus, reasonably hope for a topological formula ind top in 
purely geometrical terms. Since K-theory (whether alge-
braic or topological) provides the precise mathematical 
instrumentarium for capturing extensions of morphisms 
between (algebraic or topological) structures linked to 
perturbations, Atiyah remarks that ‘K-theory is just the 
right tool to study the general index problem’ and that ‘in 

''' H. Cartan, ‘L’oeuvre de Michael F. Atiyah’ ()@DD), in M. Atiyah, D. Iagolnitzer, eds., 
Fields Medallists’ Lectures (New Jersey: World Scientific, '((W), ))W–)C. 

''W Atiyah, ‘Ae Index of Elliptic Operators’ ()@EW), ibid., )'W–F.
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algebraic-geometrical foundations underlying the theorem’s 
proof. Ae genesis of the Index Aeorem is revealing in 
this sense. Ae Riemann-Roch Aeorem ()CF() proposes 
to algebraically (dimensionally) control the space of 
meromorphic functions associated with a curve through a 
topological control (the genus) of the Riemann surfaces 
associated with the curve. It thus presents a first great trans-
lation of mathematical concepts, which yields the general 
problematic of how the solutions to certain linear systems 
of algebraic parameters can be controlled through appro-
priate topological invariants. Ae generalizations of the 
Riemann-Roch Aeorem would later turn out to be legion, 
and they are situated at the (diachronic) frontier between 
modern and contemporary mathematics: Schmidt ()@'@, 
for algebraic curves); Cartan-Serre-Hirzebruch ()@F(–FD, 
for one system of sheaves); Grothendieck ()@FE, for all 
systems of sheaves with algebraic parameters: K-theory);'') 
Hirzebruch-Atiyah ()@FC, for all sheaves with continuous 
parameters: topological K-theory). As a consequence of 
these advances in the generic problematic of transit between 

'') Grothendieck’s K-theory (K for Klassen: the study of classes in their totality) aims to 
study algebraic classes of sheaves, and shows how to pass from natural structures of 
monoids of sheaves to certain rings of sheaves (by way of formal inversions in the 
sheaf’s vectorial fibers). Out of K-theory emerges the famous conjecture of Serre 
()@F@) – every finitely generated projective module over K(X) is free – which was 
settled in the affirmative in )@ED, by Quillen and Suslin. (Quillen’s )@EC Fields Medal 
was, in part, due to that proof.) Compare the fortune of Serre’s conjecture with that 
of Shelah’s work on the undecidability of the Whitehead conjecture: we should be 
struck by the complexity of a universe in which such apparently similar statements 
nevertheless find themselves so profoundly demarcated. It is a (romantic) abyss into 
which the philosophy of mathematics must enter. 

the algebraic and the topological on the basis of complex 
analysis (Riemann-Roch), Gelfand, in )@D(, proposes a 
generic statement concerning the homotopy invariance 
of the index. Ae rupture finally emerges in )@DW, when, 
working with elliptic differential equations instead of 
linear systems with parameters, and considering algebraic 
functions as holomorphic functions satisfying ellipticity 
(Cauchy-Riemann equations), Atiyah and Singer intro-
duce the radical shiX in perspective that leads them 
to combine the statement of the Index Aeorem (à la 
Gelfand) with the entire instrumentarium of concepts 
inherited from Riemann-Roch (à la Grothendieck).

In Cartan’s presentation on Atiyah’s work,''' which 
he gave when the latter was awarded the Fields Medal, 
and in Atiyah’s later retrospective,''W both mathematicians 
underscore the importance of the analytic index ind analyt 
being stable under perturbations and how it is that we can, 
thus, reasonably hope for a topological formula ind top in 
purely geometrical terms. Since K-theory (whether alge-
braic or topological) provides the precise mathematical 
instrumentarium for capturing extensions of morphisms 
between (algebraic or topological) structures linked to 
perturbations, Atiyah remarks that ‘K-theory is just the 
right tool to study the general index problem’ and that ‘in 

''' H. Cartan, ‘L’oeuvre de Michael F. Atiyah’ ()@DD), in M. Atiyah, D. Iagolnitzer, eds., 
Fields Medallists’ Lectures (New Jersey: World Scientific, '((W), ))W–)C. 

''W Atiyah, ‘Ae Index of Elliptic Operators’ ()@EW), ibid., )'W–F.
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[)')] 
fact, the deeper one digs, the more one finds that K-theory 
and index theory are one and the same subject!’''B Ae 
horizon we are facing here is similar to the one we passed 
through in Grothendieck’s work: incorporating a transit 
between objects (variations, perturbations) so as to then 
proceed to determine certain partial stabilities (invariants) 
beneath the transit. Note that this general strategy, in 
the most diverse subfields of mathematics, gives rise to 
remarkable concrete forms of original knowledge, forms that 
go completely unnoticed in static realms where move-
ment is lacking (for example, in the realms of elementary 
mathematics, where levels of complexity are low). 

Atiyah remarks that ‘any good theorem should have 
several proofs, the more the better’.''F Such is the case with 
the Index Aeorem, which, in virtue of its very centrality, 
benefits from techniques from many domains; each proof 
and each point of view goes on to amplify the ‘freedom’, 
‘variety’ and ‘flexibility’ of the mathematician.''D As Atiyah 
describes it, mathematics, in such various decantations, ‘is 
always continuous, linked to its history, to the past’, and 
it ‘has a unity’, which nevertheless should not become ‘a 
straitjacket. Ae center of gravity may change with time. 
It is not necessarily a fixed rigid object in that sense;  

''B Ibid., )WW, )WB.

''F M. Raussen and C. Skau, ‘Interview with Michael Atiyah and Isadore Singer’, Notices 
of the American Mathematical Society F', '((F: ''F. 

''D Ibid., ''D, ''E.

I think it should develop and grow’.''E As we have come 
to see, in advanced mathematics (whether modern or 
contemporary) the transit of objects is vital, and the varia-
tion of the discipline’s centers of gravity seems to be no 
less inevitable. In the dynamics of mathematical activity, 
Atiyah recalls that ‘a theorem is never arrived at the way 
logical thought would have you believe’, that everything 
is ‘much more accidental’, and that ‘discoveries never 
happen as neatly’ as posterity thinks.''C Moreover, no 
reduction of mathematics to a series of logical analyses 
can be anything but a (philosophically unacceptable) 
impoverishment of the discipline.

Ae richness of a quiddital mathematics, in profound 
proximity to reality,''@ is reinforced by the works of Peter 
Lax (Hungary/USA, b. )@'D) in two privileged realms 
where the variability of the real is modeled with precision: 
differential equations and the theory of computation. Ae 
approach to the quidditas in Lax consists in a sort of pen-
dular oscillation, the inverse of the movement that we have 
observed in Atiyah. Ae latter produces a descent from the 
eidal into the quiddital – from Atiyah’s technical mastery in 
algebraic topology we pass to its subsequent application 
to the Index Aeorem. Inversely, in Lax, a very concrete 

''E Ibid., ''F, 'W(.

''C Ibid., ''F. 

''@ According to Atiyah, ‘almost all of mathematics originally arose from external reality’. 
Ibid., ''C.
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[)')] 
fact, the deeper one digs, the more one finds that K-theory 
and index theory are one and the same subject!’''B Ae 
horizon we are facing here is similar to the one we passed 
through in Grothendieck’s work: incorporating a transit 
between objects (variations, perturbations) so as to then 
proceed to determine certain partial stabilities (invariants) 
beneath the transit. Note that this general strategy, in 
the most diverse subfields of mathematics, gives rise to 
remarkable concrete forms of original knowledge, forms that 
go completely unnoticed in static realms where move-
ment is lacking (for example, in the realms of elementary 
mathematics, where levels of complexity are low). 

Atiyah remarks that ‘any good theorem should have 
several proofs, the more the better’.''F Such is the case with 
the Index Aeorem, which, in virtue of its very centrality, 
benefits from techniques from many domains; each proof 
and each point of view goes on to amplify the ‘freedom’, 
‘variety’ and ‘flexibility’ of the mathematician.''D As Atiyah 
describes it, mathematics, in such various decantations, ‘is 
always continuous, linked to its history, to the past’, and 
it ‘has a unity’, which nevertheless should not become ‘a 
straitjacket. Ae center of gravity may change with time. 
It is not necessarily a fixed rigid object in that sense;  

''B Ibid., )WW, )WB.

''F M. Raussen and C. Skau, ‘Interview with Michael Atiyah and Isadore Singer’, Notices 
of the American Mathematical Society F', '((F: ''F. 

''D Ibid., ''D, ''E.

I think it should develop and grow’.''E As we have come 
to see, in advanced mathematics (whether modern or 
contemporary) the transit of objects is vital, and the varia-
tion of the discipline’s centers of gravity seems to be no 
less inevitable. In the dynamics of mathematical activity, 
Atiyah recalls that ‘a theorem is never arrived at the way 
logical thought would have you believe’, that everything 
is ‘much more accidental’, and that ‘discoveries never 
happen as neatly’ as posterity thinks.''C Moreover, no 
reduction of mathematics to a series of logical analyses 
can be anything but a (philosophically unacceptable) 
impoverishment of the discipline.

Ae richness of a quiddital mathematics, in profound 
proximity to reality,''@ is reinforced by the works of Peter 
Lax (Hungary/USA, b. )@'D) in two privileged realms 
where the variability of the real is modeled with precision: 
differential equations and the theory of computation. Ae 
approach to the quidditas in Lax consists in a sort of pen-
dular oscillation, the inverse of the movement that we have 
observed in Atiyah. Ae latter produces a descent from the 
eidal into the quiddital – from Atiyah’s technical mastery in 
algebraic topology we pass to its subsequent application 
to the Index Aeorem. Inversely, in Lax, a very concrete 

''E Ibid., ''F, 'W(.

''C Ibid., ''F. 

''@ According to Atiyah, ‘almost all of mathematics originally arose from external reality’. 
Ibid., ''C.
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originary pragmatics in the quidditas leads to an ascent into 
the eidal, so as to be able to then project itself onto the 
fragment of reality with which it began. If, indeed, the 
mathematical ‘heart’ of the effort to capture the physical 
world is to be found in partial differential equations, and if 
an adequate ‘tomography’ of that heart is to be found in 
the computational calculations of those equations’ solutions, 
then the knowledge lying at the intersection of those two 
fields – precisely Lax’s speciality – will help to describe 
something of a ‘real ground’ of mathematics. 

Ae citation of the '((F Abel Prize awarded to Lax 
underscores ‘his groundbreaking contributions to the 
theory and application of differential equations and to the 
computation of their solutions’.'W( In Lax’s own words, 
these contributions can be sorted into four essential 
subareas:'W) integrable nonlinear hyperbolic systems;'W' 
shock waves;'WW the Lax-Phillips semigroup in scattering 

'W( Portal of the '((F Abel Prize, http://www.abelprisen.no/en/prisvinnere/'((F/index.
html.

'W) C. Dreifus, ‘From Budapest to Los Alamos. A Life in Mathematics’, 3e New York <mes, 
March '@, '((F, http://www.nytimes.com/'((F/(W/'@/science/'@conv.html.

'W' Integrable systems are systems of differential equations for which there exists a well-
defined collection of ‘conserved quantities’ (codified in the spectrum of the differential 
operator), by means of which one can achieve a complete knowledge of the system’s 
solutions. What we are dealing with here is yet another incarnation of one of the central 
problematics of modern and contemporary mathematics: the study of transits (here, 
partial differential equations) and invariants (here, conserved quantities) in the realms 
of exact thought. 

'WW Shock waves are perturbations that propagate energy in a given (usually fluid or 
electromagnetic) medium, and that are characterized by an abrupt discontinuity in 
their initial conditions. Supersonic waves constitute a paradigmatic case.

theory;'WB solutions of dispersive systems when dispersion 
approaches zero. We can reinforce the pendularity between 
Atiyah and Lax by observing how both mathematicians 
cover complementary fragments in the universe of differ-
ential equations: elliptic operators (Atiyah; paradigm: 
heat equation) and hyperbolic operators (Lax; paradigm: 
wave equation). A hyperbolic system can be associated, 
in a natural manner, with ‘conservation laws’,  by means 
of suitably integrating the flows inhering in the system’s 
evolution. In this realm, Lax works according to various 
alternative strategies: a general theory and structure (trans-
formations that preserve the spectrum of a hyperbolic 
differential operator); particular theories and structures 
(entropy conditions in the case of shock waves, the ‘Lax 
pair’ for comprehending solitons in the KdV equation),'WF 

'WB Scattering studies forms of deviation in radiation that are due to certain deficiencies 
of uniformity in the medium in which the radiation is propagated. Many forms of 
dispersion in the physics of elementary particles (including X-rays) are paradigms of 
scattering. Scattering techniques, in turn, allow radar photos to be interpreted. 

'WF Ae KdV equation (aXer Korteweg-De Vries, )C@F: ut+ u xxx+ 6uux=0) is one of the 
best-known examples of a nonlinear hyperbolic equation. Ae equation models the 
behavior of waves in a fluid (a liquid surface, for example) and has been particularly 
helpful for applications in naval architecture and for the study of tides. Ae KdV 
equation gives rise to a completely integrable system, and its solutions (solitons) behave 
well, since they can be described as solitary waves that uniformly displace themselves 
in the medium, repeating the same pattern of propagation (Kruskal & Zabusky, )@DF). 
Knowledge of those solitons can be linearized by means of methods that are inverse to 
those of scattering, and the ‘Lax pair’ allows us to discover that inversion by means of 
suitable noncommutative linear operators. We see here how a very concrete quiddital 
situation (waves in water, the KdV equation) gives rise to an entire, subsequent eidal 
architecture (integrable system, solitons, the Lax pair), which then subsequently 
returns in the quidditas. But the richness of mathematical transits is not restricted 
to just one direction. Indeed, Kontsevich ()@@') has succeeded in demonstrating a 
conjecture of Witten’s, according to which the generative function of the intersection 
numbers of spaces over algebraic curves (moduli) satisfies the KdV equation. In this 
manner, some of the most abstract constructions in mathematics are governed by an 
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originary pragmatics in the quidditas leads to an ascent into 
the eidal, so as to be able to then project itself onto the 
fragment of reality with which it began. If, indeed, the 
mathematical ‘heart’ of the effort to capture the physical 
world is to be found in partial differential equations, and if 
an adequate ‘tomography’ of that heart is to be found in 
the computational calculations of those equations’ solutions, 
then the knowledge lying at the intersection of those two 
fields – precisely Lax’s speciality – will help to describe 
something of a ‘real ground’ of mathematics. 

Ae citation of the '((F Abel Prize awarded to Lax 
underscores ‘his groundbreaking contributions to the 
theory and application of differential equations and to the 
computation of their solutions’.'W( In Lax’s own words, 
these contributions can be sorted into four essential 
subareas:'W) integrable nonlinear hyperbolic systems;'W' 
shock waves;'WW the Lax-Phillips semigroup in scattering 

'W( Portal of the '((F Abel Prize, http://www.abelprisen.no/en/prisvinnere/'((F/index.
html.

'W) C. Dreifus, ‘From Budapest to Los Alamos. A Life in Mathematics’, 3e New York <mes, 
March '@, '((F, http://www.nytimes.com/'((F/(W/'@/science/'@conv.html.

'W' Integrable systems are systems of differential equations for which there exists a well-
defined collection of ‘conserved quantities’ (codified in the spectrum of the differential 
operator), by means of which one can achieve a complete knowledge of the system’s 
solutions. What we are dealing with here is yet another incarnation of one of the central 
problematics of modern and contemporary mathematics: the study of transits (here, 
partial differential equations) and invariants (here, conserved quantities) in the realms 
of exact thought. 

'WW Shock waves are perturbations that propagate energy in a given (usually fluid or 
electromagnetic) medium, and that are characterized by an abrupt discontinuity in 
their initial conditions. Supersonic waves constitute a paradigmatic case.

theory;'WB solutions of dispersive systems when dispersion 
approaches zero. We can reinforce the pendularity between 
Atiyah and Lax by observing how both mathematicians 
cover complementary fragments in the universe of differ-
ential equations: elliptic operators (Atiyah; paradigm: 
heat equation) and hyperbolic operators (Lax; paradigm: 
wave equation). A hyperbolic system can be associated, 
in a natural manner, with ‘conservation laws’,  by means 
of suitably integrating the flows inhering in the system’s 
evolution. In this realm, Lax works according to various 
alternative strategies: a general theory and structure (trans-
formations that preserve the spectrum of a hyperbolic 
differential operator); particular theories and structures 
(entropy conditions in the case of shock waves, the ‘Lax 
pair’ for comprehending solitons in the KdV equation),'WF 

'WB Scattering studies forms of deviation in radiation that are due to certain deficiencies 
of uniformity in the medium in which the radiation is propagated. Many forms of 
dispersion in the physics of elementary particles (including X-rays) are paradigms of 
scattering. Scattering techniques, in turn, allow radar photos to be interpreted. 

'WF Ae KdV equation (aXer Korteweg-De Vries, )C@F: ut+ u xxx+ 6uux=0) is one of the 
best-known examples of a nonlinear hyperbolic equation. Ae equation models the 
behavior of waves in a fluid (a liquid surface, for example) and has been particularly 
helpful for applications in naval architecture and for the study of tides. Ae KdV 
equation gives rise to a completely integrable system, and its solutions (solitons) behave 
well, since they can be described as solitary waves that uniformly displace themselves 
in the medium, repeating the same pattern of propagation (Kruskal & Zabusky, )@DF). 
Knowledge of those solitons can be linearized by means of methods that are inverse to 
those of scattering, and the ‘Lax pair’ allows us to discover that inversion by means of 
suitable noncommutative linear operators. We see here how a very concrete quiddital 
situation (waves in water, the KdV equation) gives rise to an entire, subsequent eidal 
architecture (integrable system, solitons, the Lax pair), which then subsequently 
returns in the quidditas. But the richness of mathematical transits is not restricted 
to just one direction. Indeed, Kontsevich ()@@') has succeeded in demonstrating a 
conjecture of Witten’s, according to which the generative function of the intersection 
numbers of spaces over algebraic curves (moduli) satisfies the KdV equation. In this 
manner, some of the most abstract constructions in mathematics are governed by an 
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specific computational calculations (the ‘proximity’ of a 
general system to an integrable system'WD).

Lax emphasizes the importance of ‘looking at prob-
lems in the large and in the small’, of ‘combin[ing] both 
aspects’ and then benefiting from their combinatorial 
‘strength’.'WE What we are dealing with here is an oscil-
lating conceptual equilibrium that Lax himself takes 
his style to reflect, a style that seeks a certain elegance, 
understood as revelation, simplicity and equilibrium 
between the abstract and the concrete – an elegance 
that ought to be reflected in the diversity of proofs an 
important mathematical theorem deserves. In this man-
ner, the richness of mathematical thought, according to 
a practitioner of the first rank of the discipline, is rooted 
in the multiple transits of proof, and not in the fixed state-
ment being demonstrated. We therefore, once again, see 
how any logical reduction (or tautological reduction, in 
the style of the early Wittgenstein) of a statement with 
a high threshold of complexity would eliminate all of its 

equation that is ubiquitous in mathematical physics! When we later come to approach 
the works of Connes and Kontsevich, we will see how the richness of the junctures 
between abstract mathematics and physics is astonishing beyond measure. 

'WD Lax evokes ‘the Kolmogorov-Arnold-Moser Aeorem which says that a system near a 
completely integrable system behaves as if it were completely integrable. Now, what 
near means is one thing when you prove theorems, another when you do experiments. 
It’s another aspect of numerical experimentation revealing things.’ (M. Raussen & C. Skau, 
‘Interview with Peter D. Lax’, Notices of the American Mathematical Society FW, '((D: 
''W–@: ''B; emphasis ours.) And so, extensive calculations in the quidditas helps to 
uncover structure in the eidos: a position quite close to Grothendieck’s commentaries 
concerning certain concrete cohomological calculations that would provoke the 
structural emergence of motifs. 

'WE Ibid., ''B. 

genuine mathematical content, encoded in diverse and 
contrasting structural proofs – in diverse and contrasting 
calculative experiments.

Ae back-and-forth between calculation and structure, 
between the physical world and mathematical abstrac-
tion, between the quiddital and the eidal, is, for Lax, an 
indispensable process – one that explains the tremendous 
vigor of mathematics:

My friend Joe Keller, a most distinguished applied 
mathematician, was once asked to define applied 
mathematics and he came up with this: ‘Pure math-
ematics is a branch of applied mathematics.’ Which 
is true if you think a bit about it. Mathematics origi-
nally, say aXer Newton, was designed to solve very 
concrete problems that arose in physics. Later on, 
these subjects developed on their own and became 
branches of pure mathematics, but they all came from 
an applied background. As Von Neumann pointed 
out, aXer a while these pure branches that develop 
on their own need invigoration by new empirical 
material, like some scientific questions, experimental 
facts, and, in particular, some numerical evidence. 
[…] I do believe that mathematics has a mysterious 
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specific computational calculations (the ‘proximity’ of a 
general system to an integrable system'WD).

Lax emphasizes the importance of ‘looking at prob-
lems in the large and in the small’, of ‘combin[ing] both 
aspects’ and then benefiting from their combinatorial 
‘strength’.'WE What we are dealing with here is an oscil-
lating conceptual equilibrium that Lax himself takes 
his style to reflect, a style that seeks a certain elegance, 
understood as revelation, simplicity and equilibrium 
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how any logical reduction (or tautological reduction, in 
the style of the early Wittgenstein) of a statement with 
a high threshold of complexity would eliminate all of its 

equation that is ubiquitous in mathematical physics! When we later come to approach 
the works of Connes and Kontsevich, we will see how the richness of the junctures 
between abstract mathematics and physics is astonishing beyond measure. 

'WD Lax evokes ‘the Kolmogorov-Arnold-Moser Aeorem which says that a system near a 
completely integrable system behaves as if it were completely integrable. Now, what 
near means is one thing when you prove theorems, another when you do experiments. 
It’s another aspect of numerical experimentation revealing things.’ (M. Raussen & C. Skau, 
‘Interview with Peter D. Lax’, Notices of the American Mathematical Society FW, '((D: 
''W–@: ''B; emphasis ours.) And so, extensive calculations in the quidditas helps to 
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'WE Ibid., ''B. 
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an applied background. As Von Neumann pointed 
out, aXer a while these pure branches that develop 
on their own need invigoration by new empirical 
material, like some scientific questions, experimental 
facts, and, in particular, some numerical evidence. 
[…] I do believe that mathematics has a mysterious 



?7R

 

?7Q

 

unity which really connects seemingly distinct parts, 
which is one of the glories of mathematics.'WC 

Ae robust mathematical abstractions and large-scale 
computations that Lax practices fold back into one another. 
Ae ‘unity’ – and the consequent ‘glory’ – of such transits 
constitutes one of the specificities of advanced mathemat-
ics. Moreover, when the transit between the ‘pure’ and the 
‘applied’ – moving openly and without any privileged 
direction between both poles – breaks with the reasonable 
expectations of the mathematical community, the ‘glory’ 
and the ‘honor of the human spirit’ are intensified. Ais is 
the case, as we shall now see, with the ‘applications’ of the 
Lax-Phillips semigroup in number theory, and, even more 
surprisingly, as we shall see later, with Connes’s strategy 
in his (ongoing) effort to find a proof for the Riemann 
hypothesis by means of instruments drawn from physics, 
and with his work dealing with the ‘appearance’ of the 
Grothendieck-Teichmüller group in cosmology.

In their works concerning the spectrum of an operator 
over a hyperbolic variety, Lax and Phillips introduce a 
formal semigroup – a collection of operators Z(t) associ-
ated with orthogonal projections of waves over suitable 
subspaces of the Hilbert space L 2(R) – in order to control 

'WC Ibid., ''F (emphasis ours). Von Neumann, the young Hungarian mathematician’s 
mentor in Los Alamos, is, for Lax, the exemplar to follow in mathematics: a powerful 
vision and great calculative capacity, always breaking the supposed barriers between 
pure and applied mathematics.

the scattering associated with the propagations of waves 
(that is to say, the asymptotic behavior of waves in the 
remote past or future).'W@ Fadeev and Pavlov later observe 
()@E') that revealing connections with the harmonic 
analysis of certain automorphic functions emerge when 
we apply Lax and Phillips’s theory to the non-euclidean 
wave equation.'B( Refounding scattering theory on non-
euclidean bases, Lax and Phillips go on to character-
ize the meromorphic properties of Eisenstein series,'B)  
producing explicit formulas and exhibiting proofs that 
are both concise and general (‘elegant’, that is, in Lax’s 
aforementioned sense), and that thereby uncover a totally 
unexpected transit between the differential and the arith-
metical, through the properties of the semigroup Z(t).'B'

Nevertheless, in a subsequent revision of the theory,'BW 
Lax and Phillips explain how the connection between the 
natural non-euclidean geometry modeled on the Poincaré 

'W@ P. Lax & R. Phillips, Scattering 3eory (New York: Academic Press, )@DE).

'B( Given a wave equation un= c24 2u  (with the Laplacian 4 2=R2 2/2 2
i  ), the non-euclidean 

wave equation is obtained by means of the perturbation un= c 24 2u+u/4.

'B) Given the Poincaré plane z (that is, z!C with  Im ( z ) >0) and given k$2, the associated 
Eisenstein series is defined by Rm,n!0 (m + nz)-'k. Ais is a holomorphic function that 
converges absolutely on the Poincaré plane, which turns out to be invariant under the 
modular group SL 2( Z ) and which extends into a meromorphic function over C. Ae 
remarkable Ramanujan identities, which the ingenious Indian mathematician proposed 
with respect to the coefficients of the Eisenstein series, are well known, and correspond 
to sophisticated differential identities between the series.   

'B' P. Lax & R. Philips, ‘Scattering Aeory for Automorphic Functions’, in Annals of 
Mathematics Studies CE (Princeton: Princeton University Press, )@ED). 

'BW P. Lax & R. Phillips, ‘Scattering Aeory for Automorphic Functions’, Bulletin of the 
American Mathematical Society, New Series ', )@C(: 'D)–@F. 
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plane (the group of rational transformations w"(aw+b)/

(cw+d) with a,b,c,d!R, and ab-bc=1 and the various types 
of natural invariants associated with that geometry L2, 
Dirichlet, Laplace-Beltrami)'BB turns out to be the deep 
connection that lets us unfold the ‘intrinsic meaning’'BF 
hidden in differential equations like the non-euclidean 
wave equation, a meaning that can be glimpsed pre-
cisely in virtue of the semigroup Z(t). In this manner, we 
observe how a complete mixture in Lautman’s sense (the 
Lax-Phillips semigroup) allows us to naturally mediate 
between the (apparently distant) realms of the differential 
and the arithmetical, thanks to the discovery of a single 
natural model that pertains to both realms. Aat model is 
the Poincaré plane, seen as a non-euclidean model, with its 
differential Riemannian geometry and analytic invariants, 
on the one hand, and the same plane, seen as a complex 
model, with its theory of automorphic functions and 
arithmetical invariants, on the other. In situations of this 
sort, we confront a sophisticated web of transits between 
the quiddital and the eidal, with multiple contrasting 
supports in the web: physical motivations (scattering, 
waves); concrete models (Poincaré plane, non-euclidean 
geometry, modular forms), generic structures (geometries, 
invariants, semigroups).

'BB Ibid., 'D'.

'BF Ibid.

A sophisticated web of motivations issuing from phys-
ics, a very broad spectrum of examples from functorial 
analysis, geometry and algebra, and a powerful abstract 
theorematic machinery are combined in the work of 
Alain Connes (France, b. )@BE): the concretization of a 
mathematics profoundly oriented toward the quiddital, 
but which is also reflected in the (pendular and inevitable) 
eidal transit – of higher mathematics. A Fields medalist 
()@C') for his works on the classification of operator alge-
bras in Von Neumann algebras, and for his applications 
of the theory of C*-algebras'BD to differential geometry, 
Connes has, from early on (since his doctoral thesis in 
)@EW), worked on the unification of various, apparently 
distant, abstract conceptual instruments (modular and 
ergodic operators, projectivity and injectivity properties), 
and on their manifold uses'BE in functional analysis and the 

'BD A C*-algebra is a Banach algebra (an associative algebra with a complete normed 
topology) with an involution operator ( )* that behaves multiplicatively with respect 
to the norm. Ae original examples of C*-algebras are matrix algebras (linked to 
Heisenberg’s matrix mechanics) and linear operator algebras over Hilbert spaces 
(linked to quantum mechanics, following Von Neumann). Von Neumann algebras are 
C*-algebras of operators that are closed under certain weak topologies. C*-algebras are 
mixed mathematical objects in Lautman’s sense, in which the linear and the continuous 
are interlaced, through a hierarchy of intermediary properties that have to do with 
convexness, order, identities and quotients. For a presentation of Connes’s early works, 
see H. Araki, ‘Ae Work of Alain Connes’, in Atiyah, Iagolnitzer, Fields Medallists’ 
Lectures, WWE–BB. 

'BE Ae weaving between the One and the Multiple is fully bipolar in Connes. Indeed, he 
makes use of the abstract instruments of mathematics for applications in physics (the 
use of C*-algebras for understanding quantum mechanics, sharpening Von Neumann’s 
program), but also, as we will later see, he makes use of the concrete instruments of 
physics for ‘applications’ in mathematics (the use of spectroscopy for understanding 
the Riemann hypothesis). As regards the evanescent frontier between the pure and 
the applied, recall Keller’s paradoxical definition of pure mathematics as a branch of 
applied mathematics, as evoked by Lax. 
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underlying mathematical physics. Connes subsequently 
obtained an index theorem for foliations'BC ()@C)), and, 
in the eighties, began to develop his noncommutative 
geometry. In the wake of such great unifying works as 
those of Von Neumann, Grothendieck and Atiyah, Connes 
opens mathematics onto research programs of tremendous 
breadth.'B@

Ae emergence of the noncommutative paradigm in 
Connes rests upon three basic pillars:'F( the real (quid-
dital) ubiquity of spaces whose coordinate algebras are 
non-commutative; the technical power of abstract (eidal) 
instruments that can be extended to noncommutative situ-
ations (cyclic cohomology, K-homology, spectral theory, 

'BC A foliation is a differential manifold that is locally decomposed into parallel 
affine submanifolds (the ‘leaves’ of the foliation). Foliations appear everywhere in 
mathematics: given a immersion f : M"N between varieties with dim(M)$dim(N) = n, 
we obtain an n-foliation over M, the leaves of which are the components of f-1(x), x!N; 
given a Lie group G acting on a manifold M in a locally free fashion (which is to say, 
such that for all x in M, {g!G: gx = x} is discrete), the orbits of G make up the leaves 
of a foliation over M; given a nonsingular system of differential equations, the family 
of solutions to the equation make up a foliation, and the global determination of the 
solutions determines the behavior of the foliation. An index theorem for foliations, such 
as the one obtained by Connes, therefore interlaces certain general constructions from 
differential geometry with the underlying techniques of algebraic geometry in the 
Index Aeorem. Advanced mathematics thereby continues to soar over the incessant 
transits between its subdomains. 

'B@ Fittingly, Connes is (in Grothendieck’s footsteps) a permanent professor at the IHES 
(since )@E@), and (in Serre’s footsteps) a permanent professor at the Collège de France 
(since )@CB). 

'F( Connes is a magnificent expositor and defender of his ideas. See, for example, A. 
Connes, Noncommutative Geometry (San Diego: Academic Press, )@@B); A. Connes 
& M. Marcolli, A Walk in the Noncommutative Garden, preprint, http://arxiv.org/abs/
math/(D()(FB. Connes’s website (www.alainconnes.org) has a complete bibliography, 
available as an archive of pdf files. Ae descriptions appearing in our text come from 
Connes’s writings, with certain emphases added by us. 

the ‘thermodynamics’ of operators); the harmonic richness 
of certain very general motivations:

Euclidean Geometry
/ /

Commutative Terrestrial Physics

Cosmic PhysicsNon-euclidean Geometry Noncommutative

In fact, we see noncommutativity appear in a natural man-
ner in essential areas of physics (phase spaces of quantum 
mechanics, cosmological models of space-time), geometry 
(duals of discrete non-abelian groups, non-abelian tori, 
foliation spaces), and algebra (adele spaces, modular 
algebras, Q-lattices). Here we discover a certain ubiquity 
of the noncommutative in actual nature,'F) which goes 
hand in hand with an extension of the notion of space from 
the point of view of its conceptual nature: the passage 
from infinitesimal manifolds (Riemann) to C*-algebras 
of compact operators (Hilbert, Von Neumann); the pas-
sage from dual K-homology (Atiyah, Brown, Douglas, 
Filmore) to noncommutative C*-algebras (Connes); the 
passage from the Index Aeorem (Atiyah, Singer) to the 
handling of noncommutative convolutions in groupoids 
(Connes); the passage from the groups and algebras of 
modern differential geometry (Lie) to quantum groups 
and Hopf algebras;'F' the passage from set-theoretic 

'F) It would not be out of place here to recall Lautman’s remarkable study of symmetry 
and dissymmetry in mathematics and physics, as a sort of prelude to subsequent 
noncommutative studies (see p. F@, above). 

'F' Hopf algebras are structures that show up in the proofs of representation theorems 
for algebraic groups (combinations of groups and algebraic varieties, such as linear 
groups, finite groups, elliptic groups, etc.). Vladimir Drinfeld ()@@( Fields medalist) 
introduced quantic groups ()@CD) as nonrigid deformations of Hopf algebras, and 
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punctuality to the actions of noncommutative monoids 
in Grothendieck topoi, etc.

Constrained as we are to make a selection from the 
many and various results and subprograms of investi-
gation brought forward by Connes in his approach to 
the quiddital, let us emphasize two of them here: the 
emergence of a ‘cosmic’ Galois group that is close to 
the ‘absolute’ Galois group in number theory, a form of 
transit between a well-known eidal configuration (abso-
lute group) and an unexplored quiddital one (cosmic 
group); the utilization of spectroscopic techniques in an 
effort to demonstrate the Riemann hypothesis, an inverse 
form of transit between the quiddital and the eidal. In a 
famous article, Pierre Cartier, one of Grothendieck’s main 
disciples, had conjectured that ‘there are many reasons 
for believing in a “cosmic Galois group” acting on the 

showed that they appear naturally in the Yang-Baxter equation, a pivotal equation for 
domains of statistical mechanics. In turn, string theory in contemporary physics – the 
Pascalian utopia of a harmony between the infinitely small (quantum mechanics) 
and the infinitely large (general relativity) – stands in need of a sophisticated 
mathematical theory of knots, which can be adequately handled only by means of 
quantic groups and n-categories (categories in which one climbs the scale of transits – 
beyond morphisms between morphisms [functors], and morphisms between functors 
[natural transformations], one studies morphisms between natural transformations, 
and then morphisms between those lower-level morphisms, and so on). Drinfeld’s 
early works (written at the age of twenty!) resolved the Langlands conjecture for 
the GL(2 : k) case, with k being a global field of finite characteristic. As we will see, 
Drinfeld also proposed a combinatorial description of the Grothendieck-Teichmuller 
group, with surprising applications in physics. Beginning with Drinfeld, and perhaps 
culminating in Kontsevich, the Russian school has generated an extraordinary profusion 
of theoretical results in physics, making use of both the categorical abstractions in 
Grothendieck’s work, and the functorial conjectures of the Langlands program. A 
supreme and categorical interlacing of arithmetic-algebra-geometry would thus seem to 
be hidden in the continuous mysteries of physics. Ae philosophical consequences of 
such a situation are of enormous relevance, but are nevertheless invisible in the usual 
treatments of the philosophy of mathematics. 

fundamental constants of physical theories. Ais group 
should be closely related to the Grothendieck-Teichmüller 
group.’'FW

One of those reasons consists in a result of Connes 
and Kreimer’s ()@@@), in which it is demonstrated that 
the Lie algebra of the Grothendieck-Teichmüller group'FB 
acts naturally on the algebra corresponding to Feynman 
diagrams. Shortly thereaXer, Connes and Marcolli ('((B) 
succeeded in demonstrating that the cosmic Galois group 
can be described as the universal symmetry group U of 
renormalizable physical theories, and that, in effect, its 
Lie algebra can be extended to the Lie algebra of the 
Grothendieck-Teichmüller group.'FF

'FW P. Cartier, ‘A Mad Day’s Work: From Grothendieck to Connes and Kontsevich. Ae 
Evolution of Concepts of Space and Symmetry’, Bulletin of the American Mathematical 
Society (New Series) WC, '((): B(E. Cartier’s article was originally written in French in 
)@@C; in '(((, he added a postscript, from which we have taken our quotation. Ae 
absolute Galois group is the Galois group of the (infinite) algebraic extension Gal(Q

_
:Q )

where Q
_  

is the algebraic closure of the rationals. Ae Grothendieck-Teichmüller group 
(GT) offers a combinatorial description of the absolute Galois group. It remains an open 
conjecture whether or not the algebraic and combinatorial descriptions are equivalent 
(GT  c Gal (Q

_
:Q )). Ae Grothendieck-Teichmüller group appears in a natural manner 

in Grothendieck’s dessins d’enfants ()@CW): finitary objects aimed at characterizing the 
behavior of number fields through certain associated Riemann surfaces. Yet to be fully 
understood, dessins d’enfants – forms of the combinatorial understanding of algebra 
by way of analysis – constitute a typical Grothendieckian transit.

'FB Ae Lie algebra of GT can be described as a free algebra over the Euler numbers g(3), 
g(5),g(7), f (where g(k)=Rn$1n-k). Ae Euler numbers appear in many corners of 
number theory, but are still almost entirely unknown objects: only the irrationality 
of g(3)has been proven (Apéry )@E@, a tour de force that remained isolated for many 
years), and, recently, the irrationality of infinitely many g(k)when k is odd (Rivoal 
'(((). See Cartier, ‘A mad day’s work…’, B(F–D. 

'FF Ae Lie algebra of U is the free algebra over g(1), g(2),g(3), f. Ae proximities between 
the absolute Galois group Gal (Q

_
:Q ) and the cosmic Galois group U, through the 

mediation of GT, thus allow us to pinpoint a totally unexpected action of an arithmetical 
group on the universal constants of physics (the Planck constant, the speed of light, the 
gravitational constant, etc.). 
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punctuality to the actions of noncommutative monoids 
in Grothendieck topoi, etc.

Constrained as we are to make a selection from the 
many and various results and subprograms of investi-
gation brought forward by Connes in his approach to 
the quiddital, let us emphasize two of them here: the 
emergence of a ‘cosmic’ Galois group that is close to 
the ‘absolute’ Galois group in number theory, a form of 
transit between a well-known eidal configuration (abso-
lute group) and an unexplored quiddital one (cosmic 
group); the utilization of spectroscopic techniques in an 
effort to demonstrate the Riemann hypothesis, an inverse 
form of transit between the quiddital and the eidal. In a 
famous article, Pierre Cartier, one of Grothendieck’s main 
disciples, had conjectured that ‘there are many reasons 
for believing in a “cosmic Galois group” acting on the 

showed that they appear naturally in the Yang-Baxter equation, a pivotal equation for 
domains of statistical mechanics. In turn, string theory in contemporary physics – the 
Pascalian utopia of a harmony between the infinitely small (quantum mechanics) 
and the infinitely large (general relativity) – stands in need of a sophisticated 
mathematical theory of knots, which can be adequately handled only by means of 
quantic groups and n-categories (categories in which one climbs the scale of transits – 
beyond morphisms between morphisms [functors], and morphisms between functors 
[natural transformations], one studies morphisms between natural transformations, 
and then morphisms between those lower-level morphisms, and so on). Drinfeld’s 
early works (written at the age of twenty!) resolved the Langlands conjecture for 
the GL(2 : k) case, with k being a global field of finite characteristic. As we will see, 
Drinfeld also proposed a combinatorial description of the Grothendieck-Teichmuller 
group, with surprising applications in physics. Beginning with Drinfeld, and perhaps 
culminating in Kontsevich, the Russian school has generated an extraordinary profusion 
of theoretical results in physics, making use of both the categorical abstractions in 
Grothendieck’s work, and the functorial conjectures of the Langlands program. A 
supreme and categorical interlacing of arithmetic-algebra-geometry would thus seem to 
be hidden in the continuous mysteries of physics. Ae philosophical consequences of 
such a situation are of enormous relevance, but are nevertheless invisible in the usual 
treatments of the philosophy of mathematics. 
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group.’'FW
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can be described as the universal symmetry group U of 
renormalizable physical theories, and that, in effect, its 
Lie algebra can be extended to the Lie algebra of the 
Grothendieck-Teichmüller group.'FF

'FW P. Cartier, ‘A Mad Day’s Work: From Grothendieck to Connes and Kontsevich. Ae 
Evolution of Concepts of Space and Symmetry’, Bulletin of the American Mathematical 
Society (New Series) WC, '((): B(E. Cartier’s article was originally written in French in 
)@@C; in '(((, he added a postscript, from which we have taken our quotation. Ae 
absolute Galois group is the Galois group of the (infinite) algebraic extension Gal(Q

_
:Q )

where Q
_  

is the algebraic closure of the rationals. Ae Grothendieck-Teichmüller group 
(GT) offers a combinatorial description of the absolute Galois group. It remains an open 
conjecture whether or not the algebraic and combinatorial descriptions are equivalent 
(GT  c Gal (Q

_
:Q )). Ae Grothendieck-Teichmüller group appears in a natural manner 

in Grothendieck’s dessins d’enfants ()@CW): finitary objects aimed at characterizing the 
behavior of number fields through certain associated Riemann surfaces. Yet to be fully 
understood, dessins d’enfants – forms of the combinatorial understanding of algebra 
by way of analysis – constitute a typical Grothendieckian transit.

'FB Ae Lie algebra of GT can be described as a free algebra over the Euler numbers g(3), 
g(5),g(7), f (where g(k)=Rn$1n-k). Ae Euler numbers appear in many corners of 
number theory, but are still almost entirely unknown objects: only the irrationality 
of g(3)has been proven (Apéry )@E@, a tour de force that remained isolated for many 
years), and, recently, the irrationality of infinitely many g(k)when k is odd (Rivoal 
'(((). See Cartier, ‘A mad day’s work…’, B(F–D. 

'FF Ae Lie algebra of U is the free algebra over g(1), g(2),g(3), f. Ae proximities between 
the absolute Galois group Gal (Q

_
:Q ) and the cosmic Galois group U, through the 

mediation of GT, thus allow us to pinpoint a totally unexpected action of an arithmetical 
group on the universal constants of physics (the Planck constant, the speed of light, the 
gravitational constant, etc.). 
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‘Cartier’s dream’, as his conjecture was known for some 
years, had therefore ‘come true’, thanks to the results 
of Connes and his team, and it thus represents a sort of 
intensified, infinitely refined Pythagoreanism, harking back 
to the first, rough and original hypotheses regarding the 
existence of harmonic correspondences between math-
ematika (the study of quantity) and kosmos (order).'FD 
In Connes’s work, this arithmetico-geometrico-physical 
refinement extends to deeper analogies between physical 
divergences in field theory and arithmetical mixtures in 
Tate motifs,'FE thus approaching what Connes calls the 
very ‘heart’ of mathematics: ‘modular forms, L-functions, 
arithmetic, prime numbers, all sorts of things linked to 
that’.'FC From the dream to the heart, we therefore achieve a 
progressive revelation in the order of discovery, which we 
have already carefully observed in Grothendieck’s work, 
and which Connes takes up for his art as well: ‘Aere 
are several phases leading to the “finding” of new math, 
and while the “checking” phase is scary and involves just 

'FD It would not be out of place here to make a fresh return to Plato’s <maeus. Independently 
of the calculations contemplated there, which have obviously been outstripped, Plato’s 
underlying relational strategy does not turn out to be too far from the relational search for 
correspondences between arithmetico-geometrical forms and cosmological structures 
that is now being contemplated by Cartier, Connes and Kontsevich. We will return to 
these questions in this work’s third part.

'FE Tate’s mixed motifs ()@DF) show up in the representation of the homology classes of a 
variety by means of linear combinations of subvarieties (algebraic cycles) and in the 
connections between that representation and l-adic cohomology. Tate motifs serve as 
a concrete guide to Grothendieck’s general conjectures concerning motifs (standard 
conjectures). 

'FC C. Goldstein & G. Skandalis, ‘An Interview with Alain Connes’, EMS Newsletter DW, 
'((E: 'F–W(: 'E. 

rationality and concentration, the “creative” phase is of 
a totally different nature’. Ae emergence of simple ideas 
aXer very lengthy experimentations and the transit through 
‘mental objects which represent intermediate steps and 
results at an idealized level’ underpin the specificity of 
doing mathematics.'F@

Connes’s inventiveness reaches a still-higher pitch in 
his program to demonstrate the Riemann hypothesis by 
means of strategies and techniques drawn, essentially, 
from physics.'D( Ae passage from the quiddital to the 
eidal that surrounds the Riemann hypothesis is supremely 
original.'D) On the one hand, Connes points out that a 
quantum-theoretical study of the absorption spectrum of 

'F@ Alain Connes, ‘Advice to the Beginner’, http://www.alainconnes.org/docs/Companion.ps, '.

'D( Connes shows himself to be a devoted lover of formulas and calculations. See Goldstein 
& Skandalis, ‘An Interview with Alain Connes’ 'C. 

'D) Ae Riemann hypothesis encodes certain arithmetical properties in terms of analytic 
properties. Riemann’s zeta function is a function of a complex variable that is initially 
defined by means of an absolutely convergent series g(s) =Rn$1n-s for the case where 
Re(s)>1 (over natural numbers greater than ), this therefore coincides with the Euler 
numbers) that subsequently, through an analytic extension, gives rise to a meromorphic 
function over C, with a simple pole in s=1 (residual 1). A functional equation obtained 
by Riemann for the zeta function shows that it possesses ‘trivial’ zeros (roots) in the 
negative even integers. Riemann conjectured ()CF@) that all the other zeros of the zeta 
function lie in the complex line Re(z)=1/2 (the so-called Riemann hypothesis). Various 
mediations serve to link Riemann’s zeta function to arithmetic: the Euler formula  
Rn$1n-s=Pp prime 1/(1-p-s); other ‘mixed’ functions of a complex variable determined 
by the zeta function; intermediary functional equations between these; and the subtle 
asymptotic behavior of the functions. Riemann’s strategy inaugurates a profound 
understanding of the discrete through underlying continuous instruments, which 
would go on to be furthered by the German school of abstract algebra (Artin, Hecke), 
and which would give rise to the Weil conjectures and to Grothendieck’s grand 
cohomological machinery. Ae consequences of the Riemann hypothesis in number 
theory are quite extensive, and the hypothesis may perhaps be considered, today, as 
the greatest open problem in mathematics. For a description of the situation, see E. 
Bombieri, ‘Ae Riemann Hypothesis’, in J. Carlson et al., 3e Millennium Prize Problems  
(Providence: Ae Clay Mathematics Institute, '((D), )(E–'B.
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‘Cartier’s dream’, as his conjecture was known for some 
years, had therefore ‘come true’, thanks to the results 
of Connes and his team, and it thus represents a sort of 
intensified, infinitely refined Pythagoreanism, harking back 
to the first, rough and original hypotheses regarding the 
existence of harmonic correspondences between math-
ematika (the study of quantity) and kosmos (order).'FD 
In Connes’s work, this arithmetico-geometrico-physical 
refinement extends to deeper analogies between physical 
divergences in field theory and arithmetical mixtures in 
Tate motifs,'FE thus approaching what Connes calls the 
very ‘heart’ of mathematics: ‘modular forms, L-functions, 
arithmetic, prime numbers, all sorts of things linked to 
that’.'FC From the dream to the heart, we therefore achieve a 
progressive revelation in the order of discovery, which we 
have already carefully observed in Grothendieck’s work, 
and which Connes takes up for his art as well: ‘Aere 
are several phases leading to the “finding” of new math, 
and while the “checking” phase is scary and involves just 

'FD It would not be out of place here to make a fresh return to Plato’s <maeus. Independently 
of the calculations contemplated there, which have obviously been outstripped, Plato’s 
underlying relational strategy does not turn out to be too far from the relational search for 
correspondences between arithmetico-geometrical forms and cosmological structures 
that is now being contemplated by Cartier, Connes and Kontsevich. We will return to 
these questions in this work’s third part.

'FE Tate’s mixed motifs ()@DF) show up in the representation of the homology classes of a 
variety by means of linear combinations of subvarieties (algebraic cycles) and in the 
connections between that representation and l-adic cohomology. Tate motifs serve as 
a concrete guide to Grothendieck’s general conjectures concerning motifs (standard 
conjectures). 

'FC C. Goldstein & G. Skandalis, ‘An Interview with Alain Connes’, EMS Newsletter DW, 
'((E: 'F–W(: 'E. 

rationality and concentration, the “creative” phase is of 
a totally different nature’. Ae emergence of simple ideas 
aXer very lengthy experimentations and the transit through 
‘mental objects which represent intermediate steps and 
results at an idealized level’ underpin the specificity of 
doing mathematics.'F@

Connes’s inventiveness reaches a still-higher pitch in 
his program to demonstrate the Riemann hypothesis by 
means of strategies and techniques drawn, essentially, 
from physics.'D( Ae passage from the quiddital to the 
eidal that surrounds the Riemann hypothesis is supremely 
original.'D) On the one hand, Connes points out that a 
quantum-theoretical study of the absorption spectrum of 

'F@ Alain Connes, ‘Advice to the Beginner’, http://www.alainconnes.org/docs/Companion.ps, '.

'D( Connes shows himself to be a devoted lover of formulas and calculations. See Goldstein 
& Skandalis, ‘An Interview with Alain Connes’ 'C. 

'D) Ae Riemann hypothesis encodes certain arithmetical properties in terms of analytic 
properties. Riemann’s zeta function is a function of a complex variable that is initially 
defined by means of an absolutely convergent series g(s) =Rn$1n-s for the case where 
Re(s)>1 (over natural numbers greater than ), this therefore coincides with the Euler 
numbers) that subsequently, through an analytic extension, gives rise to a meromorphic 
function over C, with a simple pole in s=1 (residual 1). A functional equation obtained 
by Riemann for the zeta function shows that it possesses ‘trivial’ zeros (roots) in the 
negative even integers. Riemann conjectured ()CF@) that all the other zeros of the zeta 
function lie in the complex line Re(z)=1/2 (the so-called Riemann hypothesis). Various 
mediations serve to link Riemann’s zeta function to arithmetic: the Euler formula  
Rn$1n-s=Pp prime 1/(1-p-s); other ‘mixed’ functions of a complex variable determined 
by the zeta function; intermediary functional equations between these; and the subtle 
asymptotic behavior of the functions. Riemann’s strategy inaugurates a profound 
understanding of the discrete through underlying continuous instruments, which 
would go on to be furthered by the German school of abstract algebra (Artin, Hecke), 
and which would give rise to the Weil conjectures and to Grothendieck’s grand 
cohomological machinery. Ae consequences of the Riemann hypothesis in number 
theory are quite extensive, and the hypothesis may perhaps be considered, today, as 
the greatest open problem in mathematics. For a description of the situation, see E. 
Bombieri, ‘Ae Riemann Hypothesis’, in J. Carlson et al., 3e Millennium Prize Problems  
(Providence: Ae Clay Mathematics Institute, '((D), )(E–'B.
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light, using the instruments of noncommutative geometry, 
allows us to recalculate, with all the desired precision, all 
of the constants that appear in the limited developments 
of Riemann’s zeta function.'D' A fundamental critical turn 
in that approach consists in calibrating the appearance 
of a negative sign (which Connes qualifies as ‘cohomo-
logical’) in the approximations of the zeros of the zeta 
function through absorptions (and not emissions) of a 
spectrum. On the other hand, Connes offers a sweeping 
construction of analogies in an attempt to transfer to the 
case of finite extensions of Q (‘number fields’) Weil’s )@B' 
demonstration of the generalized Riemann hypothesis for 
global fields of characteristic p > 0.'DW Connes’s strategy 
(announced in '((F with Consani and Marcolli, and with 
an eye to the near future) here consists in progressively 
eliminating the obstructions in the transit by means of 
an elucidation of concepts, definitions and techniques 
in noncommutative geometry that correspond to Weil’s 
successful undertakings in algebraic geometry.'DB In this 

'D' A. Connes, ‘Trace Formula in Noncommutative Geometry and the Zeros of the Riemann 
Zeta Function’, Selecta Mathematica (New Series) F, )@@@: '@–)(D. Ae idea of using the 
spectrum and the trace of an operator in a suitable Hilbert space to capture the zeros 
of the zeta function comes from Hilbert and Pólya, as Connes himself indicates. His 
originality consists in combining the natural instruments of noncommutative geometry 
connected to Hilbert spaces with the universal physical situations underlying those 
instruments.

'DW For details see Connes & Marcolli, A Walk in the Noncommutative Garden, CB-@@. 

'DB Connes’s program clearly shows how certain webs of invention and discovery proceed in 
higher mathematics. Ae analogies – or harmonious conjectures – correspond to precise 
(but not theorematic) translations between algebraic geometry and noncommutative 
geometry, with transferences and technical redefinitions of concepts in either context. 
Ae refined structural organization of each realm allows for an intuition of synthetic 

way, we may gain access to characteristic zero as the ‘limit’ 
(in noncommutative geometry) of those that are well 
behaved in characteristic p. In each of these processes, 
a back-and-forth between the quiddital and the eidal, without 
any privileged direction being fixed in advance, allows for 
the emergence of mathematical results of great depth – a 
depth that is not only conceptual and technical but also 
philosophical. 

Maxim Kontsevich (Russia, b. )@DB) is another 
remarkable contemporary mathematical author who has 
been able to unite high speculative abstraction and the 
concrete richness of physical phenomena. Kontsevich 
was awarded the Fields Medal in )@@C. In his acceptance 
speech, he said,'DF 

For myself, as a mathematician, it is very interest-
ing to decipher the rules of the game of theoretical 
physics, where one doesn’t see structures so much 
as the symmetry, locality and linearity of observ-
able quantities. It is very surprising that those weak 

correspondences, which are then analytically delimited and contrasted with the 
many examples available, thereby producing a sort of dictionary between algebraic 
geometry and noncommutative geometry. A series of ‘analogies’ can be found in 
Connes & Marcolli, A Walk in the Noncommutative Garden, @. As the authors indicate, 
the fluctuations implicit in the analogies are what drives the subsequent development of 
the mathematics. To eliminate this indispensable, initial vagueness from mathematics – as 
a century of analytic philosophy presumed to do – therefore impedes understanding 
of the complex creative forms of the discipline. 

'DF For a technical description of Kontsevich’s work prior to the Fields Medal, see C. 
H. Taubes, ‘Ae Work of Maxim Kontsevich’, in Atiyah, Iagolnitzer, Fields Medalists’ 
Lectures, E(W-)(. 
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light, using the instruments of noncommutative geometry, 
allows us to recalculate, with all the desired precision, all 
of the constants that appear in the limited developments 
of Riemann’s zeta function.'D' A fundamental critical turn 
in that approach consists in calibrating the appearance 
of a negative sign (which Connes qualifies as ‘cohomo-
logical’) in the approximations of the zeros of the zeta 
function through absorptions (and not emissions) of a 
spectrum. On the other hand, Connes offers a sweeping 
construction of analogies in an attempt to transfer to the 
case of finite extensions of Q (‘number fields’) Weil’s )@B' 
demonstration of the generalized Riemann hypothesis for 
global fields of characteristic p > 0.'DW Connes’s strategy 
(announced in '((F with Consani and Marcolli, and with 
an eye to the near future) here consists in progressively 
eliminating the obstructions in the transit by means of 
an elucidation of concepts, definitions and techniques 
in noncommutative geometry that correspond to Weil’s 
successful undertakings in algebraic geometry.'DB In this 

'D' A. Connes, ‘Trace Formula in Noncommutative Geometry and the Zeros of the Riemann 
Zeta Function’, Selecta Mathematica (New Series) F, )@@@: '@–)(D. Ae idea of using the 
spectrum and the trace of an operator in a suitable Hilbert space to capture the zeros 
of the zeta function comes from Hilbert and Pólya, as Connes himself indicates. His 
originality consists in combining the natural instruments of noncommutative geometry 
connected to Hilbert spaces with the universal physical situations underlying those 
instruments.

'DW For details see Connes & Marcolli, A Walk in the Noncommutative Garden, CB-@@. 

'DB Connes’s program clearly shows how certain webs of invention and discovery proceed in 
higher mathematics. Ae analogies – or harmonious conjectures – correspond to precise 
(but not theorematic) translations between algebraic geometry and noncommutative 
geometry, with transferences and technical redefinitions of concepts in either context. 
Ae refined structural organization of each realm allows for an intuition of synthetic 

way, we may gain access to characteristic zero as the ‘limit’ 
(in noncommutative geometry) of those that are well 
behaved in characteristic p. In each of these processes, 
a back-and-forth between the quiddital and the eidal, without 
any privileged direction being fixed in advance, allows for 
the emergence of mathematical results of great depth – a 
depth that is not only conceptual and technical but also 
philosophical. 

Maxim Kontsevich (Russia, b. )@DB) is another 
remarkable contemporary mathematical author who has 
been able to unite high speculative abstraction and the 
concrete richness of physical phenomena. Kontsevich 
was awarded the Fields Medal in )@@C. In his acceptance 
speech, he said,'DF 

For myself, as a mathematician, it is very interest-
ing to decipher the rules of the game of theoretical 
physics, where one doesn’t see structures so much 
as the symmetry, locality and linearity of observ-
able quantities. It is very surprising that those weak 

correspondences, which are then analytically delimited and contrasted with the 
many examples available, thereby producing a sort of dictionary between algebraic 
geometry and noncommutative geometry. A series of ‘analogies’ can be found in 
Connes & Marcolli, A Walk in the Noncommutative Garden, @. As the authors indicate, 
the fluctuations implicit in the analogies are what drives the subsequent development of 
the mathematics. To eliminate this indispensable, initial vagueness from mathematics – as 
a century of analytic philosophy presumed to do – therefore impedes understanding 
of the complex creative forms of the discipline. 

'DF For a technical description of Kontsevich’s work prior to the Fields Medal, see C. 
H. Taubes, ‘Ae Work of Maxim Kontsevich’, in Atiyah, Iagolnitzer, Fields Medalists’ 
Lectures, E(W-)(. 
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conditions ultimately lead to such rich and compli-
cated structures.'DD

Ais is the case with Feynman diagrams in theoretical 
physics,'DE whose formal use in mathematics was intro-
duced by Kontsevich in order to resolve some formidable 
problems: Witten’s conjecture regarding moduli spaces 
of algebraic curves; the quantization of Poisson varieties; 
and the construction of invariants of knots.

 In the arithmetic of moduli spaces of algebraic curves, 
certain cohomological invariants appear (‘intersection 
numbers’), which may in turn be represented as complex 
combinatorial coefficients of a formal series F(t0t-). For-
mally manipulating two quantum field theories, Witten 
conjectures that the formal series U=22F/2 t0

2 should 
satisfy the KdV equation,'DC which would give rise to 
numerous interrelations between the intersection numbers 
in the arithmetic of algebraic curves. Making use of his 
great talent for combinatorial calculations, Kontsevich 

'DD M. Kontsevich, reception speech at the Académie des Sciences ('((W), http://www.
academie-sciences.fr/membres/K/Kontsevich_Maxim_discours.htm, '.

'DE Feynman diagrams are graphs by which one may represent the perturbations of particles 
in quantum field theory. Certain combinatorial (dis)symmetries and (dis)equilibria 
in the diagrams no only suffice to simplify the calculations but predict new physical 
situations, which subsequent mathematical calculations confirm. Ae heuristic use of 
the diagrams in theoretical physics has been very successful, opening an important 
gateway onto visuality in theoretical knowledge. A mathematical formalization of the 
diagrams appears in A. Joyal & R. Street, ‘Ae Geometry of   Calculus I’, Advances in 
Mathematics CC, )@@): FF-))' (using the instruments of category theory). On the other 
hand, the mathematical use of the diagrams in order to resolve deep mathematical 
problems is due to Kontsevich. 

'DC See p. ')F, n. 'WF.

proved Witten’s conjecture and succeeded in exhibiting 
those interrelations in an explicit fashion, starting with 
constructive models for moduli spaces, based on Riemann 
surfaces of diagrams with metrics.'D@ Ais is an extraordi-
nary example of the inventive richness of contemporary 
mathematics, whereby arithmetic and physics are woven 
together in ways that are not predetermined in advance: 
the conjecture is arithmetico-differential, motivated by a 
comparison with physics, and the proof interlaces com-
binatorial, arithmetical and continuous fragments on 
the basis of certain physical images (diagrams, graphs, 
surfaces, metrics). Ae bipolar transit between physics 
and mathematics is thus truly the generator of a new 
knowledge. What matters here is not a supposedly originary 
base (the physical world, the world of mediations or the 
world of ideas) that would firmly support the edifice of 
knowledge, but a tight correlational warp that supports the 
transit of knowledge (see chapters C and @).

 Phenomena of quantization – the deformation of 
observable quantities by means of new parameters and the 
asymptotic study of the deformations as the parameters 
tend toward zero – show up on many levels in physics, 
and, in particular, in the study of the infinitely large 
and the infinitely small. On the one hand, in general 
relativity, it has been observed how the Poincaré group 

'D@ M. Kontsevich, ‘Intersection Aeory on the Moduli Space of Curves and the Matrix 
Airy Function’, Communications in Mathematical Physics, )BE, )@@': )-'W. 
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conditions ultimately lead to such rich and compli-
cated structures.'DD

Ais is the case with Feynman diagrams in theoretical 
physics,'DE whose formal use in mathematics was intro-
duced by Kontsevich in order to resolve some formidable 
problems: Witten’s conjecture regarding moduli spaces 
of algebraic curves; the quantization of Poisson varieties; 
and the construction of invariants of knots.

 In the arithmetic of moduli spaces of algebraic curves, 
certain cohomological invariants appear (‘intersection 
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mally manipulating two quantum field theories, Witten 
conjectures that the formal series U=22F/2 t0

2 should 
satisfy the KdV equation,'DC which would give rise to 
numerous interrelations between the intersection numbers 
in the arithmetic of algebraic curves. Making use of his 
great talent for combinatorial calculations, Kontsevich 

'DD M. Kontsevich, reception speech at the Académie des Sciences ('((W), http://www.
academie-sciences.fr/membres/K/Kontsevich_Maxim_discours.htm, '.

'DE Feynman diagrams are graphs by which one may represent the perturbations of particles 
in quantum field theory. Certain combinatorial (dis)symmetries and (dis)equilibria 
in the diagrams no only suffice to simplify the calculations but predict new physical 
situations, which subsequent mathematical calculations confirm. Ae heuristic use of 
the diagrams in theoretical physics has been very successful, opening an important 
gateway onto visuality in theoretical knowledge. A mathematical formalization of the 
diagrams appears in A. Joyal & R. Street, ‘Ae Geometry of   Calculus I’, Advances in 
Mathematics CC, )@@): FF-))' (using the instruments of category theory). On the other 
hand, the mathematical use of the diagrams in order to resolve deep mathematical 
problems is due to Kontsevich. 

'DC See p. ')F, n. 'WF.

proved Witten’s conjecture and succeeded in exhibiting 
those interrelations in an explicit fashion, starting with 
constructive models for moduli spaces, based on Riemann 
surfaces of diagrams with metrics.'D@ Ais is an extraordi-
nary example of the inventive richness of contemporary 
mathematics, whereby arithmetic and physics are woven 
together in ways that are not predetermined in advance: 
the conjecture is arithmetico-differential, motivated by a 
comparison with physics, and the proof interlaces com-
binatorial, arithmetical and continuous fragments on 
the basis of certain physical images (diagrams, graphs, 
surfaces, metrics). Ae bipolar transit between physics 
and mathematics is thus truly the generator of a new 
knowledge. What matters here is not a supposedly originary 
base (the physical world, the world of mediations or the 
world of ideas) that would firmly support the edifice of 
knowledge, but a tight correlational warp that supports the 
transit of knowledge (see chapters C and @).

 Phenomena of quantization – the deformation of 
observable quantities by means of new parameters and the 
asymptotic study of the deformations as the parameters 
tend toward zero – show up on many levels in physics, 
and, in particular, in the study of the infinitely large 
and the infinitely small. On the one hand, in general 
relativity, it has been observed how the Poincaré group 

'D@ M. Kontsevich, ‘Intersection Aeory on the Moduli Space of Curves and the Matrix 
Airy Function’, Communications in Mathematical Physics, )BE, )@@': )-'W. 
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(isometries of Minkowski space-time) tends toward the 
Galileo group (isometries of euclidean space-time) when 
the parameter bound to the speed of light tends toward 
zero. On the other hand, in quantum mechanics, it has 
been observed how the ‘natural structures’ of quantum 
mechanics tend toward the ‘natural structures’ of classical 
mechanics when the parameter tied to the Planck constant 
tends toward zero. Ae structures of classical mechanics 
are well known, and correspond to the Poisson manifolds,'E( 
in which one can naturally formalize the Hamiltonian 
as an operator for the measurement of the energy (well-
determined energy and momentum) of classical physical 
systems. Although, from a mathematical point of view, the 
quantizations of an algebra have, since the )@F(s, been 
understood as quotients of formal series over that algebra 
(Kodaira), the quantizations of Poisson manifolds (which 
later showed up in quantum mechanics) had not been 
rigorously studied before Kontsevich. Here, Kontsevich 
discovers that such a quantization is linked to a new kind 
of string theory, where the use of Feynman diagrams is 
significant; and he exhibits, again in an explicit manner, 
that the deformation is linked to certain perturbations 
of quantum fields and to extremely subtle calculations 

'E( A Poisson algebra is an associative algebra with a Lie bracket that acts as a derivation of 
the algebraic operation (the law [x, yz]=[x, y] z + [x, z] y,  is to be read as an analogue of 
‘Leibniz’s Law’: 2x(yz) = (2 xy)z+(2xz)y). A Poisson manifold is a differential manifold 
with the structure of a Poisson algebra. Ae paradigm of a Poisson manifold is the 
algebra of smooth functions over a symplectic manifold (a generalization of a manifold 
with a Hamiltonian). 

of certain terms of asymptotic expansions.'E) Even more 
astonishingly,'E' what emerges in Kontsevich’s calculations is 
an action of the Grothendieck-Teichmüller group on the 
space of possible universal formulas of physics, a group 
that can also be seen as the symmetry group of the pos-
sible quantizations of the original Poisson manifold. And 
so we find, in a totally unexpected way, a corroboration 
of Connes’s simultaneous discovery regarding the action 
of the absolute Galois group on the universal constants 
of physics. 

A third unexpected place where Feynman diagrams 
show up, to help resolve highly sophisticated mathematical 
problematics, is in the construction of universal invariants 
in mathematical knot theory.'EW In his work, Kontsevich 
introduces an entire series of novel constructions over 
which the invariants are layered: complex differentials of 

'E) M. Kontsevich, ‘Deformation Quantization of Poisson Manifolds I’, IHES preprints 
M/@E/E' ()@@E). 

'E' Kontsevich describes the ‘surprise’ caused by the emergence of new strings in his 
quantization calculations (Kontsevich, speech, Académie des Sciences, )). Ae surprise 
caused by the action of the Grothendieck-Teichmüller group was in no doubt greater 
still. 

'EW A mathematical knot corresponds to the intuitive image of a string tied into a knot, with 
its extremities identified (formally, a knot is therefore an immersion of the circle S1 in 
RW). A general and complete classification of knots is still an open problem. Poincaré, 
Reidemesteir and Alexander, in the first half of the twentieth century, proposed some 
initial instruments for such a classification. But it was above all in the last decades of 
the twentieth century, with the work of Jones and Witten ()@@( Fields medalists), that 
knot theory made its theoretical breakthrough. Vassiliev proposed a series of topological 
invariants connected to the Jones polynomial, which Kontsevich had reconstructed 
by means of abstract integrals over suitable algebraic structures, with strong universal 
properties. See M. Kontsevich, ‘Feynman Diagrams and Low-Dimensional Topology’, 
First European Congress of Mathematics (Paris 9::7) (Boston: Birkhäuser, )@@B), @E–)'), 
and M. Kontsevich, ‘Vassiliev’s Knot Invariants’, Advances in Soviet Mathematics, )D/', 
)@@W: )WE–F(. 
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(isometries of Minkowski space-time) tends toward the 
Galileo group (isometries of euclidean space-time) when 
the parameter bound to the speed of light tends toward 
zero. On the other hand, in quantum mechanics, it has 
been observed how the ‘natural structures’ of quantum 
mechanics tend toward the ‘natural structures’ of classical 
mechanics when the parameter tied to the Planck constant 
tends toward zero. Ae structures of classical mechanics 
are well known, and correspond to the Poisson manifolds,'E( 
in which one can naturally formalize the Hamiltonian 
as an operator for the measurement of the energy (well-
determined energy and momentum) of classical physical 
systems. Although, from a mathematical point of view, the 
quantizations of an algebra have, since the )@F(s, been 
understood as quotients of formal series over that algebra 
(Kodaira), the quantizations of Poisson manifolds (which 
later showed up in quantum mechanics) had not been 
rigorously studied before Kontsevich. Here, Kontsevich 
discovers that such a quantization is linked to a new kind 
of string theory, where the use of Feynman diagrams is 
significant; and he exhibits, again in an explicit manner, 
that the deformation is linked to certain perturbations 
of quantum fields and to extremely subtle calculations 

'E( A Poisson algebra is an associative algebra with a Lie bracket that acts as a derivation of 
the algebraic operation (the law [x, yz]=[x, y] z + [x, z] y,  is to be read as an analogue of 
‘Leibniz’s Law’: 2x(yz) = (2 xy)z+(2xz)y). A Poisson manifold is a differential manifold 
with the structure of a Poisson algebra. Ae paradigm of a Poisson manifold is the 
algebra of smooth functions over a symplectic manifold (a generalization of a manifold 
with a Hamiltonian). 

of certain terms of asymptotic expansions.'E) Even more 
astonishingly,'E' what emerges in Kontsevich’s calculations is 
an action of the Grothendieck-Teichmüller group on the 
space of possible universal formulas of physics, a group 
that can also be seen as the symmetry group of the pos-
sible quantizations of the original Poisson manifold. And 
so we find, in a totally unexpected way, a corroboration 
of Connes’s simultaneous discovery regarding the action 
of the absolute Galois group on the universal constants 
of physics. 

A third unexpected place where Feynman diagrams 
show up, to help resolve highly sophisticated mathematical 
problematics, is in the construction of universal invariants 
in mathematical knot theory.'EW In his work, Kontsevich 
introduces an entire series of novel constructions over 
which the invariants are layered: complex differentials of 

'E) M. Kontsevich, ‘Deformation Quantization of Poisson Manifolds I’, IHES preprints 
M/@E/E' ()@@E). 

'E' Kontsevich describes the ‘surprise’ caused by the emergence of new strings in his 
quantization calculations (Kontsevich, speech, Académie des Sciences, )). Ae surprise 
caused by the action of the Grothendieck-Teichmüller group was in no doubt greater 
still. 

'EW A mathematical knot corresponds to the intuitive image of a string tied into a knot, with 
its extremities identified (formally, a knot is therefore an immersion of the circle S1 in 
RW). A general and complete classification of knots is still an open problem. Poincaré, 
Reidemesteir and Alexander, in the first half of the twentieth century, proposed some 
initial instruments for such a classification. But it was above all in the last decades of 
the twentieth century, with the work of Jones and Witten ()@@( Fields medalists), that 
knot theory made its theoretical breakthrough. Vassiliev proposed a series of topological 
invariants connected to the Jones polynomial, which Kontsevich had reconstructed 
by means of abstract integrals over suitable algebraic structures, with strong universal 
properties. See M. Kontsevich, ‘Feynman Diagrams and Low-Dimensional Topology’, 
First European Congress of Mathematics (Paris 9::7) (Boston: Birkhäuser, )@@B), @E–)'), 
and M. Kontsevich, ‘Vassiliev’s Knot Invariants’, Advances in Soviet Mathematics, )D/', 
)@@W: )WE–F(. 



?8T

 

?8U

 

graphs; cohomology groups of those complex differen-
tials, differential forms over those groups; integrability of 
those forms through a generalized Stokes argument; etc. 
And so we find ourselves in the company of a mathemati-
cian extraordinarily skilled in combinatorial manipula-
tions, and endowed with tremendous plasticity in the most 
diverse forms of exact transit: the technical and calculative 
passage between nearby subbranches of mathematics; the 
analogical and structural passage between more distant 
realms of mathematics; and the visual and conceptual 
passage between mathematics and physics. 

We encounter another example of Kontsevich’s trans-
gressive power in his ideas for homologically formal-
izing the phenomena of mirror symmetry in theoretical 
physics.'EB Witten described a topological unfolding in 
supersymmetry phenomena, which corresponds to a 
sort of specular reflection between strings (A-branes 
and B-branes, sophisticated models that incorporate 
Riemann surfaces and holomorphic manifolds). Kontse-
vich conjectured that the mirror symmetry between two 
manifolds X, Y should correspond to an equivalence of two 
triangulated categories,'EF one coming from the algebraic 

'EB M. Kontsevich, ‘Gromov-Witten Classes, Quantum Cohomology and Enumerative 
Geometry’, Communications in Mathematical Physics, )DB, )@@B: F'F–D'; M. Kontsevich 
& Y. Soibelman, ‘Homological Mirror Symmetry and Torus Fibrations’, in K. Fukaya 
et al., Symplectic Geometry and Mirror Symmetry (Singapore: World Scientific, '(()), 
'(W–DW. 

'EF Triangulated categories supply axioms (the naturalness of which is still under 
discussion) that can be put to use in trying to universally capture the properties 

geometry of X, and the other from the symplectic geometry 
of Y. In this manner, complex symmetry phenomena in 
the physics of the infinitely small correspond to transfers 
of structure between the discrete (algebraic varieties) 
and the continuous (symplectic manifolds), thus giving 
rise to another new, totally surprising and unexpected 
connection between physics and mathematics. Kontsev-
ich’s hypothesis was later mathematically demonstrated in 
many cases – for elliptic curves (Kontsevich, Polischuk, 
Zaslow), for tori (Kontsevich, Soibelman), for quartics 
(Seidel) – and physically confirmed with the discovery of 
new strings (D-branes) anticipated by the theory. 

Kontsevich’s other works explore very deep connec-
tions between motifs, ‘operads’,'ED the cohomology of Lie 
algebras and the topology of varieties, seeking to provide 
the foundations for a ubiquitous quantum cohomology, 
which would reveal the presence of certain universal 

of the derived category of an abelian category. Given an abelian category A (which 
generalizes the properties of the category of abelian groups), Com(A) is the category 
of its simplicial complexes with chain morphisms, and Der(A) is the derived category 
whose objects are homotopy classes of the objects of Com(A), and whose morphisms 
are localizations (modulo quasi-isomorphism) of the morphisms of Com(A). Com(A) and 
Der(A) are triangulated categories. Ae notion comes from Grothendieck and Verdier 
(at the beginning of the sixties, and with Verdier’s )@DE thesis – not published until 
)@@D!), where it is used to express certain properties of duality in a general fashion. 

'ED Operads can be understood in terms of the analogy: algebras/operads / representations/
groups. Operads are collections of operations that compose with one another well and 
that realize a sort of minimal (disincarnate) compositional combinatorics, underlying 
the higher algebras in which the operads are incarnated in a concrete fashion. Operads 
can thus be seen as one more example of generic – or archetypical, we do not fear the 
word – constructs, like many other mathematical objects that we have been parading 
through these pages (universal objects in categories, cohomologies, motifs, possible 
cofinalities, etc.). In the next chapter we will supply additional mathematical facts 
concerning this emergence of ‘archetypes’, and in chapters C and @ we will study their 
ontic and epistemic status.   
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graphs; cohomology groups of those complex differen-
tials, differential forms over those groups; integrability of 
those forms through a generalized Stokes argument; etc. 
And so we find ourselves in the company of a mathemati-
cian extraordinarily skilled in combinatorial manipula-
tions, and endowed with tremendous plasticity in the most 
diverse forms of exact transit: the technical and calculative 
passage between nearby subbranches of mathematics; the 
analogical and structural passage between more distant 
realms of mathematics; and the visual and conceptual 
passage between mathematics and physics. 

We encounter another example of Kontsevich’s trans-
gressive power in his ideas for homologically formal-
izing the phenomena of mirror symmetry in theoretical 
physics.'EB Witten described a topological unfolding in 
supersymmetry phenomena, which corresponds to a 
sort of specular reflection between strings (A-branes 
and B-branes, sophisticated models that incorporate 
Riemann surfaces and holomorphic manifolds). Kontse-
vich conjectured that the mirror symmetry between two 
manifolds X, Y should correspond to an equivalence of two 
triangulated categories,'EF one coming from the algebraic 

'EB M. Kontsevich, ‘Gromov-Witten Classes, Quantum Cohomology and Enumerative 
Geometry’, Communications in Mathematical Physics, )DB, )@@B: F'F–D'; M. Kontsevich 
& Y. Soibelman, ‘Homological Mirror Symmetry and Torus Fibrations’, in K. Fukaya 
et al., Symplectic Geometry and Mirror Symmetry (Singapore: World Scientific, '(()), 
'(W–DW. 

'EF Triangulated categories supply axioms (the naturalness of which is still under 
discussion) that can be put to use in trying to universally capture the properties 

geometry of X, and the other from the symplectic geometry 
of Y. In this manner, complex symmetry phenomena in 
the physics of the infinitely small correspond to transfers 
of structure between the discrete (algebraic varieties) 
and the continuous (symplectic manifolds), thus giving 
rise to another new, totally surprising and unexpected 
connection between physics and mathematics. Kontsev-
ich’s hypothesis was later mathematically demonstrated in 
many cases – for elliptic curves (Kontsevich, Polischuk, 
Zaslow), for tori (Kontsevich, Soibelman), for quartics 
(Seidel) – and physically confirmed with the discovery of 
new strings (D-branes) anticipated by the theory. 

Kontsevich’s other works explore very deep connec-
tions between motifs, ‘operads’,'ED the cohomology of Lie 
algebras and the topology of varieties, seeking to provide 
the foundations for a ubiquitous quantum cohomology, 
which would reveal the presence of certain universal 

of the derived category of an abelian category. Given an abelian category A (which 
generalizes the properties of the category of abelian groups), Com(A) is the category 
of its simplicial complexes with chain morphisms, and Der(A) is the derived category 
whose objects are homotopy classes of the objects of Com(A), and whose morphisms 
are localizations (modulo quasi-isomorphism) of the morphisms of Com(A). Com(A) and 
Der(A) are triangulated categories. Ae notion comes from Grothendieck and Verdier 
(at the beginning of the sixties, and with Verdier’s )@DE thesis – not published until 
)@@D!), where it is used to express certain properties of duality in a general fashion. 

'ED Operads can be understood in terms of the analogy: algebras/operads / representations/
groups. Operads are collections of operations that compose with one another well and 
that realize a sort of minimal (disincarnate) compositional combinatorics, underlying 
the higher algebras in which the operads are incarnated in a concrete fashion. Operads 
can thus be seen as one more example of generic – or archetypical, we do not fear the 
word – constructs, like many other mathematical objects that we have been parading 
through these pages (universal objects in categories, cohomologies, motifs, possible 
cofinalities, etc.). In the next chapter we will supply additional mathematical facts 
concerning this emergence of ‘archetypes’, and in chapters C and @ we will study their 
ontic and epistemic status.   
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algebraic ‘archetypes’ behind the many continuous func-
tions of physics.'EE At stake here is a situation one may 
find at the very ‘center’ of mathematics, and which would 
answer, in a novel manner, to what Aom called the 
‘founding aporia’ of mathematics. Indeed, Kontsevich 
has explicitly pointed to a possible enlarging of the heart 
of mathematics (recalling Connes), in which the radical 
importance of the current connection between physics 
and mathematics is emphasized:

Ae impact that the new discoveries in physics have 
had on mathematics is enormous. One could say 
that, before, in mathematics, there existed a principal 
center of mysteries, the group of all the conjectures 
interlacing number theory, the motifs of algebraic 
varieties, the L-functions (generalizations of Rie-
mann’s zeta function) and automorphic forms, which 
is to say the harmonic analysis of a locally homog-
enous space. Now, however, the theory of quantum 
fields and string theory constitute a second center of 
mysteries, and offer a new depth and new perspectives 
to mathematics.'EC

'EE M. Kontsevich, ‘Operads and Motives in Deformation Quantization’, Letters in 
Mathematical Physics, BC, )@@@: WF–E'; M. Kontsevich, ‘Deformation Quantization of 
Algebraic Varieties’, Letters in Mathematical Physics, FD, '((): 'E)–@B. 

'EC Kontsevich, speech at the Académie des sciences, ). 

In this manner, the quidditas imposes its massive imprint 
on the eidal signs aimed at helping us understand the 
world. Amid all of these tensions, we see how the ‘world’ 
consists in a series of data/structures (Peircean firstness), 
registers/models (Peircean secondness) and transits/
functors (Peircean thirdness), whose progressive interlac-
ing into a web not only allows us to better understand the 
world, but constitutes it in its very emergence. In the next 
chapter ,we will see how contemporary mathematics is 
finding new, stable supports in that web (invariants, 
‘archetypes’), thus solidifying the relational and synthetic glu-
ing of both phenomena and concepts, without any need of an 
analytic foundation to ensure the security of the transit.
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algebraic ‘archetypes’ behind the many continuous func-
tions of physics.'EE At stake here is a situation one may 
find at the very ‘center’ of mathematics, and which would 
answer, in a novel manner, to what Aom called the 
‘founding aporia’ of mathematics. Indeed, Kontsevich 
has explicitly pointed to a possible enlarging of the heart 
of mathematics (recalling Connes), in which the radical 
importance of the current connection between physics 
and mathematics is emphasized:

Ae impact that the new discoveries in physics have 
had on mathematics is enormous. One could say 
that, before, in mathematics, there existed a principal 
center of mysteries, the group of all the conjectures 
interlacing number theory, the motifs of algebraic 
varieties, the L-functions (generalizations of Rie-
mann’s zeta function) and automorphic forms, which 
is to say the harmonic analysis of a locally homog-
enous space. Now, however, the theory of quantum 
fields and string theory constitute a second center of 
mysteries, and offer a new depth and new perspectives 
to mathematics.'EC

'EE M. Kontsevich, ‘Operads and Motives in Deformation Quantization’, Letters in 
Mathematical Physics, BC, )@@@: WF–E'; M. Kontsevich, ‘Deformation Quantization of 
Algebraic Varieties’, Letters in Mathematical Physics, FD, '((): 'E)–@B. 

'EC Kontsevich, speech at the Académie des sciences, ). 

In this manner, the quidditas imposes its massive imprint 
on the eidal signs aimed at helping us understand the 
world. Amid all of these tensions, we see how the ‘world’ 
consists in a series of data/structures (Peircean firstness), 
registers/models (Peircean secondness) and transits/
functors (Peircean thirdness), whose progressive interlac-
ing into a web not only allows us to better understand the 
world, but constitutes it in its very emergence. In the next 
chapter ,we will see how contemporary mathematics is 
finding new, stable supports in that web (invariants, 
‘archetypes’), thus solidifying the relational and synthetic glu-
ing of both phenomena and concepts, without any need of an 
analytic foundation to ensure the security of the transit.
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A metaphor for understanding the complex transits that 
take place in contemporary mathematics can be found 
in the image of an articulated pendulum. Unlike a simple 
pendulum, which, as it sweeps its course, determines a fixed 
frontier, equidistant between its extremes, an articulated 
pendulum – built by linking together two pendula oscil-
lating in opposite directions – defines an altogether extraor-
dinary dynamic curvature, unimaginable if one were just to 
consider the two pendula separately. In fact, in a chrono-
photograph of an articulated pendulum by Marey ()C@B 
– see figure )(, overleaf), we can see how an entire extensive 
spectrum of the intermediate emerges in the reticulated undu-
lation to the leX, thereby opening itself to the curvatures 
characteristic of the living and the organic. Ae contrast 
between an articulated and a simple pendulum serves as a 
simple, metaphorical contrast between advanced and ele-
mentary mathematics. Indeed, on the one hand, advanced 
mathematics – and especially contemporary mathematics, 
as we have shown in the second part of this work – harbors 
an entire series of dialectical concretizations arising from a 
sophisticated articulation between webs and scales of con-
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On the other hand, the low levels of complexity in the 
techniques of elementary mathematics inherently simplify 
the underlying conceptual movement; they therefore have 
no need of truly subtle (infinitely discerning) articulations 
or hierarchies in order to erect their edifice. We thus have 
a metaphorical counterpoint between the articulated and 
the simple, which is further supported by a counterpoint 
between a ‘relative mathematics’, a mathematics in motion, 
in the style of Grothendieck (contemporary mathematics, 
articulated pendulum), and an ‘absolute mathematics’, 
a mathematics at rest, in the style of Russell (elementary 
mathematics, analytic foundation, simple pendulum).
 

         Figure ?W. Articulated pendulum, a=er a chronophotograph by Marey.

Ae (dynamic, organic, living) curvature we see on the 
leX side of figure )( may seem to transcend the composite 
and the projective, while the situation can actually be 
reconstructed on the basis of prototypical underlying ten-
sions (the contrary impulses between the greater and the 
lesser pendula) by anyone who knows how the articulated 
pendulum works. Likewise, behind the processes of ascent 
and descent that we have been describing in the preceding 
chapters, behind the pendular oscillations between frag-
ments of ideality and reality, behind what we have called 
the bipolar dialectic between the eidal and the quiddital 
– which is to say, behind the incessant transit in both direc-
tions between concepts and data, between languages and 
structures, between mathematics and physics, between 
imagination and reason – contemporary mathematics has 
gone on to produce deep archetypes, by which the transit 
can be stabilized, the opposing polarities mediated, and 
the pendular movements balanced. 

 With the neologism archeal (from archê [principle or 
origin, see figure )), overleaf]) we will designate, in this 
chapter, the search for (and discovery of) remarkable 
invariants in contemporary mathematics, by which the 
transits can be soundly controlled, without any need of being 
anchored in an absolute ground. Aose invariants will serve 
as relative origins (arkhô), commanding (arkhên) movement 
on a particular level (that is, in specific concrete catego-
ries). We will therefore take up a revolutionary conception 
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which has surfaced in contemporary mathematics in a 
theorematic manner: the register of universals capable of 
unmooring themselves from any ‘primordial’ absolute, relative 
universals regulating the flow of knowledge. In this chapter 
we will discover certain technical constructions in that 
register of ‘decantations of the universal’, and in chapter @  
we will inquire as to how we may contain the apparent 
contradiction in terms ‘relative universal’, which will give 
rise to a new founding synthetic aporia of mathematics (one 
that is nonanalytic – that is, nonfoundational). 

Figure ??. 3e Archeal Realm.

Ae works of Peter Freyd (USA, b. )@WF) in category the-
ory forcefully bring to light the emergence of archetypes 

in the structuration of mathematical thought. As we have 
already seen with Grothendieck, the dialectic of the One 
and the Many finds one of its happiest expressions in 
categorical thought, where one object defined by means 
of universal properties in abstract categories will in turn 
appear or turn out to be many, over the plurality of con-
crete categories where it ‘incarnates’. Ae One and the 
Universal enter into perfect counterpoint and dialogue 
with the many and the contextual. Going one step further, 
Freyd’s allegories 'E@ are abstract categories of relations, 
axiomatized through a generic relational combinatorics, 
beyond the very restrictions of functionality. Here, full 
attention to the categorical diagrams of relational com-
position serves to reveal the precise mechanisms of one/
many adaptation that mediate between logical theories 
and their various representations – mechanisms that a 
functional, set-theoretic reading would fail to detect.

 Indeed, Freyd’s categorical and relational machinery 
furnishes axiomatizations for hitherto unnoticed inter-
mediate categories – categories of lesser representational 
power than Lawvere’s topoi – and shows that they con-
stitute classes of natural models for intermediate logics 
between certain ‘minimal’ logics and intuitionistic logic. 
With the discovery of a remarkable, ubiquitous process 
in categorical logic, which we will turn to in a moment, 

'E@ P. Freyd & A. Scedrov, Categories, Allegories (Amsterdam: North-Holland, )@@().
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commencing (arkhô) commanding (arkhên)
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Freyd shows how, starting from pure type theories with 
certain structural properties (regularity, coherence, first-
order, higher-order), one can uniformly construct, by 
means of a controlled architectonic hierarchy, free categories 
that reflect the given structural properties in an origin 
(regular categories,'C( prelogoi,'C) logoi,'C' and topoi'CW).  
In reaching the free categories, we obtain the most ‘dis-
incarnate’ categories possible, categories that can be 
projected into any other category with similar properties: 
Freyd thereby succeeds in constructing something like 
initial archetypes of mathematical theorization. His dis-
covery is doubly significant, because it not only describes 
the invariants of logico-relational transit, but seizes them 
in a universal manner, beyond the particular fluctuations 
of each logical fragment. As oXen happens with great 
turns in mathematics, Freyd’s results will only be fully 
understood in the future, but it is already easy to predict 
their extraordinary importance.

'C( Regular categories are categories with the exactness properties (cartesianity, existence 
of images, preservation of coverings under pullbacks) that are necessary and sufficient 
for achieving an adequate composition of relations.  

'C) Prelogoi are regular categories for which the subobject functor takes values in the 
category of lattices (and not only in sets). A preorder P, understood as a category, 
will turn out to be a prelogos if and only if P is a distributive lattice with a maximal 
element. 

'C' Logoi are prelogoi for which the subobject functor (with respect to its values in the 
category of lattices) possesses a right adjoint. A preorder P, considered as a category, 
will turn out to be a logos if and only if P is a Heyting algebra. 

'CW We have already witnessed the appearance of topoi in Grothendieck’s work and its 
subsequent elementary axiomatization due to Lawvere. Ae category P associated with 
a preorder will turn out to be a topos if and only if P reduces to a point. 

Freyd’s procedure begins by taking a given logical theory, 
and then goes on to capture, by way of an intermediate 
free category of relations, the free terminal category of 
morphisms that faithfully represents the properties 
of the initial theory. Ae structure of the process'CB is  
T (theory) " AT (allegory) " MapSplitCor(AT) (category),  
which yields a free result when one starts with a pure type 
theory, and which shows, in each of its stages – relation-
ality, subsumption in identity (Cor), partial invertibility 
(Split), functionality (Map)'CF – how a determinate math-
ematical conglomerate goes on to be ‘filtered’. Out of this 
‘filtration’ come two observations of great interest, both 
mathematically and philosophically: ). the analytic process 
of decomposing the transit is linked to the exhibition 
of a universal synthetic environment that emerges in the 
process (the allegory AT), once again stressing the exis-
tence of an indispensable'CD analytic-synthetic dialectic 

'CB Ibid., 'EE.

'CF Correflexivity generalizes (in the axiomatic environment of allegories) the property of 
a relation being contained in a diagonal (basic example: partial equivalence relations, 
‘s’, which are increasingly used in computability theory). Cor functorially captures 
correflexivity. Partial invertibility generalizes the invertibility property of morphisms 
to the right (basic examples: regular elements in a semigroup, sections of a sheaf). 
Split functorially captures partial invertibility. Functionality generalizes (as always, 
in the allegorical environment) the usual set-theoretic restriction of functionality on 
relations. Map functorially captures functionality. 

'CD Aat dialectical indispensability turns out to be necessary in the context of Freyd’s 
representation theorems. Ae fact that delicate philosophical problems depend upon 
partial theorematic reflections in contemporary mathematics is one of the great strengths 
of those advanced mathematics, as compared to elementary mathematics, in which, for 
lack of complexity, such reflections do not appear. Ae low threshold of complexity in 
elementary mathematics therefore turns out to be a true obstruction from a philosophical 
point of view. We will come back to these questions in Part Aree. 
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in mathematics; '. beyond the terminal bipolar objects in 
a one-to-one correspondence with one another (theories 
and regular categories, coherent theories and prelogoi, 
first-order theories and logoi, higher-order theories and 
topoi), the richness of Freyd’s procedure consists in its 
progressive adaptation of synthetic, intermediary machinery (its 
explication of the actions of the Cor, Split, Map functors). 

 A natural search for archetypes is essential to categorical 
thought. Ae various levels of categorical information 
(morphisms, functors, natural transformations, n-mor-
phisms, etc.), on every level, allow for sub-definitions 
of free objects – universal projective objects (archetypes: 
‘commanding origins’, etymologically speaking) – with 
far more general universal constructions emerging over 
each level’s projections. Ais, according to Freyd, is what 
happens with the process T"AT"MapSplitCor(AT), as well 
as with Yoneda’s famous lemma'CE, which allows us to 
embed any small category into a category of presheaves:

 

'CE Freyd recalls that the lemma does not actually appear in Yoneda’s original article (‘Note 
on Products in Ext’, Proceedings of the American Mathematical Society, @, )@FC: CEW–EF), but 
in ‘a talk that Mac Lane gave on Yoneda’s treatment of higher Ext functors’ (see http://
www.tac.mta.ca/tac/reprints/articles/W/foreword.pdf, p. F). Ae lemma’s immense 
philosophical content (to which we will return in the book’s third part) corroborates 
the Lautmanian transit between ‘notions and ideas’ and ‘effective mathematics’. It is 
interesting to point out that the lemma – so close to the structural grounds of Lautman’s 
thought – in fact arose through a vivid discussion between Yoneda and Mac Lane in 
the Gare du Nord in Paris (see http://www.mta.ca/~cat-dist/catlist/)@@@/yoneda), so 
close to the French philosopher’s own physical neighborhood. 

 
Figure ?D. Yoneda’s lemma.

Ae representable functors hA capture the ‘coronas’ of mor-
phisms surrounding A (hA=MorC (A,--), A being an object 
in C), but, in the Yoneda embedding (A"hA), many other 
nonrepresentable functors (‘ideal’ presheaves) show up to 
complete the landscape. In fact, the category of presheaves 
over C can be seen as a context of continuity into which 
the initial discrete category is inserted (and by which it 
is completed), since, on the one hand, the category of 
presheaves possesses all the (categorical) limits, and, on 
the other, representables preserve limits. Ae universality 
of the Yoneda embedding (which obtains for every small 
category) brings two facts of enormous significance to 
light: mathematically, it demonstrates how forms of an 
archetypical continuum lie beneath many discrete situa-
tions, forms composed of ideal objects that allow us to 
reinterpret the initial discrete context (something Hilbert 
had already predicted in his brilliant text, On the Infinite,'CC 
and which we have found to be carefully articulated, 

'CC D. Hilbert, ‘On the Infinite’ ()@'F), in J. van Heijenhoort, From Frege to Gödel: A Source Book 
in Mathematical Logic 9>?:–9:;9 (Cambridge: Harvard University Press, )@DE), WDE–@'.
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for example, in Langlands’s program); philosophically, it 
shows how, in the philosophy of advanced mathematics, 
the imbrication of fragments of both realism and ideal-
ism is not only possible but necessary (the archetypical 
completion of ‘real’ representable presheaves by means 
of non-representable, ‘ideal’ ones, and the need for the 
latter in order to fully understand the former). 

In revealing the archetypical nuclei of mathematical 
thought, the reverse mathematics program of Stephen 
Simpson (USA, b. )@BF) takes on a special significance. 
Initiated in collaboration with Harvey Friedman,'C@ the 
program tries (successfully) to locate minimal and natural 
subsystems of second-order arithmetic that are equivalent to 
the ordinary theorems of mathematical practice derived 
from those axioms. Ae equivalence is complete since, in 
the eyes of adequate underlying theories, the theorems 
in turn entail the conglomerate of axioms by which they 
are proved, and so an entire dialectic of deduction and 
retroduction (whence the name: ‘reverse mathematics’) 
exists in demonstrative transit. Aere are no fixed founda-
tions in this back-and-forth (it is not a question of an 
absolute foundation from which everything else would, 
presumably, follow) but multiple relative proofs of equid-
eduction between fragments of mathematical practice.  

'C@ Stephen Simpson, ‘Friedman’s Research on Subsystems of Second Order Arithmetic’, 
in L. Harrington et al., eds., Harvey Friedman’s Research in the Foundations of Mathematics, 
(Amsterdam: North-Holland, )@CF), )WE–)F@. 

In that movement of proofs, Simpson detects certain sub-
systems of second-order arithmetic that are ‘canonical’ or 
‘archetypical’ enough to organize collections of theorems, 
and with them obtains a natural stratification of ordinary 
mathematics, where, for example, statements of type (a0) 
the Heine-Borel Lemma, (a1) the Bolzano-Weierstrass 
Aeorem, or of type (b 0) the existence of prime ideals 
in rings, (b 1) the existence of maximal ideals in rings, 
can be classified in a precise hierarchy of equideductive 
complexity (in this case, ai+ bi  i=1,2, in the eyes of a 
minimal constructive system).'@(

In the language of second-order arithmetic,'@) Simp-
son defines certain canonical subsystems of arithmetic 
in the following manner: RCA0 incorporates the basic 
axioms of arithmetical terms, the axiom of induction 
{(0)/6x({(x)"{(x+1))"6x{(x) restricted to R 0

1 for-
mulas and the comprehension axiom 7X6x({(x))x!X)  
restricted to D0

1 formulas (formulas in the Kleene-Mostowski 

'@( In what follows, we will define that minimal base, which we will denote RCA0. Ae 
important point that should be emphasized here, before getting into the details, is 
that of equideduction in the eyes of a weak axiomatic base. Of course, from the absolute, 
analytic point of view of ZF set theory, we also have ZF=a i+b i, simply because both 
statements are tautological from the absolute point of view of the axioms of set theory; 
but, in this case, the equideduction is trivialized and loses the logical richness of an 
intermediate derivation, without strong premises that distort it. 

'@) Ae language of second-order arithmetic extends that of the first order with variables 
of two types (‘set’ or second-order variables, in addition to ‘numerical’ or first-order 
variables), with an additional relational symbol (!), with new formulas of the type t!X 
(where t is a numerical term, and X a set variable), and with additional quantification 
over set variables (whence the ‘second’ order). A formula in the second-order language 
is called arithmetical if it does not quantify over any set variables.
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hierarchy);'@' WKL0 consists of RCA0 + a weak version of 
‘König’s lemma’ (every infinite subtree of a binary tree 
possesses an infinite branch); ACA0 incorporates the basis 
axioms for arithmetical terms, the  axiom of induction 
restricted to arithmetical formulas and the comprehension 
axiom, likewise restricted to arithmetical formulas. Other 
major subsystems of greater expressive power allow us 
to codify more sophisticated infinitary combinatorial 
manipulations, but we will not mention them here.'@W 

 With those nuclei (‘archetypes’) of deductive power, 
Simpson thus obtains a real stratification of the theorems 
of ordinary mathematics, demonstrating deep, logical 
equiconsistencies such as the following: in the eyes 
of WKL0, a full equivalence (deduction and retroduc-
tion) between the system WKL0 and many significant 
statements that can be demonstrated within WKL0 (the 
Heine-Borel lemma, the completeness of first-order logic, 
the existence of prime ideals in countable commutative 
rings, the Riemann-integrability of continuous func-
tions, local existence theorems for differential equations, 
the Hahn-Banach Aeorem for separable spaces, etc.);  
in the eyes of RCA0, a full equivalence between the system 

'@' Rn
0 includes (first-order) formulas with recursive matrices, which can be put into a 

normal form with n alternations of quantifiers and with 7 as its outermost quantifier. 
Pn

0 is defined likewise, for normal forms with 6 as their outermost quantifier. We then 
define Dn

0 formulas as those that can be put into either Rn
0kPn

0  form. 

'@W See Simpson, Subsystems of Second Order Arithmetic, chapters F and D, )DE–'B) (transfinite 
recursion for arithmetical formulas and comprehension for P1

1 formulas). 

ACA0 and many of its theorems (the Bolzano-Weierstrass 
Aeorem, the existence of maximal ideals in countable 
commutative rings, the existence of bases for vectorial 
spaces over countable fields, the existence of divisible 
closures for countable abelian groups, etc.). Ae usual 
deductive transit, which goes from the global (the system 
in its entirety) to the local (a particular theorem of the 
system), is here reversed in a striking manner, allowing for 
an unexpected passage from the local to the global, thanks to 
the theorem’s equiconsistency with the entire system. 
It is instructive to observe how that reverse mathemat-
ics can emerge only a=er one makes explicit the natural 
candidates to act as archetypical deductive nuclei in second-
order arithmetic.

 Simpson describes one part of reverse mathemat-
ics as a restructuring of Hilbert’s program:'@B in show-
ing what the minimal axiomatic systems for proving the 
theorems of ordinary mathematics are, we can measure 
the latter’s complexity in a precise fashion, and, in many 
cases, reduce that complexity to strictly finitary argu-
ments. In this manner, although the absolute version 
of Hilbert’s program fell with Gödel’s Incompleteness 
Aeorem, the program can nevertheless be relativized, and 
go on to secure certain partial and intermediary results.  
Ais, for example, is the case with P0

2 sentences provable 

'@B Ibid., WC)–'. 
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in WKL0: Simpson has proven a conservativity result'@F 
for WKL0 over Peano arithmetic for R0

1 formulas, which is 
in turn conservative over recursive arithmetic, and so the 
P0

2 sentences provable in WKL0 can be proved with purely 
finitary arguments. In particular, this yields finitary proofs 
for many sophisticated mathematical results (expressible 
by P0

2 sentences provable in WKL0): the existence of 
functional extensions (Hahn-Banach), of solutions to 
differential equations, of prime ideals in commutative 
rings, of algebraic closures, etc.

Certain archetypes in the spectrum of proofs in second-
order arithmetic thus acquire a special relevance, since 
they end up being fully reflected in avatars of ordinary 
mathematics (abstract algebra, point topology, functional 
analysis, differential equations, etc.). As Simpson has 
pointed out, the archetypical nuclei of proofs emerge 
through a ‘series of case studies’ leading to the discovery 
of ‘the appropriate axioms’,'@D showing how it is always 
mathematical experimentation that helps us declutter the 
landscape and find (when they exist) suitable invariants 

'@F Given a theory T in a language L, and another theory T1 in a language L14 L , T1 is a 
conservative extension of T if, for every L-sentence {, T1 = { if and only if T = {. Simpson 
demonstrates that ACA0 is a conservative extension of Peano arithmetic (first-order 
PA), and that both RCA0 and WKL0 are conservative extensions of PA restricted to R0

1 
formulas (in other words, R0

1 - PA is a first-order fragment of RCA0 and WKL0, while 
PA is a first-order fragment of ACA0). Ae conservativity proofs exhibited by Simpson 
employ existential techniques from model theory, and their effective (finitary) character 
has been brought into question. Harvey Friedman has nevertheless stated that, in 
reverse mathematics, existential proofs of conservativity can indeed be converted into 
effective proofs. 

'@D Ibid., vii (xiii in 'nd edition).

lying behind the movement. Ae processes of mathematics 
(and no longer just its objects) are thereby forged in multi-
ple webs of contradistinction, whether on the level of their 
logical representations, tied to well-defined archetypes of 
proof, or on the level of their structural correlations, tied 
to great spectra of regularity/singularity in domains of 
transit/obstruction. We once again find ourselves before 
an abstract, relative differential and integral calculus, like the 
one we have encountered in Grothendieck’s work, and 
which, in the realm of reverse mathematics, consists in 
subtly differentiating the scales of demonstration, so as to 
aXerward reintegrate them around canonical nuclei of proof. 

Ae works of Boris Zilber (Russia, b. )@B@) take the 
search for canonical structures for logic, algebra and 
geometry to a far greater depth.'@E His works install 
themselves in a new paradigm, progressively emerging in 
model theory, which shiXs, in the middle of the twentieth 
century, from being understood as ‘logic + universal alge-
bra’ (Tarski, Birkhoff; a paradigm normalized by Chang 
and Keisler),'@C to being considered, by the century’s end, 
as ‘algebraic geometry – fields’ (Shelah, Hrushovski, 

'@E We are grateful to Andrés Villaveces for his lessons on Zilber (through an article we 
have referred to, conversations and conferences). An excellent overview of Zilber and 
his epoch can be found in B. Poizat, ‘Autour du théorème de Morley’ (the section 
‘)@C(–@(: les années-Zilber’, in particular), in J.-P. Pier, ed., Development of Mathematics 
9:@8–7888 (Boston: Birkhäuser, '(((), CE@–@D. 

'@C H.J. Keisler & C.C. Chang, Model 3eory (Amsterdam: North-Holland, )@EW).
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Zilber; a paradigm standardized by Hodges).'@@ At issue 
here is an important change of perspective that brings 
model theory together with Grothendieck’s visions (logi-
cal invariants of dimension that approach geometrico-
algebraic invariants, o-minimal structures that approach 
‘tame’ structures). Above all, this perspective situates 
logic in a series of progressive geometrical decantations of the 
objects and processes of mathematics. Along these lines, 
a revealing workW(( of Zilber’s shows how certain strongly 
minimal theoriesW() can be intrinsically associated with 
combinatorial geometries: the models of those theories are 
obtained as ‘limits’ of suitable finite structures, and the 
intrinsic geometries of those models, which are perfectly 
controlled, are either trivial (the algebraics do not expand 
to the model) or else affine or projective geometries over 
a finite field, something which allows optimal ‘coordinate 
systems’ for the models to be found. We see here how, 
behind general logical properties (strong minimality, 

'@@ W. Hodges, Model 3eory (Cambridge: Cambridge University Press, )@@W). A 
contemporary version of model theory, including Zilber’s contributions, appears in 
B. Poizat, A Course in Model 3eory: An Introduction to Contemporary Logic (New York: 
Springer, '(((). 

W(( B. Zilber, ‘Totally categorical theories, structural properties, and the non-finite 
axiomatizability’, in L. Pacholski et al., Proceedings of the Conference on Applications of 
Logic to Algebra and Arithmetic (Karpacz, 9:?:) (Berlin: Springer, )@C(), WC(–B)(. 

W() A theory is strongly minimal if the subsets definable in the models of the theory are 
finite or cofinite (for example, the theory of vector spaces, the theory of algebraically 
closed fields of characteristic p). Ais situation gives rise to natural logical notions 
analogous to those of dimension and algebraic closure, thereby opening the way to a 
reading of aspects of logic as fragments of a generalized algebraic geometry. Ae first 
result of Zilber’s mentioned here refers to ω-categorical, strongly minimal theories 
(countable isomorphic models). 

~-categoricity), lie deep geometrical nuclei. If, following 
Grothendieck, we take up the terminological-conceptual 
tension between discovery and creation, we are thus con-
fronted with archetypical synthetico-geometrical structures 
that are ‘discovered’ through the ‘invention’ of analytico-
logical languages.

 Another fundamental work W(' of Zilber’s aims to 
classify the underlying geometries in strongly minimal 
theories. Ae Zilber trichotomy conjectures that strongly 
minimal theories can be split into three classes, according 
to their associated geometry: (i) theories with ‘dismem-
bered’ models, which therefore possess a set-theoretic 
notion of dimension (dim(X,Y)=dim(X)+dim(Y)), and 
which cannot be interpreted in the theory of an infinite 
group; (ii) theories with basically linear models, whose 
geometry is modular, and therefore possesses a vecto-
rial notion of dimension (dim(X,Y)=dim(X)+dim(Y)-

dim(X+Y)), with finite fragments of the model being open 
to interpretation through abelian groups; (iii) theories 
with models that are bi-interpretable with the algebra-
ically closed field of complex numbers (a particularly 
rich group), in which case the geometry is algebraic, and 
therefore has a natural notion of algebraic dimension.  
As Poizat has pointed out, among the great riches of the 

W(' B. Zilber, ‘Ae structure of models of uncountably categorical theories’, in Proceedings 
of the International Congress of Mathematicians (Varsovia 9:>;) (Varsovia: Polish Scientific 
Publications, )@CB), WF@–DC.
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W(' B. Zilber, ‘Ae structure of models of uncountably categorical theories’, in Proceedings 
of the International Congress of Mathematicians (Varsovia 9:>;) (Varsovia: Polish Scientific 
Publications, )@CB), WF@–DC.
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trichotomy, as envisioned by Zilber, is the emergence of 
‘groups everywhere’ – invisible at first, but lying in the 
depths (‘archetypes’).W(W In a sort of renaissance of Klein’s 
Erlangen Program ()CE'),W(B groups – and their associ-
ated geometries – thus help to classify the deep forms of 
logic, and we may once again reflect on how logic can in 
no way precede mathematics, as is sometimes presumed 
from analytic perspectives.

Zilber’s conjectural trichotomy aims to elucidate certain 
geometrical nuclei behind logical descriptions. About ten 
years aXer the conjecture’s appearance, Hrushovski suc-
ceeded in demonstrating that there is, at least, a fourth case 
that it does not cover:W(F by means of a sophisticated amal-
gamation in the limits of models, Hrushovski constructed 
a strongly minimal structure whose geometry is neither 
trivial, nor modular, nor ‘algebraic’.W(D Nevertheless, Zilber 
and Hrushovski conjectured and demonstrated that the 
trichotomy is indeed valid W(E for theories whose intrinsic 
geometries are Zariski geometries.W(C AXerward, by means 

W(W Poizat, ‘Autour du théorème de Morley’, C@(. 

W(B For an illustrated modern edition of Klein’s text, with a preface by Dieudonné, see F. 
Klein, Le programme d’Erlangen (Paris: Gauthier-Villars, )@EB). 

W(F E. Hrushovski, ‘A new strongly minimal set’, Annals of Pure and Applied Logic D', )@@W: 
)BE–DD. 

W(D Aat is, not bi-interpretable with an algebraically closed field, in the sense of algebraic 
geometry.

W(E E. Hrushovski & B. Zilber, ‘Zariski Geometries’, Journal of the American Mathematical 
Society @, )@@D: )-FD. 

W(C A Zariski geometry is a sort of variable topological structure (Xn: n$1), with no ethericity 
conditions and coherence between the Xn. Zariski geometries can be seen as Lautmanian 

of a very subtle analysis of Hrushovski’s counterexample, 
Zilber was led to conjectureW(@ a new extended alternative: 
the intrinsic geometry of a strongly minimal theory must 
be (i) trivial, (ii) modular, (iii) algebraic (bi-interpretable 
with (C, +, ., 0, 1), or (iv) ‘pseudo-analytic’ (bi-interpretable 
with an expansion of (C, +, ., 0, 1) with an analytic function 
of the type exp). 

Ae fundamental point here is the surprising appear-
ance (again hidden and profound) of the complex exponen-
tial, with which Zilber conjectured that the classification 
could be closed. A first pathway in that direction con-
sists in exploring model-theoretic notions of pseudo-
exponentials in infinitary logics whose nuclei can be 
located,W)( so as to then construct limits of structures 
with pseudo-exponentials that allow us to cover case (iv).  
Another, completely unexpected, path of exploration lies 

mixtures between model theory, algebraic topology and algebraic geometry. Hrushovski, 
drawing on techniques emerging in Zariski geometries, succeeded in demonstrating a 
Mordell-Lang conjecture regarding the number of rational points over curves in fields 
of functions ()@@D), which generalized the famous Mordell conjecture for curves over 
Q (proven by Faltings, winning him the Fields Medal in )@CD). Ais is, perhaps, the 
most famous example of techniques coming from logic that help to resolve a problem 
in the ‘heart’ of mathematics. (Remember Connes.) 

W(@ B. Zilber, ‘Pseudo-exponentiation on algebraically closed fields of characteristic zero’, 
Annals Pure and Applied Logic )W', '((B: DE–@F. 

W)( Ae nucleus of the complex exponential exp('irx) contains Z, where, with sum and 
multiplication, Peano arithmetic can be reconstructed, which gives rise to the many 
phenomena of incompleteness, instability, profusion of nonstandard models, etc. 
Nevertheless, using a logic with countable disjunctions Lω)ω, the nucleus of the exponential 
can be forced to be standard, by means of the sentence 7a6x (exp(x) = 0"\/m!F x=am)  
(a=2ir in the classical case), for example. Ae pseudo-exponentials generalize various 
properties of the complex exponential to arbitrary classes of models in Lω)ω, including 
the standard forcing of the nucleus.  
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in the new connections W)) that Zilber has found between 
pseudo-analyticity, foliations, and noncommutative geom-
etry. Specifically, Zilber has ‘discovered’ that, on the one 
hand, the counterexamples to the trichotomy correspond 
to deformations of Zariski curves by means of noncommuta-
tive groups, such as ‘quantum tori’ groups, and that, on 
the other hand, other model-theoretic counterexamples 
are linked to certain foliations studied by Connes.W)' 
But, plunging even further into the depths,W)W into the 
abyssal model theory/noncommutative geometry hia-
tus, Zilber seems to be sensing the presence of the com-
mon structures of physics,W)B whose logical and geometrical  

W)) B. Zilber, ‘Noncommutative geometry and new stable structures’ (preprint '((F, 
available at http://www'.maths.ox.ac.uk/~zilber/publ.html). 

W)' Ibid., '-W. 

W)W Wisdom lies sunken in the deep, in the infinite abysses, as Melville suggests in Moby 
Dick, in recounting Pip’s second fall from the whaling vessel and his immersion in 
the ocean’s lower strata: ‘Ae sea had jeeringly kept his finite body up, but drowned 
the infinite of his soul. Not drowned entirely, though. Rather carried down alive to 
wondrous depths, where strange shapes of the unwarped primal world glided to and fro 
before his passive eyes; and the miser-merman, Wisdom, revealed his hoarded heaps’, 
Herman Melville, Moby Dick ()CB@–F)), H. Hayford, H. Parker & G.T. Tanselle), eds. 
(Evanston and Chicago: Northwestern University Press and Ae Newberry Library, 
)@CC), B)B. Archeal mathematics actively explores those ‘strange shapes of the unwarped 
primal world’ that escape the frightened Pip. 

W)B Regarding the junction that Zilber envisions between the objects of model theory and 
the deep structures of physics, Andrés Villaveces remarks, ‘Ae structures that are most 
linked to noncommutative geometry and to the structures of physics are the nonclassical 
Zariski geometries. Aese form part of the “positive” side of the trichotomy, and appeared 
in the article by Hrushovski and Zilber. But only recently, only in the last two or three 
years, has Zilber begun to see that certain cases of “finite coverings” that should have 
been understood in terms of algebraic curves cannot be reduced to the latter. Ais 
dramatically changes two things: the junction with physics (more closely linked to a 
refined analysis of Zariski geometries – of finite but not unitary coverings of varieties 
that can only be understood in terms of actions of noncommutative groups), and the 
still more open role of pseudo-analytic structures’ (personal communication, '((E). 

representations would only be different facets of deep, 
unitary phenomena.W)F

Ae work of Mikhael Gromov (Russia, b. )@BW) con-
firms, by way of other, utterly different routes, the richness 
of certain ‘archetypical’ connections revealed in contem-
porary mathematics. Considered perhaps the greatest 
geometer of recent decades, Gromov has completely 
revolutionized the various fields of investigation he has 
entered: geometry, where he introduced new perspec-
tives on ‘smoothing’ and ‘globalization’ that are tied 
to the notion of metrics everywhere; partial differential 
equations, where he introduced homotopic calculations 
through partial differential relations ( via ); sym-
plectic varieties, where he introduced into real analysis 
pseudoholomorphic curves, and, with them, new techniques 
of complex analysis; groups, where he introduced notions 
of polynomial growth, asymptotic behavior and hyperbolic-
ity. In all of these fields, Gromov’s works combine many of 

W)F Ae great Russian school – as we have seen with Drinfeld, Kontsevich and Zilber, and 
as we will soon see with Gromov – consistently tends to reveal deep unitary structures 
behind multiple mathematical and physical phenomena. Ais is also the case with the 
works of Vladimir Voevodsky ('((' Fields medalist), who has succeeded in providing 
a technical support for Grothendieck’s motifs, as a central trunk of cohomologies. By 
introducing new Grothendieck topologies for algebraic objects, Voevodsky managed 
to construct subtle forms of ‘surgery’ for algebraic varieties – analogous to ‘surgeries’ 
for topological spaces, but having to overcome far more delicate obstructions – and 
succeeded in defining homotopic theories for algebraic varieties and schemes ('(((). 
At the intersection between algebraic geometry and algebraic topology, Voevodsky’s 
eidal ascent toward Grothendieck topologies would later allow him to bring about 
a quiddital descent toward the singular cohomology (‘enriching it’ in Voevodsky’s 
sense) and pinpoint, in the last instance, the archeal motifs sought by Grothendieck. 
For technical introduction to Voevodsky’s works, see Christophe Soulé, ‘Ae work of 
Vladimir Voevodsky’, in Atiyah, Iagolnitzner, Fields Medalists’ Lectures, ED@–E'. 
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the qualities that Tao enumerates for what ‘good math-
ematics’ should be:W)D programmatic breadth of vision, 
conceptual inventiveness, technical mastery, abstract 
treatment, calculative skill, breadth of the spectrum of 
examples, deep interlacing of the global/abstract with 
the local/calculative, usefulness and applicability. Ae 
influence of the Russian schoolW)E is particularly palpable 
in this fantastic junction of geometrical vision, analytic 
virtuosity, and physical applicability. 

To a large extent, Gromov’s ideas surface in a com-
plex counterpoint between refined webs of inequalities 
and series of suitable invariants in those webs. Ais is 
how it is with the triangular,W)C isoperimetric,W)@ and 

W)D T.  Tao, ‘What is good mathematics?’, preprint, arXiv:math.HO/(E('W@Dv) February 
)W, '((E. Gromov’s works attain a level of excellence in the majority of the qualifications 
that Tao specifies for ‘good’ mathematical work: the resolution of problems, technique, 
theory, perspicacity, discovery, application, exposition, vision, good taste, beauty, 
elegance, creativity, usefulness, power, depth, and intuition. Tao emphatically presents 
his list ‘in no particular order’ (ibid., )) and, above all, makes an effort to illustrate the 
correlationality of certain of those qualities in concrete works of higher mathematics. 
And so, for the mathematician (Tao, for example), the synthetic configuration of good 
qualities, in their coherent agglutination, matters more than placing those qualities on a 
well-ordered, well-founded analytic scale.

W)E Gromov completed his doctorate in )@D@, at the University of Leningrad, under Rochlin. 
Concerning the influence of his soviet colleagues, see R. Langevin, ‘Interview: Mikhael 
Gromov’, in Pier, Development of Mathematics, ),')W–'E (),'') in particular). Between 
)@EB and )@C), Gromov was a professor at Stony Brook; since )@C), he has been a 
permanent professor at the IHES. Profiting from Connes, Gromov and Kontsevich 
(among others), the IHES has been able to perpetuate the great tradition of higher 
mathematics opened by Grothendieck. 

W)C M. Berger, ‘Rencontres avec un géomètre’ ()@@C), in J.-M. Kantor, ed., Où en sont les 
mathématiques (Paris: Veuibert/Société Mathématique de France, '(('), W@@–BB(. 
Berger’s text emphasizes the inequalities mentioned here (B((). 

W)@ M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces (Boston: 
Birkhäuser, )@@@). Notes from a course given by Gromov at Paris VII, )@E@–C(. First 
published in French as M. Gromov, J. LaFontaine, P. Pansu, Structures métriques pour 

systolicW'( inequalities, and how it is with quite diverse 
archeal constructs such as simplicialW') and minimalW'' 
volumes, L2-invariants, homotopic invariants linked to 
the geometry of partial differential relations, the Gromov-
Witten invariants, etc. From a philosophical point of view, 
the emergence of these last few invariants is of particular 
interest. Over a given symplectic manifold, we can define 
many quasi-complex structuresW'W that do not necessarily  
correspond to a complex manifold; in an effort to nev-
ertheless study the symplectic/real with techniques from 
complex analysis, Gromov manages to overcome the 
obstruction by introducing a new notion of pseudoholomorphic  

les variétés riemanniennes (Paris: Cedic-Nathan, )@C)); the English edition contains 
extensive complements and appendices.) Ae sixth chapter, ‘Isoperimetric inequalities 
and amenability’ (W')–B@), presents a detailed study of various forms of isoperimetric 
inequality, by which the volume of a compact subspace is determined by means of 
the volume of its border. According to Berger (‘Rencontres…’, B)F), isoperimetrics 
in infinite dimensions should be seen as a form of geometric surgery. 

W'( Sections BE+ (‘Unstable systolic inequalities and filling’) and BF+ (‘Finer inequalities 
and systoles of universal spaces’) ('DB–'E') take up this theme directly. ‘Systoles’ are 
minimal volumes of nonhomologous cycles in the Riemannian manifold; a particular 
case consists in minimal noncontractible curves. 

W') Given a compact manifold, its simplicial volume is defined as the infimum (greatest 
lower bound) of the sums of (real) coefficients such that the fundamental class of the 
manifold is covered by the sums of those coefficients multiplied by simplicial sets. Ae 
simplicial volume turns out to be an invariant linked to the geometry of the manifold 
in the infinite, and it is therefore useful to study the varieties’ asymptotic properties 
(Berger, ‘Rencontres…’, B)'). 

W'' Given a compact manifold, its minimal volume is defined in the class of all the Riemannian 
structures linked to the manifold, through the metric that least raises the local behavior 
of protuberances in the manifold (Berger, ‘Rencontres…’, B)W). 

W'W Given a manifold M, a quasi-complex structure over M is a section J of the fibration 
End (TM) (TM  being a tangent space) such that J2 =-Id. If the manifold M is a complex 
manifold, then multiplication by i defines such a structure. For details, see G. Elek, ‘Ae 
Mathematics of Misha Gromov’,  Acta Mathematica Hungarica ))W, '((D: )E)–CF. Elek’s 
article – prepared for the occasion of the awarding of the Bolyai Prize to Gromov in 
'((F (a prize previously received only by Poincaré, Hilbert and Shelah!) – constitutes 
an excellent technical presentation of Gromov’s work. 
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permanent professor at the IHES. Profiting from Connes, Gromov and Kontsevich 
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mathematics opened by Grothendieck. 

W)C M. Berger, ‘Rencontres avec un géomètre’ ()@@C), in J.-M. Kantor, ed., Où en sont les 
mathématiques (Paris: Veuibert/Société Mathématique de France, '(('), W@@–BB(. 
Berger’s text emphasizes the inequalities mentioned here (B((). 

W)@ M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces (Boston: 
Birkhäuser, )@@@). Notes from a course given by Gromov at Paris VII, )@E@–C(. First 
published in French as M. Gromov, J. LaFontaine, P. Pansu, Structures métriques pour 

systolicW'( inequalities, and how it is with quite diverse 
archeal constructs such as simplicialW') and minimalW'' 
volumes, L2-invariants, homotopic invariants linked to 
the geometry of partial differential relations, the Gromov-
Witten invariants, etc. From a philosophical point of view, 
the emergence of these last few invariants is of particular 
interest. Over a given symplectic manifold, we can define 
many quasi-complex structuresW'W that do not necessarily  
correspond to a complex manifold; in an effort to nev-
ertheless study the symplectic/real with techniques from 
complex analysis, Gromov manages to overcome the 
obstruction by introducing a new notion of pseudoholomorphic  

les variétés riemanniennes (Paris: Cedic-Nathan, )@C)); the English edition contains 
extensive complements and appendices.) Ae sixth chapter, ‘Isoperimetric inequalities 
and amenability’ (W')–B@), presents a detailed study of various forms of isoperimetric 
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curve, which behaves magnificently well in the n-dimen-
sional complex plane (any two points whatsoever can be 
connected by means of an appropriate pseudo-holomor-
phic curve); moving on to search for invariants of those 
curves, Gromov shows that the spaces modulo the curves 
are compact, and that it is therefore possible to work 
out a natural theory of homology, which leads to the 
Gromov-Witten invariants; in the last instance, the new 
invariants allow us, on the one hand, to distinguish an 
entire series of hitherto unclassifiable symplectic varieties, 
and, on the other, help to model unexpected aspects of 
string theory.W'B

In this manner, a direction of transit (real-complex), 
an obstruction in that transit (the multiplicity of the 
pseudo-complex), a partial saturation of the obstruction 
(pseudo-holomorphic curves), and an archeal deepening 
behind the new saturating concept (the Gromov-Witten 
invariants), show that mathematics – far from striving 
toward an analytical ‘flattening’ of phenomena’s contra-
dictory oscillations – needs that deeply fissured topography 
for its full development. In fact, in a brilliant analysis of 
situations of this sort, Gromov has pointed outW'F that 

W'B In the A model of string theory, D temporal dimensions are united in a W-dimensional 
symplectic manifold, and the ‘leaves of the universe’ are parameterized as 
pseudoholomorphic curves over that manifold. Ae Gromov-Witten invariants are 
thus linked to deep physical problems. Ae interlacing of higher mathematics and 
cosmology is once again underwritten in unexpected ways. 

W'F Langevin, ‘Interview: Mikhael Gromov’, )')W–)F. 

‘Hilbert’s tree’ (the ensemble of mathematics’ branches), 
far from being simply planar and deductive, is crisscrossed 
by multidimensional geometrical objects: exponential nodes 
(sites in the tree bearing great, amplified oscillations: 
number, space, symmetry, infinity, etc.), clouds (‘guides’, 
or coherent gluings, such as geometrical nuclei à la Zilber, 
inside a tree that is a priori disconnected for reasons of 
complexity or undecidability), local wells (sites where 
mathematical information ‘sinks’ and is lost), etc.

Gromov’s geometrical style recalls (implicitly) two of 
Grothendieck’s synthetic strategies – a global vision of 
classes of structures and observation of properties on 
a large scale – and supplements them with an incisive, 
comparative analytic, through a double fragmentation and 
reintegration of the webs of inequalities under investiga-
tion. Gromov, in fact, offers a new understanding of 
Riemannian geometry by contemplating the class of all 
Riemannian manifolds and working with multiple metrics 
within that class – thereby setting the manifolds into 
motion and finding in that movement the appropriate 
relative invariants. Likewise, his works in the realm of 
partial differential relations inscribe themselves within 
a double matrix that allows surprising gluings to be per-
formed along two primordial axes: synthetic/analytic 
and global/local. Ae h-principleW'D (h for homotopy) 

W'D M. Gromov, Partial Differential Relations (New York: Springer, )@CD). 
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effectively postulates, in certain geometrical realms, the 
existence of certain homotopic deformations between 
continuous sections of a sheaf (linked to local differential 
correlations that codify the local conditions in a partial 
differential equation) and the sheaf’s holonomic sections 
(tied to global solutions, through global differentials). Ae 
monumental work undertaken by Gromov in his Partial 
Differential Relations succeeds in exhibiting the ubiquity 
of the h-principle in the most remote areas of geometry 
(the synthetic richness of the principle) and constructing 
a multitude of local methods and practices for verifying 
the h-principle in particular conditions (analytic richness).

Ae group structure, rejuvenated by the likes of 
Connes and Zilber, seems to enjoy infinite lives in Gro-
mov’s hands. His program in geometrical group theory can 
be described as an intent to characterize finitely generated 
groups, modulo quasi-isometries, which is to say, modulo 
‘infinitesimal’ deformations of Lipschitz-type distances.W'E 
In that program, Gromov has demonstrated that many 
properties of groups turn out to be quasi-isometric invari-
ants; in particular, the (word-)hyperbolicity of a groupW'C is 
one such invariant, by which we can characterize the linear 

W'E For technical details, see Elek, ‘Ae Mathematics of Misha Gromov’, )C)–'. 

W'C Ae basic example of a hyperbolic group, in Gromov’s sense, is the fundamental group 
of an arbitrary manifold of negative curvature. Ae generalization of certain properties 
of ‘thin’ triangles in the universal covering of that variety leads to abstract definitions 
of hyperbolicity (ibid., )CW).

complexity of a group’s associated word problem.W'@ On the 
other hand, using the definition of a metric in a Cayley 
graph of a finitely generated group, Gromov is able to 
define the ‘polynomial growth’ of a group and study that 
asymptotic growth’s correlations with classical properties: 
solubility, nilpotence, Lie sub-representations, etc.WW( 

We thus find ourselves before a quite typical situa-
tion in contemporary mathematics, where certain classical 
nuclei are seen as the limits of deformations (be they logical, 
algebraic, topological or quantic) in very broad classes of 
spaces. In virtue of these great synthetic processes (in the 
style of Zilber’s ‘groups everywhere’, or Gromov’s ‘metrics 
everywhere’), the classical invariants are recuperated, but 
many new invariants (archeal in our terminology) are 
discovered as well, invariants that a restricted vision – 
whether local, analytic or classical – cannot  catch sight of. 

W'@ Given a recursively presented group G, the word problem associated with G consists in 
deciding if two finite products of the generators of G (that is to say, words in the free 
group) coincide or not. Some groups for which the word problem is soluble include 
finite groups and simple, finitely generated groups. It can be demonstrated that a 
uniform solution of the problem for all groups does not exist, and so the measure of 
the problem’s complexity for certain classes of groups turns out to be a result of great 
interest. Gromov has demonstrated that the complexity of the word problem for a 
given group is linear if and only if the group is hyperbolic. By means of a metric in 
the class of finitely generated groups, it has been demonstrated that the closure of the 
subclass of hyperbolic groups contains the ‘Tarski Monsters’. (Ae latter are infinite 
groups whose nontrivial subgroups are cyclical groups of order p, for a fixed prime p; 
the existence of such groups was proven by Olshanskii [)@C(], with p>1075 – a result 
that should make philosophers dream!)

WW( Ibid., )CW–B.
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In this, the third part of the work, we will reflect (philo-
sophically, methodologically and culturally) on the case 
studies that we have presented in the second part. Accord-
ingly, when we refer to ‘mathematics’ (and its derivative adjec-
tives) in what follows, we mean ‘contemporary mathematics’, 
unless we explicitly state otherwise. Now, we should note 
right away that this essay cannot cover all the forms of 
doing mathematics, and, in particular, will not dwell 
on the practices peculiar to elementary mathematics. 
We therefore do not aim to produce anything like an 
all-encompassing philosophy of mathematics,  only to 
call attention to a very broad mathematical spectrum that has 
rarely been accounted for in philosophical discussions, and 
which should no longer be neglected. In the final chapter 
we will try to provide an intrinsic characterization of the 
interval between )@F(–'((( (open on both extremes) 
with regard to ‘contemporary mathematics’; but for the 
moment, we we will merely ground ourselves on the con-
crete cases of mathematical practice reviewed in part '.  
We will provide an extensive number of cross references 
to those case studies; to that end, we will systematically use 
references between square parentheses, such as [x], [x–y] and 
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[x, y, …] in the body of the text, which will direct the reader 
to the pages x, x–y, or x, y, … of this book.

Ae case studies of the second part should have made 
it clear that contemporary mathematics is incessantly 
occupied with processes of transit in exact thought, involved 
in multiple webs of contradistinction, both internal and 
external. From this it immediately follows that the ques-
tions concerning the content and place of mathematical 
objects – the ontological ‘what’ and ‘where’ – through 
which we hope to describe and situate those objects, 
cannot be given absolute answers, and cannot be fixed 
in advance. Ae relativity of the ‘what’ and the ‘where’ 
are indispensable to contemporary mathematics, where 
everything tends toward transformation and flux. In 
this sense, the great paradigm of Grothendieck’s work, 
with its profound conception of a relative mathematics 
[?HW–?H?] interspersed with changes of base of every 
sort in very general topoi [?H?–?HD], should be fully 
understood as an ‘Einsteinian turn’ in mathematics. As 
we have seen, we are dealing with a vision that ramifies 
through all the mathematics of the epoch, and which is 
also capable of giving rise to a genuine Einsteinian turn 
in the philosophy of mathematics. 

Now, the point of Einstein’s theory of relativity, once 
we assume the movement of the observers, consists in 
finding suitable invariants (no longer euclidean or Gali-
lean) behind that movement. Likewise, the point of a 

relative mathematics à la Grothendieck, once we assume 
the transit of mathematical objects, consists in finding 
suitable invariants (no longer elementary or classical) behind 
that transit. Ais is the case with many of the archeal 
situations in mathematics that we have been looking at: 
motifs [?HH–?HN], PCF theory [DW?–DWD], intermedi-
ate allegories [DHI–DHN], Zilber’s extended alternative 
[DIN], the h-principle [DNE–H], etc. A skeptical relativ-
ism, which leads to disorientation and allows for an isotropy 
of values, in the style of certain postmodern subrelativisms 
or the infamous pensiero debole, is thus very far from being 
the same as the Einsteinian or Grothendieckian projects, 
where, though there be neither absolute foundations nor 
fixed objects, not everything turns out to be comparable 
or equivalent, and where we can calculate correlative archeal 
structures – that is, invariants with respect to a given context 
and a given series of correlations – which, precisely, allow 
differences to be detected and reintegrated. 

Ae first important point in specifying ‘what’ math-
ematical objects are consists in really taking relativity and 
transit in contemporary mathematics seriously. Objects 
in this realm cease to be fixed, stable, classical and well 
founded – in sum, they cease to be ‘ones’. Instead  they 
tend toward the mobile, the unstable, the nonclassical, 
and the merely contextually founded – in short, they 
approach ‘the many’. Multiplicity everywhere underlies 
contemporary transit, and the objects of mathematics 
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basically become webs and processes. Determinate ‘entities’, 
firmly situated in one absolute, hard and fast universe, do 
not exist; instead we have complex signic webs interlaced 
with one another in various relative, plastic and fluid 
universes. Ae levels contemplated by these ‘complex 
signic webs’, where mathematical objects are constituted, 
are multitudinous, and no fixed level exhausts the richness 
of the object (web). 

Ais is obvious, for instance, with the mathematical 
‘object’, group; we have seen how that object appears and 
captures disparate information (under the most diverse 
representation theorems) in the most distant realms 
of mathematics: homology and cohomology groups 
[?HD–?HQ, ?PQ–?PT], Galois groups [?IW, ?II, 
DDI], group actions [?ND–?NE, ?QW–?Q?], abelian 
groups [?NI], homotopy groups [?PN], algebraic groups 
[?QH], the Grothendieck-Teichmüller group [DDI, 
DEE], Lie groups [DDE], quantum groups [DDE], Zil-
ber groups [DII–DIN], hyperbolic groups [DNH], etc. 
It is not that we are confronted here, ontologically, with a 
universal structure, that takes on supplementary proper-
ties at each supposed level of reading (logical, algebraic, 
topological, differential, etc.); what happens is rather that 
the diverse webs of mathematical information codified 
under the structure of group overlap (‘presynthesis’) and 
compose (‘synthesis’) so as to transmit information in a coherent 
fashion. It is not that there exists ‘one’ fixed mathematical 

object that could be brought to life independently of the 
others, in a supposedly primordial universe; what we find 
instead is the plural existence of webs incessantly evolving as 
they connect with new universes of mathematical interpre-
tation. Ais is particularly evident in the inequality webs 
[DNW] studied by Gromov, or in the webs of equideduc-
ible theorems [DHQ–DHT] that Simpson has displayed; 
the progressive leaps and bounds taking place in the webs 
go on to configure the global landscape, and this modifies 
in turn the entities that the global environment locally 
internalizes.

Given that the objects of mathematics ‘are’ not stable 
sums but reintegrations of relative differentials, the question 
concerning their situation (‘where they live’) takes on an 
aspect that is almost orthogonal to the way in which this 
question is posed from an analytic perspective (grounded 
in set theory). For if mathematics finds itself in perpetual 
transit and evolution, the situation of an object cannot 
be anything but relative, with respect to a certain realm 
(‘geography’) and to a moment of that realm’s evolution 
(‘history’). Ais just goes to reinforce the position of 
Cavaillès, who understood mathematics as gesture – a 
position that has echoed throughout the century, all the 
way to Gromov, who pointed out how we should come 
to ‘admit the influence of historical and sociological fac-
tors’WW) in the evolution of Hilbert’s tree [DND]. 

WW) Langevin, ‘Interview: Mikhael Gromov’, ),')B. 
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Needless to say, this reading of mathematics as a histori-
cal science goes against the grain of the readings offered 
by the analytic philosophy of mathematics – readings 
according to which fragments of the edifice arise atempo-
rally against absolute backgrounds, codified in the various 
analytic ‘isms’ [!"#–!"$], and within which each com-
mentator plays at undermining contrary positions, and 
proposing his version as the most ‘adequate’, which is to 
say, as the one most capable of resolving the problematics 
at stake. Curiously, however, the supposed local reconstruc-
tions of ‘mathematics’ – studied a hundred times over in 
the analytic texts – go clearly against what mathematical 
logic has uncovered in the period from 6789 to :999. In 
fact, as we have seen, following the style of Tarski (logics 
as fragments of algebras and topologies) and Lindström 
(logics as coordinated systems of classes of models), the 
most eminent mathematical logicians of the last decades 
of the twentieth century (Shelah, Zilber, Hrushovski) 
have emphasized the emergence of deep and hidden 
geometrical kernels [!%&, #&$] lying behind logical 
manipulations. Just as Jean Petitot, in his mixed studies ;;: 
on neurogeometry, Riemannian varieties and sheaf logic 
(Petitot declares himself a great admirer of Lautman’s 

;;: See J. Petitot, ‘Vers une neuro-geometrie. Fibrations corticales, structures de contact et 
contours subjectifs modaux’, Mathématiques, Informatique et Sciences Humaines 6<8, 6777: 
8–696, or ‘=e neurogeometry of pinwheels as a subriemannian contact structure’ Journal 
of Physiology 7>, :99;: :?8–;97. His remarkable doctoral thesis (Pour un schématisme de 
la structure [EHESS 67@:, < vols.], part of which is contained in Morphogenèse du sens 
[Paris: PUF, 67@8]) has still not been made use of much in mathematical philosophy. 

‘mixtures’), has begun to defend the idea that geometrical 
proto-objects underlie neuronal activity, and, moreover, 
that a proto-geometry should take heuristic precedence over a 
language, contemporary mathematical logic has likewise 
come to demonstrate how a proto-geometry necessarily pre-
cedes a logic. What is at stake, then, is a situation that leads 
us to completely overturn – again, almost orthogonally 
– the usual approaches of analytic philosophy.

Within contemporary mathematics, and following 
the ‘double orthogonality’ that we have pointed out, 
an object is not something that ‘is’, but something that 
is in the process of being, and these occurrences are not 
situated in a logical warp, but in an initial spectrum of 
proto-geometries. =e consequences for an ontology of 
mathematics are immense and radically innovative. On 
the one hand, from an internalist point of view, the ‘what’ 
involves webs and evolving transits, while the ‘where’ 
involves proto-geometrical structures anterior to logic 
itself. On the other hand, from an externalist point of view, 
the ‘what’ takes us back to the unexpected presence of 
those proto-geometries in the physical world (the actions 
of the Grothendieck-Teichmüller group on the universal 
constants of physics [##'–##&, #$$], the Atiyah index 
[#"(–#"%], the Lax-Phillips semigroup [#!(–#!%], 
the interlacing of Zilber’s pseudo-analyticity with the phys-
ical models of noncommutative geometry [#&)–#&%], 
etc.), while the ‘where’ conceals a profound dialectic of 
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relative correlations between concrete phenomena and 
their theoretical representations. In fact, what comes to 
light in these readings is that the questions concerning 
an absolute ‘what’ or ‘where’ – whose answers would 
supposedly describe or situate mathematical objects once 
and for all (whether in a world of ‘ideas’ or in a ‘real’ 
physical world, for example) – are poorly posed questions. 

Ae richness of mathematics in general (and of con-
temporary mathematics in particular) consists precisely 
in liberating and not restricting the experience and influ-
ence of its objects. In a certain sense, a base from which 
we may better understand mathematics’ indispensable 
transitability could be furnished by the mixture of (i) 
structuralism, (ii) categories and (iii) modalization that Hell-
man proposes [?WN–?WP], but in reality the situation 
is more complex, as comes to light in the multiple oscil-
lations, hierarchizations and ramifications cast in relief in 
this book’s second part. In fact, if a categorical reading 
(ii) seems indispensable in contemporary mathemat-
ics (something we have emphasized with multiple case 
studies beneath which, implicitly or explicitly, lies the 
Grothendieckian categorical and relativistic program) and 
if, beyond a certain threshold of complexity, mathemati-
cal modalization (iii) seems equally indispensable (the 
multiform transit between hypotheses, models, calculations 
and contradistinctions, carefully hidden in the classical 
formalization of set theory, and carefully ignored by so 

many of the ‘hard’ currents of the analytic philosophy of 
mathematics), contemporary mathematics nevertheless 
underscores the importance of processes over structures 
(i), since the latter emerge on a second level as the invari-
ants of suitable processes. Ae relative ontologization of 
objects in contemporary mathematics thus forces us to 
further dynamize Hellman’s base (which appears fixed in 
a quadrant of Shapiro’s square [?W]), so that we can 
better take stock of the contemporary processes.

Ultimately, when faced with contemporary mathemat-
ics we cannot escape a certain ‘transitory ontology’ that, 
at first, terminologically speaking, seems self-contradictory. 
Nevertheless, though the Greek ontotetês sends us, through 
Latin translations, to a supposedly atemporal ‘entity’ or 
an ‘essence’ that ‘ontology’ would study,WWW there is no 
reason (besides tradition) to believe that those entities or 
essences should be absolute and not asymptotic, governed 
by partial gluings in a correlative bimodal evolution between 
the world and knowledge. Ae philosophical bases of such 
a ‘transitory ontology’ can be found in Merleau-Ponty’s 
theory of shi=ing WWB (in the general realm of knowledge 
and the particular realm of visuality), and in the specific 

WWW J.-F. Courtine, ‘Essence’, in Cassin, Vocabulaire européen des philosophies, B((–)B. 

WWB See M. Merleau-Ponty, Notes des cours du Collège de France (9:@>–@:, 9:B8–B9) (Paris: 
Gallimard, )@@D), and L’oeil et l’esprit (Paris: Gallimard, )@DB). Ae latter is the last 
text he published in his lifetime, in )@D), and is a magnificent way to be introduced to 
Merleau-Ponty’s work. See also his two posthumous works, La prose du monde (Paris: 
Gallimard, )@D@) and Le visible et l’invisible (Paris: Gallimard, )@DB). Ae hiatus between 
the visible and the invisible can only be understood while shiXing within it. 
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transitory ontology proposed by BadiouWWF (in the field of 
mathematics). For Merleau-Ponty, the ‘height of reason’WWD 
consists in feeling the shi=ing of the soil, in detecting the 
movement of our beliefs and supposed claims of knowing: 
‘each creation changes, alters, clarifies, deepens, confirms, 
exalts, recreates or creates by anticipation all the others’.WWE 
A complex and mobile tissue of creation surges into view, 
full of ‘detours, transgressions, slow encroachments and 
sudden drives’, and in the contradictory coats of sediment 
emerges the force of creation entire. Ais is exactly what we 
have detected in contemporary mathematics, as we have 
presented it in part ' of this work. For Badiou, mathemat-
ics is a ‘a pseudo-being’s quasi-thought’, distributed in 
‘quasi-objects’WWC that reflect strata of knowledge and world, 
and whose simple correlations (harmonic and aesthetic) 
grow over time. Aose quasi-objects not only escape fixed 
and determinate identities: they proceed to evolve and 
distribute themselves between warps of ideality and real-
ity. Arough the dozens of situations surveyed in part ',  
we have indeed been able to make evident the distribu-
tion, the gra=ing and gluing of those quasi-objects, not only 
between fragments internal to mathematics, but between 

WWF Badiou, Briefings on Existence. 

WWD Merleau-Ponty, L’Oeil et l’esprit., @'. 

WWE Badiou, Briefings on Existence, BE.

WWC Ibid., B'-W.

theoretical mathematics (the realm of the eidal) and the 
concrete physical world (the realm of the quiddital). 

With new perspectives and with new force, Badiou’s 
transitory ontology allows us to bring an untrivialized Plato 
back to the landscape of mathematical philosophy. In the 
style of Lautman’s dynamic Platonism – attentive to the 
composition, hierarchization and evolution of the mix-
tures in the PhilebusWW@ – Badiou, too, insists on a Platonism 
essentially open to a ‘cobelonging of the known and the 
knowing mind’, through which one derives an ‘ontological 
commensurability’WB( that incorporates movement and 
transit. We thereby immerse ourselves in a Platonism that 
is not static, not fixed to a supposedly transcendent world 
of Ideas, and very far from the image most oXen used to 
sum up the doctrine.WB) Badiou’s dynamic Platonic reading 
opens onto quite different philosophical perspectives – in 
particular, onto an understanding of mathematics as evolv-
ing thought WB' and a study of the problems of saturation,  
maximization, and invariance in the  movements of 

WW@ Lautman, Essai sur l’unité…, )BW–E, '(W, ''E–C, W(W. See N.-I. Boussolas, L’Être et la 
composition des mixtes dans le Philèbe de Platon (Paris: PUF, )@F'). 

WB( Badiou, Briefings on Existence, @(. 

WB) Ais is what we find in the ‘trivialization’ presented by Benacerraf: ‘Platonists will be 
those who consider mathematics to be the discovery of truths about structures that 
exist independently of the activity or thought of mathematicians’. In Benacerraf & 
Putnam, Philosophy of Mathematics, )C. 

WB' Badiou, Briefings on Existence, W@–FB, )('. Mathematics as ‘thought’ studies the exact 
transitions of being and approaches a transformative/productive gesturality (Cavaillès, 
Châtelet) of nontrivial information. Ais position is quite far from an understanding of 
mathematics as a mere language game, or as a set of tautological deductive transitions. 
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maximization, and invariance in the  movements of 

WW@ Lautman, Essai sur l’unité…, )BW–E, '(W, ''E–C, W(W. See N.-I. Boussolas, L’Être et la 
composition des mixtes dans le Philèbe de Platon (Paris: PUF, )@F'). 

WB( Badiou, Briefings on Existence, @(. 

WB) Ais is what we find in the ‘trivialization’ presented by Benacerraf: ‘Platonists will be 
those who consider mathematics to be the discovery of truths about structures that 
exist independently of the activity or thought of mathematicians’. In Benacerraf & 
Putnam, Philosophy of Mathematics, )C. 

WB' Badiou, Briefings on Existence, W@–FB, )('. Mathematics as ‘thought’ studies the exact 
transitions of being and approaches a transformative/productive gesturality (Cavaillès, 
Châtelet) of nontrivial information. Ais position is quite far from an understanding of 
mathematics as a mere language game, or as a set of tautological deductive transitions. 
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thought – which, following Merleau-Ponty, falls within 
the asymptotic order of ‘shi=ing’, and which covers some of 
the deeply mathematical problematics to which we have 
called attention in the case studies contained in part '. 

Ae process of being, commensurably in between the webs 
of cognition and the webs of phenomena, is a fundamental 
characteristic of ‘transitory ontology’ that contemporary 
mathematics requires. What we are dealing with here is an 
apparently innocuous change of grammatical category in  pos-
ing ontological questions, which nevertheless affords them 
a whole new dimensionality and enriches the problematics 
at stake: the ‘what’ and the ‘where’ – which were initially 
taken up in an absolute and actual present, leading us to 
ask poorly posed questions – come to be understood in a 
modal and relative present perfect. Ae major consequence 
of this opening up to transit is to immediately shatter the 
dualisms and pigeonholes of Shapiro’s square [?W]. 
As we have seen, the objects of mathematics – that is, 
in reality, its processes and quasi-objects – ceaselessly 
transit between eidal, quiddital and archeal webs, whether in 
the world interior to mathematics, or in their perpetual 
contradistinction with the physical exterior. What in one 
context turns out to be eidal (Grothendieck-Teichmüller 
(GT), linked to the Euler numbers [DDI], for example), 
in another  appears as quiddital (GT  acting on the uni-
versal formulas of physics [DEE]), and in yet another 
appears as archeal (GT  in the dessins d’enfant [DDI]).

Ae classical dissociations and exclusions (of the either-or 
variety, in the style of Benacerraf’s dilemma [??]) have 
caused excessive and unnecessary damage to the philoso-
phy of mathematics, and the time to overcome them is at 
hand. To that end, we can already count on at least three 
great tendencies in contemporary mathematics – where 
binary positionings are cast aside and where perspectives 
of continuity between diverse webs are opened up – that 
philosophical reflection should begin to take seriously: 
the understanding of the ‘positive’ (classical, commuta-
tive, linear, elementary, structured, etc.) as a limit of 
‘negative’ mediations (intuitionism, noncommutativity, 
nonlinearity, nonelementarity, quantization, etc.); the 
theory of sheaves, with its continuous handling of coher-
ence and gluing between the local and the global; the 
mathematical theory of categories, with its handling of 
differentiation and reintegration between the particular 
and the universal. In what follows, we will clarify these 
three deep technical tendencies from a conceptual and 
philosophical perspective, and explain how they allow us 
to reinforce a transitory ontology of mathematics.

Among the characteristics specific to mathematics 
between )@F( and '(((, we have indicated the act of 
working with the fluxion and deformation of structures’ 
typical boundaries [HD]. Ais is obvious, for example, 
in Grothendieck’s K-theory [?EI–?EN, D?W–D?D], 
where we study the perturbations of morphisms over 
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classical fibers; in Shelah’s abstract elementary classes 
[?TN–?TT], where we study limits of algebraic invari-
ants beyond first-order classical logic; in the Lax-Phillips 
semigroup [D?Q–D?T], where non-euclidean geom-
etry allows us to understand the scattering of waves; 
in Connes’s noncommutative geometry [DDD–DDH], 
where the dispersion and fluxion of quantum mechan-
ics and thermodynamics are unveiled; in Kontsevich’s 
quantizations [DDT–DEE], where classical structures 
obtain as limits of the quantized; in Freyd’s allegories 
[DHE–DHN], where topoi are seen as limits of interme-
diate categories; in Zilber’s extended alternative [DIN], 
where counterexamples to the trichotomy arise as defor-
mations of noncommutative groups; or in Gromov’s 
theory of large-scale groups [DNH–DNI], where we study 
the nonlinear asymptotic behavior of finitely generated 
groups. Aese are all examples of high mathematics, with 
great conceptual and concrete content (and are thus far from 
being reducible to mere ‘language games’). In them, a 
new understanding of mathematical (quasi-)objects is 
demonstrated, by means of fluxions, deformations and 
limits, and by passing through intermediate strata that are 
nonpositive (nonclassical, noncommutative, nonlinear, 
nonelementary, and nonquantized).

A result due to CaicedoWBW shows that classical logic in a 
‘generic’ fiber of a sheaf of first-order structures is no more 
than an adequate limit of intuitionistic logic in the ‘real’ fibers 
of the sheaf. Ais remarkable situation shows that the 
construction of the classical and the positive as ‘limit 
idealizations’, as seen in the aforementioned mathematical 
examples, is reflected in the realm of logic as well, and 
in exactly the same fashion. What comes to the surface, 
once again, is the continuity of mathematical knowledge, for 
which watertight compartments are worthless. Ae rich-
ness of Caicedo’s sheaf logic is precisely due to its being 
elaborated in an intermediate zone between Kripke mod-
elsWBB and Grothendieck topoi [?H?–?HH], benefiting 
from the many concrete examples of the former and the 
abstract general concepts of the latter. In a total crossing 
of algebraic, geometrical, topological and logical techniques, 
Caicedo constructs an instrumentarium to incite transit 

WBW X. Caicedo, ‘Lógica de los haces de estructuras’, Revista de la Academia Colombiana de 
Ciencias Exactas, Físicas y Naturales XIX, EB, )@@F: FD@–CF. Caicedo provides a framework 
of great depth and breadth – mathematical, logical, conceptual, and philosophical 
– which is unfortunately still unknown by the international community. He has 
announced (in '()') a forthcoming publication in English. For a partial overview in 
Italian, see F. Zalamea, ‘Ostruzioni e passaggi nella dialettica continuo/discreto: il 
caso dei grafi esistenziali e della logica dei fasci’, Dedalus. Rivista di Filosofia, Scienza e 
Cultura – Università di Milano ', '((E: '(–F.

WBB Kripke models are ‘trees’ that can be used to represent a branching temporal evolution; 
from a mathematical point of view, they are simply presheaves over an ordered set (seen 
as a category). Kripke models furnish a complete semantics for intuitionistic logic. Other 
complete semantics for intuitionism are provided by the class of topological spaces, 
or by the class of elementary topoi [???]. Intuitionism and continuity are interlaced 
over an archeal ground in this manner, and Aom’s aporia emerges in a new form: 
classical-discrete versus intuitionistic-continuous. Ais new appearance of intuitionism, 
untethered from its original constructivist aspect, has not been sufficiently exploited 
in the philosophy of mathematics. 
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Cultura – Università di Milano ', '((E: '(–F.

WBB Kripke models are ‘trees’ that can be used to represent a branching temporal evolution; 
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and transference. Ae result is his ‘fundamental’ theorem 
of model theory, where pivotal statements in logic such 
as the Loz theorem for ultraproducts, the completeness 
theorem for first-order logic, forcing constructions in sets, 
and theorems of type omissions in fragments of infinitary 
logic, can all be seen, uniformly, as constructions of 
generic structures in appropriate sheaves. 

From a philosophical point of view, a striking con-
sequence follows from all of this. Arough fluxions and 
transit we effectively see that the classical perspectives are 
no more than idealities, which can be reconstructed as limits of 
nonclassical perspectives that are far more real. A particular 
case of this situation is a new synthetic understanding of 
the point-neighborhood dialectic, where – contrary to 
the analytic and set-theoretic perspective, according to 
which neighborhoods are constructed from points – the 
classical, ideal ‘points’, which are never seen in nature, are 
constructed as limits of real, nonclassical neighborhoods, 
which, by contrast, are connected to visible, physical 
deformations. From this perspective, the ontology of 
the (quasi-)objects at stake once again undergoes a radi-
cal turn: an ‘analytic’ ontology, linked to the study of 
set-theoretic classes of points, can be no more than an 
idealized fiction, which forgets an underlying ‘synthetic’ / 
‘transitory’ ontology that is far more real, and linked to 
the study of physically discernible, continuous neighbor-
hoods. Ae transitory and continuous (quasi-)objects of 

nonclassical mathematics are thus interlaced with transitory 
and continuous phenomena in nature, through webs of 
informative correlation that are gradual, nonbinary and 
nondichotomous.

Ais situation is corroborated by the principal para-
digms of sheaf theory.WBF Ae ancient philosophical prob-
lematic, ‘how do we get from the Many to the One?’ 
(corresponding to a phenomenological transit) becomes 
the mathematical problematic, ‘how do we get from 
the local to the global?’ (technical transit), which, in 
turn, can be subdivided into the questions (i) ‘how do 
we differentially register the local?’ and (ii) ‘how do we 
globally integrate those registers?’ Ae natural mathemati-
cal concepts of neighborhood, covering, coherence and 
gluing emerge in order to analytically tackle question (i),  

WBF Sheaves emerge in the work of Jean Leray, in the study of indices and coverings for 
differential equations (with his works in the Oflag XVII, and articles from )@BD–F(; 
the term ‘sheaf’ first appears in )@BD). In the general realm of the study of a manifold 
through its projections into manifolds of lower dimensions (Picard, Lefschetz, 
Steenrod), there arises the problematic of studying the topology of the initial manifold 
by means of the coherent information provided by the fibers in the projection, and 
sheaves are precisely what help to capture (and glue together) the continuous variation 
in the fibers. Ae Cartan Seminar of the École Normale Supérieure ()@BC–F)) served 
to distill Leray’s ideas and present the sheaf concept as it is known today: as a fibered 
space, or ‘étalé space’ in Lazard’s terminology (not to be confused with Grothendieck’s 
notion of étale: distinguished by a mere accent aigu, these two concepts are almost 
diametrically opposed – the first is ramified, the second is nonramified), and as the 
sheaf of germs of sections. Godement unified the concepts and terminology in his 
Topologique algébrique et théorie des fasceaux ()@FC), in parallel with Grothendieck’s Tohoku 
[?ND–?NN]. For a detailed history of sheaf theory, see J. Gray, ‘Fragments of the 
history of sheaf theory’, in Lecture Notes in Mathematics EFW (New York: Springer, )@E@), 
)–E@, and C. Houzel, ‘Histoire de la théorie des fasceaux’, in La géométrie algébrique 
(Paris: Albert Blanchard, '(('), '@W–W(B. In our final chapter we will situate the 
appearance of sheaf theory as the concretization of a deep conce,ptual break between 
modern and contemporary mathematics, and we will try to show that the diachronic 
break around )@F( is not a mere historical accident. 
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while the natural mathematical concepts of restrictions, 
projections, preservations and sections emerge in order 
to synthetically tackle question (ii). Presheaves (a term 
we owe to Grothendieck) cover the combinatorics of the 
discrete interlacings between neighborhood/restriction 
and covering/projection, while sheaves cover the continu-
ous combinatorics tied to the couplings of coherence-
preservation and gluing-section (figure )W). In this way, the 
general concept of sheaf is capable of integrating a profound 
web of correlations in which aspects both analytic and 
synthetic, both local and global, and both discrete and 
continuous are all incorporated.

Figure ?E. 3e sheaf concept: general transitoricity of analysis/synthesis, local/global, 
and discrete/continuous.

In prescindingWBD the fundamental notion of gluing 
in the sheaf, the notions of coherence, covering and  

WBD Prescission, in Peirce’s sense, allows for the passage from the particular to the general, 
descrying the most abstract in the most concrete. It is a process that is ubiquitous in 
mathematics, and one that also takes place in the passage from the Many to the One, 
which is to say, in the phenomenological search for universal categories. Peirce’s three 
cenopythagorean categories (firstness: immediacy; secondness: action-reaction; thirdness: 
mediation) surface in meticulous dialectics of prescission. For a detailed study of those 

neighborhood emerge progressively and necessarily. Aese 
last two notions are of the greatest importance in onto-
logical discussions. On the one hand, if it turns out that 
the ‘real’ cannot, as we have seen, be anchored in the 
absolute, and if the ‘real’ can therefore only be under-
stood by way of asymptotic conditions, then strategies for 
covering fragments of the real take on a pivotal ontologi-
cal importance. It is in this sense that we should recall 
Rota’s exhortations that, with respect to mathematical 
objects, we must escape the ‘comedy of existence’ staged 
by analytic philosophy, and instead attend to a ‘primacy 
of identity’WBE that is bound to the graXing of the real’s 
modal coverings, and which will allow us to classify the 
possible identities between ideas and physical objects, 
identities that evolve – and in the most interesting cases 
remain invariant – over large-scale periods (here we 
should remember Gromov). On the other hand, a turn 
toward a real logic of neighborhoods, as a counterpoint to a 
logic that is ideal and punctual – a turn to sheaf logic as a 
counterpoint to classical logic – likewise leads to a radi-
cal ontological turn. Many of the exclusive disjunctions  
presupposed by analytic and classical thought are under-
mined in synthetic environments (whether physical or  

dialectics – linked to ‘bipolar tensions’ similar to those that have been discovered in 
the adjunctions of mathematical category theory – see De ]enne, L’analytique de la 
répresentation…  

WBE Rota, Indiscrete 3oughts, )CB–D. 

correlations             (prescissions, in Peirce’s sense)             (conditions)
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while the natural mathematical concepts of restrictions, 
projections, preservations and sections emerge in order 
to synthetically tackle question (ii). Presheaves (a term 
we owe to Grothendieck) cover the combinatorics of the 
discrete interlacings between neighborhood/restriction 
and covering/projection, while sheaves cover the continu-
ous combinatorics tied to the couplings of coherence-
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Figure ?E. 3e sheaf concept: general transitoricity of analysis/synthesis, local/global, 
and discrete/continuous.
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cognitive) where mediations are the rule. In such syn-
thetic/transitory/continuous realms, in particular, there 
is no reason why the disjunctive question concerning 
the ‘ideality’ or ‘reality’ of mathematical (quasi-)objects 
should be answered in an exclusive fashion [N–?H], 
as is suggested by the watertight compartments of Shap-
iro’s table [?W]. In concrete terms, sheaves, those (quasi-)
objects indispensable to contemporary mathematics, acquire 
all their richness in virtue of their double status as ideal/
real, analytic/synthetic, local/global, discrete/continu-
ous; the mutual inclusion (and not the exclusion)WBC of 
opposites – an incessant exercise of mediation – secures 
their technical, conceptual and philosophical force.

Category theory axiomatizes regions of mathematical 
practice, according to the structural similarities of the 
objects in play and the modes of transmission of infor-
mation between those objects, in harmony with Peircean 
pragmaticism [???–?D?], which is equally sensitive 
to problems of transference. In an inversion of set theory, 
where objects are internally analyzed as a conglomerate 
of elements, category theory studies objects through their 
external, synthetic behavior, in virtue of the object’s rela-
tions with its environment. A morphism is universal with 

WBC Rota clearly expresses the urgency of not adopting exclusions in an a priori fashion: 
‘Mathematical items can be viewed either as analytic statements derived within an 
axiomatic system or as facts about the natural world, on a par with the facts of any 
other science. Both claims are equally valid. […] Ae contextual standing of an item 
as analytic or synthetic is not fixed’. Ibid., )DC.

respect to a given property if its behavior with respect to 
other similar morphisms in the category possesses certain 
characteristics of unicity that distinguish it within the 
categorical environment. Ae basic notions of category 
theory associated with universality – the notions of free 
object and adjunction – respond to problematics bound up 
with the search for relative archetypes and relative dialectics. 
In the multiplicity, in the wide and variable spectrum of 
mathematics’ regions, category theory manages to find 
certain patterns of universality that allow it to overtake the 
splintering of the local and the surmounting of concrete 
particulars. In a category, for example, a free object can 
be projected into any object of the category’s sufficiently 
large subclasses: it is therefore something of a primordial 
sign, incarnated in all of the correlated contexts of inter-
pretation. Beyond relative localizations, certain relative 
universals thus arise, giving an entirely new technical 
impulse to the classical notions of universality. Aough 
we can no longer situate ourselves in a supposed absolute, 
nor believe in concepts that are universally stable in space 
and time, the notions of universality have been redimensioned 
by category theory, and coupled with a series of transfer-
ences relative to the universal-free-generic, facilitating a 
transit behind which are revealed remarkable invariants. 

In this manner, category theory explores the structure 
of certain generic entities (‘generalities’) by a route akin 
to the ‘scholastic realism’ of the later Peirce. Categorical 
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thought contemplates a dialectic between universal defi-
nitions in abstract categories (generic morphisms) and 
realizations of those universal definitions in concrete 
categories (classes of structured sets), and within the 
abstract categories we can behold universals that are real 
but not existent (that is to say, that are not incarnated 
in concrete categories: think, for example, of an initial 
object, definable in abstract categories, but whose reality 
has no incarnation in the category of infinite sets, where 
initial objects do not exist). Ae transitory ontology of 
mathematical (quasi-)objects therefore opens onto an 
intermediate hierarchy of modes of universality and modes 
of existence, beyond restrictive binary demarcations. In 
particular, as Lawvere has pointed out, the objects of 
elementary topoi (including presheaves and sheaves) 
[?TI] should be seen as variable sets, with modes of 
belonging that fluctuate over time. Ae ontological tran-
sitoriness of those ‘entities’ could not be more obvious.

In the spectrum of pure possibilities, the Peircean 
pragmaticist maxim [???–?D?] must confront the 
idea of concepts that are universal and logically correct, 
but which cannot be adequately incarnated in restricted 
contexts of existence. Ae thought of mathematical cat-
egory theory recaptures this kind of situation with great 
precision. In line with tendencies in universal algebra 
and abstract model theory, for example, category theory 
has been able to define very general notions of relative 

universal semantics as appropriate invariants for given 
classes of logics. Behind the multiplication of logical 
systems and varieties of truth, therefore, certain universal 
patterns persist. Indeed, the aim of controlling, behind 
the back-and-forth of mathematical information, that 
information’s transference (by way of functors, natural 
transformations, adjunctions, equivalences, etc.), con-
stitutes one of categorical thought’s main motivations. 
A subtle technical calculation over adjunctions yields to 
various complex systems of gluing between mathematical 
objects and allows us to better understand what Aom 
called the ‘founding aporia of mathematics’.

From a pragmaticist point of view, we can amplify 
our conception of logic and open ourselves to a lattice of 
partial flows of truth over a synechistic ground (syneches: the 
glued, the continuous; synechism: the continuity operative 
in the realm of nature, and hypothesis of the Peircean 
architectonic). Ais indeed takes place with Yoneda’s 
lemma [DHP], where, in trying to capture a given real-
ity (the category C, or, equivalently, its representable 
functors), the forced emergence of ideal objects (nonrep-
resentable functors) necessarily widens and amplifies the 
channels through which the functors at stake must flow. 
Ais ideal-real amplification is one of transitory ontology’s 
strong points, consonant with the mixture of realism and 
idealism present in Peirce’s philosophy. If we return to the 
pragmaticist maxim and its expression in figure B [??Q],  
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the diagram first places, on the leX, a sign in an abstract 
category, and, on the right, the same sign partially incar-
nated in various concrete categories. Ae various ‘modula-
tions’ and ‘pragmatic differentials’ let us pinpoint a sign 
that is one, abstract and general, and convert it into the 
multiple, the concrete and the particular. It is a task that, 
in category theory, is achieved by means of the various 
functors at stake, which, depending on the axiomatic 
richness of each of the categorical environments on the 
right, incarnate the general concepts in more or less rich 
mathematical objects. 

Ais first process of specializing to the particular, 
concretizing the general, and differentiating the one, 
can thus be understood as an abstract differential calcu-
lus, in the most natural possible sense: to study a sign, 
one first introduces its differential variations in adequate 
contexts of interpretation. But, from the point of view 
of the pragmaticist maxim, and from the point of view 
of category theory, this is only the first step in a pendular 
and dialectical process. For once the variations of the 
sign/concept/object are known, the pragmaticist maxim 
urges us to reintegrate those various pieces of information 
into a whole that constitutes knowledge of the sign itself. 
Category theory, likewise, tends to show that behind the 
concrete knowledge of certain mathematical objects, and 
between these objects, exist strong functorial correlations 
(adjunctions, in particular), which are what actually and 

profoundly inform us about the concepts at stake. In either 
of these two approaches, we are urged to complete our 
forms of knowing, following the lines of an abstract inte-
gral calculus, the pendular counterpart of differentiation, 
which allows us to find certain approximations between 
various concrete particulars – particulars that may appear 
disparate, but which respond to natural proximities on 
an initially imperceptible, archeal ground. 

Ae differential/integral back-and-forth, present in 
both the pragmaticist maxim and the theory of categories, 
is situated not only on the epistemological level mentioned 
above, but continuously extends to the ‘what’ and the ‘where’ 
of the (quasi-)objects at stake. Ae vertical interlacings to 
the right of figure B [??Q] – denoted by ‘correlations, 
gluings, transferences’, and situated under the general 
sign of the ‘pragmatic integral’ (8) – codify some of the 
most original contributions coming both from a broad 
modal pragmatism and from category theory,  something 
we have already corroborated with sheaf theory. Both 
(mathematical) (quasi-)objects and (Peircean) signs live 
as vibrant and evolving webs in those environments of 
differentiation and integration. Sheaves, categories and 
pragmaticism therefore seem to answer to a complex 
regime of the prefix , on both the ontological and 
the epistemological level. We will now make our way into 
that second dimension.
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We have described the (quasi-)objects of contemporary 
mathematics as webs of structured information and as (in 
Leibniz’s sense) ‘compossible’ deformations within those 
webs, open to relative and asymptotic composition in vari-
able contexts. Ae dynamism of those webs and deforma-
tions straddles the eidal and the quiddital, in an iterated 
weaving of conceptual and material approaches. Aese are 
bimodal objects in Petitot’s sense, situated in both physical 
and morphological-structural space, acting and reacting 
along spectra of formal and structural correlations with 
the many mobile environments where their partial transit 
takes place. In this way, the ontological ‘what’ and ‘where’ 
are blurred, and their frontiers become murky. We thus 
confront an ontological fluctuation that may provoke a 
predictable horror vacui in certain analytic approaches 
to the philosophy of mathematics, which seek to delimit 
and pinpoint their perspectives in the clearest possible 
way, fleeing from smears and ambiguities, and situating 
those tidy delimitations over fragments of the absolute. 
Nevertheless, for a contrapuntal, synthetic approach, 
open to relative transit, as heralded by contemporary 
mathematics, it becomes imperative to consider the mobile 
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frontiers between the conceptual and the material.WB@ A 
transitory ontology, as described in the previous chapter, 
thus gives rise to a fluctuating ontology, one that is not 
easily pigeonholed into the watertight compartments of 
Shapiro’s square [?W]: a natural variation of the ‘what’ 
and the ‘where’ gives rise to an associated variation of 
the ‘how’. Once the correlative spectrum of disparate 
epistemological perspectives is opened up – in what we 
could call a comparative epistemology – we will, in this 
chapter, go on to reintegrate several of those perspectives 
in a sort of epistemological sheaf, sensitive to the inevitable 
complementary dialectic of variety and unity that con-
temporary mathematics demands.

In part ', we repeatedly saw how, behind the differenti-
ated, many of mathematics’ most pivotal constructions 
bring  pendular processes of differentiation and reintegra-
tion into play, beneath which emerge invariant, archeal 
structures. Recall, for example, Grothendieck’s motifs 
beneath the variations of cohomologies [?HH–?HQ], 
Freyd’s classifier topoi beneath the variations of rela-
tive categories [DHI–DHN], Simpson’s arithmetical 

WB@ For Petitot, ‘there is a rational solidarity between the conceptual, the mathematical, 
and the experiential, which challenges the positivist conception of the sciences and 
leads to a rehabilitation of critique on new bases’ (protogeometries, morphological-
structural order, local/global dialectics, phenomenological invariants of the world 
and not only of language, etc.). See Petitot’s contributions to the Enciclopedia Einaudi, 
and in particular the entry, ‘Locale/globale’, Enciclopedia Einaudi (Torino: Einaudi, 
)@E@), vol. C, B'@–@(, and ‘Unità delle matematiche’, Enciclopedia Einaudi (Torino: 
Einaudi, )@C', vol. )F), ),(WB–CF (p. ),(CB cited above). In the latter, Petitot places 
Lautman at the center of his argument (‘La filosofia matematica di Albert Lautman’, 
ibid, )(WB–B)): this was the first deep presentation of Lautman’s work outside France.

nuclei beneath the theorematic variations of ‘ordinary’ 
mathematics [DHQ–DIW], Zilber’s proto-geometric 
nuclei beneath the variations of strongly minimal theo-
ries [DII–DIP], the Lax-Phillips semigroup beneath 
the non-euclidean variations of the wave equations 
[D?Q–DDW], the Langlands group beneath the varia-
tions of the theory of representations [?QH–?QI], the 
Grothendieck-Teichmüller group beneath arithmetical, 
combinatorial and cosmological variations [DDI, DEE], 
Gromov’s h-principle beneath the variations of partial 
differentials, etc. In all these examples, through webs 
and deformations, the knowledge of mathematical processes 
advances by means of series of iterations in correlative triadic 
realms: differentiation-integration-invariance, eidos-quidditas-
arkhê, abduction-induction-deduction, possibility-actuality-
necessity, locality-globality-mediation.

Advanced mathematics invokes this incessant ‘tri-
angulation’, and perhaps finds its most (technically 
and conceptually) striking reflection in the notion of 
sheaf [DQI–DQQ]. A fact of tremendous importance 
in contemporary mathematics is the necessity of situating 
oneself in a full-fledged thirdness without reducing it (without 
‘degenerating it’, Peirce would say) to secondnesses or 
firstnesses. If thirdness disappears from the analytic modes 
of understanding, this is because existing (classical) forms 
of analysis are basically dual, as either-or exclusions, in the 
style of Benacerraf [??]. Ais means that the analytic 
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viewing apparatus finds itself intrinsically limited when it 
comes to observe how advanced mathematics operates, 
if it considers it on its own, independently of any synthetic 
contrast. A pendular combination of the analytic and the 
synthetic, the differential and the integral, the ideal and 
the real, seems to be the epistemological path to follow. 
Let us note in passing that, on a ‘meta-epistemological’ 
level, what is needed is a primacy of the synthetic, not the 
analytic, in order to allow flows, oscillations and glu-
ings between analytic and synthetic subfragments on  
lower levels. 

Ae usual ‘idealist’ or ‘realist’ epistemologies, as 
they have been independently presented in the first part 
[N-T,?DH], are burdened with exclusions that 
do not suit contemporary mathematics’ decantation of 
the ideal-real. Neither an analytic-ideal differentiation 
(which would, for example, block the emergence of 
Grothendieck’s schemes [?NQ–?NT]), nor a synthetic-
real integration (which, for instance, would block the 
emergence of Gromov’s inequality webs [DNW–DN?]), 
can cover the world independently. When it is a question 
of drawing together a collection of ever-finerWF( recoverings 

WF( Aose recoverings can be seen as worthy, metaphorical analogues of Grothendieck 
topologies [?EQ] and Voevodsky’s algebraic surgery [?HN, DIQ]. On the role of 
metaphor, both in mathematical invention (‘what’) and in the subsequent knowledge 
of that invention (‘how’), see the following chapter. In a certain sense, the real can only 
be covered by introducing metaphorical images, in the same manner that, in Yoneda’s 
lemma [DHH–DHT], a category can be ‘really’ covered (with its associated category 
of presheaves) by introducing ‘ideal’ or ‘imaginary’, nonrepresentable, objects.

of the ideal/real junction, a ‘comparative epistemology’ 
becomes the order of the day. Articulation, dialectical 
balance, correlativity, and pragmatics here turn out to 
be indispensable. If every epistemological perspective 
generates an interpretive cut, a peculiar environment of 
projectivity, a differential modulation of knowing, then the 
next step consists in articulating the coherent projectivi-
ties, balancing the polarities, and gluing the modulations, 
just as Peirce’s pragmaticist maxim postulates [??D–?DW]. 
As we enter this process we  become immersed in a sort of 
epistemological ‘sheafification’, where the local differential 
multiplicity is recomposed into an integral global unity.

Before considering the theoretical obstructions and 
advances that emerge in that enterprise of sheafifying a 
comparative epistemology, it may be useful to consider a 
detailed example. Consider the processes of ‘smoothing’ 
and ‘globalization’ that Gromov introduced into Rieman-
nian geometry [DIT–DNW]. On the one hand, Gromov 
studies infinitesimal deformations of inequalities in well-
defined local contexts; on the other, he studies the set of 
those deformations according to many possible metrics 
over the manifold, and calculates global invariants tied to 
a consideration of all the metrics together. In this back-
and-forth, the knowledge of the objects is situated neither 
in the process of locally deforming and circumscribing 
the inequalities nor in the process of constructing global 
invariants, but rather in an indispensable dialectic between 
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the two approaches: without the web of analytic inequali-
ties, the synthetic invariants do not emerge [DNW–DND]; 
and without the invariants the web of inequalities driXs 
about pointlessly (whether this be from a technical or a 
conceptual point of view). Ae knowledge of Rieman-
nian geometry thus incorporates both analytic elements 
and synthetic configurations, situating itself in both 
‘idealist’ (set of all metrics) and ‘realist’ (local physical 
deformations) perspectives simultaneously. In the case 
in question, the sheaf of the different local metrics gives 
rise to continuous sections tied to the invariants at stake. 
Going beyond this one case, however, the same Gromov 
points out [DND] how the contrast between the expo-
nentials, clouds, and wells in Hilbert’s tree governs the 
multidimensionality of mathematical knowledge, which is 
never reducible to just one of its dimensions. 

As we have seen in the generic analysis of the notion 
of sheaf [DQE–DQQ], a sheafification in comparative 
epistemology requires us firstly to prescind the notions of 
neighborhood, covering, and coherence, before moving 
on to possible gluings. Ae notion of a neighborhood between 
epistemological perspectives requires us to postulate, first 
of all, the mutual commensurability of the latter; here, we 
explicitly position ourselves against the supposed incom-
mensurabilities of ‘paradigms’ (Kuhn), a phenomenon 

that rarely occurs, at least in mathematics.WF) In this context, 
an epistemological neighborhood should bring together dif-
ferent perspectives, either in their methods (for example, 
the ‘synthetic’ method applied to a realist or idealist 
stance: pigeonholes 23 and 24 in figure F [?DI] regard-
ing the ‘pure’ posing of problematics in the philosophy 
of mathematics , where ij denotes the jth pigeonhole in 
column i), in their objectives (in their approach to the 
real, for example: pigeonholes 13 and 23 in figure F), or in 
their mediations through the warps at stake (for example, 
asymptotic mediation: pigeonholes 16 and 25 in figure F). 
Ais third option is the most rich and innovative from a 
conceptual point of view, since it can help us eliminate 
dualistic exclusions by working with epistemic webs of 
approximation. 

Once a certain neighborhood has been established 
(pursuing the cases above, a neighborhood of ‘synthetic 
methodology’, ‘realist finality’ or ‘asymptotic mediation’, 
for example), we pose the question of how that neighbor-
hood may be covered. Ae neighborhoods could be covered 
in a binary fashion (by means of the pairwise-indicated 
pigeonholes, in the cases above, for example), but the 
most interesting cases might correspond to nonbinary 

WF) From an epistemological point of view, not only do the various paradigms (‘isms’) in 
mathematics (logicism, intuitionism, formalism, structuralism, etc.) not cancel each 
other out, in fact, they benefit from mixed fusions (through their reinterpretation in 
terms of category theory, for example). From a logical point of view, the amalgams in 
model theory are legion, and many interesting works in the area correspond to the 
crossing of apparently incommensurable entities. 
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coverings, as happens in the third situation, for instance: 
the ‘asymptotic mediation’ can be covered not only with 
a ‘diagonal’ binary (pigeonholes 16, 25 of figure F), but 
with a ternary ‘corner’ (pigeonholes 16, 25, 26 of figure 
F). Ae emergence of this ‘corner’, beyond a merely dual 
counterpoint, leads us to observe the importance of the 
limiting and the asymptotic, a crucial condition not only in 
the extrinsic knowledge of objects, but in the intrinsic 
characteristics of the investigated objects themselves 
(condition (ix) regarding the specificities of contemporary 
mathematics [HD]). 

In some cases, the coverings might be coherent (that is 
to say, not locally contradictory) and might thereby give 
rise to adequate gluings (epistemological sections in the sheaf). 
Aese gluings might open new epistemological perspec-
tives, capable of locally responding to certain problematics 
in one way and other problematics in another way, so as to 
preserve the coherence of the responses. Ais would give 
impetus to a partial and asymptotic use of relative epistemo-
logical strategies (that change with respect to changes of 
neighborhood), going beyond the restrictive or absolute episte-
mologies of the sort proposed in Shapiro’s square [?W]. 
Let us consider a concrete case of this situation, by asking 
how we can know the structure of groups. Its archeal root, 
as a phenomenological invariant in the world (and not only 
as a descriptor in a language), surfaces through the works 
of Grothendieck [?HH–?HN], Connes [DDI–DDP], 

Kontsevich [DED–DEE], Gromov [DNH–DNI], Zilber 
[DII–DIN], etc. Nevertheless, genetically, the notion 
of group appears as an eidal organization of particular 
symmetries (with Galois), which later (with Jordan) 
yields enormous quiddital facilitations in calculation. 
A group is thus an archetypical (quasi-)object, at once 
both ideal and real. Ae apparent confusion of these three 
perspectives is eliminated, however, by reading them as 
fragments of a section in a sheaf. If, on the one hand,  we 
identify the topological base of a sheaf with a collection 
of neighborhoods in a temporal tree (‘history’), then we see 
how a group – locally symmetrical in one neighborhood 
(Galois, )CW(), locally combinatorial in another (Jordan, 
)CE(), locally structural in another (Noether, )@W(), locally 
cohomological in yet another (Grothendieck, )@D(), or 
locally cosmological in still yet another neighborhood 
(Connes, Kontsevich, '((() – can perfectly well live 
in multiple registers of knowledge, each coherent with 
the others. If, on the other hand, we take the base of the 
sheaf to be a collection of neighborhoods in a conceptual 
map (‘geography’), then we see how a group – locally 
linear in one neighborhood (Galois, Jordan, Noether), 
locally differential in another (Lie, Borel, Connes), locally 
arithmetical in yet another (Dedekind, Artin, Langlands), 
or locally categorical in still yet another neighborhood 
(Grothendieck, Serre, Freyd) – can be projected onto all of 
those apparently divergent manifestations. ‘History’ and 
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‘geography’ can, in turn, be founded in a sort of squared 
sheaf that traces out all of the richness, both extrinsic and 
intrinsic, of the concept. 

In accordance with the multidimensionality of math-
ematical vision, with the depth of ‘Hilbert’s tree’, with 
relativity of the webs of categorical perspectives, and with 
those webs’ sheafification, we can sense the existence of 
the complex protogeometry that underlies a comparative 
mathematical epistemology. Let us make explicit here, 
behind these considerations of ours, the hypothesis of a 
continuityWF' between the world of phenomena, the world 
of mathematical (quasi-)objects associated with those 
phenomena, and the world of the knowledge of those 
objects – which is to say, the hypothesis of a continuity between 
the phenomenal, the ontic and the epistemic. Ae mathematical 
constructions (and discoveries) that we have extensively 
reviewed in this work’s second part show that contem-
porary mathematics offers new support for the possible 
soundness of this continuity hypothesis. Advanced math-
ematics, here, offers a finer illustration than elementary  

WF' Ais continuity is one expression of Peircean synechism, which postulates an even stronger 
continuity hypothesis, by supposing the existence of a completely operative continuity 
in nature (in which the human species appears, according to Peirce, both materially 
and semiotically). Another expression of this synechism is constituted by the three 
cenopythagorean, universal categories, which, according to the Peircean hypothesis, 
continually traverse both the world of phenomena and the forms by which those 
phenomena are known. For a description of synechism, of the generic (nonclassical, 
nonCantorian, nonextensional) concept of the continuum according to Peirce, and of 
certain partial mathematical models for this nonstandard continuum, see F. Zalamea, 
El continuo peirceano (Bogota: Universidad Nacional, '(()). An English translation is 
available at http://unal.academia.edu/FernandoZalamea/Websites.

mathematics, since the latter’s low thresholds of com-
plexity impede the emergence of the continuous/discrete 
dialectic that ceaselessly traverses the contemporary space 
of mathematics. From an epistemological point of view, 
the distinct perspectives are nothing other than breaks in 
continuity. In those breaks (as in Peircean abduction), 
new forms of knowledge are generated,WFW and – in an 
epistemology open to transit – those forms of knowledge, 
when they are coherent, can be subsequently reintegrated 
in an adequate fashion. 

Ae protogeometry underlying a comparative epistemol-
ogy of mathematics exhibits several peculiar characteris-
tics, tied to a combinatorics of coherent couplings between the 
webs in play (deep, multidimensional, iterative webs). On 
the one hand, in fact, the inverse bipolar tensions between 
prescission and deduction [DQN] show that, in many 
mathematical cases past a high threshold of complexity 
(among which we may place the case of sheaves, in any of 
their geometrical, algebraic or logical expressions), there 
emerges a (‘horizonal’) hierarchy of partial couplings, 
whose striated resolution yields important forms of math-
ematical knowledge. Ais is the case, for example, with 
Gromov’s h-principle [DNE], where an ‘inverse bipolar 
tension’ between local and holonomic sections yields an 

WFW Aere may exist, here, a profound analogy between the processes of symmetry breaking 
in the physics of the first instants of the universe, and the processes of continuity 
breaking in the continuous archeal groups by which those forms of symmetry can be 
represented. 
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entire series of homotopic mediations, with calculative 
fragments of enormous practical interest in the resolution 
of partial differential equations. On the other hand, the 
self-referential exponential nodes in Hilbert’s tree [DND] yield 
another hierarchy (now ‘vertical’) of partial couplings whose 
stratified resolution likewise results in remarkable advances. 
Ais, for example, is what happens with the fundamental 
notion of space, whose breadth expands as it transits 
between sets, topological spaces, Grothendieck topoi 
[?HW], and elementary topoi [?TI], on each stratum 
generating distinct (though mutually coherent) conglomerates 
of new mathematical results. But there also exists at least a 
third hierarchy (now ‘diagonal’) of partial couplings between 
mathematical webs, directly influenced by the transgressive 
spirit of Grothendieck. Beyond the horizontal or vertical 
displacement, and beyond their simple combination, there 
do indeed exist diagonal mediations with archeal traits 
(‘nondegenerate’ Peircean thirdnesses), between remark-
ably far-flung realms of mathematical knowledge (dessins 
d’enfants between combinatorics and complex analysis 
[DDI], the Grothendieck-Teichmüller group between 
arithmetic and cosmology [DDI], noncommutative groups 
between logic and physics [DIQ], etc.).

The protogeometry of those couplings thus 
incorporates an entire complex interconnection of 
multidimensional elements, in concordance with the ‘intu-
itive’ multidimensionality of mathematical knowledge.  

Ae image of that mathematical knowledge is far removed 
from its logical foundation,WFB and a new preeminence of 
geometry appears on the map (item E in the distinctive 
tendencies of contemporary mathematics [H?]). Ae 
beginning of the twenty-first century may indeed be a 
good time to begin to seriously consider a geometricization 
of epistemology such as we are proposing,WFF that would 
help us to overcome (or, at least, to complement) the 
logicization of epistemology undertaken throughout the 
twentieth century. Ae influence of analytic philosophy, 
whose logical support boils down to first order classical 
logic, should be countered by a synthetic philosophy, one 
much closer to the emerging logic of sheaves. What is at 
issue here is an important paradigm shiX in mathematics 
and logic (as in Caicedo’s fundamental results [DQE]), 
which philosophy (ontology, epistemology, phenomenol-
ogy) too should begin to reflect. Indeed, the changes in 

WFB Ais is something that impresses itself upon even such a studious partisan of foundations 
as Feferman: ‘Ae logical picture of mathematics bears little relation to the logical 
structure of mathematics as it works out in practice’. S. Feferman, ‘For Philosophy of 
Mathematics: F Questions’, )W. Course material, http://math.stanford.edu/~feferman/
papers/philmathfive.pdf. Feferman nevertheless repeats the usual prejudices against 
an ‘ingenuous’ or ‘trivial’ Platonism: ‘According to the Platonist philosophy, the 
objects of mathematics such as numbers, sets, functions and spaces are supposed to 
exist independently of human thoughts and constructions, and statements concerning 
these abstract entities are supposed to have a truth value independent of our ability 
to determine them’ (ibid., ))). Compare this (caricatural) description with the more 
complex Platonism of a Lautman [ID–NW] or a Badiou [DPP–DQW]. 

WFF Petitot’s program for the naturalization of phenomenology covers similar bases, and offers 
a great deal of room to geometry. See J. Petitot et al., Naturalizing Phenomenology: Issues 
in Contemporary Phenomenology and Cognitive Science (Palo Alto: Stanford University 
Press, '(((). Although Petitot makes use of techniques in neuroscience, which we do 
not mention here, his invocation of Riemannian geometry and sheaf logic anticipates 
our own perspectives.  
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the logical base register the deformability of mathematical 
(quasi-)objects through relative transits, and allow us to 
overcome the classical ‘rigidity’ an object exhibits in a 
supposedly absolute universe. 

In a detailed approach to Grassmann’s work, Châtelet 
lucidly describes one of the fundamental problematics of 
mathematical knowledge:

Like the contrast continuous/discrete, the equal 
and the diverse are the result of a polarization; it 
is thus that algebraic forms ‘becoming through the 
equal’ and combinatory forms ‘becoming through the 
diverse’ can be distinguished. It is a matter of finding 
the articulation that makes it possible to pass continuously 
from the equal to the diverse.WFD 

Châtelet’s mathematico-philosophico-metaphorical 
instruments in this search for a continuous articulation 
include ‘dialectical balances’, ‘diagrammatic cuts’, ‘screw-
drivers’, ‘torsions’, and ‘articulating incisions of the suc-
cessive and the lateral’, which is to say, an entire series 
of gestures attentive to movement and which ‘inaugurate 
dynasties of problems’WFE and correspond to a certain fluid 

WFD G. Châtelet, Les enjeux du mobile, )DE (our emphasis). 

WFE Ibid., WE, WW, WC, ')C, W'. 

electrodynamics WFC of knowing. Here, we are once again 
facing the multidimensionality of mathematical (quasi-)
objects, a multiplicity that can only be apprehended by 
way of ‘gestures’, that is, by way of articulations in motion, 
which allow for partial overlaps between the ‘what’ and 
the ‘how’. Mathematical epistemology – in so far as it 
wishes to be able to incorporate the objects of contem-
porary mathematics (and in many cases, those of modern 
mathematics) into its spectrum – should therefore be 
essentially mobile, liable to torsion, capable of reinte-
grating cuts and discontinuities, and sensitive to fleeting 
articulations – in sum, genuinely in tune with the objects it 
aspires to catch sight of. No fixed position, determined a 
priori, will be sufficient for understanding the trans-form-
ability of the mathematical world, with its elastic transits, 
its unstoppable weavings between diverse forms, and its 
zigzagging pathways between modal realms.

In the case studies in part ', we can concretely detect 
various properties of the epistemic protogeometry that we 
have just been discussing. Both in the (quasi-)objects 
at stake, and in the forms by which they are known, 
we observe common protogeometrical features, among 
which we must emphasize: (a) multidimensional cuts 

WFC Châtelet interlaces Grassmann’s ‘fluidity’ (ibid., )DD) with Maxwell’s electromagnetism 
in order to study an electrophilosophy in proximity with Faraday’s electrogeometrical 
space (ibid., chapter F). A geometrical perspective on Maxwell and Faraday’s 
‘allusive operators’ (ibid., ')@; emphasis ours) breaks with punctual or instantaneous 
interpretations, and explores the asymptotic deformations of entities within given 
neighborhoods (‘the pedagogy of lines of force’, ibid., 'WC–BC). 
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and reintegrations, (b) triadic iterations, (c) deformations 
of objects and perspectives, (d) processes of passage to 
the limit by means of nonclassical approximations, (e) 
asymptotic interlacings and couplings, and (f ) fragments 
of sheafification. In contemporary mathematics, there is a 
continuous overlapping of the ‘what’ and the ‘how’, whose 
very protogeometry tends to emerge from a common 
and unitary base. Grothendieck’s schemes [?ET–?HW] 
combine many of the above properties: ‘ontically’, the 
schemes are constructed by (a) introducing structural 
representations of rings, (c) viewing points as prime ideals 
and topologizing the spectrum, (f ) locally defining fibers 
as structural spaces of rings and gluing them together 
in an adequate fashion; ‘epistemically’, schemes involve 
(a) a process of generalization and specification between 
multidimensional objects, (b) an iterated threenessWF@ 
between a base, its widening, and their mediation (pro-
jection), (c) an comprehension of objects through their 
relative positions, etc. Similar registers can also be speci-
fied for Grothendieck’s other great constructions: topoi 
[?H?–?HH] and motifs [?HH–?HQ]. In the same way, 
the Langlands correspondence [?Q?–?QN] includes, 
‘ontically’, (a) representations of groups, (b) iterated  

WF@ Ae first level of iteration corresponds to the (algebraic) step from the initial, unitary, 
commutative ring to the set of its prime ideals; the second level, to the (topological) 
step from the combinatorial spectrum to the spectrum with the Zariski topology; the 
third level, to the (categorical) step from neighborhoods to fibers; the fourth level, to the 
ultimate sheafification of the whole. It is interesting to observe how those iterations 
are not absolute, and can be realized in a different, or better still, mixed order. 

transits between the modular, the automorphic and the 
L-representable, (c) mixed differential and arithmetical 
structures, and (d) manipulations of noncommutative 
groups; ‘epistemically’, the strategy of the program rests 
on (a) an understanding of arithmetical objects as ‘cuts’ 
(projections) of more complex geometrical objects, (b) 
a systematic search for geometrical mediations between 
(discrete) arithmetic and (continuous) complex analy-
sis, and (c)-(d) an observation of the objects’ analytical 
deformations, etc. Another similar situation occurs with 
the general theory of structure/nonstructure according 
to Shelah [?TN–?TP], where, ‘ontically’, there arise 
(a) amalgams in high finite dimensions, (d) cardinal 
accumulations by means of nonexponential objects (PCF 
theory), and (e) monstrous models and asymptotic warps 
of submodels; ‘epistemically’, Shelah’s vision integrates 
(a) a celebration of mathematics’ multidimensionality, 
(b) an incessant moderation between the structured and 
the nonstructured, (d)-(e) a deep understanding of the 
objects at high levels of the set-theoretic hierarchy as 
limits of ‘moderate’ and ‘wild’ fragments, etc. In this way, 
certain common protogeometric characteristics naturally 
lace together the ontic webs and the epistemic processes in 
play.WD( Aroughout part ' of this work, we have implicitly 

WD( In the last instance, the transformations leading from a fixed ontology to a transitory 
ontology, and from a fixed epistemology to a sheafified, comparative epistemology, cause the 
‘entities’ under investigation in each of these approaches (‘what’, ‘where’, ‘how’) to draw 
closer to one another, and cause their mobile frontiers to become much less exclusive. 
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of objects and perspectives, (d) processes of passage to 
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continuous overlapping of the ‘what’ and the ‘how’, whose 
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transits between the modular, the automorphic and the 
L-representable, (c) mixed differential and arithmetical 
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WD( In the last instance, the transformations leading from a fixed ontology to a transitory 
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carried out other analyses, and additional examples could 
be explicated here (the works of Connes, Kontsevich, 
Zilber, and Gromov, especially, lend themselves to this), 
but the aforementioned cases may provide sufficient 
illustration.

Ae principal limitation that seems to encumber any 
‘analytic’ epistemology, as opposed to the ‘synthetic’, com-
parative epistemology that we are hinting at here, pivots 
on the analytic difficulty in confronting certain inherently 
vague environments, certain penumbral zones, certain ‘out-
posts of the obscure’, as Châtelet calls them,WD) certain elas-
tic places of ‘spatial negativity’, certain ‘hinge-horizons’ 
where complex mixtures emerge that resist every sort of 
strict decomposition. We will study the problematic of the 
penumbra with greater care in the next chapter, where we 
take up the (sinuous, nonlinear) dynamics of mathemati-
cal creativity, but in what remains of this chapter we will 
approach the dialectic of the obscure and the luminous in 
conjunction with the three ubiquitous polarities, analysis/

Ae ontic ‘webs’ and epistemic ‘processes’ are therefore only relative specifications 
(in ontological and epistemic contexts) of a single and common kind of ‘proto-actions’ 
(something which coincides with certain tendencies of Peircean universal semiotics). In 
such a ‘blurring’ of frontiers between the ontic and the epistemic, it is worth pointing 
out how Badiou, on the one hand, sees mathematics as being, basically, ontology, 
while Petitot, on the other hand, considers it to be, basically, epistemology. On an 
analytic reading, such blurrings are taken to be improper, but, as we have observed, 
from a synthetic reading – once transits, osmoses, and contaminations are accepted – new 
analyses of the processes of transference can be carried out, without having to spill 
over into an extreme relativism or into ingenuous forms of skepticism. Ae forms 
of the decomposition (analysis) of transit (synthesis) can no longer be forgotten in 
mathematical philosophy. 

WD) Châtelet, Les enjeux du mobile, '', WE. 

 

-   

 

 
preserves LEM and LNC
 
preserves LNC, rejects LEM
- 
preserves LEM, rejects LNC
 
all of the above,
but in different forms

=A0JA
=J(A/JA)

EA0JA
=J(A/JA)

=A0JA
EJ(A/JA)

=AҫJA
=J(A7JA)
EA5JA
EJ(A&JA)

synthesis, idealism/realism and intensionality/extensionality, 
which appear in any epistemological approach. Our objec-
tive consists in mediating (or ‘moderating’: Grothendieck, 
Shelah) between them, and proposing reasonable cou-
plings from the ‘outposts’ of contemporary mathematics.

Figure ?H. Logic: classical, intuitionistic, co-intuitionistic, and linear.

A very interesting case of this search for mediations in 
penumbral zones corresponds to the dualization of the 
central Clas - Int logical axis (the continuum of superin-
tuitionistic logics between intuitionistic logic and classical 
logic) into its counterpart CoInt - Linear (logics between 
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linear logic and paraconsistent, co-intuitionistic logic). 
Ae Class - Int axis can be seen as a line along which the 
law of the excluded middle progressively gives way, by 
continuous degrees. Now, the law of the excluded middle 
has a dual, which is the principle of noncontradiction. In the 
eyes of classical logic, these two laws are equivalent, but 
the Class - Int axis progressively breaks this symmetry, 
dissolving the excluded middle while maintaining non-
contradiction. What this suggests, then, is the possibility 
of a dual axis, that would evaporate noncontradiction 
while maintaining the excluded middle, terminating a 
logical system that is the dual of intuitionistic logic: a 
‘paraconsistent’ system called co-intuitionistic logic. 

What these two logics sacrifice in symmetry, they 
gain in unearthing a coherent and profound computa-
tional dynamism, allowing for a mapping of proofs onto 
functional programs, and the dynamic of cut-elimination 
(the procedure by which their proofs can be reduced to a 
unique normal form, a ‘direct proof’ where no lemmas are 
used) onto the process of program execution. Now, as the 
French proof-theorist Jean-Yves Girard has observed, the 
transformation of classical logic into intuitionistic logic 
can be seen as the result of an asymmetrical restriction of 
the ‘structural rules’ that govern the former – rules which 
allow formulas to be reused and forgotten as needed in the 
course of a proof, and so encode their measure of ideal-
ity. A similar observation can be made for the shiX from 

classical to co-intuitionistic logic. As Girard observes, it is 
therefore possible to recover both the coherent dynamics 
of intuitionistic (and co-intuitionistic) logic, and the pro-
togeometrical symmetry of classical logic, by symmetrically 
suspending the structural rules – which gives us linear logic, 
a logic where formulas work more like transient actions 
(and their negations as reactions) than like atemporal and 
ideal propositions. Ae forms of conjunction and disjunc-
tion, here, are each split in two – into ‘multiplicative’ 
and ‘additive’ forms – which allows this synthetic logic to 
partially preserve and partially reject both the law of the 
excluded middle and its dual, the law of noncontradic-
tion. Ae power of the structural rules, alone capable of 
reuniting these forms, is then reintroduced in the form of 
local modal operators, which, in fact, constitute some of the 
most stubborn obstructions to geometrical and dynamical 
analyses of linear proofs (Girard calls them the ‘opaque 
modal kernels’ of ‘essentialism’).WD' 

Ae diamond of the four logicsWDW complete the pri-
mordial Class – Int axis in a natural manner, and Luke 
Fraser has posed the fundamental question as to what 
concepts would correspond to the well-known landscape 

WD' J.-Y. Girard, 3e Blind Spot: Lectures on Logic (Zurich: European Mathematical Society, 
'())), )). 

WDW Ae ‘diamond’ is outlined and briefly discussed in Samuel Tronçon’s outstanding 
genealogy of the Girardian research program in S. Tronçon. Dynamique des démonstrations 
et théorie de l’interaction, PhD thesis, University of Aix-Marseille I, Marseille, April 
'((D, 'EC. 
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Class (analysis, discreteness, extensionality, sets) – Int (syn-
thesis, continuity, intensionality, categories) if we attempt 
to dualize them toward the CoInt – Linear side.  Indeed, the 
penumbral zone is all the more accentuated given that, in 
mathematics’ current state of development, we do not 
seem to be able to even glimpse natural completions of the 
dyads of analysis/synthesis, discrete/continuous, exten-
sionality/intensionality, and sets/categories. If we think 
of Aom’s ‘founding aporia’ as describing the conceptual 
galaxy that turns around just one of these axes (Class - Int), 
this leaves, in the penumbra, three axes around which 
may revolve entire galaxies, conceptual spaces of which 
we have not yet learned to dream.

Lawvere has introduced limit co-operators and co-
Heyting algebras in topoi, the Brazilian school has worked 
on categorical models for paraconsistent (co-intuitionistic) 
logics and, recently, the Dutch school has given impetus 
to the study of co-algebraic techniques in computational 
modelings. Ae analyses carried out, nevertheless, have 
turned out to be very localized and correspond to the 
resolution of minor technical questions. A fundamental 
philosophical study of the galaxies associated with the 
penumbral zone CoInt - Linear, by contrast, could, in the 
coming years, produce a genuine conceptual revolution – yet 
another example of how contemporary mathematics can 
serve to tune the strings of philosophy and make them 
vibrate. Ae triadic Peircean phenomenology could be of 

great assistance here, at least in relaxing the dyads so as 
to yield a third opening (with Giovanni Maddalena we 
have, for example, proposed an extension of analysis/syn-
thesis into analysis/synthesis/horosis,WDB through the concept 
of horos, border, frontier), but the labor of conceptual 
completion through the ‘Fraser Side’, CoInt - Linear still 
entirely remains be to done.WDF

Ae analysis/synthesis polarity has always been a 
source of equivocations and advances, in philosophyWDD no 
less than in mathematics.WDE In a dialectical fashion (of the 
thesis-antithesis type, i i-  ) the polarity brings into oppo-
sition knowledge by decomposition and knowledge by 
composition, but in a relative fashion, since ‘there exist no 
absolute criteria, either for processes of analysis or for pro-
cesses of synthesis’.WDC Indeed, nature always presents itself 
by way of mixtures that the understanding decomposes  

WDB G. Maddelena & F. Zalamea, ‘A New Analytic/Synthetic/Horotic Paradigm. From 
Mathematical Gesture to Synthetic/Horotic Reasoning,’ (preprint, submitted to Kurt 
Gödel Research Prize Fellowship '()().

WDF We are grateful to our translator, Zachary Luke Fraser, for having presented this 
problematic to us, and for helping us to develop our discussion of the ‘logical diamond’. 

WDD See G. Holton, ‘Analisi/sintesi’, Enciclopedia Einaudi (Torino: Einaudi, )@EE), vol. ), B@)–
F''. On many occasions we have tried to (technically, conceptually and analogically) 
use the Enciclopedia Einaudi, whose eminently transductive project quite naturally 
brings together modern and contemporary mathematics. Ae last two volumes (vol. 
)F, Sistematica and vol. )D, Indici) are of great service, as well as the fascinating maps, 
tables, and reading diagrams developed by Renato Betti and his collaborators, where 
the many osmoses and shiXings of contemporary thought are made manifest. (Recall 
Merleau-Ponty’s philosophy of the ‘shiXing’ [DPP].) Petitot’s remarkable contributions 
to the Enciclopedia introduced us to the local/global, centered/decentered, and One/
Many problematics that, as we have seen, reemerge in contemporary mathematics. 

WDE See the anthology edited by M. Otte and M. Panza, Analysis and Synthesis in Mathematics, 
History and Philosophy (Dordrecht: Kluwer, )@@E). 

WDC Holton, ‘Analisi/sintesi’, F('. 
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Mathematical Gesture to Synthetic/Horotic Reasoning,’ (preprint, submitted to Kurt 
Gödel Research Prize Fellowship '()().

WDF We are grateful to our translator, Zachary Luke Fraser, for having presented this 
problematic to us, and for helping us to develop our discussion of the ‘logical diamond’. 

WDD See G. Holton, ‘Analisi/sintesi’, Enciclopedia Einaudi (Torino: Einaudi, )@EE), vol. ), B@)–
F''. On many occasions we have tried to (technically, conceptually and analogically) 
use the Enciclopedia Einaudi, whose eminently transductive project quite naturally 
brings together modern and contemporary mathematics. Ae last two volumes (vol. 
)F, Sistematica and vol. )D, Indici) are of great service, as well as the fascinating maps, 
tables, and reading diagrams developed by Renato Betti and his collaborators, where 
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WDE See the anthology edited by M. Otte and M. Panza, Analysis and Synthesis in Mathematics, 
History and Philosophy (Dordrecht: Kluwer, )@@E). 

WDC Holton, ‘Analisi/sintesi’, F('. 
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and recomposes in iterated oscillations. Analytic differen-
tiation (typical in the mathematical theory of sets: objects 
known by their ‘elements’) can lead to a better resolu-
tion of certain problematics, though subdivision in itself 
(Descartes) does not assure us of any result (Leibniz).WD@ 
Synthetic integration (typical of the mathematical theory 
of categories: objects known by their relations with the 
environment), for its part, helps to recompose a unity 
that is closer to the mixtures of nature, but, as with its 
counterpart, inevitable obstructions arise in its use. One 
should therefore try to bring about a ‘continuous effort of 
balancing analysis and synthesis’ (Bohr),WE( something that 
meets with peculiar success in Peircean pragmaticism, and 
particularly with its pragmaticist maxim [???–?D?]. 
An epistemological orientation can then emerge, leading 
to an abstract differential/integral (analytic/synthetic) 
‘calculus’, situated over a relative fabric of contradistinctions, 
obstructions, residues and gluings [??Q]. Ae case studies 
that we have carried out in contemporary mathematics 
show that such an orientation is never absolute, but 
only asymptotic, that it depends on multiple relativiza-
tions – eidal ascents and quiddital descents, ‘first, reason 
climbs up with analysis, and then down with synthesis’WE) 

WD@ Ibid., F(W. 

WE( Ibid., F(F.

WE) Ibid. Ae oscillations of thought have been studied with geometrical instruments at 
least since Ramon Llull, Libro del ascenso y decenso del entendimiento ()W(B) (Madrid: 
Orbis, )@CF). 

– but also requires us to have enough points of reference 
(archeal invariants) to calibrate the relative movements.

Lying still further beyond the pendular analysis/
synthesis equilibrium invoked by Bohr, contemporary 
mathematics hints at how that equilibrium can be pro-
duced. We have seen how the notion of sheaf, in a very 
subtle manner, combines the analytic and the synthetic, 
the local and the global, the discrete and the continuous, 
the differential and the integral [DQI–DQQ]. In this way, 
the sheafification of the analysis/synthesis polarity generates 
a new web of epistemological perspectives, following the 
directions of contemporary mathematics. If, in fact, we 
look at the diagrammatization of the general concept of 
sheaf that appears in figure )W [DQN], we can see how, 
behind the double opposition, analysis/synthesis (the 
vertical arrangement in the diagram) and local/global 
(horizontal arrangement), lies a very interesting diagonal 
mediation that is rarely made manifest. Taking the pivotal 
analytic concept of ‘covering’ and modulating it by means 
of a synthetic ‘section-preservation-projection-restriction’ 
hierarchy (figure )W), the natural notion of a transversal 
transform of the covering emerges, whereby the open and 
closedWE' strata of the various representations (or ‘covers’) 

WE' Ae notion of ‘covering’ comes from the Latin cooperire (operire [close]; cooperire [close 
or cover completely], eleventh century). In counterpoint with aperire (open), the notion 
of covering thus includes, by way of its etymological roots, a conception of the transit 
between open and closed environments (a transit reflected in other derived frontiers: 
operculum [overlay]; aperitivus [aperture]). 
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involved are superposed on one another. Ae transform 
– tied to a sort of protogeometry of position (‘pretopos’) 
– combines the analytic capacity to cover through decom-
positions (whether with elements, neighborhoods, or 
asymptotic approximations), and the synthetic capacity 
to recombine the fragmented through variable contexts 
(whether with partial couplings or more stable structural 
gluings). We will call this type of sweeping mediator 
between the analytic and the synthetic a Grothendieck 
transform,WEW a  sweeping reticulation particularly attentive 
to the relative mixes between the concepts in play.

By its very definition, the Grothendieck transform 
incorporates peculiar modes of knowing. Arough the 
transverse, it introduces a reticular warp over what contra-
distinctions, couplings and asymptotes stabilize. Arough 
the covering, it introduces a fluid dynamics (Merleau-Pon-
ty’s ‘shiXing [glissement]’), incarnated in the gerund itself: 
the ‘to be covering’ over a situation (‘geography’) and 
a duration (‘history’). Ae Grothendieck transform thus 
changes our epistemological perspectives by the simple 
fact of smoothing them as a whole (Gromov [DIT, DNE]): 
integrating them into an evolving tissue, it desingularizes 

WEW Looking back at chapter B, it seems clear that this transformational process of 
mathematical concepts has always been present in the global, conceptual inventiveness 
of Grothendieck. From a local and technical point of view, moreover, Grothendieck 
topologies [?EQ] help to incarnate, in a restricted manner, what we refer to here 
as a ‘Grothendieck transform’. Indeed, for any arbitrary site (any category with a 
Grothendieck topology), the category of presheaves over that site gives rise to a category 
of sheaves, through a general process of sheafification that corresponds, precisely, to 
bringing about the mediations contemplated in the ‘Grothendieck transform’. 

punctual perspectives, in favor of a comparability that 
emphasizes the regularities, mediations and mixtures 
between them. Ais is evinced in the mathematical practice 
that we have reviewed in the second part of this essay. 
Ae transversality and ‘wonderful mélange’ found in 
Serre’s methods [?PP], the transversal contamination in 
Langlands’s program [?QH], the omnipresent dialectic 
of adjunctions and the evolution of objects in Lawvere 
[?TE], the covering moderation in Shelah’s PCF theory 
[DW?–DWD], Atiyah’s Index Aeorem with its medley 
of eidal transversality (equilibrium between transits and 
obstructions) and quiddital coverage (from algebraic 
geometry to physics) [DWQ–DWT], the harmonic analysis 
(precise technical form of covering transversality) applied 
to the non-euclidean wave equation in Lax [D?T], the 
noncommutativity that runs transversally over quantum 
mechanics in Connes [DDE], the quantizations whose 
transversal recoverings allow us to reconstruct classical 
structures in Kontsevich [DED], the intermediate cat-
egories between regular categories and topoi, produced 
as transversal cuts (Map, Split, Cor) over free allegories in 
Freyd [DHN], the logical nuclei covering second order 
arithmetic in Simpson [DIW], the protogeometrical ker-
nels covering strongly minimal theories in Zilber [DII], 
and the transversality of the h-principle in Gromov [DNE] 
are all very subtle and concrete examples behind which 
lurk the mediations and smoothings of Grothendieck’s 
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‘transversal covering transform’. In all of these construc-
tions, the epistemological vision of mathematics is one 
that is flexible enough to cover a hierarchical stratification of 
ideality and reality, dynamically interchanging the contexts 
of interpretation or adequation of the (quasi-)objects 
whenever the technical environment or creative impulse 
demands.

Aese considerations help us to better understand 
how – in contemporary mathematics and, more broadly, 
in advanced mathematics [DP] – the poles of idealism 
and realism should not be considered as separate (discrete 
exclusion, through an analytic approach), but in full inter-
relation (continuous conjunction, through a synthetic 
approach). Indeed, a good understanding of the ideal/
real dialectic in advanced mathematics can be achieved 
through the notion of an epistemological back-and-
forth.WEB Ae back-and-forth postulates not only a pendular 
weaving between strata of ideality and reality, but, above 
all, a coherent covering of various partial approximations.  

WEB Ae back-and-forth emerges in Cantor’s proof concerning the isomorphism between 
two dense, countable linear orders without limit points. Ae Cantorian technique 
(formalized in a modern fashion by Hausdorff in )@)B) uses approximations to the 
isomorphism by way of a collection of partial homomorphisms that cover the sets 
little by little  (surjectively), while continuing to preserve the orders, and whose well-
behaved limit furnishes the desired isomorphism. Observe, here, the gerundial, the 
asymptotic and the limit, which anticipate several of the themes taken up in this chapter. 
Ae back-and-forth was later used by Fraïssé ()@FB) to characterize the elementary 
equivalence between abstract structures (with arbitrary relations, beyond orders), 
and by Lindström ()@D@) in his surprising characterization theorems for classical, 
first-order logic (maximal with respect to the compactness and Löwenheim-Skolem 
properties). Ever since, the back-and-forth has become an indispensable technique in 
abstract model theory. See J. Barwise, S. Feferman, eds., Model 3eoretic Logics [New 
York: Springer, )@CF].

A direct example of this situation is found in Lindström-
style back-and-forth technique used in abstract model 
theory: the semantic (stratum of reality, constituted by a 
collection of models with certain structural properties) 
is understood through a series of syntactic invariants 
(strata of ideality, constituted by languages with other 
partial reflection properties), and more specifically, the 
elementary (real) equivalence is reconstructed through 
(ideal) combinatory coherences in a collection of partial 
homomorphisms that are articulated in the back-and-
forth. Other indirect examples appear in the case studies 
that we have carried out: the progressive back-and-forth 
in the elucidation of the Teichmüller space’s functorial 
properties according to Grothendieck [?PW], the struc-
tural amalgams by strata according to Shelah [?TN], the 
approximations of hyperbolic groups and the polynomial 
growth of groups according to Gromov [DIT], etc. 

In these processes, mathematical (quasi-)objects’ 
modes of creation, modes of existence, and the modes 
by which they are known are interlaced and reflected in one 
another (general transitoriness between phenomenology, ontol-
ogy and epistemology). Ae relative (partial, hierarchized, 
distributed) knowledge of those transits therefore becomes 
an indispensable task for mathematical epistemology. 
Beyond trying to define the ideal or the real in an absolute 
manner (a definition that, from our perspective, reflects 
a poorly posed problem), the crucial task of mathematical 
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epistemology should instead consist in describing, pin-
pointing, hierarchizing, decomposing and recomposing 
the diverse forms of transit between the many strata 
of ideality and reality of mathematical (quasi-)objects. 
Arough the same forces that impel the internal develop-
ment of the mathematical world, we have, for example, 
explicated some contemporary forms of transit with great 
expressive and cognitive power: protogeometrization, 
nonclassical approximation, sheafification, Grothendieck 
transformation, back-and-forth modulation.

Another important epistemological opening is found 
in mediating the usual ‘extensional versus intensional’ 
dichotomy, which grosso modo corresponds to the ‘sets ver-
sus categories’ dichotomy. One of the credos of Cantorian  
set-theoretic mathematics – and, for that matter, of tra-
ditional analytic philosophy – has been the symmetry 
of Frege’s abstraction principle, introduced locally by 
Zermelo with his axiom of separation: given a set A and 
a formula {(x), there exists a subset B = {a! A :{ (a)}, and 
so an equivalence obtains (locally, within the restricted 
universe A) between {(a) (intensionality) and a!B (exten-
sionality). But, beyond the credo and its indisputable 
technical convenience, there is no philosophical or math-
ematical reason to prevent an asymmetrization of Frege’s 
principle of abstraction.WEF A non-Cantorian continuum, for 

WEF Various mathematical texts consider that a breaking of the symmetry between extension 
and intension may turn out to be beneficial. From our perspective, this symmetry 

example, seems to involve profound intensional charac-
teristics that are impossible to achieve with an extensional 
modeling.WED In the same manner, many of the intensional 
characterizations of mathematical objects and processes 
obtained in category theory offer new perspectives (‘rela-
tive universals’) that do not coincideWEE with extensional 
set-theoretical descriptions.

Aough the extensional/analytic/set-theoretic influ-
ence has, until now, been preponderant in mathematics, 
its intensional/synthetic/categorical counterpart every 
day becomes more relevant, and a new ‘synthesis of the 
analysis/synthesis duality’ is the order of the day. Of course, 
the self-reference just mentioned in quotation marks is not 

breaking could correspond to a deformation of the local symmetries codified in 
Zermelo’s separation axiom (symmetries that obtain fiber by fiber, but that should 
collapse as a consequence of slight deformations of those fibers). See, for example, J. 
Bénabou, ‘Rapports entre le fini et le continu’, in J. M. Salanskis, H. Sinaceur, eds., 
Le labyrinth de continu (Paris: Springer-Verlag, )@@'), )EC–C@; E. Nelson, ‘Mathematical 
Mythologies’, ibid., )FF–DE; R. Aom, ‘L’anteriorité ontologique du continu sur le 
discret’, ibid., )WE–BW. 

WED From the point of view of the axiomatic bases required to capture a generic continuum 
such as Peirce’s (non-Cantorian) continuum, Zermelo’s local separation axiom is an 
excessively demanding postulate. By contrast, giving precedence to the intensional 
offers, from the outset, an important support for the inextensibility of the Peircean 
continuum, which is to say, the impossibility of defining it through an accumulation 
of points. In effect, when we asymmetrize the axiom of separation, only certain formulas 
can give rise to classes, and the a priori ‘existence’ of points can be eliminated: singleton 
sets {x} do not always exist, and only in certain, specific (constructible) cases can 
they come to be actualized. At the same time, by permitting the manipulation of 
contradictory intensional domains (in the potential) without having to confront the 
associated contradictory extensional classes (in the actual) that would trivialize the 
system, we achieve a greater flexibility in our generic approach (freed from the tethers 
to the actual) to the continuum. See Zalamea, El continuo peirceano, CB–D. 

WEE What we are dealing with here is a crucial, mathematical noncoincidence, although 
logically the terms may be equivalent. Ae mathematical richness of category theory, 
as we have seen, does not reduce to a logical counterpart in the fashion of ‘topos theory’ 
/ ‘restricted set theory’, but it is directed, rather, toward the discovery of symmetries 
and synthetic equilibria, unobservable in light of analytic decompositions. 
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only noncontradictory, but exerts a multiplicative force in 
a hierarchy of knowledge. Aroughout chapters C and @, 
we have tried to forge some mediating perspectives within 
the ‘synthesis of the analysis/synthesis duality’. By expanding 
our spectrum to more general cultural horizons, we will, 
in the two final chapters, see how the incessant mediations 
of contemporary mathematics are graXed, on the one 
hand, to the (local) ‘creative spirit’ of the mathematician, 
and, on the other, to the complex and oscillating (global) 
‘spirit of the age’ in which we find ourselves immersed.

 CZ

   
 

Traditional philosophy of mathematics tends to neglect 
the ways in which mathematical thought emerges. Sev-
eral texts dealing explicitly with mathematical invention 
have come to us from such practitioners of the disci-
pline as Poincaré, Hadamard, Grothendieck and Rota, 
but, curiously, the professional philosopher neglects 
the phenomenology of mathematical creativity as something 
foreign to his reflection. Nevertheless, in science, and, 
more generally, in every area of knowledge, the way in 
which knowledge emerges is (at least) as important as the 
knowledge itself. As Valéry reminds us, ‘the interest of 
science lies in the art of doing science’:WEC the art of inven-
tion and the practices associated with creativity constitute 
the true interest of science. Ais is all the more obvious 
in the realm of mathematics, the specificity of which is 
rooted in the incessant transit (ars) of concepts, proofs 
and examples between the possible (abduction), the 
necessary (deduction) and the actual (induction). Valéry, 
a true connoisseur of mathematics and an extraordinary 
investigator of creative modulations in the twenty-seven 

WEC J. Prévost, P. Valéry, Marginalia, Rhumbs et autres (Paris: Editions Léo Scheer, '((D), 
''@ (Valéry’s emphasis). 
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[)CB] 

thousand pages of his Cahiers,WE@ used to point out, for 
his part, that ‘the origin of reason, or of its notion, is, 
perhaps, the transaction. One must transact with logic, 
on one side, with impulse, on the other, and, on yet 
another, with facts’.WC( Ae phenomenology of math-
ematical creativity should confront those transactions, 
those contaminations, those impurities, which are what 
ultimately afford us the entire richness of mathematics. 
Ae reduction of the philosophy of mathematics to the 
philosophy of ‘logic’ (according to the usual tendencies 
of analytic philosophy, as we saw when we opened the 
Oxford Handbook of Philosophy of Mathematics and Logic 
[?W?–?WP], from which ‘Mathematics’ had vanished), 
or the very reduction of the philosophy of mathematics 
to questions of ‘logic’ and of ‘facts’ (according to the 
slightly broader tendencies that take stock of mathemat-
ics’ interlacing with physics), are approaches that leave 
behind the indispensable creative ‘impulse’ to which 
Valéry refers. In this chapter we will try to elucidate 
that (apparently vague and undefinable) impulse, which 
responds, nevertheless, to a complex phenomenological 
web of catalysts and graXings of inventiveness that can 
be made explicit. 

WE@ Facsimile edition: P. Valéry, Cahiers (Paris: Editions du CNRS) ('@ vols.), )@FE–D). 
Critical edition: P. Valéry, Cahiers 9>:A–9:9A (Paris: Gallimard) (@ vols. at present), 
)@CE–'((W. Aematic anthology: P. Valery, Cahiers (Paris: Gallimard/Pléiade) (' vols.), 
)@EW–B. 

WC( Prévost & Valéry, Marginalia…, ''F (Valéry’s emphasis). 

Ae nondualist instruments that afford us an adequate 
perception of creative transit in mathematics, at bottom, 
have been under our nose all the while, even if oXen 
poorly interpreted: namely, the work of Plato, understood 
as a study of the mobility of concepts, as a metamorpho-
sis of knowledge, as a description of connections and 
interlacings, as a subtle analysis of the inter- and the 
trans- has always been there, under our nose, though it 
has oXen been poorly interpreted. Beyond certain trivial 
readings, there nevertheless stands the dynamic Plato 
of Natorp,WC) thanks to whom it has become impossible 
to not see ‘the genuine, dynamic sense of the idea’ that 
renders ‘untenable the interpretation of ideas as things’.WC' 
Ae processual, nonstatic Plato, a Plato not fixed to a 
reification of the idea, a Plato whom Natorp recuper-
ated at the beginning of the twentieth century, and to 
whom Lautman [IN] and Badiou [DPT] would later 
return, seems to constitute the nondual, mobile base that 
mathematics requires: an apparent contradiction in terms 
– for the approaches customary to analytic philosophy of 
mathematics, the ‘base’ should not turn out to be mobile. 
Nevertheless, in the rereading of Plato that Natorp pro-
poses, we see how ‘the logoi do not have to be governed by 

WC) J. Servois, Paul Natorp et la théorie platonicienne des Idées (Villeneuve d’Ascq: Presses 
Universitaires du Septentrion, '((B). An excellent and brief introduction to Plato 
by Natorp can be found in F. Brentano & P. Natorp, Platón y Aristóteles (Buenos Aires: 
Quadrata, '((B). 

WC' Ibid., )'(, @' (in the order of the texts cited). 
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the onta’, how ‘the definitions of mathematics, in reality, 
define methods; in no way do they define existent things 
or simple properties inherent in such things’, how ‘kinesis, 
the movement, the transformation, or the gait, let us say, 
of concepts’ governs all of mathematics, how the Platonic 
theory of ideas refers to the ‘method of its positions’, to 
its ‘becoming, mutation or peregrination’, and how the 
thought of Plato ‘installs itself in the relative position’ and 
opens itself to the study of the ‘correlative […], of change 
[…] and transition’.WCW  Mathematics – bound up with the 
study of logoi, methods, partial representations, and rela-
tive positions, as we have abundantly corroborated in the 
contemporary realm, a realm that oscillates between the 
eidal, the quiddital and the archeal – can thus assume at 
the outset, as its mobile base, this Platonic thought that 
is so alert to the transformability of concepts/proofs/
examples. Ae mobility of the base, indispensable for under-
standing Grothendieck’s work [?HD], underlies Platonic 
philosophy from the beginning.

Later in this chapter, we will draw from the works of 
Merleau-Ponty, Blumenberg and Rota to further refine 
the ‘mobile base’ just indicated. But already – simply by 
way of the possibility and plausibility of the hierarchy of 
modulations and ‘transactions’ afforded by a dynamic 
Platonic philosophy – we can better understand the modes 

WCW Ibid., W(, WF, WD, FF, FE, E'–W. 

by which mathematical creativity emerges. Indeed, we can 
already begin to situate the tension between discovery and 
invention under ‘reasonable’ presuppositions. Taking the 
word ‘reasonability [razonabilidad]’ in the sense given to 
it by Vaz Ferreira – as a gluing together of ‘reasonable’ 
and ‘sensibility’WCB – we can say that some reasonible Pla-
tonic presuppositions underlying the invention/discovery 
polarity are: that the polarity is not antagonistic or dual, 
but, rather, entwined in a web; that through this web transit 
various types of quasi-objects, modalities, and images; 
that the positions of those quasi-objects, modalities, and 
images are not absolute, but relative; that a progressive 
gradation determines, depending on the context in ques-
tion, the mathematical quasi-objects’ proximity to each of 
the polar extremes; that in that gradation, observations of 
structuration tend to approach (in spiraling or asymptotic 
turns) the processes of discovery, while constructions of 
language tend to approach (aXer perhaps one more ‘turn 
of the screw’) processes of invention.

In the emergence of mathematical thought, contamina-
tions are legion. Recall Grothendieck’s magnificent text 
on motifs [?HI–?HN]. In it, mathematical creativity is 
distributed across a great variety of registers: the initial 
‘listening’ to the motif (Peircean firstness), its incarnation 

WCB C. Vaz Ferreira, Lógica viva (Caracas: Biblioteca Ayacucho, )@E@). On Vaz’s ‘reason-
ability’, see A. Ardao, Lógica de la razón y lógica de la inteligencia (Montevideo: Marcha, 
2000). The works of Vaz Ferreira (Uruguay, 1872-1958) open up  very interesting (and 
untapped) natural osmoses between ‘pure’ and ‘human’ sciences.
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in a ‘multitude of cohomological invariants’ (secondness), 
and its pragmatic interlacing through modulations of 
the ‘basic motif’ (thirdness). But the process does not 
stop there; it is not static, cannot be isolated, and iterates 
itself recursively: given a cohomology (first), we study the 
topological spaces (second) captured by that cohomol-
ogy, and then determine the transits (third) between the 
spaces that the given cohomology codifies. And so, in 
succession: a position relative to a given space, a position 
relative to a given transit, and so on. Mathematics thus 
proceeds by means of maximal connections of information 
(‘saturations’, as Lautman would say) in evolving strata 
of knowledge. Creativity emerges through that variable 
multiplicity: in virtue of singular ‘impulses’ and hypoth-
eses, examples that let one visualize how hypotheses are 
graXed to concepts, inventive forms of demonstration 
that let us ascertain the scaffolding’s soundness. Indeed, 
the Peircean methodology of scientific investigation – a 
cycle between abduction (first), deduction (third) and 
induction (second) – is paradigmatically incarnated in 
mathematics, if we extend the planar ‘cycle’ to compre-
hend a W-dimensional spiral, both recursive and amplifying.

Pursuing certain images in Grothendieck’s work will 
help us further comprehend the amplifying spiral of 
mathematical creativity. From the ‘cohomology deluge’ 
[?IQ] expressed in his correspondence with Serre ()@FD), 
to his musical vision of motivic cohomology [?HI–?HN] 

in Récoltes et semailles ()@CD), passing through the techni-
cal construction of the great cohomologies ()@DB) that 
would lead to the resolution of the Weil conjectures 
[?HD, ?IT], Grothendieck sets out from a vague image 
(firstness, abduction: deluge), which he submits to the 
complex and extensive filter of definability and deduc-
tion (thirdness, deduction: étale cohomology), which 
he then contrasts with other invariants (secondness, 
induction: other cohomologies), which provokes a new 
vision (firstness, abduction: motifs, musicality). Note 
that mathematical inventiveness is not uniquely restricted 
to the realm of abduction or firstness, where the creative 
hypothesis obviously takes precedence, but also takes 
place in the realm of demonstration and the contrasting 
of examples. Indeed, as the Platonic mobile base suggests, 
neither invention nor discovery are absolute; they are 
always correlative to a given flow of information, be it 
formal, natural or cultural. It is in an antecedent transit, 
for instance, that Grothendieck discovers motifs, though 
a manner of representing them would later be invented 
by Voevodsky [?HP, DIT]. In a similar manner, Zilber 
discovers the emergence of ‘groups everywhere’ [DIN], 
hidden in the theory of models, though only later, together 
with Hrushovski, would he invent the Zariski geometries 
[DIN] by which the ubiquity of groups could be rep-
resented. Aere are a profusion of other examples, all 
of which seem to be governed by an initial, elementary 
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typology: a perception/vision/imagination of a generic situ-
ation, associated with a broad spectrum of applicability 
(the realm of discovery), which is interlaced (without 
determinations of priority regarding the direction of the 
interlacing) with a construction/framework/realization of 
many particular concretizations in the adopted spectrum of 
applicability (the realm of invention). In this way, we once 
again find the One (discovery) interlaced with the Many 
(invention), through an abstract integral and differential 
calculus that is both mobile and complex. 

Ae recursive modal transit between the possible, the 
actual and the necessary is one of mathematical creativity’s 
greatest strengths. Ae conjunction of the three emphasized 
terms (‘transitoriness’, ‘recursivity’, ‘modality’) to some 
extent explicates the specificity of mathematical thought. 
On the one hand, we have seen how, throughout the twen-
tieth century – with the works of Gödel, Grothendieck, 
Lawvere, Shelah, Zilber or Gromov, among many oth-
ers – mathematics has opened the vital floodgates to the 
relative, while always searching behind that movement for 
the proper invariants: the transitoriness of (quasi-)objects 
and processes is recognized, but certain ubiquitous modes 
are sought in the flux (an epistemological leap from the 
‘what?’ to the ‘how?’). On the other hand, we have also 
seen how the hierarchization of mathematics involves 
incessant processes of self-reference, which yield knowl-
edge by recursion of the (quasi-)objects and processes 

at stake: knowledge distributes itself in layers and strata 
(mathematics as architectonics), and the interrelation of 
local information hints at a global vision of mathematical 
‘entities’. Finally, we have observed how free combinations 
(firsts), in the abstract and the possible, contrast with 
facts (seconds) of the physical world, and help flesh out 
a comprehension (third) of the cosmos as a whole: the 
weavings between mathematics and physics have been 
perennial, and have once again reached startling heights 
(Arnold, Atiyah, Lax, Witten, Connes, Kontsevich). It 
is between the inventive freedom of concepts and the 
inductive and deductive restrictions of calculation that 
mathematics has situated itself. 

Ae work of Jean-Yves Girard is emblematic in this 
sense.WCF His monumental Locus SolumWCD breaks with our 
received ideas and completely upends our understanding 
of logic. Beyond syntax and semantics, Girard pierces 
through to the geometry of logic’s rules and extensively 
explores logic’s locative transformations. As a substitute 
for proofs and models, Girard introduces the concept 
of ‘design’ as the ‘locative structure of a proof in the 
sequent calculus’, and elaborates a subtle and complex  

WCF We are grateful to Zachary Luke Fraser for having indicated the pertinence of Girard’s 
works to us in the context of ideas of ‘flow’ and ‘obstruction’, in both a logico-
geometrical sense (Locus Solum) and in a methodological sense (Du pourquoi au 
comment). 

WCD J.-Y. Girard, ‘Locus Solum: From the rules of logic to the logic of rules’, Mathematical 
Structures in Computer Science )), '((): W()–F(D.
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instrumentarium for the combinatorial and geometrical 
transformations of designs (processes of normalization, 
theorems for addition, multiplication and quantification, 
soundness and completeness for nets). Ae de-ontologi-
zation of the enterprise – or, better, its new collocation in 
a transitory ontology – is remarkable. ‘Designs’ require no 
material substrates, whether syntactic or semantic, to be 
understood. Aeir pragmatic behavior, the abstract dis-
engagement of their flows and obstructions, and their cat-
egorical manipulation are entirely sufficient.WCE In tune with 
the search for an initial protogeometry – having this in com-
mon, as we have seen, with the works of Zilber, Freyd and 
Petitot – Girard situates his methodological reflection in 
a leap from the ‘why?’ to the ‘how?’WCC Ae French logician 
situates the lambda calculus, denotational semantics and 
his own linear logic in relation to this ‘how’. Ae underly-
ing substrate of the ‘what’ is not only unnecessary, but may 
even become noxious. Ae liberation of objects, the power 
to look at rules categorically and handle them in terms of 
a pragmatico-geometrical ‘how’, does indeed constitute, 

WCE Girard indicates three steps in the development of logic: )@((–)@W(, ‘the time of 
illusions’; )@W(–)@E(, ‘the time of codings’; )@E(–'(((, ‘the time of categories’. 
Girard’s own work can be seen as attempting to cross the threshold of this third era, 
and bears the deep influences of category theory’s mathematical development in an 
effort to exceed its reach. While category theory reveals the functional, structural, and 
universal dimensions of logical proofs (what Girard calls their ‘spiritual’ aspect), 
Girard’s ‘ludics’ and ‘geometry of interaction’ aim to uncover their interactive, dynamic 
and singular side(what he calls their ‘locative’ aspect). 

WCC  J.-Y. Girard, ‘Du pourquoi au comment: la théorie de la démonstration de )@F( à nos 
jours,’ in Pier, Development of Mathematic, F)F–BF

as we have seen throughout this book, one of the highest 
points of contemporary mathematical creativity. 

In that environment of flows and obstructions, a 
general thinking of residues and sedimentations comes to 
be of great assistance for the better understanding of the 
processes of genesis at work in mathematics. Merleau-
Ponty proposes that a science of ‘sedimentations’ be 
founded,WC@ whereby the circle of man and nature would 
be closed through an operative body that interlaces the 
visible and the invisible – a body, that is to say, that 
conjoins the horizon of a general world (the visible) with 
the horizon of an underworld (what is seen by the seer), 
that is inserted in turn into the first horizon. Knowledge, 
rooted in a body, but mixed with a web of world horizons, 
refuses the Cartesian caesura of mind and world, and 
connects knowing and nature in a continuous fashion. 
Nothing happens ‘outside the world’, the senses, or vision 
in particular. Cultural horizons, the interpreter’s contex-
tualizations, and sedimentations are vital for knowledge, 
and for mathematics in particular, which turns out to be 
profoundly human. Phenomenology interlaces the human 
eye, the general horizons of the world into which vision 
is inserted, and the particular subhorizons where ‘things’ 
are reborn through the body of the observer. And so, on 
perceptual grounds, the sediments of culture, knowledge, 

WC@ Merleau-Ponty, Notes des cours…, BB. 
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and social life continue to accumulate, and ‘things’ are 
modalized through multiple horizons, whereby we detect 
them in their various registers (structure, fibration, func-
tion, sensation, etc.). Figure and ground likewise outstrip 
their dualization, as they interlace with each other in an 
incisive and visible continuum, not only in the modern 
manifestations of art (Mallarmé, Proust, and Cézanne, as 
reread by Merleau-Ponty), but also, as we have seen, in 
the contemporary manifestations of mathematics. 

In Eye and Mind, Merleau-Ponty describes the body 
operative in the domains of knowing as a ‘sheaf of func-
tions interlacing vision and movement’ [?I?]. As we 
have been indicating, that sheaf serves as an interchange 
(à la Serres) between the real and the imaginary, between 
discovery and invention, and allows us to capture the 
continuous transformation of an image into its obverse, through 
the various visions of interpreters. Two of the major 
theses of the late Merleau-Ponty combine the necessity 
of both thinking the recto/verso dialectic and thinking in 
a continuous fashion: 

). What is proper to the visible is to possess a fold of 
invisibility, in the strict sense.
'. To unfold the world without separating thought is, 
precisely, modern ontology.W@( 

W@( Ibid., CF, ''. 

As we have seen, many constructions specific to contem-
porary mathematics allow us to corroborate, with all 
the desired technical support, both of Merleau-Ponty’s 
theses. Ae ‘fold of invisibility’ is particularly striking in 
what we have called the ‘structural impurity of arithmetic’ 
[H?], where the most important signposts leading 
to the resolution of Fermat’s Aeorem [?QP] are liter-
ally invisible from the discrete perspective of the natural 
numbers, until we pass through to the obverse side of 
the complex plane. Likewise, to ‘unfold’ mathematics, 
without separating its subregions, is one of contemporary 
mathematics’ major strengths, and underlies, in particular, 
the exceptional richness of Grothendieck’s thought, the 
constant transgressor of artificial barriers and explorer of 
natural continuous connections between apparently dispa-
rate images, concepts, techniques, examples, definitions 
and theorems.

Ae ‘manner’ [?IN], or style, through which the 
great mathematicians produce their works is another 
problematic that analytic philosophy of mathematics 
intrinsically neglects. Ae works of Javier de Lorenzo 
[PN–PQ] opened up an important seam at this point, 
several decades ago, but one which has nevertheless not 
been sufficiently mined. In this work’s second part, we have 
described a few concrete registers of local ways of doing 
mathematics, ways we have not analyzed (and cannot 
do so: it is work for another essay) from the viewpoint 
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of the style’s global configuration. Nevertheless, from the 
phenomenological perspective on creativity adopted 
here, we can specify certain forms of overlapping and 
sedimentation, which, counterpointing [DWN] forms of 
break and rupture, help us delineate the stylistic spectrum 
of the creators of mathematics. A basic observation, in 
fact, shows us that the mathematical creator proceeds by 
way of gradual exercises of weaving (or ‘back-and-forth’) 
between generic (powerful and vague) images and various 
successive restrictions (definitions, theorems, examples) 
that allow her  to go on sharpening the original ‘impulses’ 
or intuitions. Ae counterpoint between the deductive 
overlapping and the imaginal rupture is thus necessary in 
the first steps of creation, although, later, sedimentation 
tends to overwhelm the break. 

Aat counterpointed textile involves peculiar modes 
of enlacing and correlating. Perhaps close to music in this 
sense, mathematics discovers both symmetries/harmonies 
and ruptures of symmetry/harmony, which it must then 
distill by way of many developments, variations, and 
modulations, in well-defined languages that allow it to go 
on to ‘embody’ the great harmonies or ruptures, whether 
seen or at first ‘hidden’ (remember Grothendieck, and his 
listening to ‘the voice of things’ [?I?, ?IT]). Reason-
ability (= reason[a][sensi]bility, in Vaz Ferreira’s sense) is 
vital here, and we should literally glue together a free, dia-
grammatic, imaginal sensibility (the realm of the aesthetic), 

and a normative, ordering, structuring reason (the realm 
of the ethical), whether in lengthy disquisitions on the 
pentagram or long series of mathematical deductions. 
But the very polar coherence of mathematical creativity 
(which, by contrast, does not occur in musical creation) 
obliges us to observe the situation’s underside, counterpoint-
ing it with an inventive and liberating ‘aesthetic reason’, 
and with, above all, a contrastive and communal ‘ethical 
sensibility’. Mathematics thus succeeds in transcending 
the imagination, unreined by the isolated individual, and 
becomes the greatest imaginary construction of which an 
entire community is capable. 

Ae accelerations and decelerations in the processes 
of mathematically ‘gluing’ together conjectural images, 
partial hypotheses, imaginary residues, real examples and 
theorematic sedimentations cover the most diverse situa-
tions possible. In many eidal ascents deductive stratifica-
tions and generic visions may take precedence, over and 
above secondary contrastings (residues, examples): this is 
the case, for example, in Grothendieck-Dieudonné’s EGA 

[?NN–?NT], in Lawvere’s conception of a set theory 
without local Von Neumann elements [?TI], in the 
beginnings of Langlands’s functorial program [?QW], 
or in Shelah’s first glimpses of the nonstructure theorems 
[?TN]. In turn, in what we have called quiddital descents, 
the richness of residues, obstructions and examples (dif-
ferential equations à la Atiyah or Lax, noncommutative 
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or quantum groups à la Connes or Kontsevich), tends to 
take precedence over ‘primordial’ images, generic instru-
mentaria, or deductive machinery. In the archeal findings 
that we have pointed out (such as the ‘geometrical nuclei’ 
in Zilber or Gromov, or the ‘logical nuclei’ in Freyd or 
Simpson), we do not observe a particular directionality 
or predominance in the combination of images, hypoth-
eses, residues, examples, definitions and theorems that 
develop the mathematical archetypes which correlatively 
‘dominate’ certain classes of structures. In the latter, in 
fact, particularly in the works of Zilber and Gromov, the 
incessant weaving between the most concrete and most 
abstract is not only noncircumventable, but constitutes 
something like a genuinely original, systematically oscil-
latory, manner, one we could perhaps consider proper to 
the Russian ‘school’.

Going back to the work of Nicholas of Cusa, Hans 
Blumenberg recalls that the world divides into ‘visibilia, 
invisibilium imagines [visible “things”, images of the invis-
ible]’, and how the universe of ‘mathematicalia [math-
ematical “things”]’ allows us to refine our vision from a 
clear ‘methodological vantage point: the availability to 
freely perform variations, the possibility to experiment 
while freely establishing conditions’.W@) We have already 

W@) H. Blumenberg, Paradigmas para una metaforología ()@D() (Madrid: Trotta, '((W), 'B'–W. 
(Originally published in German as Paradigmen zu einer Metaphorologie, in Archiv für 
Begriffsgeschichte [Bonn: )@D(]. [Tr. R. Savage as Paradigms for a Metaphorology (Ithaca: 
Cornell University Press, '()()]. 

emphasized the fundamental freedom of mathematics, 
its variational richness in the realm of possibilia and its 
capacity to enter the dialectic of visibilia and invisibilium. 
To some extent, that plasticity is due to another profound 
counterpoint in mathematical creativity: the pendular 
weaving between the metaphorical and the technical. Math-
ematics has not only been a producer of external metaphors 
for the unfolding of thought, but oXen proceeds internally, 
in its processes of creation, by way of vague and potent 
metaphors, still remote from precise, technical delimita-
tions. On this note, it is curious that analytic philosophy 
of mathematics should have proscribed the study of 
mathematical metaphorics as something unbefitting of 
exact knowledge, when its entire program emerged from 
explicit metaphors – metaphors later enshrined as myths, 
has Rota has pointed out [QN]: atomism, absolute, 
dualism, foundation, truth, etc.

A phenomenology of mathematical metaphorics 
should draw on Blumenberg’s extensive workW@' in the his-
torical tracking of metaphors in philosophical language. 
Starting from the fundamental (Husserlian) antinomy 

W@' Major monographs: Paradigmen zu einer Metaphorologie ()@D() (Paradigms for a 
Metaphorology ['()(]), Die Legitimität der Neuzeit ()@DD) (3e Legitimacy of the Modern 
Age [)@CF]), Die Genesis der kopernikanischen Welt ()@C)) (3e Genesis of the Copernican World 
[)@CE]), Die Lesbarkeit der Welt ()@E@), Lebenszeit und Weltzeit ()@CD), Höhlenausgänge ()@C@). 
Minor essays (and gems): SchiCruch mit Zuschauer. Paradigma einer Daseinsmetapher 
()@E@) (Shipwreck with Spectator: Paradigm of a Metaphor for Existence [)@@D]), Das 
Lachen der 3rakerin. Eine Urgeschichte der 3eorie ()@CE), Die Sorge geht über den Fluß 
()@CE) (Care Crosses the River ['()(]), Matthäuspassion ()@CC). A good presentation of 
Blumenberg’s work can be found in F. J. Wetz, Hans Blumenberg. La modernidad y sus 
metáforas (Valencia: Edicions Alfons el Magnànim, )@@D). 
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between the infinitude of the philosophico-scientific task 
and the finitude of human individualities, Blumenberg 
studies the complex lattice of graXings and ruptures 
between the ‘time of the world’ and the ‘time of life’, where 
mathematics plays the role of an exception. Reviewing 
Husserl’s Logic of )@'@, Blumenberg emphasizes how the 
master introduces the metaphor of a ‘historical sedimenta-
tion as the product of a static ideality of dynamic origin’.W@W 
Ae metaphor’s apparent contradictoriness stems from 
disparate appropriations of Plato (a static reading versus 
Natorp’s neo-Kantian, dynamic reading, taken up again 
by Husserl), but superbly recollects several of the primor-
dial modes of mathematical creativity that we have been 
emphasizing. Creativity proceeds within the ‘time of life’, 
within what Merleau-Ponty called the operative body, but 
is always extending itself to the ‘time of the world’ that 
envelops it; sedimentation is therefore historical, and takes 
place through a web of ideal positions that appear static, 
but which emerge on a ground of dynamic, polar media-
tions. Indeed, mathematics – understood as the study of 
the exact transits of knowledge (‘dynamics’) – constructs 
partial invariants (‘static ideality’) in order to gauge the 
obstructions and osmoses in transit, and then gathers the 
various registers obtained (‘historical sedimentation’). 

W@W H. Blumenberg, Tempo della vita e tempo del mondo (Bologna: il Mulino, )@@D), W@). 

In the incessant mediation between dynamics and stat-
ics, reality and ideality, world and life, the Fundierung 
according to Rota (who also, in his own way, takes up 
and reinterprets Husserl’s ideas) combines two central 
processes in the construction of mathematical webs: 
facticity and functionality.W@B For Rota, a mathematical 
(quasi-)object – through its many forms, from the vague 
metaphorical image to the carefully defined and delimited 
technical (sub-)object, passing through intermediate 
modes, examples and lemmata – should be, on the one 
hand, pragmatically inserted into a context (facticity), 
and, on the other, correlatively contrasted in that context 
(functionality). Mathematics, which lives synthetically 
on both the factical level (contextualization) and the 
functional level (correlation), appears irreducible to any 
supposed ‘objectuality’. Ae Fundierung studies how math-
ematical processes lace into one another, independently of 
their analytical classification (via ! or 3). Ae processes 
(or quasi-objects) are understood as poles of a relation 
of stratification, with complex gradations between them. 
Mathematics studies the transformation and splicing of 
those various gradations, independently of any illusory 
ultimate ‘ground’ on which they would rest. Beyond 
certain supposedly stable and well-founded mathemati-
cal ‘objects’, the factical and functional webs of coupling 

W@B Palombi, La stella e l’intero…, D'. 
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   (A) Polarities (or 'adjunctions'): 

 
 

 
 

 

    (B) Mediations

between mathematical quasi-objects, in the broadest 
possible sense (metaphors, ideas, processes, conjectures, 
examples, definitions, and theorems), thus constitute the 
true spectrum of mathematical phenomena. 

A phenomenology that seeks to capture the transits 
of mathematics in an adequately faithful and nonreduc-
tionist manner must take many polarities into account: 
analytic decompositions and synthetic recompositions, 
modes of differentiation and integration, processes of 
localization and globalization, particularities and uni-
versalities, and forms of creativity and discovery, among 
others. As we have seen in the preceding chapters, the 
differential-integral back-and-forth is not only situated 
on the epistemological level (‘how’), but continuously 
extended into the ‘what’ and the ‘where’ of the quasi-
objects at stake. Ae many strata/environments/contexts 
of mathematics, according to Rota’s Fundierung, respond 
to a complex regimentation of the prefix trans-, on ontic 
and epistemic levels, breaking the customary barriers of 
philosophical reflection. 

For a minimal conceptualization of the trans-, a consid-
eration of the following operations is required:  

    Figure ?I. Polarities and mediations in a general operativity of the trans-.

Analytic philosophy of mathematics excludes these media-
tions from its realms of investigation, which perhaps 
explains its incapacity to capture the universe of advanced 
mathematics. Ae first dual pair (‘decomposition/compo-
sition’) recalls the necessary and irreducible dialectic between 
analysis and synthesis, a dialectic that runs through the 
entire history of philosophy and mathematics. In turn, 
the first mediation (‘oscillation’) recalls a necessary and 
irreducible pendular variation of thought, forever stretched 
between opposing polarities. Ae second mediation (‘mix-
ing’ à la Lautman) accompanies that inevitable pendular 
oscillation with the awareness that we must construct 
mixtures to serve as support structures for an extended 
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reason (‘reasonability’), mixture being understood here in 
the sense of sunthesis (as composition, which is reversible), 
as opposed to sunchusis (as fusion, which is usually irre-
versible). Ae second dual pair (‘differentiation/integra-
tion’) recalls one of the major, originary problematics of 
philosophical and mathematical thought: the dialectic of 
the Many and the One. Ae third dual pair (‘deiteration/
iteration’), together with the third and fourth mediations 
(‘triadization’ and ‘modalization’), constitutes one of the 
great richnesses of advanced mathematics, something that 
is usually invisible in elementary strata or from analytic 
perspectives, but which, by contrast, is reflected with great 
acumen in the original operative nucleus of the Peircean 
architectonic [???–?D?]. Indeed, the Peircean empha-
sis on the rules of deiteration/iteration represents one of 
Peirce’s most profound contributions, whether from a 
logical point of view (the rules codify the definitions of 
the connectives), or from a cognitive one (the rules codify 
creative transfers of information). Similarly, the systematic 
Peircean triadization and its modal filtration secures the 
plural richness of the pragmaticist architectonic.

Ae fourth and fiXh dual pairs (‘particularization/uni-
versalization’ and ‘localization/globalization’), together 
with the fiXh mediation (sheafification), answer more spe-
cifically to contemporary mathematical forms of thought. 
In certain well-delimited cases, sheafification allows local 
information to be glued together in a coherent fashion, 

and takes us to global quasi-objects that capture the transit 
of the information in the sheaf’s fibers. Mathematics, 
then, is to a large extent concerned with calibrating the 
calculable osmoses and obstructions in those back-and-
forths between local and global properties, in the realms 
of space, number, structure and form. Ae sixth dual pair 
(‘residuation/potentiation’), for its part, captures the rich-
ness of certain strata of mathematics with strong coherence 
properties (like the calculus of the complex variable, or 
topos theory), where the residues become (quasi-)objects 
that are completely reflective of their environment, and 
exponents of mathematics’ visionary possibilities. 

In all of these processes there is an enrichment of 
the Peircean summum bonum – understood as the ‘con-
tinuous increase of potentiality’W@F – and an explosion 
of mathematical creativity into the most diverse forms. 
Ae metaphorical and analogical webs studied by Châtelet 
[TE–TI] combine with precise modes of sedimen-
tation – examples, definitions, theorems – giving rise 
to a sophisticated ‘integral and differential calculus’ of 
mediations and gradations (a Fundierung) that orients 
the evolution of mathematical thought. Demonstrative 

W@F For an excellent presentation of the place that a broad ‘reasonability’ occupies in 
Peirce’s system, oriented by the summum bonum, and for a study of its correlations 
with sensibility, creativity, and action, see S. Barrena, La creatividad en Charles S. Peirce: 
abducción y razonabilidad, doctoral thesis, Department of Philosophy, University of 
Navarra, Pamplona, '((W (part of which has been published as S. Barrena, La razón 
creativa. Crecimiento y finalidad del ser humano según C.S. Peirce [Madrid: Rialp, '((E]). 
Beyond Peirce himself, Barrena’s works represent a remarkable contribution to the 
understanding of creativity in general. 
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‘rationality’ is wedded to imaginary ‘reasonability’: in the 
processes of articulating/mediating/gluing the various 
‘dual pairs’ we have just mentioned, lies the discipline’s 
inventive malleability. What we are dealing with here is a 
peculiar plasticity, which combines a joyous capacity for 
movement (a facility of transit through the world of the 
possible) and a careful handling of dynamic differentials 
(a control of change in the realm of exactitude). It is per-
haps in this connection between plasticity and exactitude that 
the true strength of mathematics is found, a connection 
that is crucial for the processes of mathematical creation. 
Any perspective that neglects that plastic ‘art of doing’ 
[EDP]  neglects the living nucleus of the discipline itself. 

Serre, who should no doubt be considered as one of 
the major stylists of contemporary mathematical literature, 
used to point out the importance of mixtures in math-
ematical creativity, and of the presence of a vital inventive 
penumbra – ‘I work at night (in half-sleep), [which] makes 
changing topics easier’ [?PP] – behind the supposed 
luminosity of proof. It could be said, observing the almost 
crystallographic luster of Serre’s own work, that the great 
mathematical creator laces his perpetual decantation of 
the penumbra (the realm of discovery) with a rare capac-
ity to reveal/construct luminous crystals (the realm of 
invention), on his zigzagging path. Indeed, it is remark-
able that Serre’s limpid style, astonishingly smooth and 
‘minimal’, should, in the author’s own words, reveal itself 

as a ‘wonderful mélange’ situated on penumbral ground. 
In the same sense, many of contemporary mathematics’ 
crystallographic gems emerge from the obscure grounds where 
they are born: Grothendieck’s motifs with their musicality 
in major and minor keys [?HI–?HN], Langlands’s letter 
to Weil with its putative unseriousness and casual tone 
[?QW–?QD], Atiyah’s Index Aeorem with its excava-
tion of murky depths [DWQ], Cartier’s dream with its 
shiXing terrains in mathematical physics [DDN], Zilber’s 
extended alternative with its obscure intuition of the 
complex variable’s logical behavior [DIP], and Gromov’s 
h-principle with its ground of discordant situations in the 
penumbra of differential equations [DNE], amid many 
other examples that we took up in part ' of this book.

As we have seen throughout this chapter, advanced 
mathematical creativity can be understood only through 
perspectives that reflect the phenomenology of nontrivial-
ized mathematical transits: intertwinings in webs, nondu-
alist gradations, contaminations on a continuum, recursive 
modal interlacings, dialectics of sedimentations and resi-
dues, partial osmoses between metaphorical images and 
technical objects, global gluings over coherent local adum-
brations, factical and functional processes of intermin-
gling (Fundierung), and systematic mediations between 
polarities. In the realm of elementary mathematics, these 
phenomena tend to vanish, owing to the reduced complex-
ity of the entities in question. On the other hand, from 
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the perspectives of analytic philosophy (and regardless 
of the realm observed, whether elementary or advanced), 
these phenomena are also neglected, since they are usually 
considered ‘ill-defined’, or impossible to define at all (we 
hope to have shown in chapters C and @ that this is not 
the case). Perhaps these two tendencies, together with the 
tendency (predominant in the philosophy of mathematics) 
to study the elementary from analytic perspectives may 
explain the scant concern that has, until now, been given 
to the problematic of mathematical creativity. 

 CC

   

In this final chapter we will take up two remaining consid-
erations, with which we will try to round off our work. If, 
in chapters C–)(, we have emphasized a turn to questions 
connected with the ‘how?’ in contemporary mathematics, 
and if, in chapters B–E, we have reviewed a few emergences 
(‘where?’) of precise and delimited problematics (‘why?’) 
in detail, in this chapter we will study, on the one hand, the 
general interlacing by which contemporary mathematics 
()@F( to today) can be distinguished from prior math-
ematics (a conceptual ‘what/how/why’ synchrony, beyond a 
merely diachronic cut happening around )@F(). And, on 
the other hand, we will also examine the general position-
ing of mathematical thought within culture, and the ways 
in which it naturally shares a frontier with aesthetics (a 
conceptual geography of the ‘where?’).

In chapter ) we distinguished from a ‘bird’s eye’ view 
(a perspective both distant and evanescent) some features 
that allow us to provisionally separate modern math-
ematics (from Galois to about )@F() from contemporary 
mathematics (from around )@F( to today). We will sum-
marize these characteristics in the following table (with 
)–F being implicit in Lautman’s work [EW], and D–)( 
being implicit in the developments of contemporary 
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mathematics [H?]), and then explicate the synchronic 
conceptual grounds that may help to explain characteristics 
)–F and D–)(, as well as the diachronic cuts situated around 
)CW( (the beginnings of modern mathematics) and )@F( 
(the beginnings of contemporary mathematics).

In what follows, in the first part of this chapter, we 
will study some forms of internal circulation within the 
conceptual realm of mathematics, which will help us to 
intrinsically distinguish certain periods of mathematical 
production; in the second part, we will study some forms 
of external circulation in the general realm of culture, which 
will help us better explicate certain modes of mathematical 
creativity through suitable correlations and contrasts. In 
an exercise of counterpointing, we will go on to pinpoint 
the ‘why’ of modern mathematics’ emergence and the 
‘why’ of its later evolution into the questions, methods 
and ideas of contemporary mathematics. We will discuss 
the characteristics observed by Lautman ()–F), with regard 
to both their positive side and their obverse. Ais will lead 
in a natural way to characteristics (D–)(), which reflect 
certain crucial features of the new conceptual grounds at 
stake in contemporary mathematics. 

Figure ?N. Some conceptual features that help demarcate modern and contemporary 
mathematics. 
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Modern mathematics more or less surfaced through the 
work of Galois and Riemann, with the introduction of 
qualitative instruments for the control of quantitative 
problematics, from a point of view that is both positive 
(transits) and negative (obstructions). On the one hand, in 
fact, the structural interlacing of the hierarchy of Galois 
subgroups and field extensions allow us to control the 
behavior of roots of equations (and allow us to ascertain, 
among other things, the general unsolvability of quintic 
equations); the topological properties of Riemann sur-
faces, on the other hand, allow us to control the ramifica-
tion of multivalent functions of complex variables (and 
allow us to ascertain the inequivalence of surfaces like 
the sphere and the torus, for example). From its very 
beginnings, modern mathematics has faced a clearly defin-
able, generic problematic: (A) the study of the transits and 
obstructions of mathematical objects, with qualitative instru-
ments, associated with structural mediations and hierarchies. 
Ae conceptual ground at stake is partially reflected in 
characteristics )–F mentioned above, and corresponds to a 
genuinely fresh and novel focus of mathematical percep-
tion, one which has since systematically opened itself to a 
qualitative comprehension of phenomena and a reflexive 
understanding of the very limitations (negation, obverse, 
obstruction) of that partial comprehension.

Ae complex hierarchization of mathematics ()) due to Galois 
and Riemann yields many of the richest branches of mod-
ern mathematics (abstract algebra, functional analysis, 
general topology, etc.), but it is a process (or, better, a 
collection of processes) that naturally tends toward satu-
ration on each level of the structural hierarchies in ques-
tion. For example, behind the profusion of semigroups 
and groups, contemporary mathematics would perform 
a schematization (C) that would open the gates to grou-
poids in general topoi, or, even more schematically, to 
operads [DEI]. On the one hand, the notorious structural 
unity (W) of modern mathematics (a unitary solidity that is 
perhaps its most distinctive feature) is, in contemporary 
mathematics, counterpointed by a sophisticated extension 
of the unitary toward that dialectical unity’s polar frontiers, 
with an altogether original capacity [DW?, DE?, DNH, 
etc.] for tackling fluxions and deformations ())) of structures 
which, it once seemed, could be understood only rigidly. 
On the other hand, the remarkable semantic richness (') of 
modern mathematics, with the enormous multiplicity of 
models arising in the period between )CE( and )@W(, in all 
the realms of mathematical action (geometries, sets, alge-
bras, functional spaces, topologies, etc.), would later yield 
a reflexive vision ()() of that diversity, in tandem with the 
construction of the instruments needed for a reintegration 
of the local/differential into the global/integral.
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Sheaf theory, whose construction can be traced to the 
period between )@BW and )@F) (a conceptual synthesis 
represented in figure )W [?NE], and whose diachronic 
emergence we have already observed [?NE, DQI]), 
constitutes, for us, the decisive index that allows us to 
capture the changes/delimitations between modern and 
contemporary mathematics. Indeed, in both their conceptual 
ground and their technique, sheaves effectively symbolize 
one of the great general problematics of mathematics in 
recent decades: (B) the study of fluxions and deformations 
(arithmetico-continuous, nonclassical) of mathematical quasi-
objects, with instruments of transference/blockage between the 
local and the global, associated with processes of schematization 
and self-reference. Of course, this problematic, which we 
have surveyed from above, neglects other important 
applied, calculative and computational aspects of con-
temporary mathematics. It is nevertheless clear that, to a 
large extent, it includes aspects of the major mathematical 
works of the second half of the twentieth century, and 
central aspects of all of the works that we have carefully 
reviewed in chapters B–E, in particular. 

Contemporary mathematics thus inscribes itself in a 
fully bimodal spectrum, in Petitot’s sense: simultaneously 
physical and morphologico-structural. Indeed, as we saw 
with Rota, the incarnation of mathematics’ quasi-objects 
is at once factical and functional [EHN]. Lived experi-
ence  and knowledge occur in relative environments of 

information transformation, and not on absolute founda-
tions. Mathematical intelligence thus consists in modes of 
knowledge-processing that lead from in/formation to trans/
formation, modes including both the analytic dismember-
ment of information and the synthetic recomposition of 
the representations obtained in correlative horizons. 
Ae bimodal and the bipolar, which yield progressive 
gradations and precise frontier conditions in transit, lead 
to the natural mediations/mixtures characteristic of 
mathematical knowledge. In the incessant search to pre-
cisely and correctly determine the multiple boundaries 
of mathematical quasi-objects, the great problematics of 
modern and contemporary mathematics, (A) and (B), 
answer to conceptual grounds that, with respect to certain 
frontier conditions, are welldetermined: (A) takes up the 
de/limitation of classes of classical structures, in a first 
approximation that partially fixes certain coordinates in 
modern knowledge, while (B) takes up the extra/limita-
tion of those classes, deforming and differentiating them 
(locality) in order to then reintegrate them (globality), 
in a second approximation that frees certain variations in 
contemporary knowledge.

Ae net result of the conjunction of problematics 
(A) and (B), the situation in which we find ourselves 
today, is a thorough, mathematical understanding of 
certain relative universals, that allow us to combine mod-
ern mathematics’ fundamental quest for ‘universality’ 
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with contemporary mathematics’ modulation toward 
the ‘relative’ (and its search for the invariants behind 
the transit). Indeed, many of the prominent works that 
we have been reviewing respond in a precise and delim-
ited manner to the constitution of webs of relative univer-
sals: the Langlands correspondence [?Q?], Lawvere’s 
‘unity-and-identity of opposites’ [?T?], Shelah’s general 
theory of dimension [?TP], Connes’s noncommutative 
geometry [DDD], Kontsevich’s quantum cohomology 
[DEI], Freyd’s allegories and intermediate categories 
[DHE], Simpson’s reverse mathematics [DHQ], Zilber’s 
extended trichotomy [DIN], and Gromov’s h-principle 
[DNE], among many other accomplishments. In all of 
these cases, which should be seen as typical expressions of 
contemporary mathematics, we see, to begin with, a full 
assimilation of mathematical dynamics; secondly, a search 
for ways of controlling that movement (that is to say, the 
ways in which adequate frontiers can be defined), and 
thirdly, a construction of delimited and technically well-
adjusted quasi-objects that, with respect to the dynamics 
and frontiers just mentioned, act as relative universals: 
the Langlands group [?QH], adjoint functors [?T?], 
dividing lines of the Main Gap [?TT], the Lax-Phillips 
semigroup [D?T], the Grothendieck-Teichmüller group 
[DDI], Cor-Split-Map functors [DHI], second order 
canonical subsystems [DHT], Zariski geometries [DIN], 
Gromov’s smooth inequalities and invariants [DNW], etc.

From a metaphorical perspective, the transition between 
modern and contemporary mathematics corresponds to 
a process of liberation and variational amplitude, reflected 
in the internal circulation of concepts and techniques 
that we have been describing. A profound ‘shiXing of 
the soil’ [?IW, DPQ] has freed mathematics. Arough 
a continuous process, we have travelled a path of reason/
imagination’s progressive amplification: the working of math-
ematics’ ‘soil’ (the analytic/set-theoretic reconstruction 
of mathematics), the experience of the soil’s ‘shiXing’ 
(relative consistency proofs à la Gödel, relative mathemat-
ics à la Grothendieck), the ‘bimodal’ understanding of 
mathematical transit (the emergence of category theory, 
the return of close ties with physics), and the synthetico-
mathematical construction of ‘relative universals’. Ae 
height of reason allows us to contemplate the shiXings and 
sedimentations that together compose the terrains of con-
temporary mathematics. What we are dealing with here, 
of course, is the gestation of a new topography, whose 
looming presence the philosophy of mathematics must 
recognize without delay, and which will surely shatter its 
rigid academic matrices.

Although the aforementioned modulations must be 
inscribed on a continuum, we may note that this progres-
sive amplification is stretched across discrete counter-
pointed looms. On the one hand, theorematic mixing (F) 
has led to the singular discovery of archeal geometric 
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nuclei, in the currents of a ubiquitous geometrization (E) 
by which the modern mixings can, to a large extent, be 
governed from new perspectives. Aere is an evident 
tension here between continuous mediations and discrete 
nuclei (motifs, allegories, combinatorial groups and semi-
groups, Zariski geometries, etc.), by which it seems such 
mediation can be controlled. On the other hand, modern 
mathematics’ structural unity (W) has widened its margins 
to a possible union of fluxion and deformation  (@) where 
the structural seems to be no more than (an admittedly 
central) part of a total, complex dynamic landscape; in the 
extension of mathematical structures’ generic regimentation, 
discrete leaps (quantizations) counterpoint continuous 
deformations, giving a new form to Aom’s aporia in the 
current landscape of mathematics.

Another profound transition helps to explicate the 
‘why’ of the demarcation between modern and contem-
porary mathematics. Ae rising power of the asymptotic 
– counterpointing the fixed or the determinate in modern 
mathematical logoi – permeates many of contemporary 
mathematics’ major forms. From the emergence of many 
classifier topoi and inverse limits with which we may 
‘glue’ the classifiers together – which yields an asymp-
totic understanding of logic, elsewhere corroborated by 
Caicedo’s results in sheaf logic [DQE] – to Gromov’s 
great asymptotic sweeps through Hilbert’s tree [DND], 
passing through the ‘covering approximations’ of what 

we have called the Grothendieck transform [EDW–EDD] or 
through the richness of partial coverings of the real in the 
quiddital approach of Atiyah, Lax, Connes or Kontsevich, 
contemporary mathematics has been able to express and 
control, with the utmost conceptual and technical power, 
the crucial notion of a hiatus between fragments of knowl-
edge. Ae hiatus, understood as a cleX or a fissure – that 
is to say, as a ‘between’ on the obverse of our conceptions 
– in turn becomes an aperture to the unexplored, just as 
it appears in Merleau-Ponty’s Eye and Mind [EEQ]. Ae 
to ti einai (the essential of essence) [?DH], cannot be 
described as a universal concept or ‘entity’, but precisely 
as a generic form of hiatus, inevitably present both in 
the world (‘transitory ontology’ – chapter C) and in our 
approach to it (‘comparative epistemology and sheafifica-
tion’ – chapter @). Ae partial, relative, asymptotic covering 
of that hiatus is one of philosophy’s primordial tasks, 
and one that can now be embarked upon with an entire 
series of concepts, instruments, methods and examples 
belonging to contemporary mathematics.

Flux, shiXing, and hiatus have always and everywhere 
engulfed us. Novalis’s vivid resurgence in contemporary 
culture is not a matter of chance, nor is the recognition 
of the contemporary relevance of Peirce’s asymptotic 
architectonic. Nor, moreover, does it seem to be mere 
chance that the beginnings of contemporary mathematics 
can be situated around the emergence of sheaf theory, a 
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theory as sensitive as any to the shiXing covering of local 
obstructions. Ae enormous philosophical importance of 
this mathematics in which we find ourselves immersed is to a 
large extent rooted in its extraordinarily rich conceptual 
and technical arsenal, an arsenal built for an increasingly 
careful study of flux, shiXing, and hiatus. As Corfield has 
stressed, we must ‘not waste it’ [?WW].

*     *     *

Ae changes and advances in mathematics during the 
second half of the twentieth century have been remark-
able. We have seen that these transformations correspond 
to a gradual amplification of problematics (the modula-
tion from (A) to (B) [EIN, EIQ]) and an extended 
capacity for treating, with new technical instruments, 
deformations of mathematical quasi-objects, the glu-
ing together of the local and the global, geometrical 
nuclei of representations, processes of self-reference and 
schematization, relative and asymptotic channels, and 
nonclassical structural graXings with physics. Behind all 
these accomplishments, and others still unmentioned, we 
may glimpse the permanent presence of a certain ‘general 
operativity of the trans-’ (figure )F [EHP]), in the back-
ground of contemporary mathematics. It is interesting 
to observe that, as we move away from the hackneyed 

rupture associated with ‘postmodernism’ in the years 
)@D(-)@E(, and approach, instead, a web of entrances into 
and exits from modernity, a transversal traversal of the modern – 
what we could call a sort of ‘transmodernity’ – the internal 
circulations achieved in mathematics seem to anticipate 
a natural external reflection in culture.

An apparent riX between modernity and what is unfor-
tunately called ‘postmodernity’ is marked by the brilliant 
work of Deleuze.W@D Nevertheless, aside from the rich-
ness of ‘postmodernism’s’ founding documents, many of 
the movement’s subsequent, ‘degenerate’W@E  theses – like 
‘anything goes’, absolute relativism, the impossibility of 
truth, the conjunction of the arbitrary, the dissolution of 
hierarchies, or the celebrated death of knowledge, among 
other extreme propositions – impede the critical and com-
parative exercise of reason/reasonability/imagination.  

W@D Among the immense primary and secondary literature surrounding Deleuze, let us 
pick out a few texts that may be useful for the philosophy of mathematics: P. Mengue, 
Gilles Deleuze ou le système du multiple (Paris: Kimé, )@@B) emphasizes Deleuze’s systematic 
thinking of mediations, imbrications, and fluxes, the occurrence of which within 
mathematics we have repeatedly emphasized here. L. Bouquiaux et al, Perspective. 
Leibniz, Whitehead, Deleuze (Paris: Vrin, '((D), studies the problematic of the multiplicity 
of points of view (‘perspective’), of how they can be partially reintegrated, and how 
they can be used to act on the world. Without having drawn upon Leibniz, Whitehead, 
or Deleuze in our essay, we have repeatedly taken up this problematic through the 
Peircean architectonic, the theory of categories, and the processes of sheafification. 
Duffy, Virtual Mathematics, is a collection of articles on Deleuze’s philosophy and its 
potential effects on the philosophy of mathematics. Collapse: Philosophical Research and 
Development, ed. R. Mackay, vol. W, '((E includes an important series of ‘nonstandard’ 
articles on Deleuze, which, among other things, tackle a potential ‘integration’ of 
differential Deleuzian constellations. 

W@E ‘Degenerate’ should be understood in Peirce’s sense of the term: being of diminished 
relational complexity. Ais is the case with the theses mentioned above, which flatten 
the landscape of thought.
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relational complexity. Ais is the case with the theses mentioned above, which flatten 
the landscape of thought.
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Leaving aside the traumatic, self-proclaimed  of their 
alumni, what Deleuze and Foucault teach us is how to 
transit, how to enter and exit modernity in many ways and 
from many perspectives. What was awoken by the second 
half of the twentieth century – an age of the trans-, if ever 
there was one – is better called transmodernity, as Rodri-
guez Magda had already proposed in )@CE.W@C 

Contemporary mathematics, which is impossible to 
associate with ‘post’-modernity,  finds a natural habitat 
in the transmodernity in which we are situated. On the one 
hand, contemporary mathematics is able to distinguish 
valences, relativize discriminately, constitute asymptotic 
truths, conjoin the coherent, and hierarchize knowledge, 
against the ‘degenerate’ ‘post’-modern theses. On the 
other hand, contemporary mathematics is traversed by 
incessant osmoses, contaminations, syncretisms, multi-
chronies, interlacings, pendular oscillations, coherent 
gluings, and emergences of relative universals, bringing 
it together with transmodern processes.W@@ Ae richness of 

W@C R. M. Rodriguez Magda, Transmodernidad (Barcelona: Anthropos, '((B). Without 
using the term ‘transmodern’, the works of García Canclini and Martín-Barbero are 
consonant with the constant exits from and entrances into modernity that Rodríguez 
Magda detects. See N. García Canclini, Culturas híbridas. Estrategias para entrar y 
salir de la modernidad ()@C@) (México: Grijalbo, '((F), and J. Martín-Barbaro, De los 
medios a las mediaciones. Comunicación, cultura y hegemonía ()@CE) (Bogotá: Convenio 
Andrés Bello, )@@C). Ae plural richness of Latin America (and, more generally, of the 
Hispanic world, if we include Rodríguez Magda) has served as a natural brake on the 
‘postmodern’ currents that, curiously, tend to uniform everything in difference. 

W@@ Compare this situation with the following quotation from Rodríguez Magda, for 
example: ‘Transmodernity extends, continues and transcends modernity; in it, certain 
ideas of modernity return. Some of these are among the most naive, yet the most 
universal, of modern ideas – Hegelianism, utopian socialism, marxism, philosophies 

contemporary mathematics, in its overwhelming technical 
imagination, disposes of a multitude of signs/operators/
mediators for the subtle observation of transit. Indeed, 
reversing our approach, if mathematics, as has oXen been 
the case throughout history, can serve as an index for 
forecasting the tendencies of an age, then contemporary 
mathematics may serve as an introduction to the transmo-
dernity that is now enveloping it. Just as the Renaissance 
may have been encrypted in Leonardo’s perspectival 
and geometrical machines, as the baroque corresponds 
to Leibniz’s differential and integral calculus, as classi-
cism was forecast in Euler’s serial manipulations, or as 
Modernity is just a temple for the visions of Galois and 
Riemann, Transmodernity may be encrypted in the techni-
cal plasticity of contemporary mathematics, symbolized, 
in turn, in the figure of Grothendieck.

If these associations or ‘predictions’ turn out to be 
more or less correct, we should nevertheless observe that, 
unlike the periodizations of the history of art that have 
been used in recent centuries – Renaissance, Baroque, 

of suspicion, the critical schools […] all exhibit this naivety. Arough the crises of 
those tendencies, we look back on the enlightenment project as the general and most 
commodious frame through which to choose our present. But it is a distanced and 
ironic return, one that accepts that it is a useful fiction. […] Ae contemporary zone is 
transited by every tendency, every memory, every possibility; transcendent and apparent 
at once, willingly syncretic in its ‘multichrony’. […] Transmodernity is the postmodern 
without its innocent rupturism (…). Transmodernity is an image, a series, a baroque 
of fugue and self-reference, a catastrophe, a twist, a fractal and inane reiteration, an 
entropy of the obese, a livid inflation of information, an aesthetics of the replete and its 
fatal entropic disappearance. Ae key to it is not the ‘post-’, or rupture, but the glassy 
transubstantiation of paradigms. Aese are worlds that penetrate one another and turn 
into soap bubbles or images on a screen’. Rodríguez Magda, Transmodernidad, C–@. 
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Classicism, Modernism, and Contemporaneity, epochs 
in which the forms of artistic expression are all equally 
complex – the ‘epochs’ of mathematics are tied, by con-
trast, to a very palpable and continuous augmentation of 
complexity throughout their historical evolution. In fact, 
‘advanced’ mathematics, which we have defined so as to 
include mathematical technique from Classicism onward 
[DN–DQ], clearly increases in complexity over the 
centuries. No doubt, the steadily increasing difficulty of access-
ing those forms of mathematical expression, in the degree 
it has reached today, blocks a thorough comprehension 
of mathematics in its entirety, from the most elementary 
to the most advanced. Ae task of a serious philosophy 
of mathematics should nevertheless be to break down 
these barriers, and develop a conscientious reflection on 
modern and contemporary mathematics. Ae work of an 
art critic who is unaware of everything that has happened 
in art over the last hundred and fiXy years would be 
considered quite poor. Ae situation should not be any 
different in the philosophy of mathematics, and the easy 
complacency of reflecting on logic alone (in the style of 
the Oxford Handbook of Philosophy of Mathematics and Logic 
[?W?–?WP]) should be shaken off at once. 

Aside from the coincidences that may be observed 
regarding epochal delimitations in the arts and mathemat-
ics, the proximity of the creative grounds of the artistic and 
the mathematical has been emphasized throughout the 

history of culture. Pierre Francastel, the great critic and 
historian of art, has forcefully pointed out how math-
ematics and art should be understood as the major poles 
of human thought.B(( Behind those modes of knowledge, 
Francastel, for his part, has observed the emergence of 
systems and creative webs wherein the real and the ideal, 
the concrete and the abstract, and the rational and the 
sensible are combined.B() 

In Peirce’s triadic classification of the sciences, math-
ematics are situated on the first branch (9), in the realm of 
constructions of possibility. Aesthetics appears in philoso-
phy (7), where, in the normative sciences (7), it occupies 
a primary place (that is to say, in  branch 7.7.9). ‘Art’ as 
such does not enter the realm of the sciences and is not 
to be found in the Peircean classification, but it may be 

B(( ‘Art and mathematics are the two poles of all logical thinking, humanity’s major modes 
of thought’, P. Francastel, La realidad figurativa ()@DF) (Barcelona: Paídos, )@CC), vol. 
), 'B. 

B() ‘From the moment we accept the idea that mathematical and artistic signs respond 
to intellectualized knowledge and not only to simple sense data immersed in matter, 
we also admit the intervention of a logic, of a system, and notions of order and 
combination, equivalence, relation, operation and transposition appear before us. […] 
Just as mathematics combines schemes of representation and prediction, in which the 
real is associated with the imaginary, so the artist brings elements of representation 
into confrontation with others that proceed from a problematic of the imagination. In 
both cases, the dynamism of a thought that becomes conscious of itself by expressing 
and materializing itself in signs interlaces, overtakes, and envelops the elements 
of experience and those of the logic of the mind. […] Just like art, mathematics 
possesses the dualistic character by which they both reach the heights of abstraction, 
while remaining anchored in the real. It is in virtue of this that both mathematical 
and plastic symbolism preserve their operative character’, ibid., )'F-D. Ae ‘dualistic’ 
character remarked upon by Francastel should be understood as the process of a dual 
intermingling of the real and the imaginary, over a relay [NW] of interlacing signs. Ae 
mediation of the relay imposes itself on the dualism of the positive and the negative, 
of the greater and the lesser. 
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seen as being very close to a creative materiality of type 
;.7.7 or ;.7.; – material mediations for engendering sense 
(classical art) or action (contemporary art). In the Peircean 
classification of the forms of knowing (and understanding 
art here as a vital part of knowing, something we do not 
find in Peirce), mathematics and art likewise emerge as 
clear polarities (9 versus ;.7.;). A vision of the tree from 
below thus provides us with a possible transit between 
mathematics and art. If, metaphorically speaking, we 
situate the tree on the page of assertion of the Peircean 
existential graphs and view it from its recto (alpha graphs) 
or from its verso (gamma graphs), we may transit between 
the various realms of creation, with interstitial passages 
between mathematics and art (dotted gamma cuts, singu-
lar points of ramification), but with blockages between 
them as well (strict alpha cuts, restrictive delimitations). 

Ae metaphorics of the tree and the graphs has a much 
greater depth than may appear at first sight. Ae tree, 
on the one hand, as a triadic tissue, refers us to processes 
of iterative construction in culture, which unfold in time 
and space. On the other hand, the graphs, as specular 
images, refer us to processes of singular vision, folding back 
on themselves and encoding information. In the weaving 
between iteration and deiteration (which are the main 
logical rules of the Peircean existential graphs), culture is 
unfolded and refolded, in a permanent dialogue with its 
main modes of creation (arts and mathematics, according 

to Francastel). Ae creative proximities between art and 
mathematics, evident in the emergence of inventiveness, 
reinforce one another in the general modes of knowing, 
from a point of view that is formal, dual and latticial.

A proximity is nevertheless far from an identification. 
Ae creative forms of mathematics and art retain their 
differential specificities, and, though the polarities form a 
remarkable space of mediations (like the two poles of an 
electromagnetic field – as Châtelet reminds us [EWQ]), 
they must begin, first and foremost, by folding back upon 
one another. Ae demonstrative realm of mathematics, 
cumulative and architectonic (;), naturally repels the 
intuitive, destructive and visionary (9.7) realm of art. 
In this manner, though the modes of creation in both 
realms are in close proximity, the quasi-objects at stake 
are extremely distinct. We are therefore faced with a very 
interesting asymptotic geometry between mathematics and 
art: orthogonal ‘what?’, dual ‘how?’, and inverse ‘why?’. 

Ae breath of aesthetics permeates mathematical cre-
ativity on at least two levels, as detonator and as regulator. 
Referring to the artistic imagination, Valéry writes in his 
Cahiers: ‘Imagination (arbitrary construction) is possible 
only if it’s not forced. Its true name is deformation of the 
memory of sensations’,B(' and referring to the imagination in 
general, he speaks of the ‘imaginary magnitudes –  

B(' P. Valéry, Cahiers 9>:A–9:9A (Paris: Gallimard, )@@(), vol. W, ')@ (Valéry’s emphasis). 
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efforts when there are displacements or tensions’.B(W We 
have seen how contemporary mathematics systematically 
studies deformations of the representations of concepts. In that 
study, the aesthetic impulse initially occurs as a detonator, 
as a buttress (in Peircean firstness) for the elaboration of 
a vague image or conjecture, which the mathematician 
then submits to meticulous contrasts, through delimita-
tions, definitions, examples and theorems. In turn, in that 
contrasting (submitted to forms of Peircean secondness 
and thirdness), the aesthetic impulse occurs as a regulator, 
as a functor of equilibrium, symmetry, elegance, simplic-
ity. Aere is a perpetual double circulation of aesthetic and 
technical factors in the creative act in mathematics. But 
Valéry goes on to underscore the central importance of 
deformations, displacements and tensions in imagination. We 
have, for our part, abundantly emphasized the presence 
of these movements in contemporary mathematics, whose 
imaginative expressions are thus forged almost symbioti-
cally with the most demanding forms (‘ efforts’﹚ of 
the imagination, following Valéry.

In mathematical practice itself we can observe the 
force of certain aesthetic tensions that, even if they do not 
govern the discipline, at least determine the climate of some 
of its fragments – counterpointing certain foundational 
branches outlined in Hilbert’s tree, certain impressions 

B(W Ibid., ''( (Valéry’s italics and small caps). 

of correlative density in Gromov’s ‘clouds’ [DNE]. Aere 
exists a sort of aesthetic meteorology, hiding behind the 
variability of many mathematical phenomena. Gromov’s 
cloudiness  is typical of contemporary mathematics, and 
seems to be incomprehensible – or worse, invisible – from 
elementary, or even modern, perspectives. Ae shattered 
tree of Hilbert (complexity, undecidability) is a tree by 
turns displaced, deformed, and stretched, with extraor-
dinarily dense nodes (the explosion and penetration of 
complex analysis in the most unexpected domains of math-
ematics, for example), whose expansive force – detonating 
and regulating – becomes a new object of study. Ae visions 
of ‘cohomologies everywhere’ in Grothendieck [?HN], 
of ‘groups everywhere’ in Zilber [DIN], or ‘metrics 
everywhere’ in Gromov [DIT], ultimately answer to a 
new aesthetic sensibility, open to contemplating the local 
variations of (quasi-)objects through global environments 
of information transformation. Ae aesthetic regulation 
that allows the invasion of cohomologies, groups or 
metrics be calibrated is decisive. 

Turning to particular cases, we can observe a few 
complex overlappings between aesthetics and technique 
in contemporary mathematics. Many of the examples com-
bine a sort of romantic detonator (recall Langlands’s excla-
mation about the ‘romantic side of mathematics’ [?QI]) 
and a regulatory transmodern scaffolding. Ae interlacing 
of romanticism and transmodernity is perhaps surprising at 
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B(W Ibid., ''( (Valéry’s italics and small caps). 

of correlative density in Gromov’s ‘clouds’ [DNE]. Aere 
exists a sort of aesthetic meteorology, hiding behind the 
variability of many mathematical phenomena. Gromov’s 
cloudiness  is typical of contemporary mathematics, and 
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elementary, or even modern, perspectives. Ae shattered 
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first, but less so when we notice that many great roman-
tics – Novalis, Schelling and Goethe in particular – have 
taken up, with technical instruments far less robust than 
the contemporary ones, extensive studies of the trans-. To 
start with, two of the major programs of contemporary 
mathematics, Grothendieck’s motivic cohomology and the 
Langlands correspondence, explicitly trace themselves 
back to romantic impulses (Grothendieck’s ‘grand vision’ 
[?NE], Langlands’s ‘mathematics that make us dream’ 
[?QN]), and are combined with extensive scaffoldings for 
regulating the transmodern deformations and shiXings 
in play (EGA [?NN], the functoriality associated with 
the Langlands group [?QH]). In a more restricted form, 
Gromov’s h-principle [DNE] is the result of an initial, 
global, romantic intuition (the synthetic penetration of 
the ideas of holonomy and homotopy into differential 
realms) and of an extensive subsequent elaboration of 
hierarchies and local, analytic conditions under which the 
h-principle can be incarnated. Ae vision of mathematics, 
according to Lawvere, meshes perfectly with the bipolar 
tension between romanticism and transmodernity; in his 
case, the romantic ground corresponds to dialectical intu-
itions, a gazing into abysses [?TW], while his reflection’s 
transmodern richness is played out in a multiplicity of 
new mathematical quasi-objects (in particular, subobject 
classifiers and sheaves in an elementary topos [?TI]) by 
which one can gauge  fluxions and deformations between 

opposites. Shelah explicitly (and perhaps polemically) 
proclaims the primordial role of beauty in his understand-
ing of mathematics [DWW], Zilber plunges into the abyssal 
hiatus of interlacings between model theory and non-
commutative geometry [DIQ], Connes underscores the 
necessity of knowing the heart of mathematics [DDN]: 
strongly romantic sentiments, potentiated and reoriented 
by the various migratory modulations of transmodernity.

Ae ‘continuous increase of potentiality’, the summum 
bonum of aesthetics according to Peirce,B(B lies behind all 
of these examples. As we hope to have shown in these 
pages, contemporary mathematics presents a remarkable 
continuous increase of potentiality and reasonability. In full 
harmony with the summum bonum, the mathematics of 
the last few decades amplifies our technical, imaginative 
and rational capacities. A sprawling beauty lies in the 
work of our great contemporary mathematical creators. 
A synthetic vision allows us to link together apparently 
distant strata of mathematics and culture, helping us to 
break down many artificial barriers. Not only can today’s 
mathematics be appreciated through epistemic, ontic, 
phenomenological and aesthetic modes, but, in turn, it 
should help to transform philosophy. And, as Goethe 
tells us, we must not forget that ‘the most important 
thing, nevertheless, continues to be the contemporary, 

B(B See Barrena, La razón creativa…
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