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Introduction

This book is about the nature of concrete computation—the physical systems that
perform computations and the computations they perform. I argue that concrete
computing systems are a kind of functional mechanism. A functional mechanism is a
system of component parts with causal powers that are organized to perform a
function. Computing mechanisms are different from non-computing mechanisms
because they have a special function: to manipulate vehicles based solely on differ-
ences between different portions of the vehicles in accordance with a rule that is
defined over the vehicles and, possibly, certain internal states of the mechanism. I call
this the mechanistic account of computation.
When I began articulating and presenting the mechanistic account of computa-

tion to philosophical audiences over ten years ago, I often encountered one of
two dismissive responses. Response one: your view is obvious, well known, and
uncontroversial—utterly dull. Response two: your view is counterintuitive, implaus-
ible, and untenable—totally worthless. These were not the only responses. Plenty of
people engaged the substance of the mechanistic account of computation and
discussed its pros and cons. But these radical responses were sufficiently common
that they deserve to be addressed upfront.
If the mechanistic account elicited either one of these responses but not the other,

perhaps the mechanistic account would be at fault. But the presence of both
responses is encouraging because they cancel each other out, as it were. Those who
respond dismissively appear to be unaware that the opposite dismissive response is
equally common. If they knew this, presumably they would tone it down. For
although reasonable people may disagree about whether a view is true or false, it is
unreasonable to disagree on whether something is obviously true or obviously false. If
it’s so obvious, how can there be equally informed people who think the opposite is
obvious?
The first dismissive response—that the mechanistic account is so obvious that it’s

dull—seems to be motivated by something like the following reasoning. For the sake
of the argument, let’s assume along with many philosophers that computation is a
kind of symbol manipulation. There is an important distinction between the syntax
of symbols (and, more generally, their formal properties) and their semantics. To a
first approximation, syntactic (more generally, formal) properties are those that
determine whether a symbolic structure is well formed—they make the difference



between ‘the puzzle is solvable’ and ‘puzzle the is solvable’; semantic properties are
those that determine what symbols mean—they make the difference between ‘i vitelli
dei romani sono belli’ in most languages, where it means nothing; in Latin, where it
means go, Vitellus, at the Roman god’s war cry; and in Italian, where it means the
calves of the Romans are good-looking. Most people find it intuitively compelling that
computations operate on symbols based on their formal or syntactic properties alone
and not at all based on their semantic properties. Furthermore, many philosophers
assimilate computational explanation and functional analysis: computational states
are often said to be individuated by their functional relations to other computational
states, inputs, and outputs. Therefore, computational states and processes are indi-
viduated functionally, i.e., formally or syntactically. Saying that computation is
mechanistic, as my account does, is just a relabeling of this standard view. Therefore,
the mechanistic account of computation is nothing new. Something like this reason-
ing is behind the first dismissive response. It is deceptively persuasive but, alas, it goes
way too fast.

A first problem is that physical systems don’t wear their syntactic (or formal)
properties on their sleeves. If the mechanistic account were based on syntactic
properties, it should begin with an account of syntactic properties that does not
presuppose the notion of computation. I don’t know of any such account, and
fortunately I don’t need one. For the mechanistic account of computation is pains-
takingly built by specifying which properties of which mechanisms are computa-
tional, without ever invoking the notion of syntax (or formal property). Thus, the
mechanistic account may provide ingredients for an account of syntax—not vice
versa (Chapter 3, Section 4).

A second problem is the implicit assimilation of functional analysis and compu-
tational explanation, which is pervasive in the literature. I reject such an assimilation
and argue that functional analysis provides a partial sketch of a mechanism
(Chapter 5), defend a teleological account of functional mechanisms (Chapter 6),
and argue that computational explanation is a specific kind of mechanistic explan-
ation (Chapter 7).

An additional issue is that computations are often individuated semantically—in
terms of functions from what is denoted by their inputs to what is denoted by their
outputs. And philosophers interested in computation are often interested in how
computation can explain cognition, which is usually assumed to deal in representa-
tions. After all, cognitive states and processes are typically individuated at least in
part by their semantic content. Thus, many philosophers interested in computation
believe that computational states and processes are individuated by their content in
such a way that at least part of their essence is semantic. I call this the semantic
account of computation. Therein lies the motivation for the second dismissive
response: since computation is essentially semantic and the mechanistic account of
computation denies this, the mechanistic account is obviously and horribly wrong.
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But the semantic account of computation has its own problems. For starters, the
notion of semantic property is even more obscure and more in need of naturalistic
explication than that of syntactic property. In addition, I argue that individuating
computations semantically always presupposes their non-semantic individuation,
and that some computations are individuated purely non-semantically. Therefore,
contrary to the second dismissive response, computation does not presuppose
representation (Chapter 3).
But if we reject the view that computation presupposes representation, we risk

falling into the view that everything performs computations—pancomputationalism
(Chapter 4). This is not only counterintuitive—it also risks undermining the foun-
dations of computer science and cognitive science. It is also a surprisingly popular
view. Yet, I argue that pancomputationalism is misguided and we can avoid it by a
judicious use of mechanistic explanation (Chapter 4).
The mechanistic account begins by adapting a mechanistic framework from the

philosophy of science. This gives us identity conditions for mechanisms in terms of
their components, their functions, and their organization, without invoking the
notion of computation. To this general framework, a mechanistic account of com-
putation must add criteria for what counts as computationally relevant mechanistic
properties. I do this by adapting the notion of a string of letters, taken from logic and
computability theory, and generalizing it to the notion of a system of vehicles that are
defined solely based on differences between different portions of the vehicles. Any
system whose function is to manipulate such vehicles in accordance with a rule,
where the rule is defined in terms of the vehicles themselves, is a computing system.
I explain how a system of appropriate vehicles can be found in the natural (concrete)
world, yielding a robust (nontrivial) notion of computation (Chapter 7).
After that, I develop this general mechanistic account by explicating specific

computing systems and their properties in mechanistic terms. I explicate the notion
of primitive computing components (Chapter 8), complex computing components
(Chapter 9), digital calculators (Chapter 10), digital computers (Chapter 11), analog
computers (Chapter 12), and neural networks (Chapter 13). After that, I return to
semantic properties under the guise of information processing (in several senses of
the term); I argue that processing information is a form of computation but com-
putation need not be a form of information processing (Chapter 14). I conclude the
book with the limits of physical computation. Once the relevant question is clarified
(Chapter 15), the evidence suggests that any function that is physically computable is
computable by Turing machines (Chapter 16).
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1

Towards an Account of Physical
Computation

1. Abstract Computation and Concrete Computation

Computation may be studied mathematically by formally defining computing sys-
tems, such as algorithms and Turing machines, and proving theorems about their
properties. The mathematical theory of computation is a well-established branch of
mathematics. It studies which functions defined over a denumerable domain, such as
the natural numbers or strings of letters from a finite alphabet, are computable by
algorithm or by some restricted class of computational systems. It also studies how
much time or space (i.e., memory) it takes for a computational system to compute
certain functions, without worrying much about the particular units of time involved
or how the memory cells are physically implemented.

By contrast, most uses of computation in science and everyday life involve concrete
computation: computation in concrete physical systems such as computers and
brains. Concrete computation is closely related to mathematical computation: we
speak of physical systems as running an algorithm or as implementing a Turing
machine, for example. But the relationship between concrete computation and
mathematical computation is not part of the mathematical theory of computation
per se and requires further investigation. This book is about concrete computation.
We will see in due course that questions about concrete computation are not neatly
separable from mathematical results about computation. The following mathemat-
ical results are especially crucial to our subsequent investigation.

The most important notion of computation is that of digital computation, which
Alan Turing, Kurt Gödel, Alonzo Church, Emil Post, and Stephen Kleene formalized
in the 1930s (see the Appendix for a sketch of the most relevant background and
results). Their work investigated the foundations of mathematics. One crucial ques-
tion was whether first order logic is decidable—whether there is an algorithm that
determines whether any given first order logical formula is a theorem.

Turing (1936–7) and Church (1936) proved that the answer is negative: there is no
such algorithm. To show this, they offered precise characterizations of the informal
notion of algorithmically computable function. Turing did so in terms of so-called
Turing machines—devices that manipulate discrete symbols written on a tape in



accordance with finitely many instructions. Other logicians did the same thing—they
formalized the notion of algorithmically computable function—in terms of other
notions, such as º-definable functions and general recursive functions.
To their surprise, all such notions turned out to be extensionally equivalent, that is,

any function computable within any of these formalisms is computable within any of
the others. They took this as evidence that their quest for a precise definition of
‘algorithm,’ or ‘effective procedure,’ or ‘algorithmically computable function,’ had
been successful. They had found a precise, mathematically defined counterpart to the
informal notion of computation by algorithm—a mathematical notion that could be
used to study in a rigorous way which functions can and cannot be computed by
algorithm, and therefore which functions can and cannot be computed by machines
that follow algorithms. The resulting view—that Turing machines and other equiva-
lent formalisms capture the informal notion of algorithm—is now known as the
Church-Turing thesis (more on this in Chapter 15). It provides the foundation for the
mathematical theory of computation as well as mainstream computer science.
The theoretical significance of Turing et al.’s formalization of computation can

hardly be overstated. As Gödel pointed out (in a lecture following one by Tarski):

Tarski has stressed in his lecture (and I think justly) the great importance of the concept of
general recursiveness (or Turing’s computability). It seems to me that this importance is largely
due to the fact that with this concept one has for the first time succeeded in giving an absolute
definition of an interesting epistemological notion, i.e., one not depending on the formalism
chosen (Gödel 1946, 84).

A standard Turing machine computes only one function. Turing also showed that
there are universal Turing machines—machines that can compute any function
computable by any other Turing machine. Universal machines do this by executing
instructions that encode the behavior of the machine they simulate. Assuming the
Church-Turing thesis, universal Turing machines can compute any function com-
putable by algorithm. This result is significant for computer science: you don’t need
to build different computers for different functions; one universal computer will
suffice to compute any computable function. Modern digital computers approximate
universal machines in Turing’s sense: digital computers can compute any function
computable by algorithm for as long as they have time and memory. (Strictly
speaking, a universal machine has an unbounded memory, whereas digital computer
memories can be extended but not indefinitely, so they are not quite unbounded in
the same way.)
The above result should not be confused with the common claim that computers

can compute anything. Nothing could be further from the truth: another important
result of computability theory is that most functions are not computable by Turing
machines (thus, by digital computers). Turing machines compute functions defined
over denumerable domains, such as strings of letters from a finite alphabet. There
are uncountably many such functions. But there are only countably many Turing
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machines; you can enumerate Turing machines by enumerating all lists of instruc-
tions. Since an uncountable infinity is much larger than a countable one, it follows
that Turing machines (and hence digital computers) can compute only a tiny portion
of all functions (over denumerable domains, such as natural numbers or strings of
letters).

Turing machines and most modern computers are known as (classical) digital
computers, that is, computers that manipulate strings of discrete, unambiguously
distinguishable states. Digital computers are sometimes contrasted with analog
computers, that is, machines that manipulate continuous variables. Continuous
variables are variables that can change their value continuously over time while
taking any value within a certain interval. Analog computers are used primarily to
solve certain systems of differential equations (Pour-El 1974; Rubel 1993).

Classical digital computers may also be contrasted with quantum computers
(Nielsen and Chuang 2000). Quantum computers manipulate quantum states called
qudits (most commonly binary qudits, or qubits). Unlike the computational states of
digital computers, qudits are not unambiguously distinguishable from one another.
This book will focus on classical (i.e., non-quantum) computation.

The same entities studied in the mathematical theory of computation—Turing
machines, algorithms, and so on—are said to be implemented by concrete physical
systems. This poses a problem: under what conditions does a concrete, physical
system perform a computation when computation is defined by an abstract mathem-
atical formalism? This may be called the problem of computational implementation.

The problem of computational implementation may be formulated in a couple of
different ways, depending on our ontology of mathematics. Some people interpret
the formalisms of computability theory, as well as other portions of mathematics, as
defining and referring to abstract objects. According to this interpretation, Turing
machines, algorithms, and the like are abstract objects.1

Abstract objects in this sense should not be confused with abstraction in the sense
of focusing on one aspect of something at the expense of other aspects. For instance,
we talk about the economy of a country and discuss whether it is growing or
contracting; we do so by abstracting away from many other aspects of the objects
and properties that constitute that country. I will discuss this notion of abstraction
(partial consideration) later. Now let’s deal with abstract objects.

Abstract objects are putative entities that are supposed to be non-spatial, non-
temporal, and non-causal. In other words, abstract objects have no spatial location,
do not exist through time, and are causally inert. The view that there are abstract
mathematical objects and that our mathematical truths describe such objects truly is
called platonism (Balaguer 2009; Linnebo 2011; Rodriguez-Pereyra 2011; Rosen 2012;

1 E.g.: ‘Computational models are abstract entities. They are not located in space and time, and they do
not participate in causal interactions’ (Rescorla 2014b, 1277, emphasis added).
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Swoyer 2008). According to platonism, mathematical entities such as the number 2
are abstract objects: the number 2 is in no particular place, exists atemporally, and is
causally inert. Yet, when we say that 2 is the square root of 4, we say something true
about that abstract object.
If you believe that computability theory is about abstract objects and there are such

things—that is, if you are a platonist—you may ask: what must be the case for a given
concrete physical system to implement a given abstract computational object (as
opposed to another abstract object, or none at all)? This is how platonists formulate
the problem of computational implementation.2

Non-platonists treat the formalisms of computability theory simply as abstract
computational descriptions, without positing any abstract objects as their referents.
The main contemporary alternative to mathematical platonism is the view that
mathematics is putatively about abstract objects but there are no such things.
Platonists are right that mathematical objects such as numbers, sets, functions, and
Turing machines would be abstract objects, if there were any. But there are no
abstract objects. Strictly speaking, there are no numbers, no sets, no functions, no
Turing machines, etc. Therefore, strictly speaking, existential mathematical state-
ments are not true; universal mathematical statements are vacuously true (for lack of
referents). This view goes by the name of fictionalism (Field 1980, 1989; Balaguer
2013; Paseau 2013; Bueno 2009; Leng 2010).
If you believe there are no abstract objects, you may ask: what does it take for a

given concrete physical system to satisfy a given abstract computational description
(as opposed to another, or none at all)? This is how a non-platonist formulates the
problem of computational implementation. Regardless of how the problem of com-
putational implementation is formulated, solving it requires an account of concrete
computation—an account of what it takes for a given physical system to perform a
given computation.
A closely related problem is that of distinguishing between physical systems such

as digital computers, which appear to compute, and physical systems such as rocks,
which appear not to compute. Unlike computers, ordinary rocks are not sold in
computer stores and are usually not taken to perform computations. Why? What do
computers have that rocks lack, such that computers compute and rocks don’t?
(If indeed they don’t?)
Questions on the nature of concrete computation should not be confused with

questions about computational modeling. The dynamical evolution of many physical
systems may be described by computational models. Computational models
describe the dynamics of a system that are written into, and run by, a computer.
The behavior of rocks—as well as rivers, ecosystems, and planetary systems, among

2 E.g.: “we need a theory of implementation: the relation that holds between an abstract computational
object . . . and a physical system” (Chalmers 2011, 325, emphasis added).
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many others—may well be modeled computationally. From this, it doesn’t follow
that the modeled systems are computing devices—that they themselves perform
computations. Prima facie, only relatively few and quite special systems compute.
Explaining what makes them special—or explaining away our feeling that they are
special—is the job of an account of concrete computation.

This book offers an account of concrete computation. I have reservations about
both platonism and fictionalism but this is not the place to air them. I will remain
officially neutral about the ontology of mathematics; my account works under any
view about mathematical ontology.

2. Abstract Descriptions

Before developing an account of concrete computation, we should introduce a notion
of abstraction that has little to do with abstract objects. Concrete physical systems
satisfy a number of different descriptions. For example, one and the same physical
system may be a juicy pineapple, a collection of cells that are bound together and
release a certain amount of liquid under a certain amount of pressure, an organized
system of molecules that give out certain chemicals under certain conditions, a bunch
of atoms some of whose bonds break under certain conditions, etc. By the same
token, the same physical system may be a Dell Latitude computer, a processor
connected to a memory inside a case, a group of well-functioning digital circuits,
an organized collection of electronic components, a vast set of molecules arranged in
specific ways, etc.

A first observation about the above examples is that some descriptions involve
smaller entities (and their properties) than others. Atoms are generally smaller than
molecules, which are smaller than cells and electronic components, which in turn are
smaller than pineapples and processors.

A second observation is that, within a complex system, usually larger things are
made out of smaller things. Atoms compose molecules, which compose cells and
circuits, which compose pineapples and processors.

A third observation is that in order to describe the same property of, or activity by,
the same system, descriptions in terms of larger things and their properties are often
more economical than descriptions in terms of their components and their proper-
ties. For example, it only takes a couple of predicates to say that something is a juicy
pineapple. If we had to provide the same information by describing the system’s cells
and their properties, we would need to describe the kinds of cell, how they are
arranged, and how much liquid they release when they are squished (and the relevant
amount of squishing). To do this in an adequate way would take a lot of work. To do
this in terms of the system’s molecules and their properties would require giving even
more information, which would take even more work. Doing this in terms of the
system’s atoms and their properties would be even worse. The same point applies to
computing systems. It only takes one predicate to say that something is a Dell
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Latitude. It would take considerably more to say enough about the system’s proces-
sor, memory, and case to distinguish them from non-Dell-Latitude processors,
memories, and cases. It would take even more to say the same thing in terms of
the system’s digital circuits, even more in terms of the system’s electronic compo-
nents, and even more in terms of the system’s atoms.
Descriptions of the same system may be ranked according to how much informa-

tion they require in order to express the same property or properties of the system.
Descriptions that are more economical than others achieve their economy by
expressing select information about the system at the expense of other information.
In other words, economical descriptions omit many details about a system. They
capture some aspects of a system while ignoring others. Following tradition, I will call
a description more or less abstract depending on how many details it omits in order
to express that a system possesses a certain property. The more economically a
description accomplishes this, the more abstract it is. In our example, ‘being a Dell
Latitude’ is more abstract than ‘being a certain type of processor connected to a
certain type of memory inside a certain kind of case,’ which in turn is more abstract
than ‘being such and such a system of organized digital circuits.’
Mathematical descriptions of concrete physical systems are abstract in this sense.

They express certain properties (e.g., shape, size, quantity) while ignoring others (e.g.,
color, chemical composition). In this book, I will give an account of computing
systems according to which computational descriptions of concrete physical systems
are mathematical and thus abstract in the same sense. They express certain properties
(e.g., which function a system computes) in an economical way while ignoring
others.
A platonist may object as follows. What about Turing machines and other

computational entities defined purely mathematically, whose properties are studied
by computability theory? Surely those are not concrete physical systems. Surely
mathematicians are free to define computational entities, study their properties,
and discover truths about them, without their descriptions needing to be true of
any physical system. For instance, Turing machines have unbounded tapes, whereas
there is a limit to how much the memory of a concrete computer can be extended.
Therefore, Turing machines are not concrete physical systems. Therefore, Turing
machines must be abstract objects. Therefore, we still need abstract computational
objects to act as truthmakers for our computational descriptions.
My reply is simply that I am after an account of computation in the physical world.

If Turing machines and other mathematically defined computational entities are
abstract objects—and their descriptions are not true of any physical system—they fall
outside the scope of my account. Therefore, even if we concluded that, if comput-
ability theory refers, it refers to abstract objects, this would not change my account of
concrete computation.
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3. Towards an Account of Concrete Computation

Here is where we’ve gotten so far: the problem of computational implementation is
what distinguishes physical processes that count as computations from physical
processes that do not, and which computations they count as. Equivalently, it is
the question of what distinguishes physical systems that count as computing systems
from physical systems that do not, and which computations they perform.

The problem of computational implementation takes different forms depending
on how we think about mathematically defined computation. In this book I will
assume that mathematically defined computation is an abstract (mathematical)
description of a hypothetical process, which may be idealized in various ways and
may or may not be physically realizable. The mathematical study of computation
employs abstract descriptions without much concern for physical implementation.
Concrete computation is a kind of physical process. It may be described in very
concrete terms or more abstract terms. If the description is abstract enough in ways
that I will articulate, it is a computational description.

If, on the contrary, you take abstract computation to be the description of abstract
objects, then the question becomes one of identifying a relationship between concrete
objects and their abstract counterparts such that the former count as implementa-
tions of the latter. Everything I say in this book may be reinterpreted within this
platonist framework so that it answers the platonist question. (Mutatis mutandis for
the fictionalist.) For by the time I show how certain concrete objects satisfy the
relevant computational descriptions, I also solve the platonistically formulated prob-
lem of implementation. All the platonist has left to do is to interpret the computa-
tional descriptions as referring to abstract objects, and posit an appropriate relation
between the abstract objects thus referred to and the concrete objects that putatively
implement them.

In the rest of the book, I will defend the following solution to the problem of
computational implementation.

The Mechanistic Account of Computation: A physical computing system is a
mechanism whose teleological function is performing a physical computation.
A physical computation is the manipulation (by a functional mechanism) of a
medium-independent vehicle according to a rule. A medium-independent vehicle
is a physical variable defined solely in terms of its degrees of freedom (e.g., whether
its value is 1 or 0 during a given time interval), as opposed to its specific physical
composition (e.g., whether it’s a voltage and what voltage values correspond to 1 or
0 during a given time interval). A rule is a mapping from inputs and/or internal
states to internal states and/or outputs.

All of this will be unpacked in more detail in Chapter 7, after laying appropriate
groundwork. The overarching argument for this mechanistic account is that it
satisfies a number of desiderata better than the competition.
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4. Desiderata

An account of concrete computation that does justice to the sciences of computation
should have the following features: 1) objectivity; 2) explanation; 3) the right things
compute; 4) the wrong things don’t compute; 5) miscomputation is explained; and
6) an adequate taxonomy of computing systems is provided.

1 Objectivity

An account with objectivity is such that whether a system performs a particular
computation is a matter of fact. Contrary to objectivity, some authors have suggested
that computational descriptions are vacuous—a matter of free interpretation rather
than fact. The alleged reason is that any system may be described as performing just
about any computation, and there is no further fact of the matter as to whether one
computational description is more accurate than another (Putnam 1988; Searle 1992;
cf. Chapter 4, Section 2). This conclusion may be informally derived as follows.
Assume a simple mapping account of computation (Chapter 2): a system performs

computation C if and only if there is a mapping between a sequence of states
individuated by C and a sequence of states individuated by a physical description
of the system (Putnam 1960, 1967b, 1988). Assume, as some have, that there are no
constraints on which mappings are acceptable, so that any sequence of computa-
tional states may map onto any sequence of physical states of the same cardinality. If
the sequence of physical states has larger cardinality, the computational states may
map onto either equivalent classes or a subset of the physical states. Since physical
variables can generally take real numbers as values and there are uncountably many
of those, physical descriptions generally give rise to uncountably many states and
state transitions. But ordinary computational descriptions give rise only to countably
many states and state transitions. Therefore, there is a mapping from any (countable)
sequence of computational state transitions onto either equivalent classes or a subset
of physical states belonging to any (uncountable) sequence of physical state transi-
tions. Therefore, generally, any physical system performs any computation.
If this result is sound, then empirical facts about concrete systems make no

difference to what computations they perform. Both Putnam (1988) and Searle
(1992) take results of this sort to trivialize the empirical import of computational
descriptions. Both conclude that computationalism—the view that the brain is a
computing system—is vacuous. But, as usual, one person’s modus ponens is another
person’s modus tollens. I take Putnam and Searle’s result to refute their account of
concrete computation.
Computer scientists and engineers appeal to empirical facts about the systems they

study to determine which computations are performed by which systems. They apply
computational descriptions to concrete systems in a way entirely analogous to other
bona fide scientific descriptions. In addition, many psychologists and neuroscientists
are in the business of discovering which computations are performed by minds and
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brains. When they disagree, they address their opponents by mustering empirical
evidence about the systems they study. Unless the prima facie legitimacy of those
scientific practices can be explained away, a good account of concrete computation
should entail that there is a fact of the matter as to which computations are
performed by which systems.

2 Explanation

Computations performed by a system may explain its capacities. Ordinary digital
computers are said to execute programs, and their capacities are normally explained
by appealing to the programs they execute. The literature on computational theories
of cognition contains explanations that appeal to the computations performed by the
brain. The same literature also contains claims that cognitive capacities ought to be
explained computationally, and more specifically, by program execution (e.g., Fodor
1968b; Cummins 1977; cf. Chapter 5). A good account of computing mechanisms
should say how appeals to program execution, and more generally to computation,
explain the behavior of computing systems. It should also say how program execu-
tion relates to the general notion of computation: whether they are the same and, if
not, how they are related.

3 The right things compute

A good account of computing mechanisms should entail that paradigmatic examples
of computing mechanisms, such as digital computers, calculators, both universal and
non-universal Turing machines, and finite state automata, compute.

4 The wrong things don’t compute

A good account of computing mechanisms should entail that all paradigmatic
examples of non-computing mechanisms and systems, such as planetary systems,
hurricanes, and digestive systems, don’t perform computations.

Contrary to desideratum 4, many authors maintain that everything performs
computations (e.g., Chalmers 1996b, 331; Scheutz 1999, 191; Shagrir 2006b; cf.
Chapter 4). But contrary to their view as well as desideratum 3, there are accounts
of computation so restrictive that under them, even many paradigmatic examples of
computing mechanisms turn out not to compute. For instance, according to Jerry
Fodor and Zenon Pylyshyn, a necessary condition for something to perform com-
putations is that the steps it follows be caused by internal representations of rules for
those steps (Fodor 1968b, 1975, 1998, 10–11; Pylyshyn 1984). But non-universal
Turing machines and finite state automata do not represent rules for the steps they
follow. Thus, according to Fodor and Pylyshyn’s account, they do not compute.

The accounts just mentioned fail desideratum 3 or 4. Why, what’s wrong with that?
There are debatable cases, such as look-up tables and analog computers. Whether
those really compute may be open to debate, and in some cases it may be open to
stipulation. But there are plenty of clear cases. Digital computers, calculators, Turing
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machines, and finite state automata are paradigmatic computing systems. They
constitute the subject matter of computer science and computability theory. Planetary
systems, the weather, and digestive systems are paradigmatic non-computing sys-
tems3; at the very least, it’s not obvious how to explain their behavior computationally.
If we can find an account that works for the clear cases, the unclear ones may be left to
fall wherever the account says they do—“spoils to the victor” (Lewis 1986, 203; cf.
Collins, Hall, and Paul 2004, 32).
Insofar as the assumptions of computer scientists and computability theorists

ground the success of their science as well as the appeal of their notion of compu-
tation to practitioners of other disciplines, they ought to be respected. By satisfying
desiderata 3 and 4, a good account of physical computation draws a principled
distinction between systems that compute and systems that don’t, and it draws it
in a place that fits the presuppositions of good science.

5 Miscomputation is explained

Computations can go wrong. To a first approximation, a systemMmiscomputes just
in caseM is computing function f on input i, f(i) = o1, M outputs o2, and o2 6¼ o1. Here
o1 and o2 represent any possible outcome of a computation, including the possibility
that the function is undefined for a given input, which corresponds to a non-halting
computation. Miscomputation is analogous to misrepresentation (Dretske 1986), but
it’s not the same. Something (e.g., a sorter) may compute correctly or incorrectly
regardless of whether it represents or misrepresents anything. Something (e.g., a
painting) may represent correctly or incorrectly regardless of whether it computes or
miscomputes anything.
Fresco (2013, Chapter 2) points out that the above definition of miscomputation is

too permissive. Consider a system M that is computing function f on input i, with
f(i) = o1, and outputs o1. Even though the output is correct, M may have failed to
compute f(i) correctly. M outputting o1 may be due not to a correct computation of
f(i) but to random noise in M’s output device, or to M following a computational
path that has nothing to do with f(i) but still results in o1, or to M switching from
computing f(i) to computing g(i), where g 6¼ f, but g(i) = o1. In practice, these are
unlikely scenarios. Nevertheless, we may still wish to say that a miscomputation
occurred.
To insure this, we may restrict our definition of miscomputation as follows. As

before, let M be a system computing function f(i) = o1. Let P be the procedure M
is supposed to follow in computing f(i), with P consisting of computational steps
s1, s2, . . . sn. By definition, the outcome of sn is o1. Let si be the ith step in the sequence
s1, s2, . . . sn–1.

3 For evidence, see Fodor 1968b, 632; Fodor 1975, 74; Dreyfus 1979, 68, 101–2; Searle 1980, 37–8; Searle
1992, 208.
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Mmiscomputes f(i) just in case, for any step si, after M takes step si, eitherM takes
a computational step other than si+1 or M fails to continue the computation.

In other words, M miscomputes just in case it fails to follow every step of the
procedure it’s supposed to follow all the way until producing the correct output.

Although miscomputation has been ignored by philosophers until very recently, a
good account of computing mechanisms should explain how it’s possible for a
physical system to miscompute. This is desirable because miscomputation, or more
informally, making computational mistakes, plays an important role in computer
science and its applications. Those who design and use computing mechanisms
devote a large portion of their efforts to avoiding miscomputations and devising
techniques for preventing them. To the extent that an account of computing mech-
anisms makes no sense of that effort, it is unsatisfactory.

6 Taxonomy

Different classes of computing mechanisms have different capacities. Logic gates can
perform only trivial operations on pairs of bits. Non-programmable calculators can
compute a finite but considerable number of functions for inputs of bounded size.
Ordinary digital computers can compute any computable function on any input until
they run out of memory or time. Different capacities relevant to computing play an
important role in computer science and computing applications. Any account of
computing systems whose conceptual resources explain or shed light on those
differences is preferable to an account that is blind to those differences.

To illustrate, consider Robert Cummins’s account. According to Cummins (1983),
for something to compute, it must execute a program. He also maintains that
executing a program amounts to following the steps described by the program.
This leads to paradoxical consequences. Consider that many paradigmatic comput-
ing mechanisms (such as non-universal Turing machines and finite state automata)
are not characterized by computer scientists as executing programs, and they are
considerably less powerful than the systems that are so characterized (i.e., universal
Turing machines and idealized digital computers). Accordingly, we might conclude
that non-universal Turing machines, finite state automata, etc., do not really com-
pute. But this violates desideratum 3 (the right things compute). Alternatively, we
might observe along with Cummins that non-universal Turing machines and finite
states automata do follow the steps described by a program. Therefore, by Cummins’s
light, they execute a program, and hence they compute. But now we find it difficult to
explain why they are less powerful than ordinary digital computers.4 For under
Cummins’s account, we cannot say that, unlike digital computers, those other

4 If we make the simplifying assumption that ordinary digital computers have a memory of fixed size,
they are equivalent to (very special) finite state automata. Here I am contrasting ordinary digital computers
with ordinary finite state automata.
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systems lack the flexibility that comes with the capacity to execute programs. The
difference between computing systems that execute programs and those that don’t is
important to computer science and computing applications, and it should make a
difference to theories of cognition. We should prefer an account that honors that
kind of difference to one that is blind to it.
With these desiderata as landmarks, I will proceed to formulate and evaluate

different accounts of concrete computation. I will argue that the account that best
satisfies these desiderata is the mechanistic one.
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2

Mapping Accounts

1. The Simple Mapping Account

In this Chapter, I will introduce and assess one of two traditional types of account of
physical computation: the mapping account. I will check which desiderata it satisfies.
In the next chapter, I will repeat this exercise with respect to the other traditional type
of account: the semantic account. In the following two chapters, I will examine in
greater depth some deficiencies of the mapping and semantic accounts. This will pave
the way for the mechanistic account.

In some fields, such as computer science and cognitive science, there are scientific
theories that explain the capacities of certain physical systems—respectively, com-
puters and brains—by appealing to the computations they perform. What does that
mean? What does it take for a physical system to perform a certain computation?
In answering these questions, I will mainly focus on computational states; the same
conclusions apply to computational inputs and outputs.

One of the earliest and most influential types of account of concrete computation
is the mapping account, which can be traced to work by Hilary Putnam on the
metaphysics of mind (1960, 1967b). To a first approximation, the account says that
anything that is accurately described by a computational description C is a comput-
ing system implementing C.

More precisely, Putnam sketches his earliest account in terms of Turing machines
only, appealing to the “machine tables” that are a standard way of defining specific
Turing machines. A machine table consists of one column for each of the (finitely
many) internal states of the Turing machine and one row for each of the machine’s
(finitely many) symbol types. Each entry in the machine table specifies what the
machine does given the pertinent symbol and internal state. Here is how Putnam
explains what it takes for a physical system to be a Turing machine:

A ‘machine table’ describes a machine if the machine has internal states corresponding to the
columns of the table, and if it ‘obeys’ the instruction in the table in the following sense: when it
is scanning a square on which a symbol s1 appears and it is in, say, state B, that it carries out the
‘instruction’ in the appropriate row and column of the table (in this case, column B and row s1).
Any machine that is described by a machine table of the sort just exemplified is a Turing
machine (Putnam 1960/1975a, 365; cf. Putnam 1967b/1975a, 433–4).



This account relies on several unexplained notions, such as square (of tape), symbol,
scanning, and carrying out an instruction. Furthermore, the account is specified in
terms of Turing machine tables, but there are other kinds of computational descrip-
tion. A general account of concrete computation should cover other computational
descriptions besides Turing machine tables. Perhaps for these reasons, Putnam—
soon followed by many others—abandoned reference to squares, symbols, scanning,
and other notions specific to Turing machines; he substituted them with an appeal
to a “physical” description of the system. The result of that substitution is what
Godfrey-Smith (2009) dubs the “simple mapping account” of computation.
Putnam appeals to “physical” descriptions and contrasts them to “computational”

descriptions, as if there were an unproblematic distinction between the two. This way
of talking is common but problematic. As the literature on the thermodynamics of
computation demonstrates (Leff and Rex 2003), computational descriptions are
physical too. In any case, the present topic is physical computation. We cannot
presuppose that computational descriptions are not physical.
The right contrast to draw, which is probably the contrast Putnam was intending

to get at, is that between a computational description of a physical system and a more
fine-grained physical description of the same system. For that reason, I will use the
term ‘microphysical’ where Putnam and his followers write ‘physical’. This use of
‘microphysical’ does not imply that a microphysical description is maximally fine-
grained. It need not describe all the degrees of freedom of the physical system. What
matters is that the microphysical description is more fine-grained (describes more
degrees of freedom) than the computational description of the same system. For
instance, even a description of the temperature of a system—a typical macroscopic
description in standard thermodynamics—may count as microphysical (in the pre-
sent sense) relative to a computational description of the same system. With this
terminological caveat in place, I proceed to formulate Putnam’s account of concrete
computation.
According to the simple mapping account, a physical system S performs compu-

tation C just in case:

(i) There is a mapping from the states ascribed to S by a microphysical descrip-
tion to the states defined by computational description C, such that:

(ii) The state transitions between the microphysical states mirror the state tran-
sitions between the computational states.

Clause (ii) requires that for any computational state transition of the form s1 ! s2
(specified by the computational description C), if the system is in the microphysical
state that maps onto s1, it then goes into the microphysical state that maps onto s2.
One difficulty with the formulation above is that ordinary microphysical descrip-

tions, such as systems of differential equations, generally ascribe uncountably many
states to physical systems, whereas ordinary computational descriptions, such as
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Turing machine tables, ascribe at most countably many states. Thus, there aren’t
enough computational states for the microphysical states to map onto. One solution
to this problem is to reverse the direction of the mapping, requiring a mapping of
the computational states onto (a subset of ) the microphysical states. Another, more
common solution to this problem—often left implicit—is to select either a subset of
the microphysical states or equivalence classes of the microphysical states and map
those onto the computational states. When this is done, clause (i) is replaced by the
following:

(i') There is a mapping from a subset of (or equivalence classes of ) the states
ascribed to S by a microphysical description to the states defined by computational
description C.

The simple mapping account turns out to be very liberal: it attributes many compu-
tations to many systems. In the absence of restrictions on which mappings are
acceptable, such mappings are easy to come by. To generate an easy mapping, just
pick an arbitrary computational description of the ordinary digital kind, such as a
Turing machine or a C++ program. Such a description gives rise to (countable)
sequences of computational states. Pick an arbitrary sequence of computational
states s1, . . . sn. Now pick an ordinary microphysical description of a physical system,
such as a system of differential equations. Finally, take one arbitrary trajectory of the
system through the state space defined by the microphysical description, select an
arbitrary countable subset of the states that form that trajectory, and map that
countable subset onto states s1, . . . sn. You’re done: you have mapped an arbitrary
sequence of microphysical states onto an arbitrary sequence of computational
states. As a consequence, some have argued that every physical system implements
every computation, or at least that most systems implement most (nonequiva-
lent) computations (Putnam 1988; Searle 1992). I call this conclusion unlimited
pancomputationalism.

Pancomputationalism, whether limited or unlimited, is a complex topic that I will
address more systematically in Chapter 4. For now, the important point is that any
account of concrete computation that entails unlimited pancomputationalism vio-
lates most of our desiderata, beginning with desideratum 1 (objectivity). The object-
ivity desideratum says that whether a system performs a particular computation is a
matter of fact. But the procedure outlined above generates arbitrary mappings
between arbitrary microphysical descriptions and arbitrary computational descrip-
tions. Empirical facts about the physical system make no difference. The details of
the computation being described make no difference. As a result, under the simple
mapping account, claiming that a physical system performs a computation is
a vacuous claim. There is almost nothing objective about it, at least in the sense
that empirical facts make no difference to whether it obtains. In fact, proponents
of unlimited pancomputationalism conclude that whether physical systems are
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computational is vacuous and uninteresting; therefore, the computational theory of
cognition is vacuous and uninteresting (Putnam 1988; Searle 1992).
On the contrary, the claim that a physical system is computational is interesting

and has objective content. There are well-developed sciences devoted to figuring out
which physical systems perform which computations. It would be amazing if they
were so ill-founded that there is no fact of the matter. The problem is not with the
claim that a physical system is computational. The problem is with the simple
mapping account of concrete computation. The simple mapping account is inad-
equate precisely because it trivializes the claim that a physical system performs a
computation. The desire to avoid this trivialization is one motivation behind other
accounts of concrete computation.

2. Causal, Counterfactual, and Dispositional Accounts

One way to construct accounts of computation that are more restrictive than the
simple mapping account is to impose constraints on acceptable mappings. Specific-
ally, clause (ii) may be modified so as to require that the conditional that specifies
the relevant microphysical state transitions be logically stronger than a material
conditional.
As the simple mapping account has it, clause (ii) requires that for any computa-

tional state transition of the form s1 ! s2 (specified by a computational description),
if a system is in a microphysical state that maps onto s1, it then goes into a
microphysical state that maps onto s2. The second part of (ii) is a material condi-
tional. It may be strengthened by turning it into a logically stronger conditional—
specifically, a conditional expressing a relation that supports counterfactuals.
In a pure counterfactual account, clause (ii) is strengthened by requiring that the

microphysical state transitions support certain counterfactuals (Maudlin 1989;
Copeland 1996; Rescorla 2014). In other words, the pure counterfactual account
requires the mapping between computational and microphysical descriptions to be
such that the counterfactual relations between the microphysical states are iso-
morphic to the counterfactual relations between the computational states.
Different authors formulate the relevant counterfactuals in slightly different ways:

(a) if the system had been in a microphysical state that maps onto an arbitrary
computational state (specified by the relevant computational description), it would
then have gone into a microphysical state that maps onto the relevant subsequent
computational state (as specified by the computational description) (Maudlin 1989,
415); (b) if the system had been in a microphysical state that maps onto s1, it would
have gone into a microphysical state that maps onto s2 (Copeland 1996, 341); (c) if
the system were in a microphysical state that maps onto s1, it would go into a
microphysical state that maps onto s2 (Chalmers 1996b, 312). Regardless of the
exact formulation, none of these counterfactuals are satisfied by the material

MAPPING ACCOUNTS 19



conditional of clause (ii) as it appears in the simple mapping account of computation.
Thus, counterfactual accounts are stronger than the simple mapping account.1

An account of concrete computation in which the microphysical state transitions
support counterfactuals may also be generated by appealing to causal or dispositional
relations, assuming—as most people do—that causal or dispositional relations sup-
port counterfactuals.

In a causal account, clause (ii) is strengthened by requiring a causal relation
between the microphysical states: for any computational state transition of the
form s1 ! s2 (specified by a computational description), if a system is in a micro-
physical state that maps onto s1, its microphysical state causes it to go into a
microphysical state that maps onto s2 (Chrisley 1995; Chalmers 1994: 1996;
Scheutz 1999, 2001).

To this causal constraint on acceptable mappings, David Chalmers (1994, 1996,
20112) adds a further restriction: a genuine physical implementation of a computa-
tional system must divide into separate physical components, each of which maps
onto the components specified by the computational formalism. Appealing to a
decomposition of the system into its components is a step in the direction of a
mechanistic account of computation, like the one I will present in Chapter 7. For
now, the causal account simpliciter requires only that the mappings between com-
putational and microphysical descriptions be such that the causal relations between
the microphysical states are isomorphic to the relations between state transitions
specified by the computational description. Thus, according to the causal account,
computational descriptions specify the causal structure of a physical system at some
level of abstraction (in the sense of Chapter 1, Section 2). Concrete computation is
the causal structure of a physical process (at some level of abstraction).

In a dispositional account, clause (ii) is strengthened by requiring a dispositional
relation between the microphysical states: for any computational state transition of
the form s1 ! s2 (specified by a computational description), if the system is in the
microphysical state that maps onto s1, the system manifests a disposition whose
manifestation is the transition from a microphysical state that maps onto s1 to a
microphysical state that maps onto s2 (Klein 2008). In other words, the dispositional
account requires the mapping between computational and microphysical descrip-
tions to be such that the dispositional relations between the microphysical states are
isomorphic to the relations between state transitions specified by the computational
description. Thus, according to the dispositional account, concrete computation is
the dispositional structure of a physical process (again, at some level of abstraction).

1 Rescorla (2014b) adds the important point that the counterfactuals must be applied to the world
within appropriate descriptive practices.

2 Chalmers 2011 is followed by a series of 12 articles and a response by Chalmers in the same journal
(issues 12.4, 13.1, 13.2, 13.4), which discuss causal accounts of computation in greater detail than I can do
here.
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There is a tight connection between counterfactual, causal, and dispositional
accounts. As mentioned above, most people hold that causal and dispositional rela-
tions support counterfactuals. If so, then causal and dispositional accounts entail
clause (ii) of the counterfactual account. But appealing to causation or dispositions
may have advantages over appealing to counterfactuals alone, because supporting
counterfactuals may be a weaker condition than being a cause or a disposition. Thus,
causal and dispositional accounts may be able to block unwanted computational
implementations that are allowed by the pure counterfactual account (Klein 2008,
145, makes the case for dispositional versus counterfactual accounts).
Another condition that satisfies counterfactuals is being a natural law. Accord-

ingly, another closely related account says that clause (ii) is strengthened by requiring
that a natural law hold between the computational states: for any computational state
transition of the form s1 ! s2 (specified by a computational description), if the
system is in a microphysical state that maps onto s1, it is a natural law that
the system goes into a microphysical state that maps onto s2. This may be called
the nomological account of computation. I am not aware of anyone defending this
account, but it’s another variation on the same theme.
According to a popular account of dispositions, dispositions are causal powers

(and vice versa). If so, then the dispositional account entails the causal account (and
vice versa). Similarly, many people hold that natural laws entail dispositions (or
causal powers, which may be the same thing), or that dispositions (causal powers)
entail natural laws, or both. In other words, a plausible view is that a physical system
has causal powers C if and only if it has dispositions whose manifestations are C, and
this is the case if and only if the system follows natural laws corresponding to C. To
the extent that something along these lines is correct, the three accounts (causal,
dispositional, and nomological) are equivalent to one another.
The difference between the simple mapping account on one hand and counter-

factual, causal, and dispositional accounts on the other hand may be seen by
examining a simple example.
Consider a rock under the sun, early in the morning. During any time interval,

the rock’s temperature rises. The rock goes from temperature T to temperature T+1,
to T+2, to T+3. Now consider a NOT gate that feeds its output back to itself. (A NOT
gate is a simple device that takes one binary input at a time and returns as output the
opposite of its input.) At first, suppose the NOT gate receives ‘0’ as an input; it then
returns a ‘1’. After the ‘1’ is fed back to the NOT gate, the gate returns a ‘0’ again, and
so on. The NOT gate goes back and forth between outputting a ‘0’ and outputting a
‘1’. Now map physical states T and T+2 onto ‘0’; then map T+1 and T+3 onto ‘1’. Et
voilà: according to the simple mapping account, the rock implements a NOT gate
undergoing the computation represented by ‘0101’.
According to the counterfactual account, the rock’s putative computational imple-

mentation is spurious, because the microphysical state transitions do not support the
counterfactuals that should obtain between the computational states. If the rock were
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put in state T, it may or may not transition into T+1 depending on whether it is
morning or evening and other extraneous factors. Since the rock’s microphysical
state transitions that map onto the NOT gate’s computational state transitions do not
support the right counterfactuals, the rock does not implement the NOT gate
according to the counterfactual account.

According to the causal and dispositional accounts too, this putative computa-
tional implementation is spurious, because the microphysical state transitions are
not due to causal or dispositional properties of the rock and its states. T does not
cause T+1, nor does the rock have a disposition to go into T+1 when it is in T. Rather,
the rock changes its state due to the action of the sun. Since the rock’s microphysical
state transitions that map onto the NOT gate’s computational state transitions are
not grounded in either the causal or dispositional properties of the rock and its states,
the rock does not implement the NOT gate according to the causal and dispositional
accounts.

3. The Limits of Mapping Accounts

Mapping accounts fulfill some desiderata but fall short of others.
With respect to objectivity (desideratum 1), we already saw that the simple

mapping account fails miserably, because it makes it so easy to map (subsets of )
microphysical states onto computational states that the only objective aspects of
such mappings are the cardinality of the states and the directionality of the state
transitions. As a consequence, the claim that a system performs a computation is
trivialized.

By restricting which mappings are acceptable, complex mapping accounts do
better. Only microphysical state transitions that support counterfactuals (or are
causally related, or dispositionally related, or nomologically related) can be mapped
onto computational states. As a consequence, physical systems are said to implement
only those computations that capture some aspects of their causal, dispositional, or
counterfactual supporting structure at some level of abstraction. These are objective
matters. Therefore, complex mapping accounts go at least some way towards making
physical computation an objective matter of fact.

One major complication remains. The causal (dispositional, nomological) struc-
ture of a physical system can be described at different levels of abstraction using
different formalisms. For instance, we may describe locomotion at the level of the
whole organism, its locomotive systems, the organs that make up the locomotive
system, their tissues, the cells that make up the tissues, and so forth. At each of
these levels, we may describe the system’s causal (dispositional, nomological) struc-
ture using a C++ program, a Lisp program, a finite state automaton, or any other
computational formalism. The result is a huge number of distinct computations to
which the microphysical states of the system can be mapped. This multiplicity of
computations seems to render implementation somewhat observer-dependent in an
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undesirable way, because which computation is attributed to which system depends
on which level of abstraction is chosen and which formalism is employed.
One possible response is to attribute all of those computations to the system. But

when we say that a system performs a computation, generally we are able to identify
either a unique process at one level of abstraction, described using a privileged
formalism, or a limited number of computations at a limited number of levels of
abstraction, described using privileged formalisms. For example, we say that our
computer is browsing the internet by executing, say, Google Chrome. That’s the
computation we wish to attribute to the system. (There are also other, lower level
computations within the digital computer, but they are still far fewer than the many
processes that mapping accounts count as computations and there are precise
relations of computational equivalence between those and executing Google Chrome;
cf. Chapters 8–11.)
Proponents of mapping accounts may respond in one of two ways. First, they may

find a way to single out one or more computations and formalisms as privileged in
some way that corresponds to our scientific practices in computer science and
cognitive science. Second, they may argue that all of the computations attributed
by their account to physical systems are equivalent in some important respect. As far
as I know, neither of these responses has been worked out in detail.3

Our second desideratum is explanation. This is a request for an account of
computational explanation—of what is distinctive about it. In this respect, mapping
accounts are limited by their direct appeal to the notion of cause, disposition, or
counterfactual-supporting state transition. While those notions are surely explana-
tory, there is nothing in these accounts that distinguishes computational explanation
from ordinary causal or dispositional explanation. According to these accounts, there
doesn’t seem to be anything distinctive about computational explanation relative to
causal or dispositional explanation.
Another way to put this point is that mapping accounts have no resources for

singling out computational explanations properly so called from ordinary computa-
tional models. A computational model is just an ordinary computational description
of a physical system, in which a computer simulates the physical system. But the
computation by itself does not explain the behavior of the system—the explanation is
provided by whatever produces the phenomenon being modeled. By contrast, a
computational explanation attributes a genuine computation to the system itself—
it maintains that the behavior of the system is itself the result of a computation. Since
mapping accounts attribute computations whenever there is a mapping between a
computational description and a microphysical description of a system, they attri-
bute computations to a system whenever there is a computational model thereof.
Thus, mapping accounts have little or nothing to say about what distinguishes

3 For a discussion of some potential additional complications, see Brown 2012; Scheutz 2012; Sprevak
2012: and Chalmers 2012.
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computational explanation from other kinds of explanation. In fact, mapping
accounts deem all physical systems as computational (pancomputationalism).

Our third desideratum is that paradigmatic examples of computing systems
should be classified as such. Since mapping accounts are liberal in attributing
computations, they have no trouble with this desideratum. The microphysical states
(or rather, some subsets thereof ) of digital computers, calculators, and any physically
implemented Turing machines and finite state automata can be mapped onto
computational descriptions as prescribed by mapping accounts. They all turn out
to be computing systems, as well they should.

Where mapping accounts have serious trouble is with our fourth desideratum: the
wrong things don’t compute. The microphysical states (more precisely, subsets
thereof ) of paradigmatic non-computational processes—such as galaxy formation,
the weather, or respiration—can also be mapped onto computational descriptions.
The widespread use of computational models in all corners of empirical science is
witness to that. As a consequence, mapping accounts count all those processes (and
the systems that perform them) as computations. In fact, advocates of mapping
accounts often explicitly endorse limited pancomputationalism—every physical sys-
tem performs some computation (e.g., Putnam 1967b; Chalmers 1996b, 331; Scheutz
1999, 191).

In Chapter 4, I will argue that this limited version of pancomputationalism, though
weaker than the unlimited pancomputationalism mentioned earlier, is still overly
inclusive. In computer science and cognitive science, there is an important distinc-
tion between systems that compute and systems that do not. To account for this
distinction, we will need to restrict the notion of computation further. To do so, we
must move beyond mapping accounts of computation.

Our fifth desideratum is that a good account of physical computation gives an
account of miscomputation: it should explain what it means for a concrete compu-
tation to give the wrong output. As their name indicates, mapping accounts are just
based on mappings between microphysical states and computational states—such
mappings can be created regardless of whether a computation produces the right
result. Consider a calculator that yields ‘0’ as the square root of 4. Such an output
(and the process that yields it) can be mapped onto a computational description just
as well as if the calculator had given the correct output. Therefore, mapping accounts
appear to lack the resources for explaining miscomputation.

Our sixth and final desideratum is respecting and illuminating our scientific
taxonomy of computing systems, which distinguishes between systems that have
different degrees of computational power. In this respect, mapping accounts may go
at least part of the way by relying on mappings between physical systems and
different kinds of computational descriptions. Some physical systems may have
such simple dynamics that they may only support mappings between their micro-
physical descriptions and logic gates, or small circuits of logic gates. Other physical
systems may support mappings between their microphysical descriptions and more
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sophisticated computational descriptions, such as finite state automata. So mapping
accounts appear to have resources to address our taxonomy desideratum, although
I am not aware of any detailed proposals.
The upshot of this chapter is that mapping accounts of computation are a valuable

though inadequate effort to solve the problem of implementation. Their solution is
that a physical system performs computation C just in case there is an appropriately
restricted mapping from a subset of the system’s microphysical state transitions onto
C. This is a useful starting point but it’s too weak to satisfy our desiderata. Three
limitations of mapping accounts stand out: they fail to account for the possibility of
miscomputation, they fail to distinguish computational explanation from computa-
tional modeling, and they entail pancomputationalism. I will discuss the last two
limitations in more detail in Chapter 4. Before that, the next chapter will introduce
and evaluate the other traditional type of account: the semantic account.
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3

Semantic Accounts

1. No Computation without Representation?

In the previous chapter, I discussed a first type of traditional accounts of physical
computation, mapping accounts, and argued that we need something better. In this
chapter, I examine the second type of traditional accounts: semantic accounts. In the
next two chapters, I will look more closely at some limits of traditional accounts,
which will help introduce the mechanistic account.

In our everyday life, we usually employ computations to process meaningful
symbols, to extract useful information from them. Semantic accounts of computation
turn this practice into a metaphysical doctrine: computation is the processing of
representations—more specifically, the processing of appropriate representations in
appropriate ways. What all semantic accounts have in common is that, according to
them, computation is a semantic notion: there is “no computation without repre-
sentation” (Fodor 1981, 180).

A common motivation for semantic accounts is that we often individuate, or
taxonomize, computational systems and their states (as well as inputs and outputs;
I will omit this qualification henceforth) in terms of their semantic content. For
example, we may describe a calculator as performing addition over numbers, where
numbers are usually understood to be the semantic content of the calculator’s states.

Taxonomizing computational systems and their states by their semantic content is
useful—first and foremost, it allows us to see similarities of function between
otherwise radically different systems. For instance, a neural system and a program
running on an artificial digital computer may be said to compute shape from shading,
even though they may perform otherwise radically different computations.

If this common practice of individuating computational states in terms of their
semantic content is turned into a metaphysical doctrine about the nature of compu-
tational states—into a criterion for what counts as implementing a computation—it
becomes the view that computational states have their content essentially. If the
calculator’s states represented something other than those numbers, they would be
different computational states. If the calculator’s states did not represent at all,
they wouldn’t be computational states. When defenders of the semantic view talk
about individuating computational states semantically, they don’t mean this to be
merely a useful practice but a way of capturing an important aspect of the nature of



computation—one of the necessary conditions for a physical system to count as
performing a given computation.1

I call any view that computational states are representations that have their
content essentially a semantic account of computation. It may be formulated in
stronger or weaker forms. In its strongest version, all and only semantic properties
of a state are relevant to its computational nature. Probably, no one subscribes to this
version. In weaker versions, either all semantic properties or only semantic properties
of a state are relevant to its computational nature. The weakest, and most plausible,
versions maintain that a computational state is partially individuated (in an essential
way) by some of its semantic properties (and partially by non-semantic properties).2

Although supporters of semantic accounts have rarely distinguished between weak
and strong versions of their view and have not specified in great detail which
semantic properties and which non-semantic properties are relevant to the nature
of computational states, this will not matter much here. I will argue against any
semantic account.
Relative to the mapping accounts of computation (Chapter 2), semantic accounts

may be seen as imposing a further restriction on what counts as a genuine physical
computation. Recall that the causal account of computation (as well as counterfactual
and dispositional accounts) requires that a physical system possess appropriate
causal (counterfactual, dispositional) structure in order to implement a computation.
In addition to the restrictions imposed by mapping accounts, semantic accounts

1 Oron Shagrir has pointed out to me that someone might maintain that computational states are
necessarily representations while denying that computational states are individuated by their semantic
properties, perhaps on the grounds of an analogy with anomalous monism. According to anomalous
monism (Davidson 1970), mental states are necessarily physical even though they are not individuated by
their physical properties; by the same token, computational states might be necessarily representational
even though they are not individuated by their semantic properties. Since I’m not aware of anyone who has
taken this stance explicitly or any reason for taking it, I will not discuss it further.

2 Here is a very explicit formulation:

Suppose we start with the notion of a syntactic description of representations. I don’t think
that this begs any questions because I don’t think syntactic individuation requires semantic
individuation. Roughly (at least for the case of natural languages) it requires (i) an inventory
of basic objects (morphemes, as it might be) and (ii) a recursive definition of WFF (I think
all the recursions are on constituents; but I doubt that matters in the present context).
Finally, I assume that every computation is a causal sequence of tokenings of such states.

Given that, there are two questions: 1. What distinguishes those of such causal sequences
that constitute computations from those that don’t? Answer, the former preserve semantic
properties of the strings (paradigmatically, they take one from true inputs to true outputs).
This requires that the tokened states have semantic interpretations (since, of course, only
what is semantically interpreted can be evaluated for truth). So, in that sense, the represen-
tations in question are individuated by their semantic properties inter alia. 2. What are the
constraints on the causal processes defined on such states? Answer, the effects of being in
state S must be fully determined by the syntactic properties of S (together, of course, with
the rules of state transition). That’s the sense in which computation is a syntactic process.

So computations are syntactic processes defined over semantically interpreted arrays of
representations. (Jerry Fodor, personal correspondence, emphasis added.)
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impose a semantic restriction. Only physical states that qualify as representations (of
the relevant kind) may be mapped onto computational descriptions, thereby quali-
fying as computational states. If a state is not representational, it is not computational
either.

Semantic accounts are probably the most popular in the philosophy of mind,
because they appear to fulfill specific needs. Since minds and digital computers are
generally assumed to manipulate (the right kind of ) representations, they turn out to
compute. Since most other systems are generally assumed not to manipulate (the
relevant kind of ) representations, they do not compute. Thus, semantic accounts
appear to accommodate our desiderata 3 and 4 (Chapter 1, Section 4) about what
does and does not count as a computing system. They keep minds and computers in
while leaving most everything else out, thereby vindicating the computational theory
of cognition as interesting and nontrivial.

Semantic accounts raise three important questions: 1) how representations are to
be individuated, 2) what counts as a representation of the relevant kind, and 3) what
gives representations their semantic content. I will eventually argue that semantic
accounts of computation are incorrect, which means that these semantic issues are
orthogonal to the problem of computational implementation. For now, I will look at
how they affect computation individuation if we assume a semantic account.

On the individuation of computational states, the main debate divides internalists
from externalists. According to externalists, computational vehicles are representa-
tions individuated by their wide cognitive contents (Burge 1986; Shapiro 1997; Shagrir
2001). Cognitive contents are a type of content ascribed to a system by a cognitive
psychological theory; they involve what cognizers are responding to in their envir-
onment, or at least ways of representing stimuli. For instance, the cognitive contents
of the visual system are visual contents, whereas the cognitive contents of the
auditory system are auditory contents. Wide contents are, paradigmatically, the
things that the representations refer to, which are typically outside cognitive sys-
tems.3 By contrast, most internalists maintain that computational vehicles are rep-
resentations individuated by narrow cognitive contents (Segal 1991). Narrow contents
are, roughly speaking, semantic contents defined in terms of intrinsic properties of
the system.

To illustrate the dispute, consider two physically identical cognitive systems A and
B. Among the representations processed by A is representation S. A produces
instances of S whenever A is in front of bodies of water, when A is thinking of
water, and when A is forming plans to interact with water. In short, representation S
appears to refer to water. Every time A processes S, system B processes representation
S', which is physically identical to S. But system B lives in an environment different
from A’s environment. Whenever A is surrounded by water, B is surrounded by

3 Alternatively, wide contents might be Fregean modes of presentation that determine referents but are
individuated more finely than by what they refer to.
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twater. Twater is a substance superficially indistinguishable from water but in fact
physically different from it. Thus, representation S' appears to refer to twater
(cf. Putnam 1975b). So, we are assuming that A and B live in relevantly different
environments, such that S appears to refer to water while S' appears to refer to twater.
We are also assuming that A is processing S in the same way that B is processing S'.
There is no intrinsic physical difference between A and B.
According to externalists, when A is processing S and B is processing S' they are in

computational states of different types. According to internalists, A and B are
in computational states of the same type. In other words, externalists maintain
that computational states are individuated in part by their reference, which is
determined at least in part independently of the intrinsic physical properties of
computing systems. By contrast, internalists maintain that computational states are
individuated in a way that supervenes solely on the intrinsic physical properties of
computational systems.
So far, externalists and internalists agree on one thing: computational states are

individuated by cognitive contents. This assumption can be resisted without aban-
doning semantic accounts of computation. According to Egan (1999), computational
states are not individuated by cognitive contents of any kind, either wide or narrow.
Rather, they are individuated by their mathematical contents—that is, mathematical
functions and objects ascribed as semantic contents to the computational states by a
computational theory of the system. Since mathematical contents are the same across
physical duplicates, Egan maintains that her mathematical contents are a kind of
narrow content—she is a kind of internalist. I will discuss this point in Chapter 7,
Section 2.8.
Let us now turn to what counts as a representation. This debate is less clearly

delineated. According to some authors, only structures that have a language-like
combinatorial syntax, which supports a compositional semantics, count as compu-
tational vehicles, and only manipulations that respect the semantic properties of such
structures count as computations (Fodor 1975; Pylyshyn 1984). This suggestion flies
in the face of computability theory, which imposes no such requirement on what
counts as a computational vehicle. Other authors are more inclusive on what repre-
sentational manipulations count as computations, but they have not been especially
successful in drawing the line between computational and non-computational pro-
cesses. Few people would include all manipulations of representations—including,
say, painting a picture and recording a speech—as computations, but there is no
consensus on where to draw the boundary between representational manipulations
that count as computations and representational manipulations that do not.
A third question is what gives representations their semantic content. There are

three families of views. Instrumentalists believe that ascribing semantic content to
things is just heuristically useful for prediction or explanation; semantic properties
are not real properties of computational states (e.g., Dennett 1987; Egan 2010, 2014).
Realists who are not naturalists believe semantic properties are real properties of
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computational states but are irreducible to non-semantic properties. Finally, realists
who are also naturalists believe semantic properties are both real and reducible to
non-semantic properties, though they disagree on how to reduce them (e.g., Fodor
2008; Harman 1987).

Semantic accounts of computation are closely related to the common view that
computation is information processing. This idea is less clear than it may seem,
because there are several notions of information. The connection between informa-
tion processing and computation is different depending on which notion of infor-
mation is at stake. For now I will briefly disambiguate the view that computation is
information processing based on four important notions of information (I will
address the relation between computation and information processing in a more
systematic way in Chapter 14).

1. Information in the sense of thermodynamics is closely related to thermo-
dynamic entropy. Entropy is a property of every physical system. Thermo-
dynamic entropy is, roughly, a measure of an observer’s uncertainty about the
microscopic state of a system after she considers the observable macroscopic
properties of the system. The study of the thermodynamics of computation is a
lively field with many implications in the foundations of physics (Leff and Rex
2003). In this thermodynamic sense of ‘information’, any difference between
two distinguishable states of a system may be said to carry information.
Computation may well be said to be information processing in this sense
(cf. Milkowski 2013), but this has little to do with semantics properly so called.
Nevertheless, the connections between thermodynamics, computation, and
information theory are one possible inspiration for the view that every physical
system is a computing system (Chapter 4).

2. Information in the sense of communication theory is a measure of the average
likelihood that a given message is transmitted between a source and a receiver
(Shannon and Weaver 1949). But information in the sense of communication
theory is insufficient for semantics in the sense that interests us.

3. Information in one semantic sense is approximately the same as “natural
meaning” (Grice 1957). A signal carries information in this sense just in case
it reliably correlates with a source (Dretske 1981). The view that computation is
information processing in this sense is prima facie implausible, because many
computations—such as arithmetical calculations carried out on digital
computers—do not seem to carry any natural meaning. Nevertheless, this
notion of semantic information is relevant here because it has been used by
some theorists to ground an account of representation (Dretske 1981; Fodor
2008).

4. Information in another semantic sense is just ordinary semantic content or
“non-natural meaning” (Grice 1957). This is the kind of semantic content that
most philosophers discuss. The view that computation is information process-
ing in this sense is similar to a generic semantic account of computation.
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Although semantic accounts of computation appear to fulfill the needs of philo-
sophers of mind, they are less suited to make sense of some scientific practices
pertaining to computation. Most pertinently, representation is not presupposed by
the notion of computation employed in at least some areas of cognitive science as
well as computability theory and computer science—the very sciences that gave rise
to the notion of computation at the origin of the computational theory of cognition.
I will defend this thesis later in this and later chapters. If this is correct, semantic
accounts are not even adequate to the needs of philosophers of mind—at least those
philosophers of mind who wish to make sense of the analogy between minds and the
systems designed and studied by computer scientists and computability theorists.
For now, however, I will raise an objection to semantic accounts of computation

that arises from the inside, so to speak. The objection is that individuating compu-
tations semantically presupposes a way to individuate computations non-semantically,
and non-semantic individuation is necessary to the mechanistic explanation of the
system’s behavior. Therefore, we need a non-semantic way of individuating computa-
tions and a non-semantic account of concrete computation. This will motivate the
search for an adequate non-semantic account of computation, to wit, the mechanistic
account.
Before proceeding, two caveats are in order.

First caveat: whether computation has a semantic nature should not be confused
with the issue of which properties of computational states are causally efficacious
within a computation.

Here, the received view is that computational states are causally efficacious by virtue
of properties that are not semantic. According to this view, which may be called the
non-semantic view of computational causation, computational processes are “insensi-
tive” or “indifferent” to the content of computational states; rather, they are sensitive
only to (some) non-semantic properties of computational states. The properties to
which computational processes are supposedly sensitive are often labeled as “formal”
or “syntactic.”4

The two issues—whether computation requires representation and whether com-
putation is sensitive to semantic properties—are orthogonal to one another. Com-
putation may be insensitive to semantic properties while having a (partially)
semantic nature, as, e.g., Fodor (1980) argues. Or computation may be insensitive
to semantic properties while having a non-semantic nature, as, e.g., Stich (1983) and
Piccinini (2008) argue. Or computation may be sensitive to semantic properties while
having a (partially) semantic nature, as Dietrich (1989), Peacocke (1994a, 1999), and
Shagrir (1999) argue. Finally, computation may be sensitive to semantic properties, at

4 The locus classicus is Fodor 1980: “computational processes are both symbolic and formal . . .What
makes syntactic operations a species of formal operations is that being syntactic is a way of not being
semantic” (Fodor 1980, 64). See also Newell 1980.
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least in some cases, while having a wholly non-semantic nature, as Rescorla (2012,
2014a) argues.

Contrary to my former self (Piccinini 2008), I now side with Rescorla for the
following reason. Whether computation is sensitive to semantic properties depends
on what “sensitive” and “semantic property” means and what kind of semantic
property is involved. Surely differences in wide meaning alone (like the difference
between the meaning of “water” on earth and the meaning of “water” on twin earth)
cannot make a difference to computation (contrary to what Rescorla implies) for lack
of a causal mechanism connecting such differences to the computation. Insofar as
supporters of the non-semantic view of computational causation are after this point,
I agree with them.

But differences in certain narrow meanings, like the difference between an instruc-
tion that means add and an instruction that means subtract (where such meanings
are cashed out in terms of machine operations on strings; cf. Chapter 9), make a big
difference to a computation. In that sense, computations are sensitive to semantic
properties. There are also semantic properties that relate many computing systems to
their environment—they relate internal representations to their referents—and are
encoded in the vehicles in such a way that they make a difference to the system’s
computation, as when an embedded system computes over vehicles that represent its
environment. In that sense, too, computation is sensitive to semantics.

The issue of semantic properties and their role in computational causation is too
complex a topic to address it here. A more adequate treatment will have to wait for
another occasion. But it’s important to realize that at least some computations are
sensitive to certain kinds of semantic properties even though they can be individu-
ated non-semantically.

Second caveat: whether computation has a semantic nature should not be confused
with whether computation (partially or wholly) explains content or intentionality.

Some critics of computational theories of mind maintain that being a computa-
tional state contributes nothing to original, or non-derived, intentionality (e.g., Searle
1980; Horst 1996). They assume that computational states have a non-semantic
nature and argue that (non-semantically individuated) computational states cannot
have original intentionality. Notice that these authors do not offer a fully worked out
alternative to semantic accounts of computation; Searle (1992) even argues that there
is no observer-independent way to individuate computational states. In response,
many supporters of the computational theory of cognition have retained the view
that computational states are, at least in part, semantic in nature.

Although I reject semantic accounts of computation, I will remain neutral on
whether being computational contributes to explain original intentionality. That
depends on what original intentionality amounts to—something on which there is
little consensus. The mechanistic account of computation that I defend does not
entail that computational states have no semantic content—they may or may not
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have content. Nor does it entail that computational states cannot have original
content or intentionality—perhaps some aspects of original content supervene on
computational properties. Nor does it entail that computational states cannot be
individuated, in our informal practices, by reference to their semantic content. As we
just saw in my previous caveat, it doesn’t even entail that computation is always
insensitive to the semantic properties of computational states. What it does entail is
that a computation can be fully individuated without any appeal to semantic content:
there is computation without representation.

2. Semantic Individuation Presupposes
Non-Semantic Individuation

Semantic accounts of computation hold that computations are individuated in an
essential way by their semantic properties. This requires an account of semantic
content, which in turn can be used to individuate computations. There are three
main (families of ) accounts of content. I will go over each of them and argue that
individuating computations in terms of each of them presupposes a non-semantic
individuation of computations.
The first account is Functional (or conceptual, or inferential) Role Semantics

(FRS). FRS sees semantic content as (partially) reducible to the functional relations
between a system’s internal representations, inputs, and outputs (Harman 1973; Field
1978; Churchland 1979, 1989; Loar 1981; Block 1986). In other words, FRS assigns
semantic content to some internal states of a system—the internal representations—
based on the way they functionally (or conceptually, or inferentially) interact with
other internal states, inputs, and outputs. For example, the content of my belief that
my daughter is cute has to do with my ability to produce that thought in the presence
of my daughter’s cuteness, to infer from it that someone is cute or that my daughter
has a property, and so on. Historically, FRS was the first naturalistic theory of content
proposed within contemporary philosophy of mind (Sellars 1954, 1956, 1961, 1967,
1974).
Theorists who apply FRS to computational systems typically maintain that the

functional (or conceptual, or inferential) relations between the internal representa-
tions, inputs, and outputs can be cashed out as computational relations (Harman
1973; Block 1986; Churchland 1989). In other words, they maintain that the func-
tional (or conceptual, or inferential) relations that give rise to semantic content are
(at least in part) computational relations. Therefore, since our topic is the nature of
computation, I will assume that the functional (conceptual, inferential) relations that
give rise to semantic content according to FRS are computational. But then, FRS
cannot individuate computations semantically on pain of circularity. If semantic
content reduces to functional relations and functional relations are computational,
then computational relations must be individuated non-semantically or else the
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account of computation becomes circular. Thus, FRS applied to computational
systems presupposes a non-semantic way of individuating computational states.5

The second account of content is interpretational semantics, which sees semantic
content as a property attributed to a system by an observer for the purpose of
predicting behavior (Dennett 1969, 1978, 1987; Cummins 1983, 1989).6 According
to interpretational semantics, semantic content is not an objective property of a
system but a way of describing a system that is convenient from a certain point of
view, or stance. Presumably, different semantic contents may be ascribed to the same
system by different observers for different purposes in somewhat arbitrary ways,
which makes semantic properties non-objective.7 Given that semantic content is
non-objective in this way, interpretational semantics is a form of anti-realism about
semantic content.

When interpretational semantics is conjoined with a semantic account of compu-
tation, its anti-realism about semantic content carries over into anti-realism about
computation. For according to semantic accounts of computation, something is
computational just in case it manipulates (certain kinds of ) representations (in
appropriate ways), but according to interpretational semantics something manipu-
lates representations just in case observers choose to see the system as doing so. Thus,
according to the conjunction of the two views, a system is computational just in case
observers choose to see the system as computational.

The result of such a conjunction does not do justice to computer science and
engineering. That my laptop is performing a computation seems to be an objective
fact (as opposed to a fact that depends on how an observer chooses to interpret my
laptop). What’s more, my laptop appears to have perfectly objective computational
properties: it’s computationally universal (up to memory limitations), it stores
programs that control its processor, it’s running Microsoft Word, etc. Since—
according to interpretational semantics—semantic properties are non-objective,
anyone who endorses interpretational semantics and wishes to do justice to the
objective facts of computer science needs a non-semantic way of individuating
computations.

The third account of content is Informational or Teleological Semantics (ITS),
which sees content as reducible to a combination of causal or informational relations
between individual mental states and what they represent (Dretske 1981, 1986; Millikan
1984, 1993; Fodor 1987, 1990, 1998). What the specific causal or informational relations

5 Another way to avoid circularity would be to give a non-computational account of the functional
(conceptual, inferential) relations that give rise to semantic properties according to FRS. Since I’m not
aware of any naturalistic proposal along these lines, I will set this possibility aside.

6 Dennett and Cummins may or may not recognize themselves in this short sketch, which doesn’t do
justice to the sophistication of their work and the differences between them. For present purposes their
views are close enough to the position I sketch in the text.

7 If this is correct, then interpretational semantics may be too weak to underwrite semantic accounts of
computation as I formulated them, though it may support a weakened formulation of semantic accounts.
Since my purpose is to reject semantic accounts of computation, I will ignore this worry.

34 SEMANTIC ACCOUNTS



are, and even whether they are synchronic or span long stretches of history (as per
evolution-based versions of ITS), does not matter for present purposes. What matters
is that, roughly speaking, according to all versions of ITS, a state represents X just in
case it stands in appropriate causal or informational relations to X.
While ITS may work at least to some extent for embedded systems such as brains

and some artificial computers, which stand in the appropriate causal or informa-
tional relations to what they represent, ITS does not work for many artificial
computers, i.e., the non-embedded ones. Ordinary computing artifacts need not
stand in any causal or informational relations to anything that they represent. For
that matter, ordinary computing artifacts need not represent anything. We may take
a brand new computer, which has not interacted with much beyond the factory that
produced it, and program it to alphabetize meaningless strings of letters. The result is
a computation that stands in no causal or informational relations to anything that
would assign semantic content to its internal states. Yet the computer performs
computations all the same.
Someone may attempt to get around this by positing that non-embedded comput-

ing artifacts inherit their semantic content from their designers or users. Notice that
this suggestion goes beyond ITS—it is a form of hybrid semantic theory that combines
ITS for embedded systems with an intention-based theory for non-embedded com-
puting artifacts. There is still a fatal problem. We can design and use computing
artifacts while intending them to have no semantics whatsoever. For instance, we can
program a computer to manipulate strings of symbols written in an arbitrary alphabet
of our invention in an arbitrary way, without assigning any meanings to the strings.
Therefore, again, anyone who endorses ITS (or a hybrid ITS plus intention-based-
semantics view) and wishes to include ordinary (non-embedded) computers among
computing systems needs a non-semantic way of individuating computations.
These options seem to exhaust the possibilities that are open to the supporter

of a semantic account of computation: either semantic content comes from the
computations themselves (FRS), or it comes from some non-computational natural
properties of the content-bearing states (ITS), or it is in the eye of the beholder
(interpretational semantics). Under any of these options, at least some computational
states must be individuated non-semantically.
Finally, someone might endorse a kind of primitivism about content, according to

which we can simply posit contents without attempting anything like a reductive
analysis of what it is for states to have content (cf. Burge 2010). Based on this account,
we can attribute contents to computational states without having to say anything
more about how those states acquire their contents or what the contents are in
nonsemantic terms. This is not an account of content, of course; it’s an insistence on
the legitimacy of positing contents in the absence of an account.
There are at least two problems with primitivism about content. First, contents are

not the kind of thing that can be posited without a reductive account; they are not
basic enough; they are not similar enough to fermions and bosons (cf., e.g., Fodor
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1987). Second, positing contents without explaining how they are acquired and
individuating computational states solely in terms of such primitive contents flies
in the face of our scientific practices. This is especially obvious in computer science
but also in the methodologically rigorous areas of cognitive science. Rigorous cogni-
tive scientists do not limit themselves to positing semantically individuated compu-
tational states and processes. Doing so would hardly be an advance over traditional,
non-mechanistic psychology—the kind of psychology that was rightly criticized by
behaviorists.

In addition to positing computations, rigorous cognitive scientists construct com-
putational models that go with their computational posits and demonstrate the
feasibility of the posited computations. Computational models are what makes cogn-
itive science mechanistically legitimate in response to behaviorist complaints that
representations are illegitimate. Building computational models requires more than
positing semantic contents; it requires nonsemantically individuated vehicles that
carry those contents and are mechanistically manipulated within the computational
models. So primitivism about semantic content is insufficient for individuating
computations within a methodologically rigorous science; therefore, I will set it aside.

3. Arguments for Semantic Accounts of Computation

Before abandoning semantic accounts of computation, I will address the three main
arguments that have been offered to support them. I will reply to each of them in turn.

The first argument pertains directly to computing systems and their states. It goes
as follows:

Argument from the identity of computed functions

Computing systems and their states are individuated by the functions they
compute.

Functions are individuated semantically, by the ordered couples <domain element,
range element> denoted by the inputs and outputs of the computation.

Therefore, computing systems and their states are individuated semantically.

Variants of this argument may be found in the writing of several authors (Dietrich
1989; Smith 1996; Shagrir 1997, 1999; Peacocke 1999; Rescorla 2013 offers an
argument roughly along these lines for some [not all] computing systems).8

8 Cf. Dietrich and Peacocke:

[A] correct account of computation requires us to attribute content to computational
processes in order to explain which functions are being computed (Dietrich 1989, 119).

There is no such thing as a purely formal determination of a mathematical function
(Peacocke 1999, 199).
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The argument from the identity of functions ignores that functions may be
individuated in two ways. The argument from the identity of functions appeals to
the set of ordered pairs <domain element, range element> denoted by the inputs and
outputs of the computation (for example {<1, 10>, <10, 11>, . . . }, where ‘1’, ‘10’,
‘11’, . . . denote the numbers 1, 2, 3, . . . ). But functions can also be individuated by the
set of ordered pairs <input type, output type>, where input and output types are the
vehicles that enter and exit the computing system (for example {<‘1’, ‘10’>, <‘10’,
‘11’>, . . . }, where ‘‘1’’, ‘‘10’’, ‘‘11’’, . . . denote inscriptions of types ‘1’, ‘10’, ‘11’, . . . ). In
other words, functions can be defined either over entities such as numbers, which
may be the content of computational vehicles, or over entities such as strings of
(suitably typed) letters from an alphabet, which are the computational vehicles
themselves described at an appropriate level of abstraction. Both ways of individu-
ating functions are important and useful for many purposes. Both can be used to
describe what is computed by a system. By ignoring that functions can be individu-
ated non-semantically, the argument from the identity of computed functions fails to
establish that computation presupposes representation.
A closely related question is which of the two ways of individuating functions is

most relevant to the nature of physical computation, which is to say, to solving the
problem of computational implementation. The most relevant function individu-
ation is the one based on vehicles. The other, semantic, way of individuating
functions may be useful for many other purposes, including explaining why people
build computers the way they do and why they use them, but it is insufficient and
sometimes inappropriate for individuating a physical computation and explaining
how it is performed. There are three reasons for this. First, per Section 2 above, the
semantic individuation of functions presupposes their non-semantic individuation.
The only way we can pick out the entities denoted by the inputs and outputs of a
computation is by using a notation, which is individuated non-semantically. Second,
some physical computations do not represent anything—ergo, they must be indi-
viduated purely non-semantically. Third, the physical entities physically manipulated
by a physical computation are the vehicles, and the physical computation is defined
in terms of the entities it manipulates and how it manipulates them. Therefore, we
cannot fully individuate a physical computation solely by indicating what it repre-
sents (if it represents anything)—we must also indicate what vehicles it manipulates
and how it manipulates them.
The last point deserves expansion. Even when a computation does manipulate

representations, it is easy to see that a semantically individuated function is insuffi-
cient for fully individuating a physical computation and the system that performs it.
This is because individuating a computation by the function it computes does not
individuate physical computations as finely as we need when explaining the capaci-
ties of computing systems. Any domain of objects (e.g., numbers) may be represented
in indefinitely many ways (i.e., notations). Any computable function may be com-
puted by indefinitely many algorithms. Any algorithm may be implemented by
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indefinitely many programs written in indefinitely many programming languages.
Finally, any program may be executed by indefinitely many computer architectures.
Even within the same programming language or computer architecture, typically
there are different ways of implementing the same algorithm. So a semantically
individuated function does not individuate computing systems and their states as
finely as we need. If we were to individuate a physical computation solely by the
function it denotes, we’d get the paradoxical consequence that systems that have
different architectures, use different programming languages, and execute different
programs that implement different algorithms (perhaps of different computational
complexity) and manipulate different notations, are ascribed the same computation
only because they compute the same semantically individuated function. To avoid
this, individuating physical computations by the functions they compute is not
enough. We should also allow other functional and structural (non-semantic) aspects
of the computation, such as the program and the architecture, to contribute to the
individuation of a physical computation and the system that performs it. So even
when a semantically individuated function is pertinent to individuating a physical
computation, it is insufficient for its complete individuation. Since we already
established that semantic individuation can be dispensed with in favor of non-
semantic individuation, we have now established that semantic individuation is
neither necessary nor sufficient for individuating physical computations.

Given a description of a computing system that individuates the function being
computed in terms of input and output vehicles, one may ask how it is that that
system also computes the function <domain element, range element>, defined over
whatever the vehicles represent (assuming they represent something). In order to
explain this, what is needed is a further fact: that the inputs and outputs of the
computation denote the elements of the domain and range of the function. This is a
semantic fact, which relates non-semantically individuated inputs and outputs to
their semantic content. Stating this semantic fact requires that we individuate the
inputs and outputs of the computation independently of their denotations. Individu-
ating inputs and outputs independently of their content is a necessary condition for
stating this semantic fact. So, again, a non-semantic individuation of inputs and
outputs is a prerequisite for talking about their content.

Question (Michael Rescorla, personal communication): Why can’t we just say
something like, the computational system enters into an internal state that refers to,
say, the number 2. Or: the computational system stores in register A a symbol that
refers to the number 2. These descriptions individuate computational states through
their denotations, but they don’t give any substantive non-semantic individuation of
the computational state. I can see why one might want a substantive non-semantic
individuation, but it doesn’t seem that one needs it simply to state the content of the
relevant states. By analogy, in folk psychology we talk about the content of mental
states all the time without bringing in any level of non-semantic individuation.

Answer: There is a difference between the two descriptions above. The first simply
refers to an otherwise unidentified internal state; the second refers to a specific
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register, which is an architectural description. So the second is a more complete
mechanistic description than the first. Both are very sketchy. We can give such
sketchy descriptions but they don’t go very far towards explaining how the system
works. They aren’t enough to build an artificial system that performs the same
computation. An adequate explanation includes the notation being used, the algo-
rithm followed, the architecture that executes the algorithm, etc. An adequate
explanation is fully mechanistic (Chapter 5).
The second argument for semantic accounts of computation appeals to computa-

tional explanations of mental processes:

Argument from the identity of mental states

Computational states and processes are posited in explanations of mental states
and processes (e.g., inference).

Mental states and processes have their content essentially.

Therefore, computational states and processes are individuated by the semantic
properties of the mental states and processes they explain and have such contents
essentially.

Variants of the argument from the identity of mental states may be found in many
places (the most explicit include Fodor 1975; Pylyshyn 1984; Burge 1986; Peacocke
1994a, 1999; Wilson 2004).9

Premise 1 is uncontroversial; it simply takes notice that some scientific theories
explain mental states and processes computationally. Premise 2 has been challenged
(e.g., by Stich 1983), but for the sake of the argument I will ignore any concerns about
whether mental states have content and whether they have such content essentially.
As appealing as the argument from the identity of mental states may sound, it is a

non sequitur. As Egan (1995) notes, the only way the conclusion can be derived from
the premises is by assuming that explanantia must be individuated by the same
properties that individuate their explananda. This assumption is at odds with our
explanatory practices. The relevant type of explanation is constitutive explanation,

9 Cf. Burge and Peacocke:

There is no other way to treat the visual system as solving the problem that the [compu-
tational] theory sees it as solving than by attributing intentional states (Burge 1986, 28–9).

One of the tasks of a subpersonal computational psychology is to explain how individuals
come to have beliefs, desires, perceptions, and other personal-level content-involving prop-
erties. If the content of personal-level states is externally individuated, then the contents
mentioned in a subpersonal psychology that is explanatory of those personal states must also
be externally individuated. One cannot fully explain the presence of an externally individu-
ated state by citing only states that are internally individuated. On an externalist conception of
subpersonal psychology, a content-involving computation commonly consists in the explan-
ation of some externally individuated states by other externally individuated states (Peacocke
1994b, 224; Peacocke assumes that external individuation is a form of semantic individuation,
which in principle need not be the case; cf. Chapter 7, Section 2.8).
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whereby a property or capacity of a system is explained in terms of the functions and
organization of its constituents. For example, consider the explanation of digestion.
The explanandum, a certain type of state change of some organic substances, is
individuated by the chemical properties of substances before, during, and after they
enter the stomach. Its explanans, which involves secretions from certain glands in
combination with the stomach’s movements, is individuated by the activities of the
stomach, its glands, and their secretions. This example shows that the individuation
of explanantia independently of their explananda is an aspect of our explanatory
practices. There is no reason to believe that this should fail to obtain in the case
of explanations of mental states and processes. And without the assumption that
explanantia must be individuated by the same properties that individuate their
explananda, the argument from the identity of mental states doesn’t go through.10

A third argument for a weakened semantic account of computation is due to Oron
Shagrir (2001; cf. also Rescorla 2013). Here is a formulation using my terminology:

Argument from the multiplicity of computations

(1) The same computing system M implements multiple (non-semantically
individuated) computations C1, . . . Cn at the same time.

(2) For any task that M may perform, there is a unique Ci 2 {C1, . . . Cn}, such that
Ci alone explains M’s performance of the task, and Ci is determined by the task
performed by M in any given context.

(3) Tasks are individuated semantically.

(4) Therefore, in any given context, Ci is individuated semantically (in part).

(5) Therefore, in so far as computations explain the performance of a task by a
system in any given context, they are individuated semantically (in part).

Premise (1) appeals to the fact that the physical inputs, outputs, and internal states of a
system can be grouped together in different ways, so that different computational descrip-
tions apply to them. For instance, imagine a simple device that takes two input digits, yields
one output digit, andwhose inputs and outputsmay take three possible values (whichmay
be called 0,½, and 1). And suppose that the outputs are related to the inputs as follows:

Inputs ! Output
0, 0 ! 0
0, ½ ! ½

10 For a similar reply to the argument from the identity of mental states, see Egan 1995, 57ff. At this
junction, Michael Rescorla (personal communication) reminds us that the computations attributed by certain
scientific theories are characterized in representational terms. Therefore, at least in some cases, science posits
computational states and processes that are individuated in content-involving terms. I agree but remind you,
in turn, that the dispute is not about whether some scientific theories posit computations that can be
individuated by their content (to which the answer is yes); it’s whether such computations have a semantic
nature, that is, whether computational states have their content essentially (they don’t; cf. Section 2).
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½, 0 ! ½

0, 1 ! ½

1, 0 ! ½

½, ½ ! ½

½, 1 ! ½

1, ½ ! ½

1, 1 ! 1

The above is a bona fide computational description of our device. Under this
description, the device performs an averaging task of sorts. Since this averaging
task exploits all of the functionally distinct inputs and outputs of the device, I will
refer to it as themaximal task of the device, and to the corresponding computation as
the maximal computation.
If we group together and relabel our inputs and outputs, we may find other

computational descriptions. For instance, we may group ‘0’ and ‘½’ together and
call both of them 0, or we may group ‘½’ and ‘1’ together and call both of them 1. The
first grouping turns our device into what is ordinarily called an AND gate; the second
grouping turns it into an OR gate. As a consequence of these groupings and
relabelings, our device implements several computations at once: our original aver-
aging, the AND operation, the OR operation, etc. These operations form our set of
computations C1, . . .Cn mentioned in premise (1), all of which are implemented by
our device at the same time.11

In principle, our device could be used to perform different tasks, each of which
corresponds to one of the computations implemented by the device. It could be used
to perform its maximal task (averaging) as well as a number of non-maximal tasks
(conjunction, disjunction, etc.). But in any given context, our device may be used to
perform only one specific task. For example, our device might be part of a larger
device, which uses it to perform conjunctions. Premise (2) points out that in order to
explain how our device performs a given task—say, conjunction—we must appeal to
the relevant computational description, namely AND. So, the task performed by a
computing system in a given context determines which computational description is
explanatory in that context.
Although premises (1) and (2) are true and suggestive, they probably make little

difference in most scientific contexts. Usually, computing systems like our simple
averaging device are employed to perform their maximal task. In engineering
applications, it would be unnecessarily costly and cumbersome to build a device

11 Shagrir suggests another way in which a system might implement multiple computations, namely, by
letting different sets of properties (e.g., voltage and temperature) implement different computations
(Shagrir 2001, 375). But then either the different sets of properties correlate, in which case the two
computations are the same, or they don’t, in which case we simply have two physical processes imple-
menting two different computations within the same system. (A systemmay performmany activities at the
same time thanks to different internal processes, which may or may not have some parts in common; in the
case of this example, both activities are computations and both processes are computational.)
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with inputs and outputs of three kinds but use it to perform tasks that require inputs
and outputs of only two kinds. In nature, it is unlikely that natural selection would
generate a process that can differentiate between more possible inputs and outputs
than it needs to in order to carry out its task. Although it is common for the same
naturally occurring mechanism to perform different tasks, usually each task is
subserved by a different process within the mechanism. And although some natural
computational processes may have evolved from ancestors that required to differen-
tiate more inputs and outputs than the current process, this seems unlikely to be the
most common occurrence. So the possibilities mentioned in premises (1) and (2)
may have little practical significance. Nevertheless, theoretically it is good to know
what they entail about the individuation of computation, so let us examine the rest of
the argument.

Premise (3) says that tasks are semantically individuated. For instance, one of our
device’s tasks, averaging, is defined over quantities, which are the implicit referents of
the inputs and outputs of the device. Since, by (2), tasks determine which computa-
tional description is explanatory in a given context, (4) concludes that the compu-
tational identity of a device in a given context is partially determined by semantic
properties. In other words, the computation that is explanatory in any given context
is partially individuated semantically. Given that the argument does not depend
on the specific device or computational description, (5) is a universal generalization
of (4).

Before discussing the merits of the argument from the identity of computational
tasks, notice that its conclusion is weaker than a full-blown semantic account of
computation. For the argument begins by conceding that the (multiple) computa-
tions implemented by a device are individuated non-semantically. Semantic con-
straints play a role only in determining which of those computations is explanatory
in a given context. As I pointed out above, it is likely that in most contexts of scientific
interest, computing systems perform their maximal task, so that semantic constraints
are unnecessary to determine which computation is explanatory. If this is correct,
and if the argument from the multiplicity of computations is sound, then semantic
constraints will play a role in few, if any, practically significant contexts. It remains to
be seen whether the argument is sound.

The problem is with premise (3), and it is analogous to the problem with premise
(2) in the argument from the identity of functions. The task of a computing system is
to compute a certain function. As I pointed out above, functions may be individuated
semantically, and therefore so may tasks. As I also pointed out above, functions may
be individuated non-semantically too, and therefore so may tasks. For the same
reasons given in the case of functions, the task description that is most basic in
individuating computing systems and their processes is non-semantic.

Shagrir’s reason for (3) seems to be that he assumes that non-semantic indi-
viduation is based on functional properties, and functional properties are narrow
properties. If functional properties are narrow—that is, they supervene on what is
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contained solely within the boundaries of the system, without reaching into its
environment—then they are insufficient to determine which task a mechanism is
performing within a context, and thus which computation is explanatory in that
context. It goes to Shagrir’s credit that he showed this to us. But the solution need not
be an individuation of computations based on content, for there is also the possibility
of a wide construal of functional properties.
In later chapters, I will follow Harman (1987, 1988) in construing functional

properties as wide. Briefly, a functional property is wide just in case it supervenes
on both what is inside the boundaries of the system and some portion of the system’s
environment (which may be a larger system that contains it). On this view, a
functional property of a system depends not only on what happens within the system
but also on how its environment is and how the system and its environment interact.
Because of this, we cannot discover functional properties by studying the system in
isolation—we must observe some portion of its environment and how the system
interacts with its environment. For example, the heart has the function of circulating
blood through the body by pumping it from the veins into the arteries. This function
requires that blood vessels form a closed system—something that the heart has
nothing to do with; the function cannot even be stated without making reference
to entities and processes that occur outside the heart (the body, the circulation of the
blood, the veins, the arteries). Circulating the blood is a wide function, and fulfilling it
is a wide functional property.
Shagrir gives no reason to prefer a semantic individuation of computations to a

wide functional individuation. Provided that the interaction between a mechanism
and its context plays a role in individuating its functional (including computational)
properties, a (non-semantic) functional individuation of computational states is
sufficient to determine which task is being performed by a system, and therefore
which computation is explanatory in a context.
In order to know which of the computations that are implemented by a computing

mechanism is explanatory in a context, we need to know the relevant relations
between computations and contexts. Therefore, we cannot determine which compu-
tation is explanatory within a context without looking outside the mechanism. I agree
with Shagrir about this, and also about the fact that interpreting computations—
describing computations semantically—is one way to relate computations to context.
But it’s not the only way: computations have effects on, and are affected by, their
context. By looking at which effects of which computations are functionally signifi-
cant within a context, we can identify the computation that is explanatory within that
context.
Going back to our example, suppose our device is a component of a larger

mechanism. By looking at whether the containing mechanism responds differentially
to a ‘0’, ‘½’, and ‘1’ or responds identically to two of them, we can determine which
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computational description is explanatory without needing to invoke any semantic
properties of the computations.12

This completes my assessment of arguments for semantic accounts of computa-
tion. The upshot is that computation does not require representation. Before ending
this chapter by summarizing the pros and cons of semantic accounts, I will briefly
discuss an attempt to account for computation syntactically rather than semantically.

4. The Syntactic Account

Some philosophers have denied that there are any semantic properties (Quine 1960;
Stich 1983). If there are no semantic properties, semantic accounts of computation
are a nonstarter. This, combined with the limitations of mapping accounts
(Chapter 2), motivated some authors to search for a non-semantic account of
computation that is more restrictive than mapping accounts. This may be called
syntactic account of computation, because it appeals to the notion of syntax derived
from logic and linguistics.

As we saw, semantic accounts need to specify which representations are relevant to
computation. One view is that the relevant representations are language-like, that is,
they have the kind of syntactic structure exhibited by sentences in a language.
Computation, then, is the manipulation of language-like representations in a way
that is sensitive to their syntactic structure and preserves their semantic properties
(Fodor 1975).

As we also saw, using the notion of representation in an account of computation
ends up presupposing a non-semantic way of individuating computations. If com-
putation could be accounted for without appealing to representation, all would be
well. One way to do so is to maintain that computation simply is the manipulation of
language-like structures in accordance with their syntactic properties, leaving seman-
tics by the wayside. The structures being manipulated are assumed to be language-
like only in that they have syntactic properties—they need not have any semantics. In
this syntactic account of computation, the notion of representation is not used at all.

The syntactic account may be seen as adding a restriction on acceptable mappings
between computational descriptions and physical systems that replaces the semantic
restriction proposed by semantic accounts. Instead of a semantic restriction, the
syntactic account imposes a syntactic restriction: only physical states that qualify as

12 Rescorla (2013) describes an example slightly different from Shagrir’s but the moral is the same.
Rescorla considers two machines that have the same local intrinsic properties but are embedded within two
distinct communities. The two communities interpret their machines differently by employing base 10 and
base 13 notations, respectively. Therefore, under their communities’ distinct interpretations, the two
machines perform different semantically individuated computations. Rescorla concludes against non-
semantic accounts of computation, which supposedly cannot distinguish between the two computations.
On the contrary, as I point out in the main text, the non-individualistic, non-semantic account of
computation that I defend has enough resources to distinguish between Rescorla’s two computations in
terms of the different responses by the two communities to processes that are intrinsically exactly similar.
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syntactic may be mapped onto computational descriptions, thereby qualifying as
computational states. If a state lacks syntactic structure, it is not computational.
What remains to be seen is what counts as a syntactic state. An account of syntax

in the physical world is due to Stephen Stich (1983, 150–7). Although Stich does not
use the term ‘computation’, his account of syntax is aimed at grounding a syntactic
account of mental states and processes. Stich’s syntactic theory of mind is, in turn, his
interpretation of the computational theories proposed by cognitive scientists—in
competition with the semantic interpretation proposed by Fodor et al. Since Stich’s
account of syntax is ultimately aimed at grounding computational theories of
cognition, Stich’s account of syntax also provides an (implicit) syntactic account of
computation.
According to Stich, roughly speaking, a physical system contains syntactically

structured objects when two conditions are satisfied. First, there is a mapping
between the behaviorally relevant physical states of the system and a class of syntactic
types, which are specified by a grammar that defines how complex syntactic types can
be formed out of (finitely many) primitive syntactic types. Second, the behavior of the
system is explained by a theory whose generalizations are formulated in terms of
formal relations between the syntactic types that map onto the physical states of the
system.
The syntactic account of computation is not very popular. A common objection is

that it seems difficult to give an account of primitive syntactic types that does not
presuppose a prior semantic individuation of the types (Crane 1990; Jacquette 1991;
Bontly 1998). According to this line of thought, something can be a token of a
syntactic type only relative to a language in which that token has content. In fact, it is
common to make sense of syntax by construing it as a way to combine symbols, that
is, semantically interpreted constituents. If syntax is construed in this way, it pre-
supposes semantics. If so, the syntactic account of computation either is incoherent
or collapses into a semantic account.
But there is a way to maintain the syntactic account without relying on semantic

properties. This may be seen by reflecting on the (non-semantic) properties of
program-controlled computers (for a more detailed account, see Chapters 8–11).
Some special mechanisms, namely program-controlled computers, have the ability to
respond to (non-semantically individuated) strings of discrete states stored in their
memory by executing sequences of primitive operations, which in turn generate new
strings of states that get stored in memory. Different bits and pieces of these strings of
states have different effects on the machine. Because of this, the strings can be
analyzed into sub-strings. We can give an accurate description of how states can be
compounded into sub-strings, and sub-strings can be compounded into strings,
without presupposing that the strings of discrete states have any semantic content.
This structure of the system of strings manipulated by the computer may be called its
syntax. Some strings, called instructions, have the function of determining, at any
given time, which operations are to be performed by the computer on the input
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strings. Because of how computers are designed, the global effect of an instruction on
the machine can be reduced to the effects of its sub-strings on the machine. Then, the
effect of sub-strings on the computer can be assigned to them as their semantic
content, and the way in which the content of the whole string depends on the content
of its sub-strings can be specified by recursive clauses, with the result that the global
effect of a string on the computer is assigned to it as its content. This assignment
constitutes an internal semantics of a computer. An internal semantics assigns as
contents to a system its own internal components and activities, whereas an ordinary
(external) semantics assigns as contents to a system objects and properties in the
system’s environment.13 Given that the strings manipulated by a computer may have
a syntax (which determines how they are manipulated), and some of them have an
internal semantics, they may be called a language, and indeed that is what computer
scientists call them. None of this entails that computer languages have any external
semantics, i.e., any semantic content in the sense used by Stich’s critics, although it is
compatible with their having one. Stich would probably have no difficulty in accept-
ing that if a computer is capable of storing and executing its own instructions, then
some of the computational states also have an internal semantics.

The above account of syntax is mechanistic, specified in terms of the components
of a stored-program computer, their states, and their organization. From the vantage
point of this mechanistic account of syntax, not only do we see the coherence of
Stich’s proposal, but we can also give a mechanistic account of his notion of syntax
without presupposing any external semantics.

The real problem with the present version of the syntactic account of computation
is that language-like syntactic structure is not necessary for computation as it is
understood in computer science and computability theory. Although computing
systems surely can manipulate linguistic structures, they don’t have to. There are
digital computing systems that manipulate simple sequences of letters, without losing
their identity as computers. (Computability theorists call any set of words from a
finite alphabet a language, but that broad notion of language should not be confused
with the narrower notion—inspired by grammars in logic and linguistics—that Stich
employs in his syntactic account of computation.) And then there is non-digital
computation. This will motivate the full-blown mechanistic account of computation,
a fragment of which was sketched above to ground the notion of language-like syntax
in non-semantic terms. Within such a mechanistic framework, we could even define
a broader notion of syntax that applies to any language in the sense of computability
theory. If we do that, we end up with a mechanistically grounded syntactic account of
(digital) computation.

The mechanistic account, to be presented in subsequent chapters, preserves a
correct insight that lies behind the syntactic account of computation: the nature of

13 For more on internal vs. external semantics, see Chapter 9; Fodor 1978; Dennett 1987.
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computation is not semantic but mechanistic. And since the mechanistic account
provides the resources for an account of syntax, it is incorrect to say that the
mechanistic account is a syntactic account. If anything, it’s the other way around: a
properly syntactic account is a mechanistic account of (digital) computation. As I will
argue in Chapter 7, however, there is more to computation than digital computation.

5. The Limits of Semantic Accounts

Semantic accounts of computation come in many versions, depending on which
manipulations of which representations they count as computations. What they all
have in common is that, according to them, computation requires representation.
I have argued that, contrary to semantic accounts, representation is not required for
computation. And even when computation occurs in the presence of representation—
even when the vehicles of computation are representations—computations can be
individuated non-semantically. That being said, let’s summarize the extent to which
semantic accounts satisfy the desiderata for an account of concrete computation that
I listed in Chapter 1.
By restricting computation to (some kinds of ) manipulation of (some kinds of )

representations, semantic accounts may be able to make computation objective,
which is our first desideratum. Whether they do depends on how objective repre-
sentation is. If representing is an objective relation, then computation comes out
objective. If representing is not objective, then computation is not objective either.
Whether representing is an objective relation is a disputed matter.
Our second desideratum is an account of computational explanation. Appealing to

semantically individuated computations is explanatory, especially if, again, represen-
tation is an objective property. For example, we may explain animal navigation in
part by pointing at animals’ ability to see, which we explain by pointing at their
computing three-dimensional representations of their environment. This is compu-
tational explanation by semantically-individuated computation. It is an important
aspect of our explanatory practices in both computer science and cognitive science.
But computational explanation does not stop at semantically individuated com-

putations. Computational explanation also identifies the (non-semantically individu-
ated) concrete vehicles that are being manipulated, the operations performed on such
vehicles, the sequences of operations, and the concrete components that perform the
operations. (All of this is described at a suitable level of abstraction.) In other words,
as subsequent chapters will make clear, computational explanation is a form of
mechanistic explanation, which may or may not include reference to the semantic
properties of the computations.
Our third and fourth desiderata are that the right things compute and the wrong

things don’t compute. Here, whether a semantic account respects the boundaries of
the computational concepts we use in our scientific practices depends on which
manipulations of which representations count as computations under a semantic

SEMANTIC ACCOUNTS 47



account. As I mentioned in Chapter 1, some semantic accounts are too restrictive,
because they rule out of the class of computing systems any system that fails to
represent its own computational rules, including paradigmatic examples of comput-
ing systems such as non-universal Turing machines and standard finite state autom-
ata (Fodor 1975; Pylyshyn 1984). Other semantic accounts are too inclusive, because
they attribute representational properties to all systems and they count any repre-
sentational manipulation as computation (cf. Shagrir 2006b). Such overly inclusive
accounts entail pancomputationalism, which will be discussed in more detail in
the next chapter. It may be possible to formulate a semantic account that draws
the boundary between computing and non-computing system closer to the right
place. But no semantic account will ever draw the line in exactly the right place,
because—as I argued throughout this chapter—some computations do not manipu-
late representations at all, and semantic accounts have no resources for counting
them as computations.

Our fifth desideratum is an account of miscomputation. As far as I know, propon-
ents of semantic accounts have paid a lot of attention to misrepresentation but have
not addressed miscomputation. The two are logically independent notions. A system
that misrepresents may or may not miscompute—it may be performing its compu-
tations correctly while using representations that are incorrect. Computer scientists
say, “Garbage in, garbage out.” In the other direction, a system that miscomputes may
or may not misrepresent—it may not even represent anything at all; if it does
represent, a miscomputation may accidentally yield a correct representation. Thus,
misrepresentation does not immediately help understand miscomputation.

Finally, our sixth desideratum is an account of computational taxonomy. Here,
representational notions do help somewhat. Specifically, we can distinguish between
systems that manipulate representations without representing the rules they follow
and systems that manipulate representations while also representing the rules they
follow and using the representations of the rules to drive the computation. The latter
are program-controlled computing systems (more on this in Chapter 11). But there
are many more important distinctions to draw between systems with different
degrees of computing power, and semantic accounts lack the resources to draw
such distinctions. One of the most ambitious undertakings of this book is to show
how much illuminating work the mechanistic account can do in formulating a clear
taxonomy of computing systems, and illustrating the kind of theoretical payoff that
can be gained from this enterprise. Once I introduce the mechanistic account in
Chapter 7, I will take up this theoretical/taxonomic task in Chapters 8–13.

In conclusion, existing arguments for semantic accounts of computation fail to
show that computation requires representation. Computational states need not be
individuated semantically. Instead, computational states can be individuated by their
structural and functional properties alone. This is good news, as a semantic indi-
viduation of computation presupposes its non-semantic individuation.
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The point is not that content has no role to play in formulating and evaluating
computational theories. It has many important roles to play, at least under the most
common methodologies and assumptions. The point, rather, is that computing
systems and their states have non-semantic identity conditions, and those identity
conditions must be considered in a full explanation of their capacities. Once com-
putational states are individuated non-semantically, semantic interpretations may
(or may not) be assigned to them.
In both computer science and cognitive science, the most perspicuous way of

individuating tasks is often semantic. We speak of computers doing arithmetic and of
visual systems inferring properties of the world from retinal images—these are
semantic characterizations of their tasks. But to those semantic characterizations,
there correspond an indefinite number of possible non-semantic characteriza-
tions, which individuate different computational architectures, running different
programs, written in different programming languages, executing different algo-
rithms. Before a semantic characterization of a task can be mapped onto a particular
concrete system, the semantic characterization needs to be paired with a non-
semantic description of the system that performs the task.
A first corollary is that being a computational state does not entail having semantic

properties. This applies to artifacts and natural systems alike. A computer can be
truly described computationally without ascribing content to it, and so can a cogni-
tive system. This corollary is important in light of the tendency among many
theorists to construe the computational states postulated by computational theories
of cognition as representational. This is a mistake, which begs the question of
whether the computational states postulated by a theory of mind have content.14

Perhaps they do, but perhaps—as Stephen Stich pointed out some time ago (Stich
1983)—they don’t. Whether cognitive states have content should not be determined
by the metaphysics of computation; it should be an independent substantive ques-
tion. A good account of computation should not entail—as semantic accounts of
computation do—that one cannot be a computationalist about cognitive states while
also being an eliminativist about their content.
If mental states have content, there is a separate question of whether the contents

of states posited by computational theories match the contents ascribed by folk
psychology. Perhaps some or all the internal computational states have contents
that match the folk psychological contents, as many computationalists believe (e.g.,
Fodor 1987; Pylyshyn 1984). Or perhaps they don’t, as other computationalists
maintain (e.g., Dennett 1987, esp. chap. 5). These are substantive questions that

14 This is true only under the assumption, almost universally shared among supporters of semantic
accounts of computation, that computational states are individuated by the same contents that individuate
the cognitive states realized, in whole or in part, by those computational states. If one rejects that
assumption, then the semantic account of computation is compatible with intentional eliminativism. But
if one rejects that assumption, the semantic view of computational individuation ceases to have any
significant positive motivation.
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depend on the relationship between computational explanations of mental states and
capacities and theories of mental content, and are at least in part empirical; they
should not be settled by philosophizing on the metaphysics of computation. In light
of these considerations, the mechanistic account of computation has the appealing
feature that it leaves the questions of whether mental states have content and what
content they have independent of the question of whether mental states are
computational.

A second corollary relies on the premise that the possession of semantic properties
does not entail the possession of computational properties. Since I’m not aware of
any claim to the contrary, I will not argue for this premise. The two corollaries
together entail that being computational is logically independent of having content,
in the sense that it is possible to be a computational state without having content and
vice versa. The computational theory of cognition and the representational theory of
cognition address independent (orthogonal) problems. The computational theory of
cognition may be formulated and discussed without presupposing that cognitive
systems have content, so as to avoid getting entangled with the difficult issue of
mental content. And the representational theory of cognition may be formulated
without presupposing that cognitive states are computational.

These conclusions have no consequences on whether cognitive systems or com-
puters have content, whether cognitive and computational content are the same, and
whether cognitive content is reducible to computational content. Those questions
must be answered by a theory of content, which is not the topic of this book.

The topic of this book is concrete computation, which, as it turns out, may or may
not involve representation. In both this chapter and the previous one, we’ve encoun-
tered accounts that entail pancomputationalism—everything computes. Addressing
pancomputationalism in detail is the task of the next chapter. Addressing pancom-
putationalism will help sharpen the distinction between computational modeling and
computational explanation, which will bring us closer to an adequate account of
concrete computation.
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4

Pancomputationalism

1. Varieties of Pancomputationalism

As we saw in Chapters 2 and 3, mapping accounts and some semantic accounts of
computation entail pancomputationalism—every physical system performs compu-
tations. I have encountered two gut reactions to pancomputationalism: some philo-
sophers find it obviously false, too silly to be worth refuting; others find it obviously
true, too trivial to require a defense. Neither camp sees the need for this chapter. But
neither camp seems aware of the other camp. The existence of both camps, together
with continuing appeals to pancomputationalism in the literature, compel me to
analyze the matter more closely. In this chapter, I distinguish between different
varieties of pancomputationalism and argue that both gut reactions get something
right and something wrong. I find that although some varieties of pancomputation-
alism are more plausible than others, only the most trivial and uninteresting varieties
are true. This speaks against any account of computation that entails pancomputa-
tionalism. In arguing against pancomputationalism I also sharpen the distinction
between computational modeling and computational explanation, and that helps
prepare the ground for the mechanistic account of computation.
Which physical systems perform computations? According to pancomputational-

ism, they all do. As Putnam put it, “everything is a Probabilistic Automaton under
some Description” (Putnam 1967b: 31; ‘probabilistic automaton’ is Putnam’s term
for probabilistic Turing Machine).1 Even rocks, hurricanes, and planetary systems—
contrary to appearances—are computing systems. Pancomputationalism is quite
popular among some philosophers and physicists.
Formulations of pancomputationalism vary with respect to how many computations—

all, some, or just one—they attribute to each system.
The strongest versions of pancomputationalism maintain that every physical

system performs every computation—or at least, every sufficiently complex system

1 Cf. also: “A [physical symbol] system always contains the potential for being any other system if so
instructed” (Newell 1980, 161); “For any object there is some description of that object such that under that
description the object is a digital computer” (Searle 1992, 208); “everything can be conceived as a
computer” (Shagrir 2006b, 393). Similar views are expressed by Block and Fodor (1972, 250);
Churchland and Sejnowski (1992); Chalmers (1996, 331); Scheutz (1999, 191); and Smith (2002, 53),
among others.



implements a large number of non-equivalent computations (Putnam 1988; Searle
1992). This may be called unlimited pancomputationalism.

Weaker versions of pancomputationalism maintain that every physical system
performs one (as opposed to every) computation. Or perhaps everything performs a
few computations, some of which encode the others in some relatively unproblematic
way (Scheutz 2001). This may be called limited pancomputationalism.

Varieties of pancomputationalism also vary with respect to why everything per-
forms computations—the source of pancomputationalism.

One alleged source of pancomputationalism is that which computation a system
performs is a matter of relatively free interpretation. If whether a system performs a
given computation depends solely or primarily on which perspective we take towards
it, as opposed to objective fact, then it seems that everything computes because
everything may be seen as computing (Searle 1992). This may be called interpretivist
pancomputationalism.

Another alleged source of pancomputationalism is that everything has causal
structure. According to the causal account, computation is the causal structure of
physical processes at some level of abstraction (Chapter 2). Assuming that everything
has causal structure, it follows that everything performs the computation constituted
by its causal structure at a given level of abstraction (if there is a privileged level of
abstraction), or perhaps that every physical system performs the computations
constituted by its causal structures at every level of abstraction. This may be called
causal pancomputationalism.

Not everyone will agree that everything has causal structure. Some processes may
be non-causal, or causation may be just a façon de parler that does not capture
anything fundamental about the world (e.g., Norton 2003). But those who have
qualms about causation can recover a view similar to causal pancomputationalism
by reformulating the causal account of computation and consequent version of
pancomputationalism in terms they like—for example, in terms of laws, dispositions,
or counterfactuals (cf. counterfactual and dispositional accounts of computation,
Chapter 2).

A third alleged source of pancomputationalism is that every physical state carries
information, in combination with an information-based semantics plus a liberal
semantic account of computation (Chapter 3). According to semantic accounts of
computation, computation is the manipulation of representations. According to
information-based semantics, a representation is something that carries information.
If every physical state carries information, then every physical system performs the
computations constituted by the manipulation of its information-carrying states
(cf. Shagrir 2006b). Both information-based semantics and the assumption that
every physical state carries information (in the relevant sense) remain controversial.

Yet another alleged source of pancomputationalism is that computation is the
nature of the physical universe. According to some physicists, the physical world is
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computational at its most fundamental level. I will discuss this view, which is a
special version of limited pancomputationalism, in Section 4.

2. Unlimited Pancomputationalism

Arguments for unlimited pancomputationalism differ in their details but they fall
into two basic types based on especially liberal versions of, respectively, the mapping
account and the semantic account.
The first argument relies on the simple mapping account. It begins by constructing

a mapping between a more or less arbitrary computation—usually a digital one—and
a more or less arbitrary microphysical process. The argument then assumes the
simple mapping account of computation (or something close), according to which
a mapping between a computational description and a microphysical description of a
system, such that the microphysical process mirrors the computation, is sufficient for
a computation to be physically implemented (Chapter 2, Section 1). The argument
concludes that the given microphysical process implements the given computation.
To the degree that the computation and the microphysical process were chosen
arbitrarily, the conclusion is then generalized: any computation (of the relevant type)
is implemented by any microphysical process (of the relevant type) (cf. Searle 1992;
Putnam 1988).
An especially easy way of deriving this kind of mapping between an arbitrary

computation and an arbitrary physical process is to point out that a (digital)
computation can be described as a countable sequence of state transitions, whereas
a microphysical process can usually be described as an uncountable sequence of state
transitions. Since an uncountable sequence is larger than a countable sequence, there
will always be a mapping from the countable sequence to a subset of the uncountable
sequence such that the uncountable sequence mirrors the countable one.
The second argument appeals to unconstrained semantic interpretation. It claims

that any more or less arbitrary microphysical state is subject to more or less arbitrary
semantic interpretations, and is therefore a representation. Because of this, any
sequence of microphysical state transitions is a sequence of representations. The
argument then assumes an especially liberal version of the semantic account of
computation (Chapter 3), according to which manipulating representations is suffi-
cient for implementing a computation. The argument concludes that any micro-
physical process implements any more or less arbitrary computation. To the degree
that the interpretation and the microphysical process were chosen arbitrarily, the
conclusion is then generalized: any computation (of the relevant type) is imple-
mented by any microphysical process (of the relevant type).
The first thing to notice about unlimited pancomputationalism is that, if it holds,

the claim that a physical process implements a computation is trivialized. If every
physical process implements every computation or if, more weakly, most physical
processes implement lots of non-equivalent computations, the claim that a particular

PANCOMPUTATIONALISM 53



physical process implements a particular computation becomes nearly vacuous. But
when computer scientists and engineers say that your computer is running a
particular software package, they don’t seem to mean something that vacuous.
Therefore, either the foundations of computer science are seriously in trouble or
unlimited pancomputationalism is seriously wrong.

The second thing to notice is that arguments for pancomputationalism become
more complicated if we want to consider inputs separately from state transitions and
even more complicated if we try to switch from less constrained versions of the
mapping and semantic accounts to more constrained versions. In fact, the more
sophisticated mapping accounts discussed in Chapter 2, which restrict acceptable
mappings to those involving counterfactual supporting state transitions, or causal
state transitions, or state transitions grounded in dispositions, are largely motivated
by avoiding unlimited pancomputationalism. I will not discuss all these complica-
tions because my goal is not to fix either the mapping account or the semantic
account but to replace them with the mechanistic account. The interim conclusion is
that unlimited pancomputationalism is uncontroversially very bad and that it should
be possible to avoid it by fixing the mapping or semantic accounts of computation.2

I will now turn to criticizing limited pancomputationalism, which is actually
endorsed by a surprisingly wide range of philosophers and scientists.

3. Limited Pancomputationalism

Limited pancomputationalism is a much more modest and plausible claim than its
unlimited cousin. It holds that every physical system performs a computation, or
perhaps a limited number of equivalent computations. Which computations are
performed by which system depends on objective properties of the system such as
its causal or dispositional structure at an appropriate level of abstraction, or what the
system’s states objectively represents. In fact, several authors who have mounted
detailed responses to unlimited pancomputationalism and developed accounts of
computation to avoid it explicitly endorse limited pancomputationalism (Chalmers
1996b, 331; Scheutz 1999, 191).

Given this reliance on objective properties of the system for attributing computa-
tions to it, limited pancomputationalism does not trivialize the claim that a given
system performs a given computation (at a given level of abstraction). Which specific
computation is performed by which specific system (at a given level of abstraction)
depends on the specific objective properties (causal structure, dispositional structure,
representational properties, etc., depending on which account of computation is
employed) at the relevant level of abstraction.

2 For discussion, see Brown 2012; Chalmers 1994, 1996, 2011, 2012; Copeland 1996; Chrisley 1995;
Godfrey-Smith 2009, Scheutz 1999, 2001, 2012; Sprevak 2012.
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But limited pancomputationalism still erases the distinction between systems that
compute and systems that don’t. Notice that, usually, limited pancomputationalists
adopt a digital-only conception of computation, so they end up attributing digital
computations to every physical system. According to them, rocks, hurricanes, and
planetary systems perform (digital) computations in the same sense in which stand-
ard digital computers do. This result clashes not only with our untutored intuitions
but also with our scientific practices. We have entire scientific disciplines devoted to
studying specific classes of physical systems (digital computers, analog computers,
quantum computers), figuring out which computations they can perform, and
figuring out how efficiently and reliably they can perform them. It takes a lot of
difficult technical work to design and build systems that perform digital computa-
tions reliably. To say that rocks do the same thing without any help from computer
engineers makes a mockery of our computer science and technology. Or consider the
vast efforts devoted to figuring out which computations are involved in performing
cognitive tasks. The computational theory of cognition was introduced to shed new
and explanatory light on cognition (Piccinini 2004b; Piccinini and Bahar 2013). But if
every physical process is a computation, the computational theory of cognition loses
much of its explanatory force.
In the face of these objections, limited pancomputationalists are likely to maintain

that the explanatory force of computational explanations does not come from the
claim that a system is computational simpliciter. Rather, explanatory force comes
from the specific computations that a system performs (e.g., Chalmers 2011).
According to this response, yes, a rock and a digital computer do perform compu-
tations in the same sense. But they perform radically different computations, and it is
the difference between their computations that explains the difference between their
behaviors. In the rest of this chapter, I will argue that this reply fails to consider the
specific way in which computation explains the behavior of certain systems and not
others.
Another objection to limited pancomputationalism begins with the observation

that any moderately complex system satisfies indefinitely many objective computa-
tional descriptions. This may be seen by considering computational modeling.
A computational model of a system may be pitched at different levels of granularity.
For example, consider cellular automata models of the dynamics of a galaxy or a
brain. The dynamics of a galaxy or a brain may be described using an indefinite
number of cellular automata—using different state transition rules, different time
steps, or cells that represent spatial regions of different sizes. Furthermore, an
indefinite number of formalisms different from cellular automata can be used to
compute the same functions computed by cellular automata. It appears that limited
pancomputationalists are committed to the galaxy or the brain performing all these
computations at once. This upshot does not trivialize the claim that a specific system
performs a specific computation to the same degree as unlimited pancomputation-
alism does, because all of these attributions of computations to physical systems are
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tied to objective properties of the system. But the claim that a given system performs
a given computation is still trivialized to a large extent, because it still depends on
matters that have nothing to do with the objective properties of the system, such as
how fine-grained our model is or which programming language we use in building
our model.

That does not appear to be the sense in which computers (or brains) perform
computations. In the sciences of computation and cognition, there is an important
distinction between the computations performed by a computational model of a
system and the computations performed by the system being modeled. The compu-
tations performed by the system are specific to the system and do not depend on
properties of the model such as the programming language being used in building the
model or the fineness of grain at which the model is built. In other words, within our
computational sciences there is an important distinction between mere computa-
tional models and computational explanations—or so I will soon argue. Limited
pancomputationalism ignores this important distinction and the scientific practices
that rely on it. Once again, limited pancomputationalism fails to do justice to our
scientific practices involving computation. Either there is something deeply wrong
with those scientific practices or, at the very least, limited pancomputationalism fails
to capture the notion of concrete computation that is employed within those
practices.

In the face of this objection, limited pancomputationalists may attempt to single
out, among the many computational descriptions satisfied by each system, the one
that is ontologically privileged—the one that captures the computation performed by
the system. Such a find would restore full objectivity to the claim that a given system
performs a given computation: at the privileged level of abstraction, there would be
one and only one computation performed by each physical system. The main way to
identify this privileged computation is to postulate a fundamental physical level
whose most accurate computational description identifies the (most fundamental)
computation performed by the system. This response is built into the view that the
physical world is fundamentally computational.

4. The Universe as a Computing System

To claim that the physical universe is fundamentally computational is becoming
increasingly popular: the universe itself is a computing system, and everything in it is
a computing system too (or part thereof). Unlike the previous versions of pancom-
putationalism, which originate in philosophy, this ontic pancomputationalism ori-
ginates in physics. It includes both an empirical claim and a metaphysical one.
Although the two claims are logically independent, supporters of ontic pancompu-
tationalism tend to make them both.

The empirical claim is that all fundamental physical magnitudes and their state
transitions are such as to be exactly described by an appropriate computational
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formalism—without resorting to the approximations that are a staple of standard
computational modeling. This claim takes different forms depending on which
computational formalism is taken to describe the universe exactly. The two main
options are cellular automata, which are a classical computational formalism, and
quantum computing, which is non-classical.
The earliest and best known version of ontic pancomputationalism is due to

Konrad Zuse (1970, 1982) and Edward Fredkin, whose unpublished ideas on the
subject influenced a number of American physicists (e.g., Feynman 1982; Toffoli
1982; Wolfram 2002; see also Wheeler 1982; Fredkin 1990). According to some of
these physicists, the universe is a giant cellular automaton. A cellular automaton is a
lattice of cells; each cell can take one out of finitely many states and updates its state
in discrete steps depending on the state of its neighboring cells. For the universe to be
a cellular automaton, all fundamental physical magnitudes must be discrete, i.e., they
must take at most finitely many values. In addition, time and space must be
fundamentally discrete or must emerge from the discrete processing of the cellular
automaton. At a fundamental level, continuity is not a real feature of the world—
there are no truly real-valued physical quantities. This flies in the face of most
mainstream physics, but it is not an obviously false hypothesis. The hypothesis is
that at a sufficiently small scale, which is currently beyond our observational and
experimental reach, (apparent) continuity gives way to discreteness. Thus, all values
of all fundamental variables, and all state transitions, can be fully and exactly
captured by the states and state transitions of a cellular automaton.
Although cellular automata have been shown to describe many aspects of funda-

mental physics, it is difficult to see how to simulate the quantum mechanical features
of the universe using a classical formalism such as cellular automata (Feynman 1982).
This concern motivated the development of quantum computing formalisms
(Deutsch 1985; Nielsen and Chuang 2000). Instead of relying on digits (most
commonly, binary digits or bits) quantum computation relies on qudits (most
commonly, binary qudits or qubits). The main difference between a digit and a
qudit is that whereas a digit can take only one out of finitely many states, such as
0 and 1 (in the case of a bit), a qudit can also take an uncountable number of states
that are superpositions of the basis states in varying degrees, such as superpositions of
0 and 1 (in the case of a qubit). Furthermore, unlike a collection of digits, a collection
of qudits can exhibit quantum entanglement. According to the quantum version of
ontic pancomputationalism, the universe is not a classical computer but a quantum
computer, that is, not a computer that manipulates digits but a computer that
manipulates qubits (Lloyd 2006)—or, more generally, qudits.
The quantum version of ontic pancomputationalism is less radical than the

classical version. The classical version eliminates continuity from the universe,
primarily on the grounds that eliminating continuity allows classical digital com-
puters to describe the universe exactly rather than approximately. Thus, the classical
version appears to be motivated not by empirical evidence but by epistemological
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concerns. Although there is no direct evidence for classical ontic pancomputation-
alism, in principle it is a testable hypothesis (Fredkin 1990). By contrast, quantum
ontic pancomputationalism may be seen as simply replacing some traditional quan-
tum mechanical terminology with the terminology of quantum computation and
quantum information theory (qudits) (e.g., Fuchs 2004; Bub 2005). Such a termino-
logical change leaves the empirical content of quantum mechanics intact—insofar as
the quantum version of ontic pancomputationalism makes empirical claims, it makes
the same empirical claims as traditional quantum mechanics.

But ontic pancomputationalists do not limit themselves to making empirical
claims. They often make an additional metaphysical claim. They claim that compu-
tation (or information, in the physical sense closely related to thermodynamic
entropy) is what makes up the physical universe. This point is sometimes made by
saying that, at the most fundamental physical level, there are brute differences
between states—nothing more needs to or can be said about the nature of the states.
This view reverses the traditional conception of the relation between computation
and the physical world.

According to the traditional conception, which is presupposed by all accounts of
computation I discussed up to here, physical computation requires a physical
medium that implements it. Computation is an aspect of the organization and
behavior of a physical system—there is no software without hardware. Thus, accord-
ing to the traditional conception, if the universe is a cellular automaton, the ultimate
constituents of the universe are the physical cells of the cellular automaton. It is
legitimate to ask what kind of physical entity such cells are and how they interact
with one another so as to satisfy their cellular automata rules.

By contrast, according to the metaphysical claim of ontic pancomputationalism, a
physical system is just a system of computational states. Computation is ontologically
prior to physical processes, as it were. “ ‘Hardware’ [is] made of ‘software’” (Kantor
1982, 526, 534). According to this heterodox conception, if the universe is a cellular
automaton, the cells of the automaton are not concrete, physical structures that
causally interact with one another. Rather, they are software—purely “computati-
onal” entities.

Such a metaphysical claim requires an account of what computation, or software,
or physical information, is. If computations are not configurations of physical
entities, the most obvious alternative is that computations are abstract, mathematical
entities, as numbers and sets are according to platonism (cf. Chapter 1). According
to platonism, mathematical entities have no spatial location, no temporal duration,
and no causal properties. They are not concrete, causal, spatiotemporal entities. The
view that physical entities somehow reduce to abstract mathematical ones is called
Pythagoreanism. The metaphysical claim of ontic pancomputationalism—the claim
that physical systems reduce to computational ones—is a computational incarnation
of Pythagoreanism. All is computation in the same sense in which more traditional
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versions of Pythagoreanism maintain that all is number or that all is sets (Quine
1976).
There is some textual evidence that some ontic pancomputationalists do subscribe

to this form of Pythagoreanism. As Wheeler (1982, 570) puts it, “the building
element [of the universe] is the elementary ‘yes, no’ quantum phenomenon. It is
an abstract entity. It is not localized in space and time.” In addition, ontic pancom-
putationalists sometimes attempt to explain how space and time themselves emerge
from the properties of the fundamental computing system they postulate. In any case,
I’m not aware of any other way of cashing out the metaphysical claim of ontic
pancomputationalism besides Pythagoreanism. As we’ve seen, ontic pancomputa-
tionalists explicitly reject the traditional view that physical computations are aspects
of physical systems (for them it’s the other way around: physical systems are aspects
of computations). If they wish to also reject the claim that physical computations are
abstract objects, they should explain what their ontology amounts to.
While it is beyond the scope of this book to do justice to ontic pancomputation-

alism, I reject it on both the empirical and the ontological fronts.
On the empirical front, insofar as ontic pancomputationalism departs from main-

stream physics, there is hardly any positive evidence to support it. Proponents appear
to be motivated by the desire for exact computational models of the world rather than
empirical evidence that the models are correct. Even someone who shares this desire
may well wonder why we should expect nature to fulfill it.
On the metaphysical front, let’s grant for a moment, for the sake of the argument,

that there are abstract entities such as numbers, sets, or software. These are the
entities that Pythagoreanism puts at the fundamental physical level—they constitute
everything physical. Specifically, according to ontic pancomputationalism, every-
thing physical is made out of software. But physical things have causal powers that
they exert through spacetime—they do things (push and pull, attract and repel, etc.).
By contrast, abstract entities are supposed to have no spatiotemporal location and no
causal powers. To put it mildly, it is not clear how abstract entities that have no causal
powers and no spatiotemporal location can give rise to concrete things that exert
causal powers through spacetime. In addition, physical things have concrete qualities
that differentiate them from one another—categorical properties such as shape, mass,
charge, etc. But again, abstract entities do not appear to have any concrete qualities.
Again, it is not clear how abstract entities that have no concrete qualities can give rise
to physical things that have concrete qualities. Once it is thought through, ontic
pancomputationalism—like the Pythagoreanism of which it is a species—turns out to
be at best a big metaphysical mystery, at worst a category mistake (cf. Martin 1997). It
is too mysterious for my stomach.
Finally, the above objections to ontic pancomputationalism were based on the

assumption that there are abstract entities. But what are abstract objects? We know
what they are not—they are not in spacetime, they have no causal properties. Well,
what are they? I have yet to find a convincing positive account of abstract objects.
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And in the absence of a positive account, I find abstract objects unintelligible. This, of
course, does not even begin to do justice to the subtle ontological issues surrounding
abstract objects and the ontology of mathematics more generally—but that is a topic
for another occasion. Meanwhile, for anyone like me who rejects abstract objects,
ontic pancomputationalism—or at least its metaphysical claim—is a nonstarter.

So far, the moral of this chapter is that unlimited pancomputationalism is the
product of insufficiently constrained accounts of physical computation, whereas
limited pancomputationalism flies in the face of our scientific practices, and ontic
pancomputationalism (a specific version of limited pancomputationalism) is
implausible in its own right. In the rest of this chapter, I articulate the distinction
between computational modeling and computational explanation. This distinction
grounds a conclusive objection to limited pancomputationalism and shows us the
way towards a more adequate account of concrete computation. From now on, by
‘pancomputationalism’ I will mean, primarily, limited pancomputationalism.

5. Computational Modeling vs. Computational
Explanation

As I’ve pointed out, pancomputationalism clashes with both our scientific practices
and common intuitions pertaining to computation. Normally we distinguish between
systems that perform computations and systems that don’t: “the solar system is not
a computational system, but you and I, for all we now know, may be” (Fodor 1975, 74,
n. 15; see also Fodor 1968a, 632; Dreyfus 1979, 68, 101–2; Searle 1980, 37–8; Searle
1992, 208). Besides planetary systems, stomachs and the weather are some of the most
often cited paradigmatic examples of systems that do not perform computations. The
view that some things are not computing systems flatly contradicts pancomputation-
alism. To resolve this contradiction, something needs to be done.

The best way forward is to distinguish different kinds of computational descrip-
tions. Some computational descriptions explain the behavior of things by appeal to
their computations, others do not. The former are relevant to computer science and
computational neuroscience, the latter are not. Some authors have suggested some-
thing along these lines. For example, Block and Fodor write that “there are many
ways in which it could turn out that organisms are automata [i.e., probabilistic
Turing machines] in some sense more interesting than the sense in which everything
is an automaton under some description” (Block and Fodor 1972, 250).

But until recently no one bothered to articulate in a satisfactory way the difference
between explanatory and non-explanatory computational descriptions and their
implications for pancomputationalism and the philosophy of computation. This
chapter begins doing so, and the following chapters will complete the task. I will
argue that pancomputationalism stems from lack of clarity on the distinction
between computational modeling and computational explanation. Once that distinc-
tion is clarified, the only versions of pancomputationalism that survive are trivial and
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uninteresting. And when pancomputationalism goes, the accounts of computation
that entail it—mapping accounts and some versions of the semantic account—have
to go with it. I’ve already argued that those accounts are inadequate in Chapters 2 and
3 because, among other reasons, they do not provide an adequate account of
computational explanation. The rest of this Chapter completes that objection.
To a first approximation, the distinction we need is that between using a compu-

tational description to model the behavior of a system—such as when meteorologists
predict the weather using computers—and using it to explain the behavior of a
system—such as when computer scientists explain what computers do by appealing
to the programs they execute. The two kinds of computational descriptions have
different ontological implications about whether the behavior being described is a
computation.
In computational modeling (as I’m using the term), the outputs of a computing

system C are used to describe some behavior of another system S under some
conditions. The explanation for S’s behavior has to do with S’s properties, not with
the computation performed by the model. C performs computations in order to
generate subsequent descriptions of S. The situation is analogous to other cases of
modeling: just as a system may be modeled by a diagram or equation without being a
diagram or equation in any interesting sense, a system may be modeled by a
computing system without being a computing system in any interesting sense.
In computational explanation, by contrast, some behavior of a system S is

explained by a particular kind of process internal to S—a computation—and by the
properties of that computation. For instance, suppose we have a calculator in
working order (i.e., it has power and is functioning properly). Shortly after we
press certain buttons on the calculator in a certain sequence—say, the buttons
marked ‘5,’ ‘√,’ and ‘=’—a certain string of symbols, i.e. ‘2.236 . . . ,’ appears on the
calculator’s display. We explain the calculator’s output by pointing to the inputs we
inserted into the calculator, the fact that the string ‘2.236 . . .’ represents the number
2.236 . . . , the fact that 2.236 . . . is the square root of 5, and—most crucially for present
purposes—the specific activity performed by the calculator; namely, the computation
of square roots. Whether we use another computing system to describe our calcula-
tor’s behavior is independent of whether the explanation for that behavior appeals to
a computation performed by the calculator. If we do use a computing system C
distinct from our calculator to describe the calculator’s behavior, then there will be
two different computations: the calculator’s and C’s. Nonetheless, the behavior of the
calculator is explained by the fact that, ceteris paribus, it performs a square root
computation.
In the next three sections, I provide a more explicit and precise taxonomy of

legitimate senses in which something may be described computationally. First
I discuss ordinary computational models based on differential equations, then
computational models based on discrete formalisms, and finally computational
explanation. In each case, I formulate a precise version of pancomputationalism,
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evaluate it, and draw the relevant consequences for computer science and cognitive
science.

6. Computational Modeling: Differential Equations

In one type of computational description, the states of a system S are represented by
the outputs of a computing system C, and C computes representations of S’s state at
different times. In order for C to compute representations of S, C must be given two
sorts of inputs: (i) an input specifying S’s state at some initial time t0, and (ii) an input
specifying S’s dynamical evolution (i.e., how S’s state evolves over time).

Trivially, S’s dynamical evolution may be specified by representations of S’s states
at subsequent times, which may be obtained by measuring the relevant variables of S
at subsequent times. Such a trivial specification would then constitute a look-up table
of S’s dynamical evolution. In the presence of such a table, C’s job reduces to
retrieving the appropriate item from the look-up table. Less trivially, what is normally
done is that S’s dynamical evolution is given by a mathematical description A—
typically, a system of differential equations—which specifies how S’s variables vary as
a function of S’s state.

If A is solvable analytically (and if the solution is known), then C may be given a
representation of A’s solutions as inputs, and C may use that input (together with an
input specifying S’s initial state) to compute a representation of S’s state at any given
time. As is well known, however, most systems of differential equations are not
solvable analytically, and this is where the present type of computational modeling
proves most helpful. Mathematicians have devised numerical methods for approxi-
mating the values of a system S’s variables directly from S’s dynamical description A,
without needing to rely on A’s analytic solutions. In such cases, C may be given a
representation of A as input, and C may apply numerical methods to those inputs
(together with an input specifying S’s initial state) to compute a representation of S’s
state at any given time. This is the most common type of computational modeling,
which has become ubiquitous in many sciences (Rohrlich 1990; Humphreys 2004;
Winsberg 2010; Weisberg 2013).

The versatility of computational models and their popularity in many quarters of
science may be part of the original motivation behind pancomputationalism. Given
howmany systems are routinely given computational descriptions by scientists in the
most disparate disciplines, ranging from physics to biology to the social sciences, it is
tempting to conclude that everything can be described as a computing system in the
present sense. In fact, sometimes pancomputationalism is formulated as the claim
that everything can be “simulated” by a computing system.3 This simulation-based

3 For early claims to this effect, see von Neumann 1951 and Putnam 1964. Some recent examples:
“a standard digital computer . . . can display any pattern of responses to the environment whatsoever”
(Churchland and Churchland 1990); “the laws of physics, at least as currently understood, are computable,
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formulation of pancomputationalism implies that, if something can be simulated
computationally, it can also be described as a computation. This implication can be
questioned, of course, and my ultimate goal is to reject it. But even if we accept the
implication for the sake of the argument, careful examination of computational
modeling undermines pancomputationalism.
Most scientific descriptions are not exact but approximate. At the very least,

measurements can be performed only within a margin of error, and the values of a
system’s variables can be specified only with finite precision. The kind of computa-
tional descriptions under discussion are not only approximate in these standard
manners, but also in more significant ways. First, the mathematical description A that
specifies the dynamical evolution of a system S only represents what is known about
the dynamical evolution of S. Some factors that influence S’s dynamical evolution
may be unknown, and since A may not capture them, the dynamical evolution
specified by A may differ from S’s actual dynamical evolution. Second, to include
everything that is known about S in A may make the mathematics analytically or
computationally intractable. Typical dynamical descriptions within the sciences
embody idealizations and simplifications relative to what is known about a system,
and these idealizations and simplifications may generate a difference between what
the descriptions say and what the system does. Third, the numerical methods for
computing the state of a system from its dynamical equations are only approximate,
introducing a further discrepancy between the outputs of the computational model
and the behavior of the modeled system. Fourth, computational accuracy requires
computational resources, such as memory and time. Typically, the more accuracy is
required, the more computational resources need to be invested; but computational
resources are always finite. Fifth, most deterministic dynamical systems are non-
linear, and most nonlinear deterministic dynamical systems have dynamics that are
very sensitive to the system’s initial conditions. As a consequence, many systems’
dynamical evolution diverges exponentially from any representation of their dynam-
ical evolution based on a finite specification of their initial condition. (A finite
specification, of course, is all that scientists can generate in practice). Finally, many
systems are non-deterministic, so that their model can predict one of their possible
behaviors, but not their actual one. Because of these factors, computational models
generate descriptions that only approximate the behavior of a system to some degree.
If we don’t care how good our approximations are, that is, if we allow the

approximations generated by our computational descriptions to be arbitrarily distant
from the dynamical evolution of the system being approximated, then the thesis that
everything can be described as a computing system in the present sense becomes
trivially true. But one virtue of scientific descriptions is accuracy, and one goal of
scientists when building computational descriptions is to generate relatively accurate

and . . . human behavior is a consequence of physical laws. If so, then it follows that a computational system
can simulate human behavior” (Chalmers 1996a, 329).
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representations of a system’s dynamical evolution. If we do care how good our
approximations are, then the thesis that everything can be described as a computing
system becomes too fuzzy to be significant. For whether something can be described
as a computing system becomes a matter of degree, which depends on whether it can
be computationally approximated to the degree of accuracy that is desired in any
given case. The answer varies from case to case, and it depends at least on the
dynamical properties of the system, how much is known about them, what idealiza-
tions and simplifications are adopted in the model, what numerical methods are used
in the computation, and what computational resources are available. Building com-
putational models that are relatively accurate and knowing in what ways and to what
degree they are accurate takes a lot of hard work.4

The statement that something can be described as a computing system in the
present sense applies equally well to paradigmatic computing systems (e.g., digital
computers can be approximated by other computers) and to paradigmatic non-
computing systems (e.g., the weather can be approximated by meteorological com-
puter programs). What explains the system’s behavior has to do with the properties
of the system, which may or may not be computational, not with the computation
performed by the model.

In the present sense, ‘S is a computing system’ means that S can be described as a
computing system to some degree of approximation for some modeling purpose.
This can be done in an indefinite number of ways using a variety of assumptions,
algorithms, notations, programming languages, and architectures. None of the
resulting computational descriptions constitute computations performed by the
modeled system. The computational descriptions play a modeling role fully analo-
gous to the role played by differential equations, diagrams, and other modeling tools.
Just as the same equation can describe systems that are physically very different, in
the present sense the same computational description can describe systems that are
physically very different. Just as the same system can be described by many different
equations, some of which may approximate its behavior better than others, the same
system can be described by many different computational descriptions, some of
which may approximate its behavior better than others. Just as being described by
a system of equations does not entail being a system of equations in any interesting
sense, being described as a computing system in the present sense does not entail
being a computing system in any deep sense. So, computational descriptions in the
present sense say nothing about whether something literally computes. They are not
the basis for computational explanation in computer science or cognitive science.

4 Some authors have argued that some physical systems have dynamical evolutions whose state
transitions are not computable by Turing machines, and therefore by ordinary digital computers (e.g.,
Penrose 1994). If one is strict about approximation and there are systems whose dynamical evolution
involves state transitions that are not computable by Turing machines, then the thesis that everything is an
(ordinary) computing system in the present sense becomes strictly false. I discuss whether all physical
processes are computable by Turing machines in more detail in Chapters 15 and 16.
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7. Computational Modeling: Cellular Automata

In a second type of computational description, the states of a system S are repre-
sented directly by the discrete states of an ordinary digital computing system C (such
as a cellular automaton), and C’s state transitions represent S’s state transitions. If S is
analyzed as a system with inputs and outputs, then C’s inputs and outputs represent
S’s inputs and outputs, and given any inputs and outputs of C (representing any
inputs and outputs of S), C goes into internal states and generates outputs that
represent the states that S goes into and the outputs it generates.
Prima facie, not everything is describable as a computing system in this sense. For

most things do not seem to have (discrete) inputs, internal states, and outputs like
ordinary digital computing systems do, so it is not obvious how to compare their
behavior to the behavior of a digital computing system to determine whether they are
the same.
A natural suggestion might be that, for any system S, there is a digital computing

system whose state transitions map onto S’s state transitions under its ordinary
dynamical (microphysical) description (cf. mapping accounts of computation,
Chapter 2). But this will not work. In modern science, dynamical descriptions are
usually given not by means of digital computing systems but by systems of differen-
tial equations, which determine a continuous state space, which assigns an uncount-
able number of possible states and state space trajectories.5 But ordinary digital
computing systems, such as Turing machines (TM), can only take a finite number
of states. Even if we combine the internal states of a TM with the content of the
machine’s tape to increase the number of possible states, the total number of states
that a TM can be in is only countably infinite. Moreover, TMs can only follow a
countable number of state space trajectories. The same point applies to any ordinary
digital computing system of the kinds used in scientific modeling. So ordinary digital
computational descriptions do not have a cardinality of states and state space
trajectories that is sufficient for them to map onto ordinary mathematical descrip-
tions of natural systems. Thus, from the point of view of strict mathematical
description, the thesis that everything is a computing system in this second sense
cannot be supported.6

This second sense in which things can be described as computing systems may be
loosened by allowing the computational description C of a system S to approximate,
rather than strictlymap onto, the states and behavior of S. This kind of approximation is

5 Any real number within a relevant interval specifies a different initial condition of a dynamical system.
For any initial condition, there is a separate state space trajectory. And within any real interval, there are
uncountably many real numbers. Therefore, there are uncountably many state space trajectories. This is
true not only in physics but also biology, including neuroscience (for an introduction to theoretical
neuroscience, see Dayan and Abbott 2001).

6 The same argument applies, of course, to the kind of computational modeling described in the
previous section, where we reached the same conclusion by a different route.
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behind the use of cellular automata as amodeling tool (Rohrlich 1990;Hughes 1999). As
with any model, the computational model of a system S only represents what is known
about S. More importantly, discrete computational models require that S be discretized,
namely, they require the partitioning of S’s states into discrete states, of S’s state
transitions into discrete state transitions, and (in the case of cellular automata models)
of S’s spatial regions into discrete spatial regions. This can be done in an indefinite
number of ways using an indefinite variety of formalisms, some of which may be more
accurate than others for somemodeling purposes.7 Finally, computational accuracy still
requires computational resources, which are always finite.

Once approximation is allowed, the caveat discussed in the previous section
applies. If we don’t care how good our approximations are, then the thesis that
everything can be described as a computing system becomes trivially true in the
present sense. Otherwise, whether something can be described as a computing
system in the present sense depends on whether it can be computationally approxi-
mated to the degree of accuracy that is desired in any given case.

In any case, this second type of computational description is irrelevant to com-
puter science and cognitive science, because it applies to anything depending merely
on how discrete it is at the relevant level of description, that is, on whether it has
discrete inputs, outputs, internal states, and state transitions, and perhaps on one’s
criteria for acceptable approximations. For example, few people would count hard
bodies as such as computing systems. Yet, at a high level of abstraction hard bodies
can be in either of two states, whole or broken, depending on how much pressure is
applied to their extremities. A simple two-input, two-state TM, or a simple cellular
automaton, can approximate the transition of a hard body from one state to the
other. Nevertheless, there seems to be no useful sense in which this turns every hard
body into a computing system. If you hit an ordinary desktop computer sufficiently
hard, you will break it. The resulting state transition of the computer, far from
constituting a computation, will prevent the computer from performing computa-
tions in the future. So, this type of computational description says nothing about
whether something computes. It cannot be the notion employed in computer science
or cognitive science.

Someone may reply that at the appropriate level of description, even a computer
that breaks is performing a computation, albeit an uninteresting one. According to

7 As we discussed in Section 4, some proponents of this kind of modeling suggest that the universe may
be fundamentally discrete in the relevant sense, so that it is possible to build exact computational models of
the universe (e.g., Vichniac 1984; Toffoli 1984; Wolfram 2002). Even if true, this would make these models
exact only when the most fundamental physical variables are represented at the most fundamental orders
of magnitude. All other computational modeling would remain approximate. As far as I can tell, this
includes all modeling done to date. For no one knows what the most fundamental physical level is.
Furthermore, there is no independent evidence that the universe is fundamentally discrete in the relevant
ways. As I argued in Section 4, the view that the universe is fundamentally discrete appears to be motivated
by the combination of a desire for exact discrete computational models and a dubious ontology rather than
by empirical evidence or independent theoretical considerations.
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this line of thought, the same system can perform different computations at different
levels of description, and the breaking of a computer is just one computation at one
level of description among many. Some authors like to call any activity of any system
a computation (e.g., Wolfram 2002). Ascribing computations in this way, though,
does not make this kind of computational description relevant to the sciences of
computation. There are two reasons for this.
First, computation in this sense plays little if any explanatory role. What explains

the breaking of a hard body is the physical properties of the body and the amount of
pressure applied to it. Different bodies of different shapes and hardness break under
different pressures applied in different ways—the indefinitely many computational
descriptions that are common to them are post hoc and give no information about
when something will break. Unlike this example, cellular automata and other com-
putational formalisms can have a nontrivial modeling role, but the important point
still applies. The explanation for the system’s behavior is given by the properties and
initial conditions of the system, not by the models’ computations. Since this kind
of computational description would not play an explanatory role in computer science
or cognitive science, it’s not what computer science or cognitive science should
appeal to.
The second reason is that computations ascribed in the present sense (as well as in

the previous one), unlike computations properly so called, cannot go wrong. When a
computer or person who is computing function f gives the wrong output for a given
input, we say that a mistake was made (e.g., because of distraction in the case of a
person, or component failure in the case of a machine), and the resulting event may
be called miscomputation. The possibility of specifying the function to be computed
independently of the performance during execution, so that one can point to
mistakes in the computation, is an important reason why computation is used as
an ingredient in theories of cognition. But there is no sense in which something that
breaks under pressure can fail to generate the appropriate output: it is simply a law of
physics that it will break—the system can’t do anything different. Even if we weaken
or strengthen a system so that it won’t break under certain conditions, there is no
useful sense in which the modified system is doing something right or wrong. To the
extent that computer science and cognitive science require a notion of computation
such that mistakes can be made during computations, the present type of computa-
tional description is irrelevant to them. Again, this is not what people who are
interested in explaining computers and brains should be concerned with.

8. Representations, Functions, and
Computational Explanation

To obtain a more robust notion of computational description, with some explanatory
purchase to be employed in computer science and cognitive science, philosophers
have explored two routes: representation and function. This section briefly discusses
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their benefits and limitations, paving the way for an improved understanding of
computational explanation.

If we assume that some things are representations and some aren’t, and if we
define genuine computations as manipulations of representations, perhaps we obtain
the notion of computation that we need for computer science and cognitive science.
According to this line of thought, which is of a piece with semantic accounts of
computation, only processes defined over representations count as genuine compu-
tations, so only systems that manipulate representations count as genuine computing
systems (Chapter 3). There is consensus that most systems, including most systems
that are paradigmatic examples of non-computing systems—such as the weather,
stomachs, and planetary systems—do not manipulate representations. So, according
to typical semantic accounts of computation, most systems do not count as genuine
computing systems. This strategy has the great virtue of tailoring a robust notion of
computation to the common assumption that cognitive states are representations. If
computers and brains manipulate representations, then they qualify for being mem-
bers of the class of genuine computing systems. If they are computing systems in this
sense, then their behavior is explained by the computations they perform. This is one
way in which semantic accounts are superior to mapping accounts: they provide an
account of computational explanation (desideratum 2).

Unfortunately, accounting for computational explanation in terms of representa-
tions is at best only part of the story. There are two reasons for this (Chapter 3). First,
contrary to the semantic account, computation does not require representation.
When computation occurs without representation, there must be something other
than representation that accounts for computational explanation. Second, even when
computation does involve representation, there is a lot more to computational
explanation than an appeal to representation: there are computational vehicles,
algorithms, architectures, etc. Accordingly, I set aside any strategy for avoiding
pancomputationalism that relies solely on representation. The mechanistic account
I will propose is compatible with representation playing a role in some forms of
computational explanation, but there is a lot more to computational explanation
than appealing to representations.

The second route explored by philosophers in search of a robust notion of
computation is function—not mathematical function but the notion of function we
use when we say that the function of the heart is to pump blood. Roughly speaking, a
functional analysis of a system is an explanation of the capacities, or functions, of a
system in terms of its sub-capacities, or sub-functions (Cummins 1983, 2002). In
many cases, a system’s sub-capacities are assigned to its components. A standard
example is the circulatory system of organisms, which may be partitioned into the
heart, the arteries, and the veins, each of which are assigned specific functions.
The heart has the function to pump blood from the veins into the arteries, and the
capacity of the circulatory system to circulate blood is explained by the functions
performed by the heart, the arteries, and the veins.
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When a functional analysis of a system’s capacities into sub-capacities is paired
with a localization of the sub-capacities in the system’s components, the result is a
mechanistic explanation of the system’s capacities (Bechtel and Richardson 1993). In
the next chapter, I will argue that functional analyses are mechanism sketches and,
therefore, functional analysis is (perhaps partial) mechanistic explanation. For now,
I will continue to use the traditional terminology of functional analysis because it
was used to account for computational explanation by authors who thought of it as
distinct from mechanistic explanation.
Functional analysis is an explanatory style that, plausibly, applies only to some

systems among others. If so, functional analysis has nontrivial ontological implica-
tions for the system being described: it gives functional significance to the behavior of
the system and its components; namely, it attributes to the system and its compo-
nents the function of acting in certain ways under certain conditions. In fact, only
artifacts and biological systems are usually said to have functions, which are then
invoked in explaining their behavior. Perhaps we could try to exploit this fact to
account for computational explanation in terms of functional analysis.
To look for an account of computational explanation in terms of functional

analysis, we may begin by looking at the way the notion of function employed within
functional analysis plays a legitimate role within computational models of biological
systems and artifacts, where functional analysis is fruitfully combined with compu-
tational modeling. This can be done with either of the two kinds of computational
model discussed above.
In the first kind of computational modeling, the mathematical description of a

system’s dynamical evolution may embody assumptions about the system’s functions
and sub-functions. For instance, standard equations for the action potential of
neurons, such as the classical Hodgkin-Huxley equation, include terms correspond-
ing to several electric currents. The different currents are assumed to be the effects of
different components and properties of a neuron’s membrane (such as various ion
channels) under normal conditions, so the different terms in the equations embody
these assumptions about the functional analysis of the neuron. When computer
programs are built to compute representations of action potentials based on the
relevant equations, they implicitly rely on the functional analysis embodied in the
equations.
Mutatis mutandis, the same point applies to the use of discrete computational

models such as cellular automata. The only difference is that now the functional
analysis of a system is embodied directly in the topological and dynamical structure
of the model. Typically, different regions of a finite automaton represent different
regions of the modeled system, and the transition rules between states of the finite
automaton represent the dynamical properties of the regions of the system. If the
system is functionally analyzed, then different regions of a finite automaton may
correspond to different components of the modeled system, and the transition rules
between states of the finite automaton may represent the functions performed by
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those components under normal conditions. In all these cases, functional analysis is
incorporated within the computational model. This, however, does not give us the
robust notion of computational explanation that we are looking for.

Computational models that embody functional analyses explain the capacities of a
system in terms of its sub-capacities. But this explanation is given by the functional
analysis, not by the computations performed by the model. In the case of standard
computational models, the functional analysis is embodied in the dynamical equa-
tions that describe the dynamical evolution of the system or in the assumptions
behind the topology and transition rules of a cellular automaton. The situation is
analogous to other computational models, where the purpose of the computation is
to generate successive representations of the state of a system on the basis of
independent assumptions about the system’s properties. What does the explaining
is the set of assumptions about the system’s properties—in this case, the functional
analysis that is the basis for the model. And the functional analysis may or may not
attribute computations to the system being modeled. For example, just because we
construct a computational model of the circulatory system that embodies its func-
tional analysis, it doesn’t follow that the circulatory system performs computations or
that the computations performed by the model explain the circulation of the blood.
What explains the circulation of the blood is the capacities of the circulatory system
that are described by its functional analysis.

The same point may be made by comparing the normativity inherent in functional
analysis to the normativity inherent in computation. In the case of computational
models that embody a functional analysis, the two sets of norms are independent—
they may be broken independently. The systemmay fail to perform its functions (e.g.,
a heart may cease to pump) in a variety of ways under a variety of circumstances.
This may or may not be represented by a computational model of the system; to the
extent that the model is accurate, it should represent malfunctions and functional
failures of the modeled system under the relevant circumstances. This has nothing to
do with miscomputation.

The computations that generate representations of the modeled system within a
computational model may also go wrong in a variety of ways under a variety of
circumstances. For instance, the system may run out of memory, or a component of
the hardware may break down. But if the computation goes wrong, the result is not a
representation of a malfunction in the modeled system. It is simply a misrepresen-
tation of the behavior of the modeled system, or, more likely, the failure to generate
a representation of the modeled system. This shows that in this kind of modeling,
the normativity of the functional analysis is independent of the normativity of the
computation. The system is supposed to do what its functional analysis says; the
model is supposed to compute what the equations (or other relevant assumptions)
say. So, in this case, still, computation is not explaining the behavior of the system.

At this point, a tempting way to assign explanatory force to computation is
to simply equate the two and assert that functional analyses are themselves
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computational explanations (and vice versa). This move was implicitly made by the
two original philosophical proponents of computational theories of cognition (Fodor
1968b; Putnam 1967b; more on how this came about and why it’s problematic in
Chapter 5). After that, the mongrel of functional and computational explanation
became entrenched in the philosophy of psychology and neuroscience literature,
where it can be found in many places to various degrees (e.g., Cummins 1975, 1983;
Dennett 1978; Haugeland 1978, Marr 1982; Churchland and Sejnowski 1992;
Eliasmith 2003). According to this view, the functions performed by a system’s
components according to its functional analysis are also mathematical functions
computed by that system. Hence, one can explain the behavior of the system by
appealing to the computations it performs. The virtue of this move is that it assigns
computation (and hence computational theories of cognition) explanatory force. The
vice is that it assigns explanatory force by definitional fiat.
Aside from the desire to assign explanatory force to computation, there is no

independent motivation for calling all functional analyses computational, and all
activities described by functional analysis computations. Functional analysis applies
to many kinds of systems engaged in many kinds of activity, ranging from pumping
blood to generating electricity to digesting food. As we’ll see in Chapter 7, functional
analysis (or, better, mechanistic explanation) applies to what are ordinarily called
computing systems too, for ordinary computing systems engage in a certain type of
activity—computation—in virtue of the functions performed by their components
under normal conditions. For instance, Turing machines perform their computa-
tions in virtue of the activities performed by their active device (whose function is to
write and erase symbols in appropriate ways) on their tape (whose function is to store
symbols). But if we take computation in anything like the sense in which it is used in
computability theory and computer science, we must conclude that most functional
analyses do not ascribe computations to the systems they analyze.
If we like, we may start calling every function of every functionally analyzed system

a computation. As a result, computation will acquire explanatory force by piggy-
backing on the explanatory force of functional analysis. But this also turns every
system that is subject to functional analysis into a computing system. Functional
analysis applies to artifacts, organisms, and their components, including stomachs
and other paradigmatic examples of non-computing systems. This way of ascribing
computations is too liberal to be directly relevant to computer science and cognitive
science in the sense of using genuine computation (as opposed to a system’s
functions) to explain behavior. So appealing to functional analysis is a step in the
right direction—the direction of an adequate account of computational explanation.
But in order to be relevant to the sciences of computation, computational explanation
cannot be equated with functional analysis—it must be restricted further.8

8 To solve this problem, Bontly proposes to conjoin the approach to computational explanation based
on functional analysis with a semantic account of computation (1998: 570). His proposal is ingenious but
suffers from the limitations of semantic accounts, which I discussed in Chapter 3.
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In Chapter 7 I will argue that computational explanation is a special form of
functional analysis (or better, mechanistic explanation), which applies only to sys-
tems with special functional and structural properties. When this is done, we will
finally have an adequate account of computational explanation, which will reinforce
our rejection of pancomputationalism.

9. Leaving Pancomputationalism Behind

There are many ways to describe a system computationally. Different computational
descriptions carry different ontological implications about whether the system itself
performs computations. And the assertion that everything is describable as a com-
puting system takes a different significance depending on which kind of computa-
tional description is at stake.

Most computational descriptions are forms of computational modeling, in which
the computations are performed by the model in order to generate representations of
the modeled system at subsequent times. Computational models need not ascribe
computations to the systems they model, and a fortiori they need not explain their
behavior by postulating computations internal to the systems they model. Even so,
the claim that everything is describable by a computational model is only true in the
most trivial sense. For computational models are approximate. If we care how good
our approximations are—and if our models are to serve our scientific purposes, we’d
better care—then whether something has a computational description depends on
whether it can be computationally approximated to the degree of accuracy that is
desired in a given case.

Some computational descriptions, however, ascribe computations to the systems
themselves and are explanatory. They describe systems as rule-following, rather than
merely rule-governed, because they explain the behavior of the systems by appealing
to the rule they normally follow in generating their outputs from their inputs (and
perhaps their internal states). This kind of computational description is suited to
formulating genuinely explanatory theories of rule-following systems, and it applies
only to very select systems, which manipulate special sorts of input and output in
special sorts of way. As we shall see in more detail in Chapter 7, it is far from true that
everything is a computing system in this sense.

Given all this, different sources of evidence need to be used to support different
versions of the claim that something is a computing system, and the version that is
relevant to computer science and cognitive science turns out to be empirical in
nature. This is an important conclusion, because naturalistically inclined philo-
sophers should prefer to settle computational theories of cognition empirically rather
than a priori. Whether something is a computing system properly so called turns
out to depend on whether it has certain mechanistic—i.e., structural as well as
functional—properties.
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As to the thesis that everything is a computing system, it turns out to be motivated
by a superficial understanding of the role of computation in modeling. Once pan-
computationalism is made more precise, it loses both plausibility and relevance to
computer science and cognitive science. Given that, I will leave pancomputationalism
behind and turn to the relation between functional analysis and mechanistic explan-
ation. This will take us another step closer to the mechanistic account of computation.
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5

From Functional Analysis to
Mechanistic Explanation

1. Is Computational Explanation the same
as Functional Analysis?

In previous chapters, I argued that traditional accounts of computation are inad-
equate vis-à-vis the desiderata laid out in Chapter 1. In this chapter, I will dig deeper
into why they fail desideratum 2: computational explanation.1 Insofar as traditional
accounts attempt to capture computational explanation, they usually rely on func-
tional analysis. The view is that functional analysis is a kind of explanation that is
distinct and autonomous from mechanistic explanation and that functional analysis
ascribes computations to a system (Fodor 1965, 1968b; Cummins 1983, 2000).
Therefore, computational explanation is the same as functional analysis. Variants
of this view differ on how to construe functional analysis or how widely it applies,
but the core idea is the same.

I will argue that this traditional account of computational explanation is incorrect.
One reason is that, as I pointed out in Section 8 of the previous chapter, not all
functional analyses ascribe computations to the systems they analyze. Therefore,
computational explanation is not functional analysis simpliciter but, at most, a
special kind of it. To explain what distinguishes computational explanation from
functional analysis (or, better, mechanistic explanation) more generally will be the
burden of Chapter 7. Before we get to that, I need to examine the relation between
functional analysis and mechanistic explanation (this chapter) and flesh out the
relevant notion of mechanism (next chapter). As it turns out, a second flaw in the
traditional account of computational explanation based on functional analysis is that
it misconstrues the relation between functional analysis and mechanistic explanation.

Functional analysis and mechanistic explanation should not be confused with run-
of-the-mill causal explanation. When we explain the behavior of a system, our
explanation typically makes reference to causes that precede the behavior and
make a difference to whether and how it occurs. For instance, we explain that

1 This chapter is heavily indebted to Piccinini and Craver 2011, so Carl Craver deserves partial credit for
most of what is correct here.



Anna ducked because she saw a looming ball. This is ordinary causal explanation,
and it’s not what I’m talking about.
By contrast, when scientists explain capacities such as stereopsis or working

memory, they typically do so by showing that these complex capacities are made
up of more basic capacities organized together. I focus exclusively on the latter sort of
explanation, which is traditionally referred to as functional analysis.
I will argue that functional analyses, far from being distinct and autonomous from

mechanistic explanations, are sketches of mechanisms, in which some structural
aspects of a mechanistic explanation are omitted. Once the missing aspects are filled
in, a functional analysis turns into a full-blown mechanistic explanation at one level
of organization. By this process, functional analyses are seamlessly integrated with
multilevel mechanistic explanations.
Caveat: I am not defending reductionism.2 Instead, I am defending the integration

of explanations at different mechanistic levels—explanatory unification is achieved
through the integration of findings from different levels into a description of multi-
level mechanisms.
In the next two sections, I discuss how functional analysis and computational

explanation ended up being conflated in the literature and begin to disentangle
the two. In the following section, I outline the received view that functional analysis
is distinct and autonomous from mechanistic explanation. After that, Section 5
sketches the basic elements of mechanistic explanation, emphasizing that functional
properties are an integral part of mechanisms. Sections 6–8 discuss the three main
types of functional analysis, arguing that each is a sketch of a mechanism.

2. Psychological Theories as Functional Analyses

According to Fodor (1965), psychological theories are developed in two logically
distinct phases. Fodor calls phase one theories functional analyses and phase two
theoriesmechanical analyses. Fodor explicates the distinction between functional and
mechanical analysis by the example of internal combustion engines. Functional
analysis identifies the functions of engine parts, namely their contribution to the
activities of the whole engine. For an internal combustion engine to generate motive
power, fuel must enter the cylinders, where it detonates and drives the cylinders. In
order to regulate the flux of fuel into the cylinders, functional analysis says there must
be valves that are opened by valve lifters. Valve lifters contribute to the activities of
the engine by lifting valves that let fuel into the cylinders.

2 I do endorse reductionism in the sense that every concrete thing is made out of physical components
and the organized activities of a system’s components explain the activities of the whole. Setting aside
dualism and spooky versions of emergentism, I take these theses to be uncontroversial. But my rejection of
the autonomy of functional analysis is not reductionism as usually understood, which entails the rejection
of multiple realizability. I offer an account of multiple realizability within a mechanistic framework in
Piccinini and Maley 2014.
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Given a functional analysis of an engine, mechanical analysis identifies physical
structures that correspond to the functional analysis of the engine. In certain engines,
camshafts are identified as physical structures that function as valve lifters, although
in other engines the same function may be performed by other physical structures. By
the same token, according to Fodor, phase one psychological theories identify
psychological functions (functional analysis), whereas phase two psychological the-
ories identify physiological structures that perform those functions (mechanical
analysis). From his notion of functional analysis as explicated by his example of
engines, Fodor infers that psychological theories have indefinitely many realizations
or “models:” that is, different mechanisms can realize a given functional analysis
(Fodor 1965, 174–5).

Fodor also argues that the relationship between phase one (functional analysis)
and phase two (mechanical analysis) psychological theories is not a relation of
reductive “microanalysis” in the sense of Oppenheim and Putnam 1958, in which
there is a type-type correspondence between the predicates of the two descriptions
(Fodor 1965, 177).

Fodor points out that his analysis of psychological theories has “a particular
indebtedness” to a book by psychologist J. A. Deutsch (1960) and to an article by
Hilary Putnam (1960) (Fodor 1965, 161). The Deutsch acknowledgment is straight-
forward enough because Fodor’s account follows quite closely the account of psy-
chological theories proposed by Deutsch, who also infers that there is a “theoretically
infinite variety of counterparts” of any type of mechanism postulated by phase one
psychological theories (Deutsch 1960, 13).

The Putnam acknowledgment is revealing. In his article, Putnam (1960) proposes
an analogy between psychological states and Turing machine (TM) states. Prima
facie, Fodor could have proposed his analysis of psychological theories independently
of Putnam’s. On one hand, TMs are individuated by a finite number of internal state
types and what state transitions must occur under what conditions, regardless of
what component types must make up the system that realizes the TM or what their
functions must be. On the other hand, functional analyses—based on Fodor’s
examples and Deutsch’s formulation—are specifications of mechanism types, con-
sisting of different component types and their assigned functions without specifying
the precise state types and state transitions that must occur within the analyzed
system. A functional analysis of an engine does not come in the form of a TM table,
nor is it obvious how it could be turned into a TM table or whether turning it into a
TM table would have any value for explaining the functioning of the engine. TM
tables can be analyzed into subroutines, and subroutines can be analyzed into
sequences of elementary operations, but this is not a functional analysis in Deutsch’s
sense. Even the fact that both TM tables and functional analyses can be multiply
realized seems to originate from different reasons. A functional analysis can be
multiply realized because systems with different physical properties can perform
the same concrete function (e.g., generate motive power), whereas a TM table can be
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multiply realized because systems with different physical properties, no matter what
functions they perform, can realize the same abstractly specified state transitions. At
the very least, the thesis that the two are related requires analysis and argument. So,
prima facie there is little reason to think that giving a functional analysis of a system
is equivalent to describing that system by using a TM table. In fact, neither Fodor nor
his predecessor Deutsch mention computers or TMs, nor do they infer, from the fact
that psychological descriptions are functional analyses, that either the mind or the
brain is a TM.
Nevertheless, when Fodor describes phase one psychological theories in general,

he departs from his example of the engine and from Deutsch’s view. Fodor describes
psychological functional analyses as postulations of internal states, i.e., as descrip-
tions that closely resembled TM descriptions: “Phase one explanations purport to
account for behavior in terms of internal states” (Fodor 1965, 173). This way of
describing functional analyses was clearly under the influence of Putnam’s 1960
analogy between minds and TMs. In a subsequent book, where Fodor repeats his
two-phase analysis of psychological theories, he explicitly attributes his formulation
of phase one psychological theories to Putnam’s 1960 analogy (Fodor 1968a, 109). In
his 1965 article, however, Fodor does not discuss TMs explicitly, nor does he explain
how his formulation of phase one psychological theories in terms of states squares
with his example of the engine.
Thus, Fodor (1965) introduced in the literature both the notion that psychological

theories are functional analyses and the notion that functional analyses are like TM
tables in that they are descriptions of transitions between state types. Both themes
became very influential in the philosophy of psychology.

3. Functional Analysis and Explanation by
Program Execution

Fodor’s 1965 description of phase one psychological theories as having the same
form as TM tables paved the way for the later identification of psychological
functional analysis and computational explanation. In a paper published a few
years later (Fodor 1968b), Fodor repeats his view, already present in Fodor 1965,
that psychological theories provide descriptions of psychological functions.
But this time, he adds that psychological theories are canonically expressed as lists

of instructions: “the paradigmatic psychological theory is a list of instructions for
producing behavior” (Fodor 1968b, 630). Although this flies in the face of the history
of psychology, which is full of illustrious theories that are not formulated as lists of
instructions (e.g., Freud’s psychoanalysis, or Skinner’s behaviorism), Fodor does not
offer evidence for this statement.3 Fodor says that each instruction in a psychological

3 At the time of Fodor’s writing, though, some psychologists did propose such a view of psychological
theories (Miller, Galanter, and Pribram, 1960), and at least according to Gilbert Harman (personal
correspondence), their work influenced Fodor.
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theory can be further analyzed in terms of a list of instructions, which can also be
analyzed in the same way. This does not lead to infinite regress because for any
organism, there is a finite list of elementary instructions in terms of which all
psychological theories for that organism must ultimately be analyzed. This type of
explanation of behavior, based on lists of instructions, is explicitly modeled by Fodor
on the relationship between computers, computer programs, and the elementary
instructions in terms of which programs are ultimately formulated.4

Of course, the thesis that functional analysis is the same as explanation by program
execution does not entail by itself that minds are programs, nor does Fodor suggest
that it does. The mind would be a program only if all psychological capacities, states,
and processes could be correctly and completely explained by appeal to program
execution. For Fodor, whether this is the case is presumably an empirical question.
Still, Fodor’s paper firmly inserted into the philosophical literature a thesis that begs
the question of whether all psychological capacities can be explained by program
execution: the thesis that psychological theories are canonically formulated as lists of
instructions for producing behavior. This left no room for alternative explanations to
be considered. In particular, the general type of functional analysis identified by
Deutsch (1960), which explained mental capacities by postulating types of compo-
nents and their functions, was transformed, through Fodor’s 1965 reinterpretation,
into a kind of computational explanation. After that, the mongrel of functional
analyses and computational explanation remained in the literature, where there are
many statements to the effect that psychological theories are functional analyses, and
that psychological functional analyses (or sometimes all functional analyses) are
computational explanations.5 In later chapters we shall see that, on the contrary,
only very specialized kinds of mechanistic explanations are computational. But first
we need to see that functional analyses are mechanism sketches.

4. The Received View: Functional Analysis as Distinct
and Autonomous from Mechanistic Explanation

As we’ve seen, there is consensus that many high level phenomena, such as psycho-
logical capacities, are explained by functional analysis. Functional analysis is the

4 Notice that although computer programs replace TM tables in Fodor’s account of functional analysis,
there are important differences between these two types of description (cf. Chap. 11).

5 For example, similar conflations can be found in works by Dennett (1975, 1978); Cummins (1975,
1983); Marr (1982); and Churchland and Sejnowski (1992). Even Harman, who criticizes Fodor and
Putnam’s construal of functional analysis, follows their lead in this respect. Harman calls Fodor’s
explanations by functional analysis narrow because they attempted to explain an organism only in terms
of its internal states, inputs, and outputs, without reference to how the system interacts with its environ-
ment. Harman argues that a complete explanation of an organism requires a wide functional story, i.e., a
story that takes into account the relations between the organism and its environment. Nevertheless, even
Harman identifies the narrow functional story about an organism with the description of the organism by a
program (Harman 1988, esp. 240–1).

78 FROM FUNCTIONAL ANALYSIS TO MECHANISTIC EXPLANATION



analysis of a capacity in terms of the functional properties (sub-capacities, functions)
of a system and their organization. Three main types of functional analysis may be
distinguished, depending on which functional properties they invoke. One type is
task analysis: the decomposition of a capacity into sub-capacities and their organ-
ization (Cummins 1975, 1983, 2000; cf. also Fodor 1968b and Dennett 1978).
A second type is functional analysis by internal states: an account of how a capacity
is produced in terms of a set of internal states and their mutual interaction (Fodor
1965, 1968b; Stich 1983; cf. also Putnam 1960, 1967a, b). A third type is boxology: the
decomposition of a system into a set of functionally individuated components (black
boxes), the processes they go through, and their organization (Fodor 1965, 1968b,
1983). Like task analysis, boxology involves decomposing a system’s capacities into
sub-capacities, but it but also involves decomposing the system into subsystems that
perform its sub-capacities; by contrast, task analysis may attribute the sub-capacities
to the system itself without decomposing it into subsystems.
I focus on these three types of functional analysis because they figure prominently

in the literature. I will address each kind of functional analysis separately and argue
that each amounts to a mechanism sketch. If there are yet other types of functional
analysis, the present argument can be extended to cover them. For I will argue that a
complete constitutive explanation of a phenomenon in terms of functional properties
must respect constraints imposed by the structures that possess those functional
properties—that is, it requires fitting the functional properties within a mechanism.
The received view of the relationship between functional analysis and mechanistic

explanation may be summarized as follows:

Distinctness: Functional analysis and mechanistic explanation are distinct kinds
of explanation.

Autonomy: Functional analysis and mechanistic explanation are autonomous
from one another.

One way to see that proponents of the received view endorse distinctness is that they
often claim that a complete explanation of a capacity includes both a functional
analysis and a matching mechanistic explanation.6 This presupposes that functional
analyses are distinct from mechanistic explanation.
Distinctness is defended in slightly different ways depending on which form of

functional analysis is at issue. With respect to task analysis, distinctness has been
defended as follows. Unlike mechanistic explanation, which attributes sub-capacities

6 E.g.:

Explanation in psychology consists of a functional analysis and a mechanistic analysis: a
phase one theory and a determination of which model of the theory the nervous system of
the organism represents (Fodor 1965, 177).

Functional and mechanistic explanations must be matched to have a complete explanation
of a capacity (Cummins 1983, 31).
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to the components of a mechanism, task analysis need not attribute sub-capacities to
the components of the system because the sub-capacities may all belong to the whole
system.7

While talking about components simplicitermay be enough to distinguish between
task analysis and mechanistic explanation, it is insufficient to distinguish between
functional analysis in general and mechanistic explanation. This is because some
functional analyses—specifically, functional analyses that appeal to black boxes—do
appeal to components, although such components are supposed to be individuated
purely functionally, by what they do. To avoid ambiguity, I use the term functional
components for components as individuated by their functional properties and
structural components for components as individuated at least in part by their
structural properties.

Paradigmatic structural properties include the size, shape, location, and orienta-
tion of extended objects. Anatomists tend to study structures in this sense, as do x-ray
crystallographers. Paradigmatic functional properties include being a neurotransmit-
ter, encoding an episodic memory, or generating shape from shading. Physiologists
tend to study function. Nothing in the present argument turns on there being a
metaphysically fundamental divide between functional and structural properties;
indeed, if I am right, we cannot characterize functions without committing ourselves
to structures and vice versa.

Those who think of functional analysis in terms of internal states and boxology
defend distinctness on the grounds that internal states or black boxes are individu-
ated solely by their functional relations with each other as well as with inputs and
outputs, and not by their structural properties. While mechanistic explanation
appeals to the structural features of the components of the mechanism, functional
analysis allegedly does not.8

Distinctness is a necessary condition for autonomy: if functional analysis is a kind
of mechanistic explanation, as I argue, then functional analysis cannot be autono-
mous from mechanistic explanation. But distinctness is not sufficient for autonomy:
two explanations may be distinct from each other and yet mutually dependent.
Nevertheless, those who endorse distinctness typically endorse autonomy as well—

7 Cf. Cummins:

Form-function correlation is certainly absent in many cases . . . and it is therefore important
to keep functional analysis and componential analysis [i.e., mechanistic explanation]
conceptually distinct. Componential analysis of computers, and probably brains, will
typically yield components with capacities that do not figure in the analysis of capacities
of the whole system (Cummins 1983, 2000, 125).

8 Cf. Fodor:

If I speak of a device as a “camshaft,” I am implicitly identifying it by reference to its
physical structure, and so I am committed to the view that it exhibits a characteristic and
specifiable decomposition into physical parts. But if I speak of the device as a “valve lifter,”
I am identifying it by reference to its function and I therefore undertake no such commit-
ment (Fodor 1968b, 113).
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in fact, I suspect that defending autonomy is the primary motivation for endorsing
distinctness.9

What is autonomy (in the relevant sense)? There are many kinds of autonomy.
One scientific enterprise may be called autonomous from another if the former can
choose (i) which phenomena to explain, (ii) which observational and experimental
techniques to use, (iii) which vocabulary to adopt, and (iv) the precise way in which
evidence from the other field constrains its explanations. The term ‘autonomy’ is
sometimes used for one or more of the above (e.g., Aizawa and Gillett ms. argue that
psychology is autonomous from neuroscience in sense (iv)). I have no issue with
these forms of autonomy. Higher level sciences may well be autonomous from lower
level sciences in these four ways.
In another sense, a scientific explanation may be said to be autonomous from

another just in case the former refers to properties that are distinct from and
irreducible to the properties referred to by the latter. This form of autonomy is
sometimes claimed to obtain between psychology and neuroscience. For instance,
psychological properties are sometimes claimed to be distinct from and irreducible to
the neural properties that realize them.
This latter form of autonomy thesis suggests that properties are stacked into levels

of being. It is not clear how levels of being can be distinct from one another without
being ontologically redundant (Kim 1992; Heil 2003). Doing justice to this topic
would take us beyond the scope of this Chapter and is mostly orthogonal to our topic.
My solution is that higher level properties are proper subsets of the lower level
properties that realize them (Piccinini and Maley 2014). If so, then higher level
properties are neither identical and reducible to lower level properties nor fully
distinct from lower level properties. Properties at different mechanistic levels
stand in the superset-subset relation; therefore, they are not ontologically autono-
mous from one another.
In yet another sense, autonomy may be said to obtain between either laws or

theories when they are irreducible to one another (cf. Fodor 1997, 149; Block 1997),
regardless of whether such laws or theories refer to ontologically distinct levels of
being. As I pointed out before, I am not defending reductionism. Nevertheless,
I reject this kind of autonomy. The dichotomy between reduction and autonomy is

9 E.g.:

The conventional wisdom in the philosophy of mind is that psychological states are
functional and the laws and theories that figure in psychological explanations are autono-
mous (Fodor 1997, 149).

Why . . . should not the kind predicates of the special sciences cross-classify the physical
natural kinds? (Fodor 1975, 25; see also Fodor 1997, 161–2).

We could be made of Swiss cheese and it wouldn’t matter (Putnam 1975b, 291).

It is worth noting that Fodor’s writings on psychological explanation from the 1960s were less sanguine
about autonomy than his later writings, although he was already defending distinctness (cf. Aizawa and
Gillett ms.).
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a false one. Neither psychology nor neuroscience discovers the kind of law or theory
for which talk of reduction makes the most sense (cf. Cummins 2000). What they do
discover are aspects of mechanisms to be combined in full-blown multilevel mech-
anistic explanations. Therefore, I reject autonomy as irreducibility of laws or theories
in favor not of reduction but of explanatory integration.

A final kind of autonomy thesis maintains that two explanations are autonomous
just in case there are no direct constraints between them. Specifically, some authors
maintain that the functional analysis and the mechanistic explanation of one and the
same phenomenon put no direct constraints on each other.10 While proponents of
this kind of autonomy are not very explicit in what they mean by “direct constraints,”
the following seems to capture their usage: a functional analysis directly constrains
a mechanistic explanation if and only if the functional properties described by a
functional analysis restrict the range of structural components and component
organizations that can exhibit those capacities; a mechanistic explanation directly
constrains a functional analysis if and only if the structural components and com-
ponent organization described by the mechanistic explanation restrict the range of
functional properties exhibited by those components thus organized.

Of course, every participant in this debate agrees on one important (if obvious)
indirect constraint: the mechanism postulated by a true mechanistic explanation
must realize the functional system postulated by a true functional analysis.11 Aside
from that, autonomists suggest that the two explanatory enterprises proceed inde-
pendently of one another. As this no-direct-constraints kind of autonomy is generally
interpreted, it entails or at least strongly suggests that those who are engaged in

10 E.g.:

Phase one explanations [i.e., functional analyses by internal states] purport to account for
behaviour in terms of internal states, but they give no information whatever about the
mechanisms underlying these states (Fodor 1965, 173).

[F]unctional analysis puts very indirect constraints on componential analysis (Cummins
1983, 29; 2000, 126).

While these specific statements by Cummins and Fodor suggest the autonomy of mechanistic explanation
from functional analysis rather than the converse, the rest of what they write makes clear that they also
maintain that functional analysis is autonomous from mechanistic explanation. For an even stronger
formulation of the “no constraint principle” that is pervasive in the literature on functional analysis, see
Aizawa and Gillett ms.

11 Cf. Cummins:

Ultimately, of course, a complete theory for a capacity must exhibit the details of the target
capacity’s realization in the system (or system type) that has it. Functional analysis of a
capacity must eventually terminate in dispositions whose realizations are explicable via
analysis of the target system. Failing this, we have no reason to suppose we have analyzed
the capacity as it is realized in that system (Cummins 1983, 31; 2000, 126).

Although I along with every other participant in this debate assume that functional systems are realized by
mechanisms, some dualists disagree; they maintain that a functional system may be a non-physical, non-
mechanistically-implemented system. I disregard this possibility on the usual grounds of causal closure of
the physical and lack of an adequate account of the interaction between physical and non-physical
properties. In any case, dualism is not my present target.
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functional analysis need not know or pay attention to which mechanisms are present
in the system; by the same token, those who are engaged in mechanistic explanation
need not know or pay attention to how a system is functionally analyzed. For
instance, according to this kind of autonomy, psychologists and neuroscientists
need not pay attention to what the other group is doing—except that, in the end,
of course, their explanations ought to match.
The assumption of autonomy as lack of direct constraints is appealing. It neatly

divides the explanatory labor along traditional disciplinary lines and thus relieves
members of each discipline of learning overly much about the other discipline. On
one hand, psychologists are given the task of uncovering the functional organization
of the mind without worrying about what neuroscientists do. On the other hand,
neuroscientists are given the task of discovering neural mechanisms without having
to think too hard about how the mind works. Everybody can do their job without
getting in each other’s way. Someday, if everything goes right, the functional analyses
discovered by psychologists will turn out to be realized by the neural mechanisms
discovered by neuroscientists. And yet, according to this autonomy thesis, neither the
functional properties nor the structures place direct constraints on one another.
A number of philosophers have resisted autonomy understood as lack of direct

constraints. Sometimes defenders of mechanistic explanation maintain that func-
tional analysis—or “functional decomposition,” as Bechtel and Richardson call it—is
just a step towards mechanistic explanation (Bechtel and Richardson 1993, 89–90;
Bechtel 2008, 136; Feest 2003). Furthermore, many argue that explanations at
different mechanistic levels directly constrain one another (Bechtel and Mundale
1999: P.S. Churchland 1986; Craver 2007; Feest 2003; Keeley 2000; Shapiro 2004).
I agree with both of these points. But they do not go deep enough. The same

authors who question autonomy seem to underestimate the role that distinctness
plays in defenses of autonomy. Sometimes proponents of mechanistic explanation
even vaguely hint or assume that functional analysis is the same as mechanistic
explanation (e.g., Bechtel 2008, 140; Feest 2003; Glennan 2005), but they don’t
articulate and defend that thesis. So long as distinctness remains in place, defenders
of autonomy have room to resist the mechanists’ objections. Autonomists may insist
that functional analysis, properly so called, is autonomous from mechanistic explan-
ation after all. By arguing that functional analysis is actually a kind of mechanistic
explanation, we get closer to the bottom of this dialectic. Functional analysis cannot
be autonomous from mechanistic explanation because the former is just an elliptical
form of the latter.
In the rest of this chapter, I argue—along with others—that functional analysis and

mechanistic explanation are not autonomous because they constrain each other; in
addition, I argue that they can’t possibly be autonomous in this sense because
functional analysis is just a kind of mechanistic explanation. Functional properties
are an undetachable aspect of mechanistic explanations. Any given explanatory text
might accentuate the functional properties at the expense of the structural properties,
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but this is a difference of emphasis rather than difference in kind. The target of the
description in each case is a mechanism.

In the next section, I briefly introduce the contemporary notion of mechanistic
explanation and show that mechanistic explanation is rich enough to incorporate the
kinds of functional properties postulated by functional analysis. In subsequent
sections I argue that each kind of functional analysis is a mechanism sketch—an
elliptical description of a mechanism.

5. Mechanistic Explanation

Mechanistic explanation is the explanation of the capacities (functions, behaviors,
activities) of a system as a whole in terms of some of its components, their properties
and capacities (including their functions, behaviors, or activities), and the way they
are organized together (Bechtel and Richardson 1993; Machamer, Darden, and
Craver 2000, Glennan 2002). Components have both functional properties—their
activities or manifestations of their causal powers, dispositions, or capacities—and
structural properties—including their location, shape, orientation, and the organiza-
tion of their sub-components. Both functional and structural properties of compo-
nents are aspects of mechanistic explanation.

Mechanistic explanation has also been called “system analysis,” “componential
analysis” (Cummins 1983, 28–9; 2000, 126), and “mechanistic analysis” (Fodor
1965). Constructing a mechanistic explanation requires decomposing the capacities
of the whole mechanism into subcapacities (Bechtel and Richardson 1993). This is
similar to task analysis, except that the subcapacities are assigned to structural
components of a mechanism. The term “structural” does not imply that the compo-
nents involved are neatly spatially localizable, have only one function, are stable and
unchanging, or lack complex or dynamic feedback relations with other components.
Indeed, a structural component might be so distributed and diffuse as to defy tidy
structural description, though it no doubt has one if we had the time, knowledge, and
patience to formulate it.

Mechanistic explanation relies on the identification of relevant components in the
target mechanism (Craver 2007). Components are sometimes identified by their
structural properties. For instance, some anatomical techniques are used to charac-
terize different parts of the nervous system on the basis of the different kinds of
neurons they contain and how such neurons are connected to one another. Brod-
mann decomposed the cortex into distinct structural regions by characterizing cyto-
architectonic differences in different layers of the cortical parenchyma. Geneticists
characterize the primary sequence of a gene. Such investigations are primarily
directed at uncovering structural features rather than functional ones.

But anatomy alone cannot yield a mechanistic explanation—mechanistic explan-
ation requires identifying the functional properties of the components. For example,
case studies of brain-damaged patients and functional magnetic resonance imaging
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are used to identify regions in the brain that contribute to the performance of some
cognitive tasks. Such methods are crucial in part because they help to identify regions
of the brain in which relevant structures for different cognitive functions might be
found. They are also crucial to assigning functions to the different components of the
mechanism. Each of these discoveries is a kind of progress in the search for neural
mechanisms.
Functional properties are specified in terms of effects on some medium or com-

ponent under certain conditions. Different structures and structure configurations
have different functional properties. As a consequence, the presence of certain
functional properties within a mechanism constrains the possible structures and
configurations that might exhibit those properties. Likewise, the presence of certain
structures and configurations within a mechanism constrains the possible functions
that might be exhibited by those structures and configurations.
Mechanistic explanation is iterative in the sense that the functional properties

(functions, capacities, activities) of components can also often be mechanistically
explained. Each iteration in such decomposition adds another level of mechanisms to
the mechanistic articulation of a system, with levels arranged in component/sub-
component relationships and ultimately (if ever) bottoming out in components
whose behavior has no mechanistic explanation.
Descriptions of mechanisms—mechanism schemas (Machamer, Darden, and

Craver 2000) or models (Glennan 2005; Craver 2006)—can be more or less complete
at one or more levels of organization. Incomplete models—with gaps, question-
marks, filler-terms, or hand-waving boxes and arrows—are mechanism sketches.
Mechanism sketches are incomplete because they leave out crucial details about how
the mechanism works. Sometimes a sketch provides just the right amount of
explanatory information for a given context (classroom, courtroom, lab meeting,
etc.). Furthermore, sketches are often useful guides to the future development of a
mechanistic explanation. Yet there remains a sense in which mechanism sketches are
incomplete or elliptical.
The common crux of mechanistic explanation, both in its current form and in

forms stretching back through Descartes to Aristotle, is to reveal the causal structure
of a system. Explanatory models are evaluated as good or bad to the extent that they
capture, even dimly at times, aspects of that causal structure. The present argument is
that the motivations guiding prominent accounts of functional analysis commit its
defenders to precisely the same norms of explanation that mechanists embrace.

6. Task Analysis

A task analysis breaks a capacity of a system into a set of sub-capacities and specifies
how the sub-capacities are (or may be) organized to yield the capacity to be
explained. Cummins calls the specification of the way sub-capacities are organized
into capacities a “program” or “flow-chart” (Cummins 1975, 1983, 2000), which is an
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instance of the conflation of functional analysis and computational explanation that
I discussed earlier in Section 3. The organization of capacities may also be specified
by, say, a system of differential equations linking variables representing various sub-
capacities. What matters is that one specifies how the various sub-capacities are
combined or interact so that they give rise to the capacity of the system as whole.

Cummins remains explicitly ambiguous about whether the analyzing sub-
capacities are assigned to the whole mechanism or to its components. The reason
is that at least in some cases, the functional analysis of a capacity “seems to put no
constraints at all on . . . componential analysis [i.e., mechanistic explanation]” (1983,
30). I discuss the different types of functional analysis separately. First, “functional
analyses” that assign sub-capacities to structural components are mechanistic
explanations (Craver 2001). Second, functional analyses that assign sub-capacities
to functional components (black boxes) are boxological models (see Section 8).
Finally, functional analyses that assign sub-capacities to the whole system rather
than its components are task analyses. Cummins’ examples of capacities subject to
task analysis are assembly line production, multiplication, and cooking (Cummins
1975, 1983, 2000). Task analysis is the topic of this section.

Task analysis of a capacity is one step in its mechanistic explanation in the sense
that it partitions the phenomenon to be explained into units that correspond to
manifestations of specific causal powers, which are possessed by specific components.
For example, contemporary memory researchers partition semantic memory into
encoding, storage, and retrieval processes, appeal to each of which will be required to
explain performance on any memory task. Contra Cummins, the partition of the
phenomenon places direct constraints on components, their functions, and their
organization. For if a sub-capacity is a genuinely explanatory part of the whole
capacity, as opposed to an arbitrary partition (a mere piece or temporal slice), it
must be exhibited by specific components or specific configurations of components.
Systems have the capacities they have in virtue of their components and organization.

Consider Cummins’s examples: stirring (a sub-capacity needed in cooking) is the
manifestation of (parts of ) the cook’s locomotive system coupled with an appropriate
stirring tool as they are driven by a specific motor program; multiplying single-digit
numbers (a sub-capacity needed in multiplying multiple digit numbers) is the
manifestation of a memorized look-up table in cooperation with other parts of the
cognitive system; and assembly line production requires different machines and
operators with different skills at different stages of production. Likewise, the correct-
ness of the above-mentioned task analysis of memory into encoding, storage, and
retrieval depends on whether there are components that encode, store, and retrieve
memories.

Task analysis is constrained, in turn, by the available components and modes of
organization. If the study of brain mechanisms forces us to lump, split, eliminate, or
otherwise rethink any of these sub-capacities, the functional analysis of memory will
have to change (cf. Craver 2004). If the cook lacks a stirring tool but still manages to
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combine ingredients thoroughly, we should expect that the mixture has been
achieved by other means, such as shaking. If someone doesn’t remember the product
of two single digit numbers, she may have to do successive additions to figure it out.
The moral is that if the components predicted by a given task analysis are not there or
are not functioning properly, you must rule out that task analysis in favor of another
for the case in question (cf. Craver and Darden 2001).
In summary, a task analysis is a mechanism sketch in which the capacity to be

explained is articulated into sub-capacities, and most of the information about
components is omitted. Nevertheless, the sub-capacities do place direct constraints
on which components can engage in those capacities. For each sub-capacity, we
expect a structure or configuration of structures that has that capacity. This guiding
image underlies the very idea that these are explanations, that they reveal the causal
structure of the system. If the connection between analyzing tasks and components is
severed completely, then there is no clear sense in which the analyzing sub-capacities
are aspects of the actual causal structure of the system as opposed to arbitrary
partitions of the system’s capacities or merely possible causal structures. Indeed,
components often call attention to themselves as components only once it is possible
to see them as performing what can be taken as a unified function.
So task analysis specifies sub-capacities to be explained mechanistically, places

direct constraints on the kinds of components and modes of organization that might
be employed in the mechanistic explanation, and is in turn constrained by the
components, functional properties, and kinds of organization that are available.12

At this point, a defender of the distinctness and autonomy of functional analysis
may object that although many task analyses are first-stage mechanistic theories, as
I maintain, the really interesting cases, including the ones most pertinent to cognitive
phenomena, are not. The paradigmatic putative example is the general purpose digital
computer. General purpose digital computers can do an indefinite number of things
depending on how they are programmed. Thus, one might think, a task analysis of a
computer’s capacities places no direct constraints on its structural components and
the structural components place no direct constraints on task analysis, because the

12 This account of task analysis is borne out by the historical evolution of task analysis techniques in
psychology. Psychologists developed several techniques for analyzing complex behavioral tasks and
determine how they can be accomplished efficiently. Over time, these techniques evolved from purely
behavioral techniques, in which the sole purpose is to analyze a task or behavior into a series of operations,
into cognitive task analysis, which also aims at capturing the agents’ cognitive states and their role in
guiding their behaviors. To capture the role of cognitive states, agents ought to be decomposed into their
components (Crandall, Klein and Hoffman 2006, 98). The motivation for such a shift is precisely to capture
more accurately the way agents solve problems. Focusing solely on sequences of operations has proved less
effective than analyzing also the agents’ underlying cognitive systems, including their components. As the
perspective I am defending would predict, task analysis in psychology has evolved from a technique of
behavioral analysis, closer to task analysis as conceived by Cummins, towards a more mechanistic
enterprise.
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components are the same regardless of which capacity a computer exhibits. The only
constraint is indirect: the computer must be general purpose, so it must have general
purpose components. By extension, if the same kind of autonomous task analysis
applies to human behavior, then the type of task analysis with which the received
view is concerned is not a mechanism sketch.

This objection makes an important point but draws the wrong conclusion. True,
general purpose digital computers are different from most other systems precisely
because they can do so many things depending on how they are programmed. But
computers are still mechanisms, and the explanation of their behavior is still mech-
anistic. Furthermore, the task analysis of a general purpose digital computer does
place direct constraints on its mechanistic explanation and vice versa; in fact, even
the task analysis of a general purpose computer is just an elliptical mechanistic
explanation. These theses will be substantiated in detail in Chapter 11. Here is a
quick preview of what’s coming.

To begin with, the explanation of the capacity to execute programs is mechanistic:
a processor executes instructions over data that are fed to it and returns results to
other components (Figure 5.1). In addition, the explanation of any specific compu-
tational capacity the computer has is also mechanistic: the processor executes these
particular instructions, and it is their execution that results in the capacity. Because
the program execution feature is always the same, in many contexts it is appropriate
to omit that part of the explanation. But the result is not a non-mechanistic task
analysis; it is, again, an elliptical one. It is a mechanistic explanation in which most of
the mechanism is left implicit—the only part that is made explicit is the executed
program.

A defender of the received view may reply as follows. Granted, whether a system is
a general purpose computer is a matter of which mechanisms it contains. But if we
can assume that a system is a general purpose digital computer, then we can give task
analyses of its behavior that say nothing about its mechanisms. For when we describe
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the program executed by the computer, we are not describing any components or
aspects of the components.13 We are abstracting away from the mechanisms.
This objection misconstrues the role programs play in the explanation of computer

behavior. There are two cases. First, if a computer is hardwired to perform a certain
computation, the computer’s behavior may still be described by a flow-chart or
program.14 In the case of hardwired computations, it is true that a program is not
a component of the computer. But it is false that the program description is
independent of the description of the machine’s components. In fact, the program
describes precisely the activity of the special purpose circuit that is hardwired to
generate the relevant computation. A circuit is a structural component. Therefore, a
task analysis of a computer that is hardwired to perform a computation is a precise
description of a specific structural component. Incidentally, an analogous point
applies to neural networks that come to implement a task analysis through the
adjustment of weights between nodes.
The second case involves those computers that produce a behavior by executing a

program—that is, by being caused to produce the behavior by the presence of the
program within them. Here, the program itself is a stable state of one or more
computer components. Programs are typically stored in memory components and
sent to processors one instruction at a time. If they weren’t physically present within
computers, digital computers could not execute them and would not generate the
relevant behaviors. Thus programs are a necessary feature of the mechanistic explan-
ation of computers’ behaviors; any task analysis of a computer in terms of its
program is an elliptical mechanistic explanation that provides only the program
and elides the rest of the mechanism (including, typically, the subsidiary programs
that translate high level code into machine executable code).
In addition, a good task analysis of a general purpose digital computer is much

more precise than a simple series of operations. It specifies that the machine takes
two kinds of input (program and data) coded in certain specific ways (say, using high
level programming language Java), performs certain specific manipulations of the
data based on the program, and yields outputs that are also coded in certain specific
ways. Lots of details go into this. The details of the coding, program, and operations
place high level constraints on the structures that can implement such a task analysis.
Then, task analysis can be iterated by analyzing the tasks executed by the operating
system, the assembler, the compiler, and finally the circuits. The machine language
places direct constraints on the circuits by requiring memory registers of a certain
size, specifying which bits they must contain, requiring datapath circuits that per-
form certain operations, etc.

13 Cf. Cummins on programs: “programs aren’t causes but abstract objects or play-by-play accounts”
(Cummins 1983, 34).

14 In these cases, I find it misleading to say, as Cummins and others do, that the computer is executing
the program, because the program is not an entity in its own right that plays a causal role. The same point
applies to computers that are programmed by rearranging the connections between their components.
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A final objection might be that some computational models focus on the flow of
information through a system rather than the mechanisms that process the infor-
mation (cf. Shagrir 2006b, 2010a). In such cases, someone might say, nothing is
added to the explanation by fleshing out the details of how the information is
represented and processed. Certainly, many computational explanations in psych-
ology and neuroscience have this form. My response is that such descriptions of a
system place direct constraints on any structures that can possibly process such
information—on how the different states of the system can be constructed, com-
bined, and manipulated—and are in turn constrained by the structures to be found in
the system. It is, after all, an empirical matter whether the brain has structural
components that satisfy a given informational description, that is, whether the
neuronal structures in question can sustain the information processing that the
model posits (under ecologically and physiologically relevant conditions). If they
cannot, then the model is a false hypothesis—a merely how-possibly model that does
not describe how the system actually works. Computational or informational explan-
ations are still tethered to structural facts about the implementing system. Once we
know the information processing task, we might think that details about how the
information is encoded and manipulated are no longer relevant, and in some
explanatory contexts this is true, but details about how the information is encoded
and manipulated are, in fact, essential to confirm our hypotheses about information
processing.

My reason for thinking that task analysis boils down to (elliptical) mechanistic
explanation can be summarized as follows. Of course, there are many ways of saying
how a system exhibits a capacity—some more detailed than others, some more fine-
grained than others. Sometimes we abstract away from some performance details or
describe only course-grained operations, depending on our explanatory goals. The
usual contextual factors that govern explanation apply to task analysis too. That
being said, the question remains: are these task analyses accurate descriptions of how
the system performs its task? Either there is a correct task analysis for a given system
capacity at a given time or not.

If explanations must be true (allowing for approximations and idealizations in the
explanatory texts), a correct task analysis for a given system capacity amounts to
there being units of activity between inputs and outputs that transform the relevant
inputs and internal states into outputs. In real systems, structural components lie
between the input and the output, and they are organized to exhibit that capacity.
Whether the components satisfy the given task analysis depends on whether the
components include structures that complete each of the tasks. If no such structures
can be identified in the system, then the task analysis must be incorrect.15

15 Lest there be some confusion on this point, I emphasize again that components need not be neatly
localizable, visible, or spatially contained within a well-defined area. Any complex particular with a
robustly detectable configuration of structural properties might count as a component.
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One possible reply is that the components that satisfy a task analysis may be purely
functional components, individuated by what they do rather than by their structural
properties. I will address this idea later in this chapter in Section 8.
Another possible reply is that there is no unique correct task analysis for a given

system behavior (at a given level of detail or grain). Cummins sometimes seems to
embrace this view (see Cummins 1983, 43). Perhaps my critic maintains that the
beauty of functional analysis is that it allows us to rise above the gory details, details
that often vary from species to species, individual to individual, and time to time, and
thereby to “capture” features of the causal structure of the system that are invisible
when we focus on the microstructural details. She might think that any model that
describes correctly and compactly the behavior of the system is equally explanatory
of the system’s behavior. Or she might think that higher-level descriptions can render
the phenomenon intelligible even when they do not have any tidy echo in micro-
structural details.
I agree that models can be predictively adequate and intellectually satisfying even

when they fail to describe mechanisms. My opponent, however, maintains that
predictive adequacy and/or intelligibility are enough for explanation. But this view
of explanation is untenable. Neither predictive adequacy nor intelligibility is suffi-
cient for explanation. We can predict an empty gas tank without knowing how
it came to be empty. And anyone who has ever misunderstood how something
works is familiar with the idea that intelligible explanations can be terrible explan-
ations. Some explanations make phenomena intelligible, but not all intelligible
models are explanatory. In short, to give up on the idea that there is a uniquely
correct explanation, and to allow that any predictively adequate and/or intelligible
model is explanatory, is essentially to give up on the idea that there is something
distinctive about explanatory knowledge. No advocate of functional analysis should
want to give that up.
Either there is a unique correct task analysis, in which case the underlying

mechanism must have structural components corresponding to the sub-tasks in
the analysis, or there is not a unique correct task analysis, in which case task analysis
has been severed from the actual causal structure of the system and does not count as
explanation. In short, either task analysis is an elliptical form of mechanistic explan-
ation or it is no explanation at all.

7. Functional Analysis by Internal States

The capacities of a system, especially cognitive capacities, are sometimes said to be
explained by the system’s internal states (and internal processes, defined as changes
of internal states). Common examples of internal states include propositional atti-
tudes, such as beliefs and desires, and sensations, such as pain. In an important
strand of the philosophy of psychology, internal states are held to be functional states,
namely, states that are individuated by their relations to inputs, outputs, and other

FROM FUNCTIONAL ANALYSIS TO MECHANISTIC EXPLANATION 91



internal states (Putnam 1960, 1967a, b; Fodor 1965, 1968b; Block and Fodor 1972).
Within this tradition, the functional relations between inputs, outputs, and internal
states are said to constitute the functional organization of the system, on which the
functional analysis of the capacities of the system is based.16

This account of mental states as internal functional states has been challenged. But
my concern here is not whether the account is adequate. My concern is, rather, how
functional analysis by internal functional states relates to mechanistic explanation.17

In order to assess functional analysis by internal states, we must ask the further
question: In what sense are such functional states internal?

The notion of state may be taken as primitive or analyzed as the possession of a
property at a time. Either way, in general, there is no obvious sense in which a state of
a system, per se, is internal to the system. For example, consider the distinction
between the solid, liquid, and gaseous states of substances such as water. There is no
interesting sense in which the state of being liquid, solid, or gaseous is internal to
samples of water or any other substance. Of course, the constitutive explanation for
why, at certain temperatures, water is solid, liquid, or gaseous involves the compo-
nents of water (H2O molecules) and their temperature-related state, which, together
with other properties of the molecules (such as their shape), generates the molecular
organization that constitutes the relevant global state of water samples. In this
explanation we find a useful notion of internal state because individual water
molecules are contained within the admittedly imprecise spatial boundaries of
populations of water molecules.

The moral is this: in general, a system’s states (simpliciter) are not internal in any
interesting sense; they are global, system-level states. But there is something inter-
estingly internal to the state of the components of a system, which play a role in
explaining the global state of a system (as well as its behavior). This is because the
components are inside the system. Are the internal states invoked in functional
analysis system-level states or states of components? The qualifier “internal” suggests
the latter.18

16 Although this functionalist account is often said to be neutral between physicalism and dualism, this
is an oversimplification. The internal states interact with the inputs and outputs of the system, which are
physical. Thus, if the internal states were non-physical, they must still be able to interact with the physical
inputs and outputs. This violates the causal closure of the physical and requires an account of the
interaction between physical and non-physical states. So, while a version of functionalism may be defined
to be compatible with dualism, only physicalistic versions of functionalism are metaphysically respectable.

17 Notice that insofar as we are dealing with explanations of cognitive capacities, we are focusing on
states that are internal to the cognitive system, whether or not the system’s boundaries coincide with the
body or nervous system of the organism.

18 In any case, etymology does support my conclusion. Putnam (1960) imported the notion of an
internal state into the philosophy of psychology as part of his analogy between mental states and Turing
machine states. Turing described digital computers as having “internal states” (Turing 1950) that belong to
the read-write head, which is the active component of Turing machines. In the case of digital computers,
internal states are states of an internal component of the computer, such as the memory or processor.
Initially, Putnam did not call states “internal” but “logical” (1960, 1967a), and then he called them
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Here is why the internal states postulated by a functional analysis must be states of
the system’s components. Functional analysis by internal states postulates a system of
multiple states. Such states are capable of interacting with inputs, outputs, and each
other, in order to produce novel states and outputs from previous states and inputs.
Notice three features of these systems. First, it must be possible for many states to
occur at the same time. Second, inputs and outputs enter and exit through specific
components of the system. Third, inputs and outputs are complex configurations of
different physical media, such as light waves, sound waves, chemical substances, and
bodily motions.
The only known way to construct a system of states that can occur at the same time

and mediate between such inputs and outputs is to transduce the different kinds of
input into a common medium, different configurations of which are the different
states (e.g., configurations of letters from the same alphabet or patterns of activation
of mutually connected neurons). For different configurations of the same medium to
exist at the same time and yet be active independently of one another, they must be
possessed by different components.19 The agents in a causal interaction have to be
distinct from one another. Furthermore, such components must be able to create the
relevant configurations of the medium, distinguish between them, and interact with
each other so as to produce the relevant subsequent states and outputs from the
previous states and inputs. Thus, functional analysis by internal states requires that
the states belong to some of the system’s components and constrains the properties of
the components.
A system can surely possess different global states at the same time, e.g., a color, a

speed, and a temperature. Such global states can affect each other as well as the
behavior of the system. For instance, a system’s color influences heat absorption,
which affects temperature, which in turn affects heat dissipation. But global states can
only influence global variables—they cannot mediate between complex configur-
ations of different physical media coming through different input devices and gener-
ate specialized configurations of outputs coming from different output devices. Heat
absorption and dissipation are not complex configurations of a physical medium—
they are global variables themselves. Global variables such as color and temperature
can affect other global variables such as heat absorption and dissipation—they cannot
transform, say, a specific pattern of retinal stimulation into a specific pattern ofmuscle
contractions. Or, at any rate, no one has ever begun to show that they can.

“functional” states (1967b). But Fodor called them “internal” states (1965; cf. also 1968a; Block and Fodor
1972). Via Putnam and Fodor, Turing’s phrase “internal state” has become the established way to talk
about functional states. As we have seen, it originally referred to the states of a component (of a computing
machine).

19 In some neural networks, a pattern of neural activation may be taken to store multiple superposed
representations. Notice how in this case the different representations cannot operate independently of one
another.
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Someone might insist that functional analysis in terms of functional states
makes no reference (directly or indirectly) to components, and so it need not be
a mechanism sketch. The goal of an explanation is to capture in a model how a
system behaves; models need not describe components in order to capture how
a system behaves; models need not describe components in order to explain.

The problem with this view, as with the analogous conception of task analysis
above, is that it confuses explaining with modeling. A resounding lesson of 50 years
of sustained discussion of the nature of scientific explanation is that not all phenom-
enally and predictively adequate models are explanations. We can construct models
that predict phenomena on the basis of their correlations (barometers predict but do
not explain storms), regular temporal successions (national anthems precede but
do not explain kickoffs), and effects (fevers predict but do not explain infections).
Furthermore, there is a fundamental distinction between redescribing a phenomenon
(even in law-like statements) and explaining the phenomenon. Snell’s law predicts
how light will bend as it passes from one medium to another, but it does not explain
why light bends as it does. We might explain that the light bent because it passed
from one medium to another, of course. But that is an etiological explanation of some
light-bending events, not a constitutive explanation of why light bends when it passes
between different media.

Finally, someone can build predictively adequate models that contain arbitrarily
large amounts of superfluous (i.e., nonexplanatory) detail. Explanations are framed
by considerations of explanatory relevance. If functional analysis by internal states is
watered down to the point that it no longer makes any commitments to the behavior
of components, then it is no longer possible to distinguish explanations from merely
predictively adequate models and phenomenal descriptions of the system’s behavior.
Nor does such a modeling strategy tell us how to eliminate irrelevant information
from our explanations—a crucial explanatory endeavor. In short, “explanation” of
this sort is not worthy of the name.

In conclusion, “internal” states either are not really internal, in which case they
constitute a system-level explanandum for a mechanistic explanation, or they are
internal in the sense of being states of components. As we have seen, there are two
ways to think of components. On one hand are structural components. In this case,
functional analysis by internal states is a promissory note on (a sketch of ) a
mechanistic explanation. The analysis postulates states of some structural compo-
nents, to be identified by a full-blown mechanistic explanation.20 On the other hand,
components may also be functionally individuated components or black boxes. (For

20 As we have seen, Fodor says that functional analyses give no information about the mechanism
underlying these states (1965, 177), but, at least, they entail that there are components capable of bearing
those states and capable of affecting each other so as to generate the relevant changes of states:

[I]t is sufficient to disconfirm a functional account of the behaviour of an organism to show
that its nervous system is incapable of assuming states manifesting the functional charac-
teristics that account requires . . . it is clearly good strategy for the psychologist to construct

94 FROM FUNCTIONAL ANALYSIS TO MECHANISTIC EXPLANATION



instance, the read-write head of Turing machines is a paradigmatic example of a
black box.) When components are construed as black boxes, functional analysis by
internal states becomes boxology.

8. Boxology

Black boxes are components individuated by the outputs they produce under certain
input conditions. In this sense, they are functionally individuated components. In
another important strand of the philosophy of psychology, the capacities of a system
are said to be functionally explained by appropriately connected black boxes.
For example, Fodor distinguishes the functional identification of components from
their structural identification (Fodor 1965, 1968a; for a similar distinction, see also
Harman 1988, 235).21 Black boxes are explicitly internal—spatially contained within
the system.
Proponents of boxology appear to believe that capacities can be satisfactorily

explained in terms of black boxes, without identifying the structural components
that implement the black boxes. What proponents of boxology fail to notice is that
functional and structural properties of components are interdependent: both are
necessary, mutually constraining aspects of a mechanistic explanation. On one hand,
the functional properties of a black box constrain the range of structural components
that can exhibit those functional properties. On the other hand, a set of structural
components can only exhibit certain functional properties and not others.
Consider Fodor’s example of the camshaft. Internal combustion engines, Fodor

reminds us, contain valves that let fuel into the pistons. For fuel to be let in, the valves
need to be lifted, and for valves to be lifted, there must be something that lifts the
valves. So here is a job description—valve lifting—that can be used to specify what a
component of an engine must do for the engine to function. It is a functional
description, not a structural one, because it says nothing about the structural
properties of the components that fulfill that function, or how they manage to fulfill
it. There may be indefinitely many ways to lift valves; as long as something does, it
qualifies as a valve lifter. (Hence, multiple realizability.)
What are the components that normally function as valve lifters in internal

combustion engines? Camshafts. This is now a structural description, referring to a
kind of component individuated by its shape and other structural properties. So there

such theories in awareness of the best estimates of what the neurological facts are likely to
be (Fodor 1965, 176).

Some of what Fodor says in his early works on functional analysis is in line with the present argument and
goes against the autonomy assumption that Fodor defended. For simplicity, in the main text I assimilate
Fodor’s early writings to his later (pro-autonomy) writings. In any event, even Fodor’s early writings fall
short of pointing out that functional analyses are mechanism sketches.

21 E.g.: “In functional analysis, one asks about a part of a mechanism what role it plays in the activities
characteristic of the mechanism as a whole” (Fodor 1965, 177).
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are two independent kinds of description, Fodor concludes, in terms of which the
capacities of a system can be explained. Some descriptions are functional and some
are structural. Since Fodor maintains that these descriptions are independent, there is
a kind of explanation—boxology—that is autonomous from structural descriptions.
Functional descriptions belong in boxological models, whereas structural descrip-
tions belong in mechanistic explanations. Or so Fodor maintains. But is it really so?

In the actual “functional analysis” of a mechanism, such as an engine, the
functions are specified in terms of physical effects either on a physical medium or
on other components, both of which are structurally individuated. The functional
term “valve lifter” contains two terms. The first, “valve,” refers to a kind of compo-
nent, whereas the second, “lifter,” refers to a capacity. Neither of these is independent
of structural considerations. Lifting is a physical activity: for x to lift y, xmust exert an
appropriate physical force on y in the relevant direction. The notion of valve is both
functional and structural. In this context, the relevant sense is at least partially
structural, for nothing could be a valve in the sense relevant to valve lifting unless
it had weight that needs to be lifted for it to act as a valve. As a consequence, the
“valve lifter” job description puts three mechanistic constraints on explanation: first,
there must be valves (a type of structural component) to be lifted; second, lifting
(a type of structurally individuated capacity) must be exerted on the valves; and third,
there must be valve lifters (another type of component) to do the lifting. For
something to be a valve lifter in the relevant respect, it must be able to exert an
appropriate physical force on a component with certain structural characteristics in
the relevant direction. This is not to say that only camshafts can act as valve lifters.
Multiple realizability stands. But it is to say that all valve lifters suitable to be used in
an internal combustion engine share certain structural properties with camshafts.

This point generalizes. There is no such thing as a purely functional analysis of the
capacity of an engine to generate motive power. Any attempt to specify the nature of
a component purely functionally, in terms of what it is for, runs into the fact that the
component’s function is to interact with other components to exhibit certain physical
capacities, and the specification of the other components and activities is inevitably
infected by structural considerations. Here is why. The inputs (flammable fuel,
igniting sparks) and the outputs (motive power, exhaust) of an internal combustion
engine are concrete physical media that are structurally individuated. Anything that
turns structurally individuated inputs into structurally individuated outputs must
possess appropriate physical causal powers—powers that turn those inputs into those
outputs. (This, by the way, does not erase multiple realizability: there are still many
ways to build an internal combustion engine.)

What about boxological models in computational sciences such as psychology and
neuroscience? A boxologist committed to autonomy may suggest that while the
present assimilation of boxological models to mechanism sketches is viable in most
domains, including internal combustion engines, it does not apply to computing
systems. In this special domain, our boxologist continues, the inputs and outputs can
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be specified independently of their physical implementation, and black boxes need
not correspond to concrete components.
In particular, Marr (1982) is often interpreted as arguing that there are three

autonomous levels of explanation in cognitive science: a computational level, an
algorithmic level, and an implementational level. According to Marr, the computa-
tional level describes the computational task, the algorithmic level describes the
representations and representational manipulations by which the task is solved,
and the implementational level describes the mechanism that carries out the algo-
rithm. Marr’s computational and algorithmic levels may be seen as describing black
boxes independently of their implementation. Because the functional properties of
black boxes are specified in terms of their inputs and outputs (plus the algorithm,
perhaps), the black boxes can be specified independently of their physical implemen-
tation. Thus, at least in the case of computing systems, boxology does not reduce to
mechanistic explanation.
This reply draws an incorrect conclusion from two correct observations. The

correct observations are that black boxes may not correspond one-to-one to struc-
tural components and that the inputs and outputs (and algorithms) of a computing
system can be specified independently of the physical medium in which the inputs
and outputs are implemented. As a result, the same computations defined over the
same computational vehicles can be implemented in various—mechanical, electro-
mechanical, electronic, etc.—physical media.
But it doesn’t follow that computational inputs and outputs put no direct con-

straints on their physical implementation. In fact, any physical medium that imple-
ments a certain computation must possess appropriate physical degrees of freedom
that result in the differentiation between the relevant computational vehicles.
Furthermore, any component that processes computational vehicles must be able
to reliably discriminate between tokens of the relevant types so as to process
them correctly. Finally, any components that implement a particular algorithm
must exhibit the relevant kinds of operations in the appropriate sequence. The
operations in question are different depending on how black boxes map onto struc-
tural components.
Consider a staple of functionalist philosophy of psychology: belief and desire

boxes. As many have pointed out, belief and desire boxes need not be two separate
memory components. But this doesn’t entail lack of direct constraints between
functional properties and structural components. For the alternative means of
implementing belief and desire boxes is to store beliefs and desires in one and the
same memory component, while setting up the memory and processor(s) so that they
can keep track of which representations are beliefs and which are desires. This may
be done by adding an attitude-relative index to the representations or by keeping lists
of memory registers. However it is done, the distinction between beliefs and desires
constrains the mechanism: the mechanismmust distinguish between the two types of
representation and process them accordingly (if the organism is to exhibit relevant
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behavior). And the mechanism constrains the functional analysis: the representa-
tional format and algorithm will vary depending on how the distinction between
beliefs and desires is implemented in the mechanism, including whether each type of
representation has a dedicated memory component. Thus, even though the decom-
position into black boxes may not correspond one-to-one to the decomposition into
concrete components, it still constrains the properties of concrete components.

The moral is that computing systems are indeed different from most other
functionally organized systems, in that their computational behavior can be mech-
anistically explained without specifying the physical medium of implementation
other than by specifying which degrees of freedom it must possess. But such an
explanation is still mechanistic: it specifies the type of vehicle being processed
(digital, analog, or what have you) as well as the structural components that do the
processing, their organization, and the functions they compute. So computational
explanations are mechanistic too (Chapter 7).

What about Marr’s computational and algorithmic “levels”? We should not be
misled by Marr’s terminological choices. His “levels” are not levels of mechanisms
because they do not describe component/sub-component relations. The algorithm is
not a component of the computation, and the implementation is not a component of
the algorithm. The computational and algorithmic levels are mechanism sketches.
The computational level is a description of the mechanism’s task, possibly including a
task analysis, whereas the algorithmic level is a description of the computational
vehicles, operations that manipulate the vehicles, and order in which the operations
are performed—it’s a more fine-grained mechanism sketch than the computational
level. All of the above—task, vehicles, and computational operations—constrain the
range of components that can be in play as well as the way the components can be
organized. They are constrained, in turn, by the available components and their
organization. Contrary to the autonomist interpretation of Marr, his levels are just
different aspects of the same mechanistic explanation.22

So black boxes are placeholders for structural components (with arrows indicating
input-output relations between components) or sub-capacities (with arrows indicat-
ing causal relations between processes) in a mechanism. Boxology is not distinct
from mechanistic explanation. It is a step toward the decomposition of a system into
its structural components. It identifies a number of functional components (black
boxes), which correspond to one or more structural components. When a boxology is
fleshed out into a full-blown mechanistic explanation (at the same level of organiza-
tion), the ambiguity in the boxology about how many structural components there
are is eliminated. What replaces that ambiguity is a precise number of structural

22 Marr recognized as much at least implicitly, judging from the way that he intermingled consider-
ations from different levels in his theory of visual shape detection. For example, facts about the response
properties of retinal ganglion cells influenced his understanding of what the visual system does and the
tools that it has to work with in order to do it.
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components and a specification of the vehicles they manipulate and operations they
perform such that the operations of those structural components fulfill the functions
of the black boxes.
Computational and information processing explanations often work by abstract-

ing away from many of the implementing details. But that’s how mechanistic
explanation generally works; it focuses on the mechanistic level most relevant to
explaining a capacity while abstracting away from the mechanistic levels below.
Whether a system implements a given computation still depends on its structural
features.

9. Integrating Functional Analysis with Multi-level
Mechanistic Explanations

Functional analysis of a system’s capacities provides a sketch of mechanism. If the
functional analysis is just the explanation of the capacities of the system in terms of
the system’s sub-capacities, this is an articulation of the phenomenon to be mech-
anistically explained that points at components possessing the sub-capacities. If the
functional analysis appeals to internal states, these are states of internal components,
which need to be identified by a complete mechanistic explanation. Finally, a
functional analysis may appeal to black boxes. But black boxes are placeholders for
structural components or capacities thereof, to be identified by a complete mechan-
istic explanation of the capacities of the system.
Once the structural aspects that are missing from a functional analysis are filled in,

functional analysis turns into a more complete mechanistic explanation at one level
of organization. By this process, functional analyses can be seamlessly integrated with
multi-level mechanistic explanations. And since functional analyses are sketches of
mechanisms and, as I will soon argue, computing systems are mechanisms, the
proper framework for understanding computational explanation is mechanistic
explanation. The next chapter articulates what I take to be the appropriate notion
of mechanism, with emphasis on the relevant notion of function. In the following
chapter, I will use that notion of mechanism to give an account of computing
mechanisms.
An important consequence of the argument presented in this chapter is that

structural and functional properties are not neatly separable within a mechanism.
There is no such thing as a purely functional component, or purely functional
property. Structural considerations are ineliminable from a proper understanding of
amechanism. In later chapters, I will argue that this applies to computing systems too.
Since the notion of a functional component will play no role in the rest of the book,
from now on I will simply use the term ‘component’ for ‘structural component’.
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6

The Ontology of Functional
Mechanisms

1. Mechanisms with Teleological Functions

Previous chapters led to the preliminary conclusion that computing systems are
mechanisms and computational explanation is a type of mechanistic explanation.
This chapter articulates the notion of mechanism to be deployed in the next chapter,
which contains my mechanistic account of computation.1

Most mechanisms do not serve goals or fulfill functions. They do what they do,
and there is nothing more to it. For example, the mechanisms of chemical bonding,
galaxy formation, weather, or plate tectonics do what they do without fulfilling any
function in any teleological sense. Their activities are explained by the organized
activities of their components, without attributing any teleological functions to the
components.

By contrast, artifacts and biological mechanisms appear to be for something; they
appear to have teleological functions. I call mechanisms that have teleological func-
tions functional mechanisms (cf. Garson 2013). Paradigmatic physical computing
systems are artifacts—like other artifacts, they appear to be for something. Specific-
ally, computing artifacts are for computing. They can do many things and fulfill many
functions—including browsing the internet, preparing presentations, and sending
emails. Those are all functions that are accomplished by computing. This point
generalizes to any putative computing systems, such as nervous systems, that occur
within organisms. Their basic teleological function is computing. Or so I will argue in
the next chapter. Accordingly, a sound foundation for a mechanistic account of
computation that appeals to teleological functions requires an adequate account of
functional mechanisms and their teleological functions, and why only artifacts and
biological organisms contain mechanisms with teleological functions.

This chapter sketches an ontologically serious account of functional mechanisms.
By ontologically serious, I mean that it begins with an independently motivated
ontology and, insofar as possible, it grounds a system’s functions in objective

1 This chapter is heavily indebted to Maley and Piccinini, forthcoming, so Corey Maley deserves partial
credit for most of what is correct here.



properties of the system or the type of system to which it belongs, as opposed to
features of the epistemic or explanatory context of function attribution. Put simply:
on the present account, functions are an aspect of what a system is, rather than an
aspect of what we may or may not say about that system.
I will argue that teleological functions are stable causal contributions towards the

goals of organisms. The paradigmatic objective goals of organisms are survival and
inclusive fitness, but organisms may have additional goals, including subjective goals,
contributing to which may be a function too. Truthmakers for claims about teleo-
logical functions are non-teleological features of the world.

2. Teleological Functions

It may seem unremarkable that coffeemakers—an artifact designed with a purpose—
are for making coffee. To be sure, they do many things: they generate heat, they weigh
down what they are placed upon, they reflect light, and they make coffee. But only
one of these is the function of a coffeemaker, as indicated by its name. What may
seem somewhat more remarkable is that organisms—which are not designed at all—
have parts that have functions. A stomach also does many things—it digests, gurgles,
and occasionally aches. But a stomach is for digesting, which is to say that one of its
functions is digestion. What a component of a system is for, as opposed to the other
things it does, is its teleological function. When a component fails to perform its
teleological function at the appropriate rate in an appropriate situation, it malfunc-
tions. From now on, I will simply use the term ‘function’ for teleological function
(unless otherwise noted).
As commonplace as the notion of function is, there is no consensus on the correct

account. Any of the existing accounts of function may be used to underwrite a
mechanistic account of computation, though in each case some adjustments would
be needed. Since I am not fully satisfied with existing accounts, I will propose my
own. While I lack enough space to do justice to current accounts, I will briefly
indicate why I am unsatisfied with them.
Etiological accounts have been popular among philosophers of biology: roughly,

what determines the function of a stomach here and now is the reproductive history
of ancestral organisms whose stomachs did whatever allowed them to survive (e.g.,
Millikan 1989; Neander 1991; Griffiths 1993; Godfrey-Smith 1994; and Schwartz
2002). Thus, the stomachs in organisms alive today have the function of digesting,
and not gurgling, because it was digesting (and not gurgling) that allowed the
ancestors of those organisms to reproduce.2 According to selectionist accounts—
which are similar to etiological accounts—what determines the function of a trait is

2 Etiological accounts of function come in both strong and weak versions, depending upon whether the
function was selected for (strong), or merely contributed to the organism’s reproduction (weak) (Buller
1998).
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the selection process that causes a trait in a system to be selectively reproduced or
retained (Wimsatt 2002; Griffiths 2009; Garson 2011). With respect to artifacts,
a sophisticated etiological approach maintains that what determines the function
of a coffeemaker here and now is the way past coffeemakers were used; that use, in
turn, contributed to the reproduction of coffeemakers (Preston 2013). Etiological
(and selectionist) accounts of function may be useful in certain contexts, but they
are inadequate for my purposes for two reasons, one epistemological and one
metaphysical.

The main problem with etiological accounts of functions is epistemological: the
causal histories that ground functions on these accounts are often unknown (and in
many cases, unknowable), making function attribution difficult or even impossible.
While our ignorance does not preclude the ontological reality of functions, functions
are very often correctly attributed (or so it seems—quite compellingly) in the absence
of any knowledge of a system’s causal history. Learning about its causal history can,
at best, show that a function has stayed the same or changed over time: learning
about that causal history does not lead to changing the current attribution of
functions to a current system. Thus, etiological accounts do not do justice to the
practices of sciences that study the functions of a component or property without
regard to evolutionary history (e.g., psychology, neuroscience, functional anatomy,
physiology, etc.).

Another problem with etiological accounts, which affects their treatment of both
biological and artifact functions, is that they violate an important metaphysical
principle concerning causal powers. Consider a real U.S. coin and its perfect,
molecule-for-molecule duplicate. One is genuine, the other a counterfeit, and what
determines which is which is their respective causal histories. Thus, in one sense
there is a real difference between these two entities: they have different kinds of
histories. There may even be a way of characterizing this difference as a physical
difference if we think of objects in a four-dimensionalist way. Nevertheless, the
difference between the genuine and the counterfeit cannot result in a difference
between the causal powers of the two. We could not build a vending machine that
accepted one but not the other, and it would be misguided to demand that a physicist
or chemist devise a method for detecting such counterfeits. Similarly, the history of
an organism’s ancestors cannot contribute to the causal powers of that organism’s
components or properties. If a tiger were to emerge from the swamp following a
lightning strike (à la Davidson’s swamp man), its stomach would have the power, and
thus the function, of digesting even though it had no ancestors whatsoever.

Etiological theorists may reply that considerations about causal powers are ques-
tion-begging. For them, attributing a function to a trait is not the same as attributing
current causal powers. Rather, it’s precisely analogous to calling something a genuine
U.S. coin—it says something about its origin and history and thus distinguishes it
from counterfeit coins (mutatis mutandis, from swamp-organisms), regardless of any
other similarities in causal powers between genuine and fake coins. But this reply
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only highlights that, insofar as the etiological theorist is interested in functions, she is
interested in a different notion of function than I am. I am after functions that are
grounded in the current causal powers of organisms and their environments, and
thus can be discovered by studying those causal powers. In other words, I am after
functions that can be shared among organisms, swamp-organisms, and artifacts,
regardless of their exact reproductive or selection histories.
To be sure, there are accounts that do not rely on causal histories, but I find them

inadequate for my purposes. Causal role accounts (such as Cummins 1975 and
Craver 2001) reject teleological functions and instead consider functions as causal
contributions to an activity of a complex containing system. As a consequence,
according to causal role accounts, everything or almost everything (of sufficient
complexity) ends up having functions, which clashes with the fact that only organ-
isms and artifacts have functions in the sense that I am interested in, that is, the sense
in which things can malfunction.
One way of fixing this weakness is to appeal to explanatory interests and perspec-

tives (Hardcastle 1999; Craver 2012). From the perspective of the survival of organ-
isms, the function of the heart is to pump blood. From the perspective of diagnosing
heart conditions, the function of the heart is to make thump-thump noises. From the
perspective of the mass of the organism (to speak loosely), the function of the heart is
to contribute a certain amount of mass. And so on. This perspectivalism makes
functions observer-dependent and hence subjective. But functions seem perfectly
objective.
Contrary to perspectivalism, the function of the heart is to pump blood, not to

make noises or to possess a certain mass, and it has this function even if there is no
one around to observe it. Some traits do have multiple functions, but not in virtue of
multiple perspectives. From the very same perspective—the perspective of identify-
ing the functions of the medulla oblongata—the medulla oblongata has many
functions, including regulating breathing, circulation, and blood pressure, initiating
the gag reflex, and initiating vomiting. The reason we are sometimes interested in the
noises the heart makes—the reason we listen to the heart’s noises at all—is not that
the noises are another function of the heart in addition to pumping blood; rather, the
noises are useful in diagnosing how well the heart performs its function: pumping
blood. Consider what would happen if a cardiologist discovered that a completely
silent heart nevertheless pumps blood perfectly; the cardiologist would not declare
that a new kind of heart malfunction has been discovered; rather, she would try
to figure out how this heart can perform its function silently. The converse—the
perfectly sounding, thump-thumping heart that pumped blood poorly—would be
considered malfunctioning.
In summary, perspectivalism does not do justice to the perspectives we actually

take in the biological sciences. If we could identify non-teleological truthmakers for
teleological claims, we would avoid perspectivalism and deem functions real without
deeming them mysterious. That is my project.
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Accounts that ground artifact functions in terms of the intentions of designers and
users (Houkes and Vermaas 2010) face the problem that intentions are neither
necessary nor sufficient for artifacts to have functions. That intentions are insuffi-
cient to confer genuine functions is illustrated by artifacts such as amulets and
talismans, which lack genuine functions even though their designers and users
have all the right intentions and plans for their proper use. That intentions are
unnecessary to confer functions is illustrated especially well by artifacts created by
non-human animals such as spiders and termites.

Accounts that identify functions with propensities (Bigelow and Pargetter 1987)
cannot account for malfunctioning items, which have a function yet lack the pro-
pensity to perform it. Accounts based on special features of living systems (e.g., self-
maintenance, self-preservation, reproduction; cf. Albert, Munson, and Resnik 1988;
Christensen and Bickhard 2002; McLaughlin 2001; Mossio, Saborido, and Moreno
2009; Schlosser 1998; Schroeder 2004; Wouters 2007) are on the right track and I will
retain what I take to be right about them.

Goal-contribution accounts (such as Nagel 1977; Adams 1979; Boorse 2002) are
right that functions contribute to a system’s goal(s). That is the core idea behind my
account as well. But traditional goal-contribution accounts maintain one or more of
the following: that a system has functions only if it is goal-directed, that a system is
goal-directed only if it is guided via feedback-control, or that a system is goal-directed
only if it represents its goals. The problem is that plenty of things—e.g., doormats—
have functions without being goal-directed, without being guided via feedback-
control, or without representing goals. Thus we need a more inclusive account of
goals and the relation between goals and functions than those offered by traditional
goal-contribution accounts.

Unlike the account I am about to propose, previous accounts—even when they are
on the right track—often suffer from one or more of the following: a lack of a
plausible ontology, a lack of coordination with a multi-level mechanistic framework,
or a lack of a unified treatment of both organismic functions and artifact functions.
I have already mentioned the benefits of an ontologically serious account, and the
utility of including a multi-level mechanistic framework is obvious for my purpose in
this chapter. What about unifying organismic and artifact functions? While some
have argued against this possibility (Godfrey-Smith 1993; Lewens 2004), these
arguments have primarily been concerned with etiological accounts.

A unified account provides a desirable foundation for taking seriously the analo-
gies between the functions of biological traits and the functions of artifacts that are
part and parcel of many scientific explanations. Most relevantly, computers and
brains are often compared to one another. For example, computers are said to be
intelligent to some degree, and brains are said to perform computations. If biological
traits and artifacts perform functions in different senses, the analogies between them
and their functions become correspondingly opaque: saying that brains perform
computing functions means something different from saying that artificial
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computers perform computing functions. If, on the contrary, biological traits and
artifacts perform functions in the same sense, then the analogies between them that
are ubiquitous in the special sciences become correspondingly clear and well
grounded. A unified account is also more parsimonious and elegant, so that is
what I offer here.

3. Ontological Foundations

I assume an ontology of particulars (entities) and their properties understood as
causal powers.3 I remain neutral on whether properties are universals or modes
(tropes). A similar account could be formulated in terms of an ontology of properties
alone, with entities being bundles thereof, or in terms of processes.
Activities are manifestations of properties (powers). Some have objected that we

can only observe activities and not powers and hence activities must be fundamental
(e.g. Machamer 2004). I set this concern aside on the grounds that activities may be
evidence of powers.
When many entities are organized together in various ways, they form (constitute)

more complex entities. Such complex entities have their own properties (causal
powers), which are constituted by the way the causal powers of the constituting
entities are organized and perhaps modified by the way such entities and their causal
powers are organized. For instance, when atoms chemically bond to one another,
they form molecules with properties constituted by those of the individual atoms,
including properties of individual atoms that have changed because they are so
bonded. The subsystems that constitute complex entities and make stable causal
contributions to their behavior are what I call mechanisms (cf. Craver 2007 and
Machamer, Darden, and Craver 2000, among many others).
The causal powers of mechanisms have special subsets; they are special because

they are the causal powers whose manifestation are their most specific (peculiar,
characteristic) interactions with other relevant entities. These are the most charac-
teristic “higher-level” properties of complex entities and their mechanisms (Piccinini
and Maley 2014). Since higher level properties are subsets of the causal powers of the
lower level entities that constitute the higher level entities, they are no “addition of
being” (in the sense of Armstrong 2010) over and above the lower-level properties;
therefore, they do not run into problems of ontological redundancy such as causal
exclusion (Kim 2005). Thus we establish a series of non-redundant levels of entities
and properties, each level constituted by lower-level entities and properties.
Organisms are a special class of complex entities. What is special about them is

some of their general properties. First, they are organized in ways such that

3 A special version of this ontology is articulated by Heil (2003, 2012) and Martin (2007). Heil and
Martin also equate causal powers with qualities. Since qualities play no explicit role in this book, I prefer to
stay neutral on the relationship between causal powers and qualities.
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individual organisms preserve themselves and their organization for significant
stretches of time. This is typically accomplished by collecting and expending energy
in order to maintain a set of states so that the organism is resistant to various types of
perturbation. For example, mammals expend energy in order to maintain a certain
body temperature; without these homeostatic mechanisms, fluctuations in tempera-
ture outside a very narrow range would disrupt activities necessary for mammalian
life. I call the characteristic manifestation of this first property survival. Many
organisms are also organized in ways that allow them to make other organisms
similar to themselves by organizing less complex entities; that is, to reproduce. In
some cases, although individual organisms are not organized to reproduce, they are
organized to work toward the preservation of their kin. Honeybee workers, for
example, are infertile, but still contribute to the survival and reproduction of the
other members of their hive. I call the characteristic manifestation of either of these
latter properties inclusive fitness.4

Survival and inclusive fitness as I have characterized them are necessary for the
continued existence of organisms. Although individual organisms can last for a while
without reproducing and even without having the ability to reproduce, these indi-
viduals will eventually die. If no individuals reproduced, there would soon be no
more organisms. Even quasi-immortal organisms (i.e., organisms that have an
indefinitely long lifespan) will eventually be eaten by a predator, die of a disease,
suffer a fatal accident, or succumb to changed environmental conditions. So, barring
truly immortal, god-like creatures impervious to damage, which are not organisms in
the present sense anyway, survival and inclusive fitness are necessary for organisms
to exist.

That these two properties are essential for the existence of biological organisms is
obviously a special feature of them both. Another special feature is that the mani-
festation of these properties requires organisms to expend energy. I call the state
toward which such a special property manifestation is directed, and which requires
work on the part of the organism via particular mechanisms, an objective goal of the
organism.

This is reminiscent of the cybernetic accounts of goal-directedness as control over
perturbations (Rosenblueth et al. 1943; Sommerhoff 1950). While I am sympathetic
to cybernetic accounts of goal-directedness and rely on it in my appeal to goals,
I depart from previous goal-contribution accounts of functions (Nagel 1977; Adams
1979; Boorse 2002) because I do not maintain that being goal-directed is necessary or
sufficient to have functions. Instead, I ground functions directly in the special
organismic goals of survival and inclusive fitness.

Note that mine is a technical sense of “goal”, which does not entail any kind of goal
representation, mental or otherwise. Furthermore, there is no requirement that goals

4 Some organisms do not pursue their inclusive fitness at all. They are the exception that proves the rule:
if their parents had not pursued inclusive fitness . . .
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be always achieved: all that is required is that these goals are a sort of state toward
which organisms must expend energy in order for organisms to exist. This notion of
goal underwrites the primary notion of teleological function that is used in some
sciences. It also seems to underlie much of our commonsense understanding of
functions.5

It may be objected that there are systems and behaviors that “survive” but lack
goals in the relevant sense. For instance, a gas leak may poison any plumber who tries
to fix it, thereby preserving itself. Does it follow that, on the present account, the gas
leak has the objective goal of surviving? Or consider a crack addict who steals in order
to buy crack, thereby preserving the addiction, and sells crack to others, thereby
“reproducing” crack addiction. Does it follow that, on the present account, a crack
addiction has the objective goal of maintaining and reproducing itself?
These two putative counterexamples are quite different. As to the gas leak, it does

not reproduce and does not pursue its inclusive fitness. (It also does not extract
energy from its environment in order to do work that preserves its internal states,
etc.) Therefore, it is not an organism in the relevant sense. If there were artificial
systems that did pursue survival and inclusive fitness in the relevant sense (i.e., self-
reproducing machines), they would be organisms in the relevant sense and would
have objective goals (more on this below). As to crack addiction, its preservation and
reproduction are not objective goals because they are detrimental to the survival of
the addicts and yet they depend on the objective goal of survival in a way in which
survival does not depend on them. That is, crack addiction requires organismic
survival in order to persist and reproduce; but organismic survival itself does not
require crack addiction (quite the contrary). In a rather loose sense, someone might
think of crack addiction as a kind of parasite, and thus as a special kind of organism
that may have objective goals. But this sense is so loose as to be unhelpful. To name
just one immediate difficulty, it is quite problematic to reify the complex pattern of
behaviors, dispositions, desires, etc. that constitute an addiction as an entity separate
from the addict. A better way of addressing cases like crack addiction is to treat them
as a subjective goal of some organisms (more on this below).
Another objection runs as follows: having mass is necessary for survival, whereas

survival is not necessary for having mass; by parity of reasoning with the crack
addiction case, it seems to follow that survival is not an objective goal, whereas having
mass is. But having mass is necessary for survival only in the sense that massless
objects cannot organize themselves into organisms. It takes a special organization for

5 Two interesting questions are whether there are objective goals other than the survival and inclusive
fitness of organisms and whether entities other than organisms and their artifacts have functions.
Additional objective goals may include the survival of the group, or of the entire species, or of the entire
biosphere. Additional entities with functions may include genes, groups, societies, corporations, ecosys-
tems, etc. I leave the exploration of these possibilities to another occasion. For now, I limit myself to the
paradigmatic cases of teleological functions of organisms and their artifacts based on their objective goals
of survival and inclusive fitness.
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massive objects to turn themselves into organisms. When they organize themselves
into organisms, such suitably organized massive objects either survive or perish.
Thus, there is a big difference between having mass and surviving. Only the latter is a
defining characteristic of organisms, which distinguishes them from other systems.
Having mass is something organisms share with many other systems, which are not
goal-directed towards survival. But notice that organisms may need to maintain their
mass within a certain range in order to stay alive. If so, then maintaining their mass
within that range is a subsidiary goal of organisms, which serves the overarching goal
of survival.

4. Teleological Functions as Contributions to
Objective Goals of Organisms

We now have the ingredients for an account of teleological functions in organisms.

A teleological function in an organism is a stable contribution by a trait (or
component, activity, property) of organisms belonging to a biological population6

to an objective goal of those organisms.

By ‘contribution’, I mean a positive contribution—an effect that increases the
probability of reaching a goal. By ‘stable’ contribution, I mean a contribution that
occurs regularly enough as opposed to by accident; the boundary between regularity
and accident is vague and I leave it to empirical scientists to sort it out in specific
cases. The contexts and frequencies required for traits to have functions, for their
functions to be performed at an appropriate rate in appropriate situations, and for
traits to malfunction, are made precise elsewhere (Garson and Piccinini 2014).

Construed generally, a trait’s function (and sometimes the successful performance
of that function) depends on some combination of the organism and its environment
(which may include other organisms: kin, conspecifics, or unrelated organisms,
specified or unspecified). In other words, the truthmakers for attributions of func-
tions to an organism’s trait are facts about the organism and its environment.
Different types of function depend on factors outside the organism to different
extents. It is worth considering some real-world examples in order to get a feel for
the range of facts upon which functions can depend.

Some functions, such as the blood-pumping of tiger hearts that pump at an
appropriate rate, depend primarily on the individual organism: blood-pumping
contributes to the survival of a single tiger, independent of the existence of any
other organisms. But this function also depends on the environment: the tiger must
be in the right kind of atmosphere with the right pressure, located in the right kind of
gravitational field, etc.

6 More precisely, to a reference class within a population. Reference classes are classes or organisms
divided by sex and developmental stage (Boorse 2002).

108 THE ONTOLOGY OF FUNCTIONAL MECHANISMS



If, in an appropriate situation, a previously well-functioning tiger’s heart were to
stop pumping blood, then the tiger would die; we can safely say its heart has
malfunctioned (or is malfunctioning). A less severe malfunction would result if the
tiger’s heart were to pump at an inappropriate rate. Determining the appropriate
situations for a trait’s functioning and the appropriate rate at which a trait ought to
function in an appropriate situation may require comparing the rates of functioning
of different trait tokens of the same type in different organisms in the same popu-
lation. The trait tokens that provide a sufficient contribution to the objective goals of
an organism are the well-functioning ones, the others are malfunctioning. Thus,
whether a trait has a function, and thus a malfunction, may depend on the way other
traits of the same type function in other organisms.7 In addition, the environment is
important here because what may be a malfunction in one environment might not be
in some other environment. An enlarged heart on Earth would result in a malfunc-
tion; but in an environment with, say, higher atmospheric pressure, a non-enlarged
heart might be a malfunction.
Nanay (2010) objects that comparing a trait token to other traits of the same type

in order to determine its function requires a function-independent way of individu-
ating trait types, and he argues that there is no function-independent way of
individuating types. I believe that there are function-independent ways of individu-
ating types. But I won’t defend this thesis here because, pace Nanay, there is no need
for a (purely) function-independent way of individuating traits.
To see why, consider a biological population. Begin with a function—that is, begin

with a certain stable contribution to the pursuit of an objective goal of the organisms
in that population. Then, find the traits that perform that function. Find the well-
functioning trait tokens, each of which performs the same function. The trait tokens
can be typed together because they perform the same function (as well as by their
morphological and homological properties). Now that we have established a type, we
can type other (less-than-well-functioning) traits: they belong in the same type
insofar as they share a combination of the following: less-than-appropriate perform-
ance of their function, morphological properties, and homological properties. By
typing well-functioning trait tokens first and then typing less-than-well-functioning
tokens later, we need not rely on a function-independent way of individuating trait
types.
This way of individuating functional types may well recapitulate the way functions

are discovered and attributed empirically, but that is not my point. My point is
that there is an asymmetric ontological dependence between the functions of

7 What if an organism is the last survivor of its species? We can include organisms that lived in an
organism’s past as part of the truthmaker for attributions of functions to its traits. Nothing in my account
requires that all organisms relevant to function attribution live at the same time. This feature does not turn
my account into an etiological account, however, because my account does not make the reproductive
history of a trait (let alone selection for certain effects of a trait) constitutive of its function.
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malfunctioning tokens and the functions of well-functioning tokens. The functions
of malfunctioning tokens are grounded in part in the functions of well-functioning
tokens (which in turn are constituted by some of their causal powers), but not vice
versa. In other words, the truthmakers for functional attributions to malfunctioning
tokens include the causal powers of well-functioning tokens, but not vice versa.

Some functions depend on the environment because they depend on other species.
Consider the eyespots of the Polyphemus moth, which have the function of distract-
ing would-be predators (a contribution to the moth’s survival). This function
depends on the existence of would-be predators disposed to be distracted by these
eyespots. Another example is the giant sphinx moth, which has a proboscis long
enough to drink nectar from the ghost orchid. The function of the proboscis is to
draw in nectar from this particular orchid species. In both cases, these traits would
have no function without the environment: the eyespots would not have the function
of distracting would-be predators if there were no would-be predators, and the
proboscis would not have the function of drawing up ghost orchid nectar if there
were no ghost orchids. If the environment were different, the traits might have no
function, or might even acquire new functions.8

Finally, some functions—particularly those that contribute to inclusive fitness—
depend on the existence of kin, and often other species as well. The female kangaroo’s
pouch, for example, has the function of protecting the young joey as it develops and
nurses. If there were no joeys, the pouch would have no function. The stingers of
honeybee workers have the function of stinging, which deters would-be hive
intruders. This is certainly not a contribution to the honeybee’s survival—using a
stinger usually results in the death of the individual honeybee—but it is a contribu-
tion to the survival of its kin, and hence to its inclusive fitness. Thus, the stinger’s
function depends on the existence of both the honeybee’s kin and would-be hive
intruders.

As many have pointed out (e.g., Craver 2007), organisms contain mechanisms
nested within mechanisms: mechanisms have components, which are themselves
mechanisms, which themselves have components, etc. Mechanisms and their com-
ponents have functions, and the functions of components contribute to the functions
of their containing mechanisms. Thus, a contribution to an objective goal may be
made by the organism itself (via a behavior), or by one its components, or by one of
its components’ components, and so on.

Examples of such multi-level mechanisms abound in neuroscience. One such
example is the way various species of noctuid moth avoid bat predation by way of
their tympanic organ (Roeder 1998 describes the discovery of this organ’s function

8 This accords well with how biologists describe the evolutionary beginnings of vestigial structures: the
environment in which a trait once had a function changes, leaving the trait with no function (often
resulting in non-adaptive evolutionary changes to the trait). The vestigial hind legs of the blue whale have
no function, but these hind legs presumably did for the whale’s land-dwelling ancestors.
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and the mechanism responsible). Roughly, this organ’s function is detecting
approaching bats; when it does, it sends signals to the moth’s wings, initiating evasive
maneuvers, often allowing the moth to avoid the oncoming predator (turning away
from a bat that is some distance away, and diving or flying erratically when a bat is
very close). The tympanic organ does this by responding differentially to the intensity
of a bat’s ultrasonic screeches (which the bat uses for echolocation). When we look at
the components of this organ, we can identify mechanisms—and their functions—
within these components. For example, the so-called A-neurons have the function of
generating action potentials in response to ultrasonic sounds hitting the outer
tympanic membrane. These action potentials are part of the tympanic organ’s
activity, which in turn drives the moth’s response to the predator. We can then
look at the mechanisms of components of these neurons, such as ion channels, that
have the function of allowing ions to flow into or out of the neuron. Each of these
components has a functional mechanism that contributes, either directly (e.g., the
initiation of evasive maneuvers) or indirectly (e.g. allowing the flow of ions) to the
objective goal of survival. All of these functions are more than a matter of mere
explanatory interest, or part of an analysis of one system or other: these functions are
contributions to the survival of the organism.
There is a related notion of functionality in organisms that the present framework

accounts for. Sometimes physiologists distinguish between functional and non-
functional conditions based on whether a condition is found in vivo (in the living
organism) or only in vitro (in laboratory preparations). Presumably, the underlying
assumption is that unless a condition is found in the living organism, it is unlikely
that anything that happens under that condition makes a contribution to the survival
(let alone inclusive fitness) of the organism. What happens under conditions that are
“non-functional” in this sense may be by-products of the way organisms are built for
their ordinary conditions.
An important feature of the present account is that it extends nicely to artifacts,

particularly those of non-human animals. Some behaviors modify environments in
stable ways that contribute to either survival or inclusive fitness. The stable ways in
which environments are modified (e.g., burrows, nests, spider webs, tools) are
artifacts in an important, general sense that includes more than ordinary human
artifacts. Needless to say, artifacts in this general sense have teleological functions
too. And those teleological functions are typically contributions to the survival or
inclusive fitness of the organisms that create the artifacts. Thus, to a first approxi-
mation, the teleological functions of artifacts are contributions to the survival or
inclusive fitness of organisms.

A teleological function of an artifact is a stable contribution by an artifact to an
objective goal of the organism(s) that created the artifact.

In many cases, the functions of artifacts are individuated in terms of artifact types
and the stable contributions of the well-functioning members of the type to the goal
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of a population of organisms. (In this context, ‘well-functioning’ is shorthand for
providing a stable contribution to an objective goal of an organism.) This is the same
way that the functions of biological traits are individuated, which allows for a parallel
way to ground functions and malfunctions in artifacts. Thus, malfunctioning artifacts
are those that belong to a type with a certain function but are unable to perform that
function at the appropriate rate in appropriate situations.

But artifact tokens can acquire functions on their own too, regardless of which type
they belong to or whether there are other members of their type. This includes
unique artifacts, of which there is only one copy, and artifacts that are put to uses for
which they were not made—for instance, a screwdriver that is used as a knife. The
present account of artifact functions is general enough to accommodate not only
artifact tokens that belong to types of which there are many members, but also
unique artifacts and artifacts that are put to novel uses. In the case of unique artifacts
and artifacts that are put to novel use, their stable contribution to an objective goal of
an organism is their function. The stability and frequency of these contributions
determine whether an artifact is simply functioning as something else or it acquires a
new function: screwdrivers are infrequently (and not very successfully) used for
cutting, so they may not have the function of cutting, although they can function
as knives. Alternatively, screwdrivers (flathead screwdrivers, anyway) are frequently
(and successfully) used to pry lids off of metal cans, so prying is a function of
screwdrivers. If an artifact fails to perform its function at the appropriate rate in
appropriate situations, it malfunctions.

We thus obtain a unified account of teleological function for both organisms and
artifacts.

5. Some Complications

I have characterized survival and inclusive fitness as the objective goals of organisms,
both of which underwrite the present account of teleological function: traits or parts
of organisms have functions insofar as they contribute to at least one of these goals.
There can be a tension between contributing to survival and contributing to inclusive
fitness. They are mutually supportive to some extent, because survival is necessary for
reproduction, which is necessary for inclusive fitness, which in turn is necessary for
the survival of the species. But survival and inclusive fitness may also be in compe-
tition. Most obviously, one organism may sacrifice itself for the sake of the survival of
its kin. More generally, traits that lengthen the life of an organism may lower its
chances of reproducing, and traits that increase the probability of reproducing (or
even attempting to reproduce) may put the organism at risk of death.

A related tension appears with respect to reproductive behavior. For sexual
organisms, finding a mate, or even better, a good mate, is necessary to increase
inclusive fitness, but it requires considerable energy (and in some cases, the growth of
energetically expensive appendages such as the heavy antlers that may have
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contributed to the extinction of the Irish Elk (Gould 1974; Moen, Pastor, and Cohen
1999)). For nurturing organisms, increasing the chance that offspring survive and are
viable is also necessary for inclusive fitness (and for survival too, in the case of
organisms prone to deep depression when their offspring dies) but it also requires
expenditures of energy, and in some cases it may require the ultimate sacrifice.
Thus, a trait or part of an organism may very well have a function with respect to

one goal, but at the same time, that trait or part may not contribute to another goal,
and may even be detrimental to it. The bee’s stinger contributes to inclusive fitness by
repelling threats to the hive, thus grounding the function of the stinger. But bees that
use their stinger may lose part of their abdomen, resulting in the death of that bee;
thus, stinging is detrimental to the survival of the bee. Nevertheless, the stinger is
functional relative to the goal of inclusive fitness, and thus it has a function simplici-
ter, even though it is a hindrance to the other goal of survival.
An additional area of conflict could result from putative artifacts that have the

ability to survive and reproduce, such as very advanced (though not yet extant)
robots. These are artifacts because they would (originally) be constructed by organ-
isms, but they also have their own objective goals because they are able to survive and
reproduce. In an important sense, these artifacts are organisms too, and surely their
offspring are organisms. The objective goals of such artifacts might be in conflict with
the objective goals of their creators—as many science fiction writers have explored.
So an activity or trait may be functional relative to the objective goals of such an
artifact but it may be dysfunctional relative to the objective goals of its creator, and
vice versa. Either way, a function remains a stable contribution to an objective goal of
an organism (either the artifact-organism or its creator).
One more difficulty regards artifacts that were designed to fulfill a function but in

practice do not, or cannot, do so. Perhaps there is a flaw in the design, there are
unforeseen difficulties in building the artifact, or unforeseen defeating conditions
prevent the artifact from working. Or perhaps there is simply a radically mistaken
belief that such artifacts can perform a certain function when in fact they cannot. For
instance, amulets and talismans are designed, built, and used because they are
believed to protect from evil and bring good luck, respectively, but such beliefs are
false (cf. Preston 2013 on “phantom” functions). Insofar as these artifacts do not
contribute to the relevant goal of an organism, the present account deems them
functionless. Yet, intuitively, one might think these artifacts simply have the function
their designers, makers, or users intend them to have. A bit of reflection reveals that
this is not the case.
Paradigmatically, if something has a function of X-ing, then it should be able to X

(or do X, or function as an X-er). If something has making coffee as one of its
functions, then it should be able to make coffee—it should be able to function as a
coffeemaker. The converse does not hold: a hat can function as kindling, but a hat
does not have the function of helping to start fires. Thus, a machine merely intended
to make coffee, but incapable of doing so, does not have the function of making
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coffee, and cannot function as a coffee maker, even if its maker intended otherwise.
By the same token, amulets and talismans do not have the function of, respectively,
protecting from evil and bringing good luck, regardless of what their designers,
makers, and users believe. The easiest way of seeing this is that amulets, talismans,
and other artifacts that cannot fulfill their putative function cannot malfunction, for
the simple reason that, by assumption, they cannot fulfill their putative function to
begin with. Insofar as sometimes we might say they have functions, they have
functions only by courtesy—their functions are entirely in the eyes of the beholder.

A few caveats: consider an object that once was able to make coffee, but no longer
can. It is simply malfunctioning, so it still has the function of making coffee. This is
not because of its history but because it belongs to a type some of whose tokens
(including its former self ) can make coffee. When it comes to something having the
function of X-ing, there is no metaphysical difference due to whether something was
once capable of doing X. Consider two physically indistinguishable devices, both of
which were designed to make coffee but are currently incapable of doing so because
of some defect D. Now suppose that one of these devices acquired D due to damage,
whereas the other device always had D due to a manufacturing defect, such that the
former was once capable of making coffee, whereas the latter was never capable of
doing so. Both devices are malfunctioning coffee makers, because both belong to a
type of devices some of whose tokens can make coffee.

Another case is a device that never actually makes (and never did make) coffee—
perhaps it is on display at the MOMA—but it couldmake coffee and belongs to a type
whose function is making coffee. Then it is a bona fide coffee maker—it has the
function of making coffee. What about a putative coffee maker that is currently
defective, and has never made coffee? If it is a token of a type some of whose tokens
can make coffee, then it has coffee-making as one of its functions just in virtue of
belonging to such a type. It is a genuine coffee maker, though a malfunctioning one.
But if it is so radically defective that it is not a token of any coffee-making type, then it
does not have the function of making coffee at all. It is not a genuine coffee maker.9

Without these caveats, we could not make sense of malfunctions: even though
neither the defective coffee maker nor my hat can make coffee (i.e., neither can now
function as a coffeemaker), my hat is not a malfunctioning coffee maker. And neither
is a pair of sticks tied together, even if a designer says so. Consider an inventor who
announces she has built a rocket designed to take her to Mars, yet all she shows us is a
useless mess of loosely connected components. We would not say that this is a rocket
at all, let alone that it has the function of taking anyone to Mars.

Finally, what to make of physical duplicates, such as the swamp tiger mentioned
earlier? Clearly, this duplicate will have some functions: its heart will have the

9 It is misleading to call such radical departures “defects”: correcting a defect ought to result in a
functional artifact, whereas a departure so dramatic that it renders a token no longer of the relevant type is
such that the token seems incapable of being fixed. This observation reinforces the point in the main text.
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function of pumping blood, and its stomach will have the function of digesting.
Insofar as a miraculously-created physical duplicate of a tiger is alive, these organs
contribute to the objective goal of surviving. Contributions to reproduction work the
same way.
Contributions to inclusive fitness that go beyond reproduction are a difficult case.

Consider a swamp worker bee. It may seem that its stinger has a function, just as a
non-swamp bee’s stinger has a function. But the non-swamp bee’s stinger contributes
to inclusive fitness, which means that the stinger’s function requires the existence not
only of the bee with its intrinsic physical properties, but also some of that bee’s kin or
conspecifics. But the swamp bee seems to have no kin, just as it has no evolutionary
history. Does this mean that its stinger has no function?
The answer depends on how kinship is defined. If kinship is defined by having a

certain ancestral relation, then the swamp bee has no kin, and its stinger has no
function. If kinship is defined by a sufficient degree of physical similarity with certain
other bees, however, then both the original bee and its physical duplicate have the
same kin. Just as the stinger of a regular bee has a function even if it never in fact
contributes to inclusive fitness, but would in the right circumstances, so too does the
stinger of a duplicate bee have that function: it too would, in the right circumstances,
contribute to inclusive fitness. Of course, if there were swamp organisms that were
created out of a random lightning strike, but were not physical duplicates of any
extant organisms, then the present account says nothing about the functions of those
swamp organisms beyond those that contribute to survival (and reproduction,
assuming that such a swamp organism could reproduce in a meaningful way). But
that is an acceptable result: my concern is with physical duplicates of actual organ-
isms, with actual functional parts.
There is one more objection I will consider: if you fail to pursue your survival or

inclusive fitness, are you failing to pursue one of your objective goals, and is this
morally objectionable? If the present account entailed that people ought to pursue
their survival or inclusive fitness, there would be something wrong with the present
account. But the present account does not entail that. I am entirely neutral on ethical
matters—what anyone ought to do. For all I say, organisms have no obligation to
survive, let alone pursue inclusive fitness. It does not follow from the present account
that any particular organism ought to pursue inclusive fitness, or even that some
organisms ought to. All I am pointing out is that were all organisms to stop pursuing
survival and inclusive fitness, eventually all organisms would cease to exist. That is
enough to differentiate organisms from other physical systems and to ground the
attribution of functions to organismic traits and artifacts.

6. A Generalized Account of Teleological Functions

One problem remains before I can offer a completely unified account of teleological
functions: sentience and sapience. Due to sentience and sapience, the goals that we, as

THE ONTOLOGY OF FUNCTIONAL MECHANISMS 115



agents, pursue can align with, oppose, or be completely orthogonal to our objective
goals.

Comfort, lack of pain, and pleasure may be seen as goals for sentient organisms,
even though their pursuit may be in competition with their objective goals of survival
and inclusive fitness. Sapience, with or without sentience, may give rise to goals of its
own (e.g., knowledge), which may also be in competition with other goals. One
consequence of sentience and sapience is ethics or morality, which may give rise to
further goals such as the survival of non-kin.

I call goals due to sentience and sapience subjective goals. I don’t need to list all
subjective goals or answer the question of whether contributions to these goals are
teleological functions: it is enough that these subjective goals are clearly distinct from
objective goals, and nothing on the present account hinges on whether contributions
to subjective goals are functions. If we choose to say that contributions to subjective
goals are functions, the present account can be extended to cover them: just as in the
case of objective goals, a trait or activity that contributes to a subjective goal in a
stable way has that stable contribution as a function. It seems reasonable to allow for
this extension of the present account, so I will adopt it.

The general difficulty regarding subjective goals extends to some of the artifacts of
sentient beings. Tobacco smoking is detrimental to survival and inclusive fitness. But
the function of a pipe is to hold tobacco so that it can be smoked. What grounds the
functions of these artifacts has to do with the subjective goals of these artifacts’ users.
We thus obtain a generalized account of functions in both organisms and artifacts.

A teleological function (generalized) is a stable contribution to a goal (either
objective or subjective) of organisms by either a trait or an artifact of the
organisms.

There is a whole research program of sorting out more precisely the relationship
between objective and subjective goals and the functions they give rise to. I cannot
take it up here.

I do note, however, that in our everyday life and its concerns, including the
application of our sciences (such as biology and medicine), all of the above issues
are mixed together. This makes matters complicated. It may make it difficult to
distinguish whether, for example, when we say that a coffee maker is for making
coffee, we are attributing a function based on the coffee maker’s contribution to our
objective goals, our subjective goals, or both. Similarly, when we say that people
should exercise, are we making an ethical judgment, a judgment about their subject-
ive well-being, or a judgment about how to increase their chances of survival?
We might be making all these judgments at once. None of this eliminates the
objective fact that keeping our body efficient (e.g., through exercise and diet)
increases the chances of long-term survival. That is the kind of fact on which
teleological functions in the most basic sense are grounded, according to the present
account.
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This concludes my account of functional mechanisms—mechanisms that have
teleological functions. Teleological functions are stable contributions toward the
goals of organisms. This account applies equally well to the components of organisms
as well as to artifacts and their components. This account does justice to the scientific
practices pertaining to teleological functions by grounding functions in current
causal powers without appealing to etiology. This account provides the foundations
for a mechanistic account of computation that relies on the teleological functions of
computing systems. That’s what we now turn to.
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7

The Mechanistic Account

1. A Mechanistic, Non-semantic Account

I laid out desiderata for an account of concrete computation (Chapter 1), argued
that existing accounts do not adequately satisfy them (Chapters 2–4), argued that
computation should be explicated mechanistically (Chapter 5), and introduced the
relevant notion of functional mechanism (Chapter 6). I am now in a position to
articulate my account of what it is for a physical system to be a computing system—a
system that performs concrete computations.

The primary aim of the mechanistic account is doing justice to the practices of
computer scientists and engineers as well as cognitive scientists; the secondary aim is
to help guide the practices of other computational scientists who wish to employ the
notion of computation employed in computer science. I will argue that, unlike
mapping accounts (Chapter 2) and semantic accounts (Chapter 3), the mechanistic
account satisfies the desiderata laid out in Chapter 1.

The present account is mechanistic because it deems computing systems a kind of
functional mechanism—mechanism with teleological functions. Computational
explanation—the explanation of a mechanism’s capacities in terms of the computa-
tions it performs—is a species of mechanistic explanation.

The mechanistic account is non-semantic in the following sense. Unlike semantic
accounts, the mechanistic account doesn’t require that computational vehicles be
representations and individuates computing systems and the functions they compute
without appealing to their semantic properties. In other words, the mechanistic
account keeps the question whether something is a computing system and what it
computes separate from the question whether something has semantic content and
what it represents. Of course, many (though not all) computational vehicles do have
semantic properties, and such semantic properties can be used to individuate com-
puting systems and the functions they compute. The functions computed by physical
systems that operate over representations can be individuated either semantically or
non-semantically; the mechanistic account provides non-semantic individuation
conditions. Contrary to what many suppose (Chapter 3), computation does not
presuppose representation.

The mechanistic account flows naturally from these theses. Computing systems,
such as calculators and computers, consist of component parts (processors, memory



units, input devices, and output devices), their functions, and their organization.
Those components also consist of component parts (e.g., registers and circuits), their
functions, and their organization. Those, in turn, consist of primitive computing
components (paradigmatically, logic gates), their functions, and their organization.
Primitive computing components can be further analyzed mechanistically but not
computationally; therefore, their analysis does not illuminate the notion of comput-
ing systems.
In this chapter, I articulate the mechanistic account and argue that it satisfies the

desiderata. Satisfying these desiderata allows the mechanistic account to adequately
explicate both our ordinary language about computing mechanisms and the language
and practices of computer scientists and engineers. In later chapters, I will explicate
some important classes of computing systems and apply the mechanistic account to
some outstanding issues in the philosophy of computation.

2. Computing Mechanisms

2.1 Functional mechanisms

The central idea is to explicate computing systems as a kind of functional mechan-
ism. A system X is a functional mechanism just in case it consists of a set of
spatiotemporal components, the properties (causal powers) that contribute to the
system’s teleological functions, and their organization, such that X possesses its
capacities because of how X’s components and their properties are organized
(Chapter 6). Components that do not perform their functions are said to malfunction
or be defective. To identify the components, properties, and organization of a system,
I defer to the relevant community of scientists.
This notion of functional mechanism applies to ordinary computers and other

computing systems in a way that matches the language and practices of computer
scientists and engineers.1 Computing systems, including computers, are mechanisms
whose function is computing. Like other mechanisms, computing mechanisms and
their components perform their activities ceteris paribus, as a matter of their func-
tion. In the rest of our discussion, we will mostly focus on their normal operation, but
it’s important to keep in mind that they can malfunction, break, or be malformed or
defective. This will help demonstrate that the mechanistic account satisfies desider-
atum 5 (miscomputation).
A similar notion of functional mechanism applies to computing systems that are

defined purely mathematically, such as (unimplemented) Turing machines. Turing
machines consist of a tape divided into squares and a processing device. The tape and
processing device are explicitly defined as spatiotemporal components. They have
functions (storing letters; moving along the tape; reading, erasing, and writing letters

1 For a standard introduction to computer organization and design, see Patterson and Hennessy 1998.
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on the tape) and an organization (the processing device moves along the tape one
square at a time, etc.). Finally, the organized activities of their components explain
the computations they perform. Mathematically defined computing mechanisms
stand to concrete ones in roughly the same relation that the triangles of geometry
stand to concrete triangular objects. Like the triangles of geometry, mathematically
defined computing mechanisms may be idealized in various ways. Typically, they are
assumed to (i) never break down and (ii) have properties that may be impossible to
implement physically (such as having tapes of unbounded length).

Functional mechanisms, unlike mechanisms simpliciter and physical systems in
general, have successes and failures depending on whether they fulfill their functions.
Some conditions are relevant to explaining successes and failures while others are
irrelevant. This distinction gives us the resources to distinguish the properties of a
mechanism that are relevant to its computational capacities from those that are
irrelevant. But mechanistic structure per se is not enough to distinguish between
mechanisms that compute and mechanisms that don’t. For instance, both digestive
systems and computers are subject to mechanistic explanation, but only the latter
appear to compute. The main challenge for the mechanistic account is to specify
properties that distinguish computing mechanisms from other (non-computing)
mechanisms—and corresponding to those, features that distinguish computational
explanations from other (non-computational) mechanistic explanations.

I will now propose a way to single out computations from other capacities of
mechanisms, thereby differentiating between computing mechanisms and non-com-
puting mechanisms. To do so, I assume that the relevant community of scientists can
identify a mechanism’s functionally relevant components and properties. I will
suggest criteria that should be met by the functionally relevant components and
properties of a mechanism for it to count as performing computations in a nontrivial
sense, and hence as being a computing mechanism. The resulting account is not
intended as a list of necessary and sufficient conditions, but as an explication of the
properties that are most central to computing mechanisms.

I will begin with a broad notion of computation in a generic sense and then
illustrate it by looking more closely at the paradigmatic species of computation—
digital computation. In later chapters, I will discuss several classes of computing
systems in more detail.

2.2 Generic computation

In order to capture all relevant uses of ‘computation’ in computer science and
cognitive science, we need a broad notion of computation. I will use the banner of
generic computation. Specific kinds of computation, such as digital and analog
computation, are species of generic computation. The mechanistic account of con-
crete computation is the following:
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A Physical Computing System is a physical system with the following
characteristics:

• It is a functional mechanism—that is, a mechanism that has teleological
functions.

• One of its teleological functions is to perform computations.

Generic Computation: the processing of vehicles by a functional mechanism
according to rules that are sensitive solely to differences between different portions
(i.e., spatiotemporal parts) of the vehicles.

Rule: a mapping from inputs I (and possibly internal states S) to outputs O.

In other words, a physical computing system is a mechanism whose teleological
function is computing mathematical function f from inputs I (and possibly internal
states S) to outputs O. The mathematical function f is an abstract (macroscopic)
description of the behavior of a physical computing system when it fulfills its
teleological function. The mathematical function f is also the rule followed by the
physical system in manipulating its vehicles. The process of manipulating such vehicles
according to such a rule is a physical computation. In order to understand computation
in the generic sense, we need to understand the ingredients in the above account.
The term ‘vehicle’ can be used to refer to one of two things: either a variable, that is, a

state that can take different values and change over time, or a specific value of such a
variable.2 This ambiguity is harmless because context will make clear what is meant in
any given case. A vehicle consists of spatiotemporal parts or portions. For example, a
string of digits (in one usage of this term) is a kind of vehicle that is made out of digits
concatenated together (Figure 7.1). A digit is a portion of a vehicle that can take one out
of finitely many states during a finite time interval. Typically, a digit is a binary vehicle;
it can take only one out of two states. Another type of vehicle is a real (or continuous)
variable. The values of real variables change continuously over time; they can take (in
principle) one out of an uncountably infinite number of states at any given time.
A rule in the present sense is a map from inputs (and possibly internal states) to

outputs. It need not be represented within the computing system; it may be followed
by the system without representing it anywhere within it. It need not be spelled out
by giving an algorithm or listing the <input, output> pairs (or <input� internal state,

#* $ ## $ ** $ ## $ #* $ **Figure 7.1 A string of ternary
digits. Each position in the string
is a digit, and each ‘#’, ‘$’, and ‘*’
is the value of a digit.

2 A variable can be defined either as a purely mathematical or symbolic entity or as a physical state that
can change over time. For present purposes, a mathematical variable is just a way of referring to a (possibly
hypothetical) physical variable.

THE MECHANISTIC ACCOUNT 121



output> pairs); it may be given by specifying the relation that ought to obtain
between inputs (and possibly internal states) and outputs. It need not be defined in
terms of a special kind of vehicle (such as digits); it can be defined in terms of any
appropriate kind of vehicle. For instance, a rule might map segments of a real variable
onto the integral of those segments. Accordingly, an integrator is a device that follows
the integral rule in the sense of taking as input a real variable over a time interval and
generating as output the integral of that portion of real variable. Given this broad
notion of rule, the present account covers all systems that are generally deemed to
compute, whether or not they are “rule-based” using more restrictive notions of rule
(e.g., Horgan and Tienson 1989; O’Brien and Opie 2006).

The processing ormanipulation of a vehicle is any transformation of one portion of
a vehicle into another. Processing is performed by a functional mechanism, that is, a
mechanism with teleological functions. In the present case, a function of the mech-
anism is processing its vehicles in accordance with the relevant rules. Thus, if the
mechanism malfunctions, a miscomputation occurs.

When we define concrete computations and the vehicles that they manipulate, we
need not consider all of their specific physical properties. We may consider only the
properties that are relevant to the computation, according to the rules that define
the computation. A physical system can be described at different levels of abstraction
(Chapter 1, Section 2). Since concrete computations and their vehicles can be defined
independently of the physical media that implement them, I call them medium-
independent (borrowing the term from Garson 2003). That is, computational
descriptions of concrete physical systems are sufficiently abstract as to be medium-
independent.

In other words, a vehicle is medium-independent just in case the rule (i.e., the
input-output map) that defines a computation is sensitive only to differences between
portions (i.e., spatiotemporal parts) of the vehicles along specific dimensions of
variation—it is insensitive to any other physical properties of the vehicles. Put yet
another way, the rules are functions of state variables associated with certain degrees
of freedom, which can be implemented differently in different physical media. Thus,
a given computation can be implemented in multiple physical media (e.g., mechan-
ical, electro-mechanical, electronic, magnetic, etc.), provided that the media possess a
sufficient number of dimensions of variation (or degrees of freedom) that can be
appropriately accessed and manipulated and that the components of the mechanism
are functionally organized in the appropriate way. By contrast, typical physical
processes, such as cooking, cleaning, exploding, etc., are defined in terms of specific
physical alterations of specific substances. They are not medium-independent; thus,
they are not computations.

Medium-independence is a stronger condition than multiple realizability, which is
an often discussed feature of functional mechanisms. A property is multiply realiz-
able just in case it can be fulfilled by sufficiently different kinds of causal mechanisms
(Piccinini and Maley 2014). For instance, lifting corks out of bottles can be realized
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by a waiter’s corkscrew, a winged corkscrew, etc., all of which are different mechan-
isms for the same function. Medium-independence entails multiple realizability: if
a process is defined independently of the physical medium in which it is realized,
it may be realized in different media. But the converse does not hold; multiple
realizability does not entail medium independence. In our example, every mechan-
ism that implements a corkscrew must face specific constraints dictated by the
medium within which they must operate: corks and bottles. Thus, lifting corks out
of bottles is multiply realizable but not medium-independent.
Nevertheless, medium-independence shares an important and underappreciated

feature with multiple realizability. That is, any medium-independent property—just
like any multiply realizable property—places structural constraints on any mechan-
ism that fulfills it (Chapter 5). In the case of lifting corks out of bottles—which is
multiply realizable but not medium independent—we’ve already seen that there
are obvious structural constraints coming from having to lift corks (as opposed to,
say, caps) out of bottles (as opposed to, say, bathtubs). In the case of a medium-
independent property, the structural constraint comes from requiring that the
medium—any medium that realizes the property—possesses the degrees of freedom
that are needed to realize the property.
In the case of digits, their defining characteristic is that they are unambiguously

distinguishable by the processing mechanism under normal operating conditions.
Strings of digits are ordered sets of digits; i.e., digits such that the system can
distinguish different members of the set depending on where they lie along the
string. The rules defining digital computations are defined in terms of strings of
digits and internal states of the system, which are simply states that the system can
distinguish from one another. No further physical properties of a physical medium
are relevant to whether they implement digital computations. Thus, digital compu-
tations can be implemented by any physical medium with the right degrees of
freedom.
Since the definition of generic computation makes no reference to specific media,

generic computation is medium-independent—it applies to all physical media. That
is, the differences between portions of vehicles that define a generic computation do
not depend on specific physical properties of the medium but only on the presence of
relevant degrees of freedom.
Analog computation is often contrasted with digital computation, but analog

computation is a vague and slippery concept. The clearest notion of analog compu-
tation is that of Pour-El (1974). Roughly, abstract analog computers are systems that
manipulate continuous variables to solve certain systems of differential equations.
Continuous variables are variables that can vary continuously over time and take any
real values within certain intervals.
Analog computers can be physically implemented, and physically implemented

continuous variables are different kinds of vehicles than strings of digits. While a
digital computing system can always unambiguously distinguish digits of different
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types from one another, a concrete analog computing system cannot do the same
with the exact values of (physically implemented) continuous variables. This is
because the values of continuous variables can only be measured within a margin
of error. Primarily due to this, analog computations (in the present, strict sense) are a
different kind of process than digital computations.

In conclusion, generic computation includes digital computation, analog compu-
tation, and more (Figure 7.2).

In addition to the structural constraints on computation that derive from the
vehicles to be realized, there are structural constraints that come from the specific
operations that are realized. We shall soon see that in order to perform certain
operations, components must have specific structural properties. Thus, computa-
tional explanation counts as full-blown mechanistic explanation, where structural
and functional properties are inextricably mixed—because they are mutually
constraining—within the mechanism (Chapter 5).

This point addresses a dilemma posed by Sabrina Haimovici (2013). Haimovici
argues that since computation is medium-independent, computational explanation is
purely3 functional—whereas mechanistic explanation is both structural and func-
tional. Thus, we must choose between individuating computations purely function-
ally or also structurally. Horn 1: if we individuate computations purely functionally,
we cannot rely on mechanistic explanation because mechanistic explanation must
involve structural properties. Horn 2: if we individuate computations structurally as
well as functionally, we can rely on mechanistic explanation but we lose multiple
realizability, because mechanistic explanation requires the specification of all relevant
structural and functional properties at all levels of mechanistic organization, and that
rules out alternative realizations.

Reply: computation is individuated both functionally and structurally, because
even medium-independent properties place structural constraints on the media that
realize them and the mechanisms that operate on them. In addition, I reject the view
that mechanistic explanation requires the specification of structural and functional
properties at all levels of organization. Instead, mechanistic explanation requires
the specification of all relevant structural and functional properties at the relevant

Digital Computation Analog Computation

Generic Computation

Figure 7.2 Types of generic computation and their relations of class inclusion.

3 Actually, when she is careful Haimovici writes “mainly” functional (2013, 158, 159, 163, 178), which is
consistent with structural properties also playing a role in individuating computations.
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level(s) of mechanistic organization—in other words, mechanistic explanation of any
given phenomenon requires performing appropriate abstractions from lower level
details—and that leaves just the right amount of room for multiple realizability
(Piccinini and Maley 2014). Mechanistic explanation in general requires abstraction,
and computational explanation is an especially abstract form of mechanistic
explanation—so abstract that computation is medium-independent. Therefore, we
can be mechanists about computation and preserve both medium-independence and
multiple realizability.
In order to understand the mechanistic account of computation further, it will

help to examine a class of computing systems more closely. The rest of this section
will focus on the broad characteristics of digital computing systems and how the
mechanistic account sheds light on them.

2.3 Abstract digital computation

Mathematically, a digital computation, in the sense most directly relevant to com-
putability theory and computer science, is defined in terms of two things: strings of
letters from a finite alphabet and a list of instructions for generating new strings from
old strings. The list of instructions is called program. The instructions are typically
deterministic, specifying how to modify a string to obtain its successor. (In special
cases, instructions may be nondeterministic, specifying which of several modifica-
tions may be made.) Given an alphabet and a list of pertinent instructions, a digital
computation is a sequence of strings—sometimes called snapshots—such that each
member of the sequence derives from its predecessor by some instruction in the list.4

Letters and strings thereof are often called symbols, because they are typically
assigned semantic interpretations. Strings may or may not be assigned an interpret-
ation; if they are interpreted, the same string may be interpreted differently—e.g., as
representing a number, or a program, etc.—depending on what the theorist is trying
to prove at any given time. In these computational descriptions, the identity of the
computing mechanism does not hinge on how the strings are interpreted. Therefore,
within computability theory, symbols do not have their content essentially. Although
computability theory in a broad sense studies the computational properties of
different notations (Rescorla, forthcoming), the basic mathematical theory of com-
putation can be formulated and the core results of computability theory can be
derived without assigning any interpretation to the strings of symbols being com-
puted (e.g., Machtey and Young 1978). More generally, much research in fields that
rely on computational formalisms, such as algorithmic information theory and the
study of formal languages, proceeds without assigning any interpretations to the
computational inputs, outputs, and internal states that are being studied. Thus, a

4 For an introduction to computability theory, including a more precise definition of (digital) compu-
tation, see Davis, Sigal, and Weyuker 1994. For the mathematical theory of strings, see Corcoran, Frank,
and Maloney 1974.
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letter is simply a type of entity that (i) is distinct from other letters and (ii) may be
concatenated to other letters to form lists, called strings. A string is an ordered
sequence of letters—it is individuated by the types of letter that compose it, their
number, and their order within the string.5

Many interesting digital computations depend not only on an input string of data,
but also on the internal state of the system that is responsible for the computation. In
paradigmatic cases, internal states may also be defined as strings of letters from a
finite alphabet. Thus, the strings over which digital computations are defined—the
snapshots—may specify not only the computational data, but also the relevant
internal states. If internal states are relevant, at each step in the computation at
least one letter in a snapshot—together, perhaps, with its position in the snapshot—
specifies the internal state of the mechanism. Typically, an abstract digital computa-
tion begins with one initial string (input data plus initial internal state), includes
some intermediate strings (intermediate data plus intermediate internal state), and
terminates with a final string (output plus final internal state).

For all strings from an alphabet and any relevant list of instructions, there is a
general rule that specifies which function is computed by acting in accordance with a
program. In other words, the rule specifies which relationship obtains between the
outputs produced by modifying snapshots in accordance with the program and their
respective inputs. For example, a rule may say that the outputs are a series of input
words arranged in alphabetical order. Such a rule has two important features. First, it
is general, in that it applies to all inputs and outputs from a given alphabet without
exception. Second, it is input-specific, in that it depends on the composition of the
input (the letters that compose it and their order) for its application. The rule need
not return an output value for all inputs; when it doesn’t, the (partial) function being
computed is undefined for that input. Absent a way to formulate the rule independ-
ently of the program, the program itself may count as the rule.6

It is important to notice that mathematically, a digital computation is a specific
type of sequence defined over a specific type of entity. Many sets do not count as
alphabets (e.g., the set of natural numbers is not an alphabet because it is infinite) and
many operations do not count as digital computations in the relevant sense (e.g.,
integrating a function over a domain with uncountably many values, or generating a

5 Dershowitz and Gurevich (2008) show that computing over standard one-dimensional strings is
equivalent to computing over arbitrary data structures including two-dimensional strings (Sieg and Byrnes
1996), vectors, matrices, lists, graphs, and arrays. I focus on one-dimensional strings because they are the
basis for mainstream computability theory and they are the basic data structure employed in digital
computer design (more on digital computer design in the next chapters). Furthermore, any other relevant
data structures may be encoded as one-dimensional strings.

6 In Turing’s original formulation, all computations begin with the same input (the empty string), but
there are still rules that specify which strings are produced by each computation (Turing 1936–7). More
generally, it is possible to define “computations” analogous to ordinary computations but without inputs,
without outputs, or without both. Since these “computations” are of little interest for present purposes,
I will ignore them.
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random string of letters (Church 1940)). The mathematical notion of digital com-
putation is clear enough. The remaining question is how to apply it to concrete
mechanisms.

2.4 Digits and primitive digital computing components

To show how a concrete mechanism can perform digital computations, the first step
is finding a concrete counterpart to the formal notion of letter from a finite alphabet.
I call such an entity a digit. The term ‘digit’ may be used in one of two ways. First, it
may denote a physical variable that belongs to a component of a mechanism and can
take one out of finitely many states during a finite time interval. For example, a
switch may be either on or off, or a memory cell may contain a ‘1’ or a ‘0’. In this first
usage, the switch or memory cell is a digit. Second, ‘digit’ may denote the specific
state of a variable—e.g., a switch in the off position, a memory cell storing a ‘1’. This
ambiguity is harmless because context will make clear what is meant in any given
case. When not otherwise noted, I will use ‘digit’ in the second sense, meaning state
of a physical variable.
A digit may be transmitted as a signal through an appropriate physical medium. It

may be transmitted from one component to another of a mechanism. It may also be
transmitted from outside to inside a mechanism and vice versa. So a digit may enter
the mechanism, be processed or transformed by the mechanism, and exit the
mechanism (to be transmitted, perhaps, to another mechanism).
So far, I have talked about physical variables that can take one out of finitely many

states during a finite time interval. But, of course, a typical physical variable—
including the variables to be found inside digital computers—may vary continuously
and take (or be assumed to take) one out of an uncountable number of states at any
given instant. And even when a physical variable may take only finitely many states,
the number of physical microstates is many orders of magnitude larger than the
number of digits in a computing system. Therefore, many physically different
microstates count as digits of the same type.
As we saw in Chapters 2 and 4, some authors have supposed that any grouping of

physical microstates within a system may count as identifying digits. Nothing could
be further from the truth. Physical microstates have to be grouped in very regimented
ways in order to identify a system’s digits. Only very specific groupings of physical
microstates are legitimate. To a first approximation, physical microstates must be
grouped in accordance with the following three conditions.

Digital Grouping of Physical Microstates

(1) During any time interval when a mechanism processes digits, all and only the
microstates that the mechanism processes in the same way while performing its
function belong to the same digit type.
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(2) During any time interval when a mechanism processes digits, all and only the
microstates that the mechanism processes in different ways while performing its
function belong to different digit types.
(3) During any time interval when a mechanism does not perform its function or
performs its function but does not process digits, microstates do not belong to any
digit.

When I write that two microstates are “processed in the same way,” I mean that they
are always transformed into microstates that belong to the same digit type. That is,
they are transformed into microstates that belong to the same digit type not only
during an actual situation but under all conditions of normal operation. The condi-
tions must be normal because a computing mechanism may malfunction and
generate the wrong microstate.

Once microstates are grouped into digits, they can be given abstract labels such as
‘0’ and ‘1’. Which abstract label is assigned to which digit type is entirely arbitrary as
long as the number of labels matches the number of digit types. When we label the
digits of computing artifacts, labeling is driven by application: we choose labels that
fit our purposes and we design circuits to fulfill our purposes based on the chosen
labeling scheme. But from a physical standpoint, any labeling scheme that uses the
right number of labels is equivalent to any other (cf. Sprevak 2010; Dewhurst ms.).

Notice that digits, the time intervals during which they are processed, and the ways
they are processed are mutually defined. The time intervals are defined in terms of
digit processing and operations on digits, the digits are defined in terms of the
relevant time intervals and ways of processing the microstates, and the ways of
processing microstates are defined in terms of digits and relevant time intervals.
This is not a vicious circularity and does not give rise to arbitrary groupings of
microstates (more on this in the next section); it simply means that when a digital
computing system is designed, its digits, ways of processing them, and relevant time
intervals must be designed together; when a natural system is interpreted to be a
digital computing system, its digits, ways of processing them, and relevant time
intervals must be identified together.

Let us now get into more details about digits and their processing. It is convenient
to consider strings of one digit first, leaving strings of multiple digits for later. A logic
gate is a device that takes one or two input digits and returns one or two output digits
as a function of its input. Logic gate computations are so basic that they cannot be
analyzed into simpler computations. For this reason, I call logic gates primitive
computing components. Logic gates are the computational building blocks of modern
digital computing technology.7

7 Some computing mechanisms, such as old mechanical calculators, are not made out of logic gates.
Their simplest computing components may manipulate strings of multiple digits, as opposed to a few
separate digits, as inputs and outputs. Their treatment requires the notion of a concrete string, which is
introduced below. Without loss of generality, we may consider primitive components with two inputs and
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Digits are permutable in the sense that normally, any token of any digit type may
be replaced by a token of any other digit type. Functionally speaking, the components
that bear digits of one type are also capable of bearing digits of any other type. For
example, ordinary digital computer memory cells must be able to stabilize on states
corresponding to either of the two digit types—usually labeled ‘0’ and ‘1’—that are
manipulated by the computer. If memory cells lost the capacity to stabilize on one of
the digit types, they would cease to function as memory cells and the digital computer
would cease to work.
In a digital computing mechanism, under normal conditions, digits of the same

type affect primitive components of a mechanism in sufficiently similar ways that
their dissimilarities make no difference to the resulting output. For instance, if two
inputs to a NOT gate are sufficiently close to a certain voltage (labeled type ‘0’), the
outputs from the gate in response to the two inputs must be of voltages different from
the input voltages but sufficiently close to a certain other value (labeled type ‘1’) that
their difference does not affect further processing by other logic gates.
Furthermore, normally, digits of different types affect primitive components of a

digital computing mechanism in sufficiently different ways that their similarities
make no difference to the resulting outputs. This is not to say that for any two input
types, a primitive component always generates outputs of different types. On the
contrary, it is common for two computationally different inputs to give rise to the
same computational output. For instance, in an AND gate, inputs of types ‘0,0’, ‘0,1’,
and ‘1,0’ give rise to outputs of type ‘0’. But it is still crucial that the AND gate can
give different responses to tokens of different types, so as to respond differently to
‘1,1’ than to other input types. Thus, in all cases when two inputs of different types
are supposed to generate different output types (such as the case of input type ‘1,1’ in
the case of an AND gate), the differences between digit types must suffice for the
component to differentiate between them, so as to yield the correct outputs.
Which physical differences and similarities are relevant to a given mechanism

depends on the technology used to build it. At different times, variants of mechanical,
electro-mechanical, and electronic technologies have been used to build digital
computers. Newer technologies, such as optical and molecular computing, are
under development. It would be illuminating to study the details of different tech-
nologies, the specific similarities and differences between digits that are relevant to
each, and the considerable engineering challenges that must be overcome to build
mechanisms that reliably differentiate between different digit types. Since each
technology poses specific challenges, however, no general treatment can be given.
For now, I hope the example of electronic logic gates is enough to grasp the basic

idea. I will add some more pertinent observations later in this chapter. Provided that

one output, since primitive components with a larger number of inputs and outputs are reducible to
components with only two inputs and one output. (This condition may not hold in the case of hyper-
computation, which is briefly mentioned in the next section and more extensively in Chapters 15 and 16.
Here, we are focusing on ordinary, recursive digital computation.)
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the relations just discussed hold, a mechanism may be described as performing
elementary (atomic) digital computations, because its inputs and outputs are digits,
and the relation between inputs and outputs may be characterized by a simple logical
relation. But elementary digital computations are trivial. When we talk about digital
computing, we are generally interested in computation over strings of nontrivial
length. For that, we need to introduce a concrete notion of string, which requires a
concrete ordering of the digits.

2.5 Strings of digits and complex digital computing components

Any concrete relation between digits that possesses the mathematically defined
properties of concatenation may constitute a concrete counterpart to mathematical
concatenation. The simplest examples of such concrete ordering relations are spatial
contiguity between digits, temporal succession between digits, or a combination of
both.

For instance, suppose you have a literal physical implementation of a simple
Turing machine. The tape has a privileged square, s. Before the machine begins,
the input string is written on the tape. The digit written on s is the first digit in the
string, the one on its right is the next, and so forth. When the machine halts, the
output string is written on the tape, in the same order the input was. This is a spatial
ordering of digits into a string.

An example of temporal concatenation is given by finite state automata. Since they
have no tape, they simply take inputs one letter at a time. Any literal physical
implementation of a finite state automaton will receive one letter at a time. The
first digit to go in counts as the first in the string, the second as the second in the
string, and so forth.

Real digital computers and other digital computing mechanisms may exploit a
combination of these two strategies. Primitive components, such as logic gates, may
be wired together to form complex components, which in turn may be wired together
to form more complex components. This process must be iterated several times
before we obtain an entire digital computer.

In designing digital computing mechanisms, not any wiring between components
will do. The components must be arranged so that it’s clear where the input digits go
in and where the output digits come out. In addition, for the inputs and outputs to
constitute strings, the components must be arranged so as to respect the desired
relations between the digits composing the strings. What those relations are depends
on which computation is performed by the mechanism.

For example, consider a circuit that adds two four-digit strings.8 A simple way to
perform binary addition is the following: add each pair of bits; if there is a carry from

8 Addition is normally understood as an arithmetical operation, defined over numbers. In this case, it
should be understood as a string-theoretic operation, defined over strings of numerals written in binary
notation.

130 THE MECHANISTIC ACCOUNT



the first two bits, add it to the second two bits; after that, if there is a carry from the
second two bits, add it to the third two bits; and so forth until the last two bits.
A circuit that performs four bit addition in this way must be functionally organized
so that the four digits in the input strings are manipulated in the way just specified, in
the correct order. The first two bits may simply be added. If they generate a carry, that
must be added to the second two bits, and so forth. The resulting arrangement of the
components (together with the wiring diagram that depicts it) is asymmetric: differ-
ent input digits will be fed to different components, whose exact wiring to other
components depends on how their respective digits must be processed, and in what
order. Implicit in the spatial, temporal, and functional relations between the com-
ponents of the whole circuit as well as the way the circuit is connected to other
circuits is the order defined on input and output digits.
An important aspect of digit ordering is synchrony between components. When a

computing mechanism is sufficiently large and complex, there needs to be a way to
ensure that all digits belonging to a string are processed during the same functionally
relevant time interval. What constitutes a functionally relevant time interval depends
on the technology used, but the general point is independent of technology. The
components of a mechanism interact over time and, given their physical character-
istics, there is only a limited amount of time during which their interaction can yield
the desired result, consistent with the ordering of digits within strings.
Consider again our four bit adder. If the digits that are intended to be summed

together enter the mechanism at times that are sufficiently far apart, they won’t be
added correctly, even if they are correctly received by the components that are
supposed to process them. If a carry from the first two bits is added to the second
two bits too late, it will fail to affect the result. And so on. Concrete digital
computation has temporal aspects, which must be taken into account in designing
and building digital computing mechanisms. When this is done correctly, it contrib-
utes to implementing the relation of concatenation between digits. When it’s done
incorrectly, it prevents the mechanism from working properly.
Unlike a simple four bit adder, which yields its entire output at once, there are

digital computing components that generate different portions of their output at
different times. When this is the case, the temporal succession between groups of
output digits may constitute (an aspect of) the ordering of digits into strings.
Yet other functional relations may be used to implement concatenation. Within

modern, stored-program digital computers, computation results are stored in large
memory components. Within such memories, the concatenation of digits into strings
is realized neither purely spatially nor purely temporally. Rather, there is a system of
memory registers, each of which has a label, called address. If a string is sufficiently
long, a memory register may contain only a portion of it. To keep track of a whole
string, the computer stores the addresses where the string’s parts are stored. The
order of register names within the list corresponds to the relation of concatenation
between the parts of the string that is stored in the named registers. By exploiting this
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mechanism, a digital computer can store very large strings and keep track of the
digits’ order without needing to possess memory components of corresponding
length.

In short, just as a mathematically defined algorithm is sensitive to the position of a
letter within a string of letters, a concrete digital computing mechanism—via the
functional relations between its components—is sensitive to the position of a digit
within a string of digits. Thus, when an input string is processed by a mechanism,
normally the digit types, their number, and their order within the string make a
difference to what output string is generated.

2.6 Components, functions, and organization

As we’ve seen, digits and strings thereof are equivalence classes of physical micro-
states that satisfy certain conditions. For instance, all voltages sufficiently close to two
set values that occur within relevant time intervals in relevant components count as
digit tokens of two different types; all voltages sufficiently far from those values do
not count as digits at all. But voltage values could be grouped in many ways. Why is
one grouping privileged within a digital computing mechanism? The answer has to
do with the components of the mechanism, their functional properties, and their
organization.

Some components of digital computing mechanisms don’t manipulate digits; they
do other things. Their functions include storing energy (battery), keeping the tem-
perature low enough (fan), or protecting the mechanism (case). They can be ignored
here, because we are focusing on components that participate in computing. Com-
ponents that manipulate digits are such that they stabilize only on states that count as
digits. Finding components with such characteristics and refining them until they
operate reliably is an important aspect of digital computer design. In ordinary digital
computing technology, the components that manipulate digits can be classified as
follows.

Input devices have the function of turning external stimuli into strings of digits.
Memory components have the function of storing digits and signaling their state
upon request. Their state constitutes either data strings or the physical implementa-
tion of mathematically defined internal states. Processing components have the
function of taking strings of digits as inputs and returning others as outputs accord-
ing to a fixed rule defined over the strings. Output devices have the function of taking
the final digits produced by the processing components and yielding an output to the
environment. Finally, some components simply transmit digits between the other
components.

Given their special functional characteristics, digits can be labeled by letters and
strings of digits by strings of letters. As a consequence, the same formal operations
and rules that define mathematically defined computations over strings of letters can
be used to characterize concrete computations over strings of digits. Within a
concrete digital computing mechanism, the components are connected so that the
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inputs from the environment, together with the digits currently stored in memory,
are processed by the processing components in accordance with a set of instructions.
During each time interval, the processing components transform the previous
memory state (and possibly, external input) in a way that corresponds to the
transformation of each snapshot into its successor. The received input and the initial
memory state implement the initial string of a mathematically defined digital com-
putation. The intermediate memory states implement the intermediate strings. The
output returned by the mechanism, together with the final memory state, implement
the final string.
Subsequent chapters will show in detail how digital computing mechanisms can

implement complex digital computations. Here I only make a few brief remarks.
Mathematically defined digital computations can be reduced to elementary oper-
ations over individual pairs of letters. Letters may be implemented as digits by the
state of memory cells. Elementary operations on letters may be implemented as
operations on digits performed by logic gates. Logic gates and memory cells can be
wired together so as to correspond to the composition of elementary computational
operations into more complex operations. Provided that (i) the components are
wired so that there is a well-defined ordering of the digits being manipulated and
(ii) the components are synchronized and functionally organized so that their
processing respects the ordering of the digits, the behavior of the resulting mechan-
ism can be accurately described as a sequence of snapshots. Therefore, under normal
conditions, such a mechanism processes its inputs and internal states in accordance
with a program; the relation between the mechanism’s inputs and its outputs is
captured by a digital computational rule.
The synchronization provision is crucial and often underappreciated. Compo-

nents must be synchronized so that they update their state or perform their oper-
ations within appropriate time intervals. Such synchronization is necessary to
individuate digits appropriately, because synchronization screens off irrelevant val-
ues of the variables some values of which constitute digits. For example, when a
memory component changes its state, it transitions through all values in between
those that constitute well defined digits. Before it stabilizes on a new value, it takes on
values that constitute no digits at all. This has no effect on either the proper
taxonomy of digits or the mechanism’s computation. The reason is that memory
state transitions occur during well-defined time intervals, during which memory
components’ states do not affect the rest of the mechanism. This contributes to
making the equivalence classes that constitute digits functionally well-defined. Thus,
synchronization is a necessary aspect of the computational organization of ordinary
digital computing technology. Without synchronization there would be no complex
digital computations, because there would be no well-defined digits.
In short, any system whose function is generating output strings from input strings

(and possibly internal states), in accordance with a general rule that applies to all
strings and depends on the input strings (and possibly internal states) for its
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application, is a digital computing mechanism. The mechanism’s ability to perform
computations is explained mechanistically in terms of its components, their func-
tions, and their organization. By providing an appropriate mechanistic explanation
of a system, it is thus possible to individuate digital computing mechanisms, the
functions they compute, and their computing power, and to explain how they
perform their computations.

2.7 How some computing mechanisms understand instructions

Ordinary digital computers execute instructions, and which computation they per-
form depends on which instructions they execute. This special capacity has suggested
to some authors that instructions must be individuated by their semantic properties.
Thus, a general account of computation must address computing mechanisms that
execute instructions and whether their individuation requires semantic properties.

In the practice of computer programming, programs are created by combining
instructions that are prima facie contentful. For example, a high-level programming
language may include a control structure of the form UNTIL P TRUE DO ___
ENDUNTIL.9 In executing this control structure, the computer does ___ until the
variable P has value TRUE and then moves on to the next instruction. The program-
mer is free to insert any legal sequence of instructions in the ___, knowing that the
computer will execute those instructions until the value of P is TRUE. This awesome
ability of computers to execute instructions is one of the motivations behind the
semantic account of computation, according to which computation requires repre-
sentation and computational states have their semantic content essentially
(Chapter 3). For when people execute instructions—that is, they do what the instruc-
tions say to do—they do so because they understand what the instructions say. By
analogy, it is tempting to conclude that, in some sense, computers respond to the
semantic properties of the instructions they execute, or at least instructions and the
corresponding computational states of the mechanism are individuated by their
content. This temptation is innocuous to the extent that we appreciate how com-
puters execute instructions and specify the relevant notion of computational content
accordingly; otherwise, to speak of computers responding to semantic properties or
of instructions being individuated by their content is misleading. So, I will briefly
explain how computers execute instructions (more details in Chapters 9 and 11).

In ordinary stored-program computers, instructions are encoded as binary strings
(strings of bits). Each bit is physically realized by a voltage level in a memory cell or
some other state capable of physically affecting the computer in the relevant way.
Before the processor of a computer can execute a binary string written in a high-level
programming language, the computer must transform the string into a machine
language instruction, which the machine can execute. A machine language instruction

9 I took this example from Loop Programs, a simple but powerful programming language invented by
Robert Daley at the University of Pittsburgh.
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is a binary string that, when placed in the appropriate register of a computer
processor, causes the computer’s control unit to generate a series of events in the
computer’s datapath. For example, the sequence of events may include the transfer of
binary strings from one register to another, the generation of new strings from old
ones, and the placement of the new strings in certain registers.
The computer is designed so that the operations performed by the computer’s

processor (i.e., the control unit plus the datapath) in response to a machine language
instruction correspond to what the instruction means in assembly language. For
instance, if the intended interpretation of an assembly language instruction is to
copy the content of register x into register y, then the computer is designed so that
when receiving a machine language encoding of that assembly language instruction,
it will transfer the content of register x into register y. This feature of computers may
be used to assign their instructions (and some of their parts) an interpretation, to the
effect that an instruction asserts what its execution accomplishes within the com-
puter. This may be called the internal semantics of the computer.
Internal semantics is not quite semantics in the sense usually employed by

philosophers. When philosophers say ‘semantics,’ they mean external semantics,
that is, semantics that relates a state to things other than its computational effects
within a computer, including objects and properties in the external world. But notice
that contents assigned to a state by an external semantics need not be ordinary
objects and properties in the environment; they may be numbers, counterfactual
events, phonemes, non-existent entities like Aphrodite, etc.10

Internal semantics is no help to the supporters of semantic accounts of computa-
tion, for they are usually concerned with individuation by external semantic prop-
erties. This is because semantic accounts are largely motivated by computational
explanations of cognitive capacities in terms of internal states and processes that are
widely assumed to be individuated by their (external) contents.
Internal semantics is fully determined by the functional and structural properties

of program-controlled computers, independently of any external semantics. This can
be seen clearly by reflecting on the semantics of high-level programming language
instructions. For instance, the semantics assigned above to UNTIL P TRUE DO ___
ENDUNTIL was ambiguous between an internal and an external reading. As I said,
the instruction means to do ___ until the variable P has value TRUE. Doing ___ is a
computational operation, so this component of the interpretation is internal. P is a
variable of the programming language, which ranges over strings of symbols to be
found inside the computer—again, this is an internal content. Finally, ‘TRUE’ may

10 Dennett (1987, 224–5) uses the expressions “internal semantics” and “external semantics” in a similar
sense, and Fodor (1978) discusses some related issues. Curiously, I devised and named this distinction before
reading Dennett’s work. The distinction between internal and external semantics should not be confused with
that between semantic internalism and semantic externalism, which pertain to the identity conditions of
contents (specified by an external semantics).
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be taken to mean either true (the truth-value), or the word ‘TRUE’ itself as written in
the relevant programming language (a case of self-reference).

When writing programs, it is convenient to think of ‘TRUE’ as referring to a truth-
value. But for the purpose of individuating the computation, the correct interpretation
is the self-referential one. For what a computer actually does when executing the
instruction is to compare the (implementations of) the two strings, the one that
is the value of P and the one that reads ‘TRUE.’ All that matters for the individuation
of the computation is which digits compose the two strings and how they are
concatenated together. If they are the same digits in the same order, the processor
proceeds to the next instruction; otherwise, it goes back to doing ___. Whether either
string (externally) means a truth-value, or something else, or nothing, is irrelevant to
determining which state the computer is in and which operation it’s performing for
the purpose of explaining its behavior. In other words, having an internal semantics
does not entail having an external semantics.

This is not to say that instructions and data, either at a high level or at the machine
language level, lack an external semantics. Each element of the machine implemen-
tation of a high-level instruction has a job to do, and that job is determined at least in
part by the high-level instruction that it implements. Besides its internal semantics,
that high-level instruction may well have a semantics that is, at least in part, external.
By the same token, each element of a machine language datum is a component of the
machine implementation of a high-level datum, and that high-level datum typically
has an external semantics. It may be difficult or impossible to univocally break down
the external contents of high-level instructions and data into external contents of
machine language instructions and data, but this is only an epistemic limitation. As a
matter of fact, machine language instructions and data may well have external
semantic properties. This is perfectly compatible with the point at issue. The point
is that the states of computing mechanisms, including program-controlled com-
puters, do not have their external contents essentially—they are fully individuated
without appealing to their external semantic properties.

Assigning instructions and data a semantics, either external or internal, is indis-
pensable to designing, programming, using, and repairing computers, because that is
the only way for designers, programmers, users, and technicians to understand what
computers are supposed to be doing or failing to do. But in an explanation of
computer instruction execution, a complex instruction like UNTIL P TRUE DO
___ ENDUNTIL is a string of digits, which will be encoded in the computer as a
binary string, which will affect the computer’s processor in a certain way. A computer
is a powerful, flexible, and fascinating mechanism, and we may feel compelled to say
that it responds to the semantic properties of the instructions it executes. But as
I briefly argued, this kind of “computer understanding” is exhaustively and mech-
anistically explained without ascribing any external semantics to the inputs, internal
states, or outputs of the computer. The case is analogous to non-universal TMs,
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whose computational behavior is entirely determined and fully individuated by the
instructions that are “hardwired” in their active component.
In summary, the mechanistic account of computation holds that a program-

controlled computer is a physical system with special functional and structural
properties that are specified by a certain kind of mechanistic explanation. Although
for practical purposes the internal states of computers are usually ascribed content by
an external semantics, this need not be the case and is unnecessary to individuate
their computational states and explain their behavior.
From now on, unless otherwise noted, by ‘semantics’ I will mean external seman-

tics, and by ‘content’ I will mean content ascribed by an external semantics (unless
otherwise noted).

2.8 Computing mechanisms, semantic content, and wide functions

The mechanistic account of computation bears some similarity to a view proposed by
Frances Egan (1992, 1995, 1999, 2003, 2010). Egan appears to reject the semantic
account of computation, because she rejects the view, championed by many philo-
sophers, that the computational states postulated by psychological theories are
individuated by the cognitive contents of those states (e.g., visual contents for the
states of visual mechanisms, auditory contents for the states of auditory mechanisms,
etc.).
Cognitive contents are often assumed to be non-individualistic—that is, they are

assumed to vary based solely on differences in cognizers’ environments, even when
cognizers cannot tell such a difference. Be that as it may, Egan argues that compu-
tational states are individuated individualistically, i.e., by properties that are shared
by all physical duplicates of a mechanism. But when Egan specifies how computa-
tional states are individuated, she points to their “mathematical contents,” namely
the “mathematical” functions whose domain and range elements are denoted by the
inputs and outputs of the computations (Egan 1995, 187; 2003, 96). Although I agree
with much of what Egan says, Egan’s view does not capture the way computational
states are individuated within computability theory and computer science; therefore,
it should be replaced by the mechanistic account of computation. Egan’s view also
faces an internal difficulty, which is avoided by the mechanistic account.
Egan’s mathematical contents behave differently from cognitive contents in some

types of counterfactual reasoning. A salient difference is that mathematical
contents—unlike cognitive ones—are not dependent on the relations between a
mechanism and its environment. Under most views of cognitive content, whether
an organism is thinking about water depends, inter alia, on whether there is H2O in
her environment (Putnam 1975c). But whether the same organism is thinking about
the number seven does not seem to depend on anything in her environment. In this
sense, mathematical contents are shared by physical duplicates in a way that cogni-
tive contents (under most views of cognitive content) are not.
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But there is a sense in which mathematical contents are no more intrinsic to
computing systems than cognitive contents. Mathematical contents are still contents
(ascribed by an external semantics)—they are still relational properties of states,
which depend on the relations between a mechanism and something else (numbers,
sets, or what have you). From a formal semantics perspective, there is no principled
difference between mathematical and cognitive contents. Both can be assigned as
interpretations to the states of a system, and both can be assigned to the system’s
physical duplicates. It is certainly possible to assign the same mathematical inter-
pretation to all physical duplicates of a computing system, but in the same way, it is
equally possible to assign the same cognitive interpretation to all physical duplicates
of a computing system.11 Moreover, just as internal states of the same mechanism
may be given different cognitive interpretations, it is well known that the same set of
symbolic strings may be given different mathematical interpretations. And the same
sets of vehicles can be given different mathematical interpretations in different
contexts (cf. Rescorla 2013). In this sense, mathematical contents are shared by
physical duplicates neither more nor less than cognitive contents. If the latter are
not individualistic enough for Egan’s purposes, the former shouldn’t be either.

If someone wants to individuate computational states in a rigorously individual-
istic way, she should drop the individuation of computational states by their semantic
properties—cognitive or mathematical—altogether. She might opt for an individu-
alistic version of the mechanistic account of computation: under a narrow construal
of mechanistic explanation, the properties of computing mechanisms are individu-
alistic in precisely the sense desired by Egan.12

My own version of the mechanistic account of computation is not individualistic
but anti-individualistic. My immediate reason is the kind of consideration used by
Shagrir (2001) in his argument from the multiplicity of computations (discussed
in Chapter 3, Section 3). Shagrir shows that looking at the system’s narrow properties
is insufficient to determine which computational description is correct among
the many that are satisfied by a system. Shagrir’s conclusion is that only a correct
semantic interpretation of the system allows us to determine the semantically
individuated computation actually performed by the system. My alternate conclusion

11 Of course, some of those interpretations may turn out to be intuitively anomalous within a cognitive
theory of an organism, in the sense that they may fail to capture the way the organism relates to her actual
environment (as opposed to a possible environment). In computer science, however, all that matters for
interpreting computational states is the formal adequacy of a candidate interpretation, that is, whether the
states can be systematically interpreted in one way or another. There is nothing intuitively anomalous
about interpreting a computer on Twin Earth as computing something about H2O, even if there is no H2O
on Twin Earth. In this respect, the semantics of artificial computing mechanisms is different from that of
organisms. Perhaps this is because the semantics of computing mechanisms is derived, whereas that of
organisms is original.

12 This is individualism about computing mechanisms, not about psychological mechanisms. A narrow
reading of the mechanistic account of computation is compatible with there being psychological comput-
ing mechanisms that include features of both individuals and their environment, as argued by Wilson
(1994, 2004).
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is that only by taking into account the functional interaction between the system and
its context can we determine the non-semantically individuated computation actually
performed by the system.
More generally, I embrace a wide (non-individualistic) construal of mechanistic

explanation. For present purposes, it is important to distinguish between wide indi-
viduation and individuation based on wide semantic content. Individuation based on
wide content is one type of wide individuation, but wide individuation is a broader
notion. Wide individuation appeals to the relations between a mechanism and its
context, relations which may or may not be semantic. For my purposes, of course,
what is needed is wide individuation that does not appeal to semantic relations.
Mechanisms have many intrinsic properties, only some of which are functionally

relevant. In order to know which intrinsic properties of mechanisms are functionally
relevant, it may be necessary to consider the interaction between mechanisms and
their contexts.13 For instance, plants absorb and emit many types of electromagnetic
radiations, most of which have little or no functional significance. But when radiation
within certain frequencies hits certain specialized molecules, it helps produce
photosynthesis—an event of great functional significance. Without knowing which
external events cause certain internal events and which external effects those internal
events have, it may be difficult or impossible to distinguish the functionally relevant
properties of a mechanism from the irrelevant ones. As a consequence, scientific
theories typically individuate the functional properties of mechanisms widely.14

The same point applies to the functional properties of computing systems. As
Harman (1988) points out, many philosophers have assumed that computing sys-
tems are individuated purely individualistically (Putnam 1967b; Fodor 1980; Stich
1983). But this assumption is false. Concrete computing systems, like all other
mechanisms, have many intrinsic properties, only some of which are relevant to
the results of their computations. For instance, many ordinary computers would not
work for very long without a fan, but the fan is not a computing component of the
computer, and blowing air is not part of the computer’s computations. As with any
other mechanism, we need to distinguish the properties of a computing system that
are functionally relevant from the ones that are irrelevant. We also need to distin-
guish the functional properties that are relevant to computation from the irrelevant
ones. In order to draw these distinctions, we need to know which of a computing
system’s properties are relevant to its computational inputs and outputs and how

13 The context of a mechanism need not coincide with the environment of an organism. If a mechanism
is an internal component of a larger system, its context is constituted by other relevant components of the
system and their activities.

14 A similar view is defended by Kitcher 1985; Harman 1988; and Shapiro 1994. These authors do not
refer to mechanistic explanation but to functional analysis. I addressed the relationship between functional
analysis and mechanistic explanation in Chapter 5. Here, suffice it to say that, in my view, functional
analysis is a kind of mechanistic explanation, and the same considerations that favor wide functional
explanation over narrow functional explanation favor, more generally, wide mechanistic explanation over
narrow mechanistic explanation.
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they are relevant. In order to know that, we need to know what are the computational
inputs and outputs of the mechanism. That, in turn, requires knowing how the
mechanism’s inputs and outputs interact with their context. In Chapter 3, I adapted
Shagrir’s argument from the multiplicity of computations—originally intended to
support the semantic account of computation—to support this conclusion.
I conclude that the mechanistic account of computation should be based on a wide
construal of functional properties.15

At this juncture, someone might worry that at least in the case of computing
mechanisms, wide functional individuation and individuation by wide content are
equivalent. For instance, a wide function of an internal state might be to co-vary with
an external variable. Under some theories of content, this is the same as representing
that variable. If so, it may seem that wide functional individuation is the same as
individuation by wide content, and that the mechanistic account of computation
collapses into the semantic account. In response to this worry, I have two points to
make.

First, the functional properties that are relevant to computational individuation,
even when they are wide, are not very wide. They have to do with the normal
interaction between a computing mechanism and its immediate mechanistic context
via its input and output transducers. In the case of artificial computing mechanisms,
the relevant context is, at one end, the relation between the forces exerted on input
devices (such as keyboards) and the signals relayed by input devices to the computing
components, and at the other end, the relation between the computing components’
outputs and the signals released by the output devices. Those relations, together with
the internal relations between components and their activities, determine whether a
computation is performed by a mechanism and which computation it is.

By the same token, in the case of organisms, the wideness of putative computa-
tional properties of nervous systems does not even reach into the organisms’ envir-
onment; it only reaches sensory receptors and muscle fibers, for that is enough to
determine whether a nervous system performs computations and which computa-
tions it performs. As a matter of fact, the main piece of empirical evidence that was
originally employed by McCulloch and Pitts (1943) to justify the first computational
theory of cognition was the all-or-none properties of neural signals, and those
properties were originally discovered and identified to be functionally significant
by studying the interaction between neural signals and muscle fibers.16

15 Again, this is compatible with Wilson’s wide computationalism (1994, 2004), according to which a
psychological computing mechanism may spatially extend beyond the boundaries of an organism, but it is
also compatible with the negation of Wilson’s view. I have argued that functional (including computa-
tional) properties are partially individuated by their interactions between a mechanism and its context.
I am officially neutral on whether the components of psychological computing mechanisms extend beyond
the spatial boundaries of organisms.

16 For more on the discovery of the all-or-none properties of neural signals, see Frank 1994. For a
detailed study of the considerations about the physiology of neurons that are at the origin of the
computational theory of cognition see Piccinini 2004a.
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Second, the extent to which wide functional properties are the same as wide
contents depends on which theory of content one adopts. In most of the literature
on wide contents, wide contents are largely ascribed by intuition, and theories of
content are tested by determining whether they agree with the relevant intuitions. By
contrast, according to the mechanistic account of computation, the functional
properties that are relevant to the computational individuation of a mechanism are
to be found by elaborating mechanistic explanations under the empirical constraints
that are in place within the natural sciences. This establishes the computational
identity of a mechanism without appealing to any semantic intuitions. Perhaps,
under some theories of content, some wide semantic properties will turn out to
supervene on some computational properties. But this is not a weakness of the
mechanistic account—it’s a strength. For under the mechanistic account, computa-
tional properties can be discovered and individuated without appealing to semantic
properties, thereby providing kosher naturalistic resources that may be used in a
theory of content.
The same point may be put in the following way. One problem with naturalistic

theories of content that appeal to computational properties of mechanisms is that,
when conjoined with the semantic account of computation, they become circular.
For such theories explain content (at least in part) in terms of computation, and
according to the semantic view, computational states are individuated (at least in
part) by contents (Chapter 3, Section 2). The mechanistic account breaks this circle:
computations are individuated by (somewhat wide) functions; contents may then
be explained (at least in part) in terms of computations, without generating any
circularity.
This defense of wide mechanism completes the articulation of the mechanistic

account of computation. According to the mechanistic account, concrete computing
systems are mechanisms that process vehicles according to rules that are sensitive to
differences between different portions (i.e., spatiotemporal parts) of the vehicles.
What counts as a vehicle and what manipulations count as computations may be
determined in part by the way the mechanism interacts with its mechanistic context.

3. The Mechanistic Account Satisfies the Six Desiderata

The mechanistic account satisfies the desiderata listed in Chapter 1.

3.1 Objectivity

Given the mechanistic account, computational descriptions are neither vacuous nor
trivial. The account relies on the way the relevant communities of scientists analyze
mechanisms into their components, functional properties, and organization. As a
result, whether a concrete system is a (nontrivial) computing mechanism and what it
computes are matters of empirical fact.
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Mechanistic descriptions are sometimes said to be perspectival, in the sense that
the same component or activity may be seen as part of different mechanisms
depending on which phenomenon is being explained (e.g., Craver 2001). For
instance, the heart may be said to be for pumping blood as part of an explanation
of blood circulation, or it may be said to contribute rhythmic noises as part of an
explanation of physicians diagnosing patients by listening to their hearts. This kind
of perspectivalism does not trivialize mechanistic descriptions. Once we fix the
phenomenon to be explained, the question of what explains the phenomenon has
an objective answer. This applies to computations as well as other capacities of
mechanisms. A heart makes the same noise regardless of whether a physician is
interested in hearing it or anyone is interested in explaining medical diagnosis.

What we want to avoid is observers who share the same explanatory goal and yet
ascribe different computations to the same system. Under the mechanistic account,
this is not an option any more than it’s an option for different observers to attribute
different noises to the same heart. For example, either something is a memory
register or not, an arithmetic-logic unit or not, etc., depending on what it contributes
to its containing mechanism. It is certainly possible to label the digits processed by a
digital computing mechanism using different letters. But these do not constitute
alternative computational descriptions of the mechanism; they are merely notational
variants, all of which attribute the same computation to the mechanism. In short, the
mechanistic description of a computing system is no less objective than any other
mechanistic description in biology or engineering. What is computed by which
mechanism is a matter of fact.

3.2 Explanation

According to the mechanistic account, computational explanation is a form of
mechanistic explanation. As a long philosophical tradition has recognized, mechan-
istic explanation is explanation in terms of a system’s components, functional
properties, and organization. Computational explanation is the form taken by mech-
anistic explanation when the activity of a mechanism can be accurately described as
the processing of vehicles in accordance with appropriate rules.

Traditionally, many philosophers assimilate computational explanation to explan-
ation by program execution (Fodor 1968a; Cummins 1977, 1983). The mechanistic
account rejects this assimilation. According to the mechanistic account, explanation
by program execution is the special kind of mechanistic explanation that applies to
soft-programmable mechanisms—namely, mechanisms controlled by concrete
instructions—regardless of whether such mechanisms perform computations. Pro-
gram execution is a process by which a certain component or state of a mechanism,
the concrete program, affects another component of the mechanism, a processing
component, so as to perform different sequences of operations. But computation
need not be program execution, and program execution need not be computation.
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For instance, some automatic looms operate by executing programs, and yet they
do not perform computations (in the sense relevant here). The difference between
program-executing computers and other types of program-executing mechanisms is
in the inputs they process and the way their processes are responsive to their inputs.
Only the inputs (and memory states) of digital computing mechanisms are genuine
strings of digits (which in turn are a kind of computational vehicle), because only the
processes executed by digital computing mechanisms are defined over, and respon-
sive to, both their finitely many digit types and their order. Put another way,
program-executing looms perform the same operations regardless of the properties
of the inputs they process (unless, say, the inputs are such as to break the loom), and
even regardless of whether they have any inputs to process.
Program execution is an interesting capacity of certain mechanisms, including

computing mechanisms, and it is explained mechanistically. When combined with
the capacity to perform computations, which is also explained mechanistically,
program execution results in a powerful kind of computing mechanism—soft-pro-
grammable computers—whose computations are explained in part by program
execution. I discuss the notion of program execution and its application to comput-
ing in more detail in Chapter 11.

3.3 The right things compute

All paradigmatic examples of computing mechanisms, such as digital computers,
calculators, Turing machines, and finite state automata, have the function of gener-
ating certain output strings of digits from certain input strings of digits and internal
states according to a general rule that applies to all strings and depends on the inputs
and internal states for its application. According to the mechanistic account, then,
they all perform digital computations. Thus, the mechanistic account properly
counts all paradigmatic examples of computing mechanisms as such.
The mechanistic account also counts (typical) neural networks as performing

computations. Neural networks can be decomposed into units with functions and
an organization, and hence they are mechanisms in the present sense. Many neural
networks take input strings of digits and return output strings of digits in accordance
with an appropriate rule, and hence they are digital computing mechanisms. Unlike
ordinary computing mechanisms, the units of neural networks need not be logic
gates; therefore, it may be impossible to decompose neural network computations
into simpler computations (such as those performed by logic gates). The capacities of
paradigmatic neural networks still have a mechanistic explanation, but such an
explanation does not involve the decomposition of their computations into simpler
computations performed by their components. Like logic gates, many neural net-
works are computationally primitive.
The units of some neural networks have activation values that vary along a

continuum, so such activation values may appear to be something other than digits.
But in fact, in many such neural network formalisms, these activation values are
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“read” as inputs to and outputs from the whole system only when they approximate
certain standard values at functionally significant times. In this respect, they aren’t
different from the activation values of the components of digital computers, which
also vary along a continuum but are functionally significant only when they approxi-
mate certain standard values at functionally significant times. As a result, the
functionally significant activation values of input and output units of this type of
neural network constitute digits, and the activation values of whole input and output
layers of units constitute strings of digits. An appropriate rule can then be used to
characterize the relationship between the input and output strings. In fact, this is
precisely how this type of neural network is described when theorists study the
functions they compute (cf. Hopfield 1982; Rumelhart and MacClelland 1986;
Minsky and Papert 1988; Siegelmann 1999; cf. Chapter 12).

Other neural networks process non-digital vehicles, but such vehicles are still
defined independently of the physical medium of implementation. Thus, they all
count as computing systems (cf. Chapter 12).

In formulating the mechanistic account, I purposefully did not say whether the
rule specifying the computation performed by a mechanism is recursive (or equiva-
lently, computable by Turing machines). This is because computability theorists
define recursive as well as non-recursive computations. Both recursive and non-
recursive computations may be defined in terms of instructions for manipulating
strings of letters or rules connecting input strings to output strings. Thus, both fall
under the present account.

The only functions that are known to be physically computable are the recur-
sive ones. There is an ongoing controversy over the physical possibility of
hypercomputers—mechanisms that compute non-recursive functions (Copeland
2002; Cotogno 2003). That controversy should not be resolved by stipulating that
hypercomputers don’t perform computations, as is sometimes done. A good account
of computing mechanisms should be able to accommodate hypercomputers (cf.
Chapters 14 and 15). This highlights another advantage of the mechanistic account.

Many traditional accounts are formulated in terms of either a canonical formalism,
such as Turing machines (Putnam 1967b), or the standard notion of computer
program (Fodor 1975; Cummins 1983). Since standard computer programs and
formalisms can only compute recursive functions, accounts based on them cannot
accommodate hypercomputers. The mechanistic account, by contrast, is formulated
in terms of generic rules defined over the vehicles of the computation. If those rules
are recursive, we obtain the usual class of computing systems. If those rules are not
recursive, we obtain various classes of hypercomputers.

But the mechanistic account does distinguish between genuine and spurious
hypercomputers. Genuine hypercomputers are mechanisms that have the function
of generating output strings of digits from input strings of digits in accordance with a
non-recursive rule. Alan Turing’s oracle machines are an example (Turing 1939;
cf. Copeland 2000 and Piccinini 2003a for discussion). Spurious hypercomputers are
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physical processes that are non-recursive in some way, but do not have the function
of generating strings of digits in accordance with a non-recursive rule. Genuine
random processes are an example.
The distinction between genuine and spurious hypercomputers clarifies the debate

over hypercomputation, where considerations pertaining to spurious hypercompu-
ters are often mixed up with considerations pertaining to genuine hypercomputers. If
we don’t draw this distinction, it is relatively easy to show that “hypercomputation” is
possible. Any genuine random process will do. But this is not an interesting result, for
a random process cannot be used to generate the desired values of a function.
Hypercomputation is interesting in so far as it promises desirable strings of output
digits related to their inputs in a non-recursive way. For something to be a genuine
hypercomputer, it must be possible to specify the rule relating the inputs to the
outputs without waiting for the physical process to take place.
Finally, analog computers do not manipulate strings of digits but real (i.e.,

continuous) variables. Since such real variables are defined independently of the
physical medium of implementation, analog computers are covered by the present
account. A more detailed account of analog computers in terms of their components,
functions, and organization is presented in Chapter 11.

3.4 The wrong things don’t compute

Let me grant from the outset that all physical systems may be given computational
descriptions, which describe the behavior of the system to some degree of approxi-
mation. But giving a computational description of a system is not the same as
asserting that the system itself performs computations (Chapter 4). The mechanistic
account explains why paradigmatic examples of non-computing systems don’t com-
pute by invoking their mechanistic explanation (or lack thereof), which is different
from that of computing mechanisms. Different considerations apply to different
classes of systems.
To begin with, most systems—including planetary systems and the weather—are

not functional mechanisms in the present sense, because they are not collections of
components functionally organized to fulfill specific teleological functions.17 Also,
most systems—including, again, planetary systems and the weather—do not receive
inputs from an external environment, process them, and return outputs distinct from
themselves. It is not difficult to cook up notions of input that apply to all systems. For
instance, sometimes initial conditions or time instants are said to be inputs. But these
are not entities or states that can enter the system, persist within the system, and
finally exit the system. Hence, they do not count as computational inputs in the
present sense.

17 To be sure, there are accounts of function according to which planetary systems and the weather have
functions. But no one disputes that they lack teleological functions. As I pointed out in Chapter 6, I am
working with a teleological notion of function.
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In addition, most functional mechanisms—including functional mechanisms that
manipulate inputs and return outputs distinct from themselves and their states—lack
the function of manipulating vehicles that are defined independently of the physical
medium in which they are implemented. Digestive systems are a good example. As a
preliminary observation, there is no prominent scientific theory according to which
digestion is a computational process. In other words, the current science of digestion
does not identify the inputs and outputs of digestion in a medium-independent way.
Instead, the science of digestion identifies food types first and foremost by the family
of macromolecules to which its constituents belong (carbohydrates, fats, or proteins).
Different families are processed differently. What matters most to digestive function
are not the details of how molecules of different chemical types, or belonging to
different families, form pieces of food. On the contrary, digestion mixes and breaks
down pieces of food by mechanical and chemical means, obliterating temporal,
spatial, and chemical connections between molecules until the resulting products
can be either absorbed by the body or discarded.

Now, suppose that someone wished to develop a computational explanation of
digestion. She would have to find a plausible candidate for computational inputs and
outputs. The most obvious place to start for the role of input seems to be bites of
food, and the most obvious candidate for the role of output seems to be the nutrients
absorbed by the body plus the feces. Finally, the most obvious candidate for a
concatenation relation seems to be the temporal order of bites and digestive products.
A first difficulty in formulating the theory is that the outputs of digestion are of a kind
so different from the inputs that, unlike ordinary computational outputs, they cannot
be fed back into the system for further computational processing. This is not a
devastating objection, as computations may be defined so that outputs belong to a
different alphabet than the inputs. Perhaps feces belong to a different alphabet than
food.

A more serious difficulty is that the most important taxonomy of inputs for the
science of digestion has little to do with food bites. Bites of food come in indefinitely
many sizes, shapes, and compositions, but the processes that take place during
digestion are not defined in terms of the size, shape, or composition of food bites.
Furthermore, even if bites of food could somehow be classified into computationally
relevant types, their temporal order would not constitute a string of digits. For
digestion, unlike computation, is largely indifferent to the order in which organisms
ingest their food bites.18 On one hand, the products of digestion always come out in
roughly the same order, regardless of how the inputs came in. On the other hand, the
first operations typically performed by organisms on the food they ingest eliminate
most differences between bites of food. Upon being ingested, food is chewed, mixed

18 There may be partial exceptions: for instance, ingesting a certain substance before or after another
may facilitate or hinder digestion. These exceptions are unlikely to warrant a computational explanation of
digestion.
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with saliva, swallowed, and mixed with digestive fluid. The result, far from being
responsive to any obvious differences between bites of food or their order, is a
relatively uniform bolus.
The bottom line is that, to the best of our knowledge, digestion is defined in terms

of specific chemical changes to specific families of molecules. These changes are
quintessentially medium-dependent. Thus, digestion is a mechanistic process, yes,
but a medium-dependent one. It is not a computation, which is a medium-independent
mechanistic process.
The purpose of these observations is not to prove definitively that digestion is not

computational. Ultimately, according to the present account, whether digestion is
computational is an empirical question, to be answered by the science of digestion.
What I have shown is that under the present account, treating the digestive system as
computational faces considerable challenges. The common intuition that digestion is
not computational might be wrong, but it’s plausible for good reasons.
Finally, not all mechanisms that manipulate medium-independent vehicles do so

in accordance with a general rule that applies to all vehicles and depends on the
inputs for its application. I already mentioned genuine random processes. A genuine
random “number” (or more precisely, numeral) generator produces a string of digits,
but it does not do so by computing, because there is no rule for specifying which digit
it will produce at which time. Thus, a genuinely random “number” generator does
not count as a computing mechanism. (Of course, random strings of digits, whether
or not they are genuinely random, may play important roles in a computational
process.)
This doesn’t decide all the cases. There is still a grey area at the boundary between

mechanisms that compute and mechanisms that don’t. Anything that takes two
kinds of input and generates one output that stands in a definite logical relation to
its inputs can be described as a logic gate. Since the computations performed by logic
gates are trivial, the fact that many things are describable as logic gates does not
trivialize the mechanistic account of computation. But if this point could be gener-
alized, and too many mechanisms could be described as performing nontrivial
computations, and perhaps even as computing by executing programs, then the
mechanistic account would risk being trivialized. This is a fair concern, and it can
be addressed head on.
Primitive computing components, such as logic gates, can be wired together to

form computing mechanisms, whose computations can be logically analyzed into the
operations performed by their components. But not every collection of entities, even
if they may be described as logic gates when they are taken in isolation, can be
connected together to form a computing mechanism. For that to happen, each
putative logic gate must take inputs and generate outputs of the same kind, so that
outputs from one gate can be transmitted as inputs to other gates. In addition, even
having components of the right kind is not enough to build a complex computing
component. For the components must be appropriately organized. The different
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gates must be connected together appropriately, provided with a source of energy,
and synchronized. To turn a collection of logic gates into a functioning computer
takes an enormous amount of regimentation. The logic gates must be appropriately
organized to constitute complex computing components, which in turn must be
appropriately organized to constitute full-blown computing mechanisms. Building
genuine computers requires overcoming many technical challenges.

In conclusion, how many things taken in isolation constitute a logic gate, or other
primitive computing components, is a matter that can be left vague. For primitive
computing components in isolation perform computations that cannot be decom-
posed into simpler computations performed by their components. The mechanistic
account has the most interesting things to say about mechanisms that manipulate
complex vehicles and are computationally decomposable. And unlike computers and
other nontrivial computing mechanisms, most systems, including most mechanisms,
neither manipulate complex vehicles nor are computationally decomposable. Since
paradigmatic examples of non-computing systems do not appear to be subject to the
relevant kind of mechanistic explanation, the mechanistic account properly counts
them as systems that do not compute in the relevant sense.

3.5 Miscomputation

The mechanistic account of computation explains what it means for a computing
system to produce the wrong output. Recall from Chapter 1, Section 4 that, to a first
approximation, a system M miscomputes just in case M is computing function f on
input i, f(i) = o1, M outputs o2, and o2 6¼ o1. This notion of miscomputation, applied
either to a complete system or to one of its computing components, will be good
enough for present purposes.

To give a clear account of miscomputation, we must notice an important aspect of
performance evaluations. The performance of an organism’s trait or an artifact can
be evaluated from many perspectives. This is especially important for artifacts,
because many different agents may participate in the design, construction, prepar-
ation, and use of artifacts. To a first approximation, there are five perspectives from
which the performance of an artifact can be evaluated: the designers’ intentions, the
designers’ blueprint, what the makers construct, the preparers’ intentions, and the
users’ needs.

If everything goes well, these five perspectives are aligned—they assign the same
function to the same functional mechanism because the system is correctly used to
perform the very same function it was correctly designed, built, and prepared for. But
these perspectives can also come apart. The same physical systemmay be intended by
its designers to perform function F1, actually designed to perform a different function
F2, built in such a way that it performs a third function F3, prepared to perform a
fourth function F4, and used to perform a fifth function F5. This is especially evident
in the case of computing systems, whose teleological function is computing a
mathematical function. A computing system may be intended by its designers to
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compute mathematical function f1, actually designed to compute a different function
f2, built in such a way that it actually computes a third function f3, prepared to
compute a fourth function f4, and used to compute a fifth function f5.
These five perspectives give rise to five notions of miscomputation: (i) miscompu-

tation relative to the designer’s goals, (ii) miscomputation relative to the designer’s
blueprint, (iii) miscomputation relative to what was actually built, (iv) miscomputa-
tion relative to the preparer’s goals, and (v) miscomputation relative to the user’s
goals.

(i) Miscomputation can occur relative to the designer’s intentions, because the
designer made mistakes in designing the system and the mechanism that was
actually designed does not in fact compute the function it was intended to
compute. The design mistake may be due to a computing component that
does not compute what it was intended to compute or to a non-computing
component that does not fulfill its function (e.g., a clock with a too short cycle
time). If the manufacturer implements the design correctly, the resulting
miscomputation is certainly not the manufacturer’s fault, and a fortiori not
the system’s fault. In other words, this kind of miscomputation is not a
malfunction but a case of incorrect design.

(ii) Miscomputation can also occur relative to the designer’s blueprint, when a
system was designed correctly but built incorrectly. For example, suppose
Intel correctly designs a new microchip but a faulty manufacturing process
introduces a defect, such that, under certain conditions, the microchip com-
putes a different function than the one that was specified in the blueprint.
Whether the system is said to malfunction depends on how it is typed
(Chapter 6). This gets especially tricky if Intel catches the mistake and
corrects the manufacturing process, so that from a certain time on all new
chips perform in accordance with the blueprint. If the defective chips are
typed together with the correctly performing chips (or if they are typed
simply based on the blueprint), they are malfunctioning. If the defective
chips are typed on their own (as belonging to a type distinct from the
correctly functioning chips), they are functioning correctly. In practice, at
least when it comes to artifacts, we can choose either way of categorizing
computing systems depending on our practical purposes.

(iii) Miscomputation relative to what was actually built is a straightforward
malfunction, i.e., an event in which a functional system fails to perform its
teleological function. As we saw in Chapter 6, a system can only have
teleological functions that it, or at least other tokens of its type, can perform.
Therefore, a system cannot have the teleological function of doing something
that was merely intended by the designer or is merely intended by the user,
where such intentions are incompatible with the way the system actually
works. In the case of computing mechanisms, whose function is to compute,
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failing to perform their function—the function they were built to perform—
may result in a miscomputation. This is hardware failure, i.e., failure of a
hardware component to perform its function. Hardware failure may be due to
the failure of a computing component, such as a logic gate, or of a non-
computing component, such as a battery.

(iv) A computing system that is designed and built correctly may still miscompute
relative to the programmer’s goals if it is programmed or configured incor-
rectly. Programming errors include the introduction in the system of
ungrammatical instructions (which cannot be executed) or of instructions
that are grammatically correct but do not play their intended role within the
program. This type of miscomputation is not a malfunction but is due to
programming mistakes.

(v) Finally, a computing system can be designed, built, and programmed correctly
but still miscompute relative to the user’s goals because it is used incorrectly.
For example, a user may insert the wrong input or request the wrong oper-
ation on the part of a computer. The output is likely to be different from what
the user wanted; if so, it is the user’s fault. Again, this type of miscomputation
is not a malfunction of the system—it is a mistake by the user.

There are also mixed cases of miscomputation that have more than one source.
One type of mixed case is miscomputation due to the accumulation of round-off
errors in the finite precision arithmetic that computer processors employ—it is due
to the interaction between different kinds of software within the limitations of the
hardware. Another mixed case is faulty hardware-software interaction. An example
of this last type occurs when the execution of a program requires more memory than
the computer has available. At least up to a few years ago, when no more memory was
available, many personal computers used to “freeze” without being able to complete
the computation.19

3.6 Taxonomy

The mechanistic account of computation explains why few systems qualify as
computers properly so called: only genuine computers—in fact, only some
computers—are programmable, stored-program, and computationally universal
(Chapter 11). These properties of some computers are mechanistic properties,
which the following chapters will explain mechanistically in terms of the relevant
components, their functions, and their organization. Systems that have only a subset

19 For an early discussion of several kinds of computing mistakes by computing mechanisms, see
Goldstine and von Neumann 1946. For a modern treatment, see Patterson and Hennessy 1998. This
section benefited greatly by reflecting on Fresco and Primiero 2013 and Dewhurst 2014. Much more
remains to be said about miscomputation. For starters, the taxonomy I propose in the main text could be
made more fine-grained by considering different layers of programming, distinguishing between program-
mers’ intentions and the programs they write, and more.
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of these capacities may also be called computers, but they can be distinguished from
ordinary computers, and from one another, based on their specific mechanistic
properties. Computing systems that lack all of these capacities deserve other
names, such as ‘calculators,’ ‘arithmetic-logic units,’ etc.; they can still be differenti-
ated from one another based on their computing power, which is determined by their
functional organization. The burden of satisfying this desideratum will be discharged
in Chapters 8–13.
Summing up, according to the mechanistic account of computation, a concrete

computing system is a functional mechanism one of whose teleological functions is
performing concrete computations. Concrete computations, in turn, are the process-
ing of vehicles (by a functional mechanism) according to rules that are sensitive
solely to differences between different portions (i.e., spatiotemporal parts) of the
vehicles. The mechanistic account of computation has many appealing features. It
allows us to formulate the question whether a mechanism computes as an empirical
question, to be answered by a correct mechanistic explanation. It gives an account of
miscomputation. It allows us to formulate a clear and useful taxonomy of computing
mechanisms and compare their computing power. The full scope, power, vindica-
tion, and theoretical payoff of the mechanistic account can only be seen by examining
some important classes of computing systems and some important issues in the
philosophy of computation. This is the task of the remaining chapters.

THE MECHANISTIC ACCOUNT 151



8

Primitive Components of
Computing Mechanisms

1. Analyzing Computing Mechanisms

Computing systems have been variously invoked to explain intelligence (e.g., Turing
1950), thought (e.g., Fodor 1975), and intentionality (e.g., Harman 1999), and to
solve the mind-body problem (e.g., Putnam 1967b). Philosophers have also debated
whether the internal states of computing systems have narrow or wide content (e.g.,
Burge 1986; Devitt 1990). Yet computing systems have been subjected to little
philosophical analysis in their own right. Specifically, a negligible amount of philo-
sophical attention has gone to the internal structure and functional organization of
computing systems.

Previous chapters introduced several accounts of concrete computation and
defended a mechanistic account: computing systems are mechanisms whose function
is to manipulate medium-independent vehicles according to rules defined over the
vehicles. This chapter and the following ones work through some important details
about the structural and functional properties of computing systems. Their purpose
is two-fold: to show that the mechanistic account explicates and taxonomizes com-
puting systems more clearly and more fruitfully than other accounts (desideratum 6)
and to exhibit the kind of theoretical payoff that the mechanistic account delivers.
This chapter discusses the primitive components of computing mechanisms and
their peculiar properties. The next chapter discusses complex components of com-
puting mechanisms. After that, we’ll have the ingredients to tackle entire computing
systems and their properties.

The goal of this chapter and the next is to identify the main kinds of component
that enter the mechanistic explanation of computing systems and to identify the
functions of those components. The result is an account of the components of
computing mechanisms that (i) matches the language and practices of computer
scientists and engineers (e.g., see Patterson and Hennessy 1998), (ii) serves as basis
for analyzing varieties of computers and their functional properties (Chapter 10–12),
and (iii) can be used to clarify philosophical discussions that appeal to properties of
computing systems.



I will focus primarily on digital computing mechanisms. According to the mech-
anistic account, digital computing mechanisms are systems whose function is to
perform digital computations. Digital computations are transformations of input
strings of digits into output strings of digits, transformations that accord to a general
rule that is sensitive to the input strings, possibly sensitive to internal states, and
applies to all strings. Strings of digits, in turn, are sequences of permutable digits
identified by the digits’ types, their number, and their order within the string. The
particular kind of mechanistic explanation that applies to digital computing mech-
anisms explains how they can perform digital computations by analyzing digital
computing mechanisms into specific kinds of component with specific kinds of
function.
I’ll start with the simplest components that can be attributed a computing function

within a mechanism, i.e., components that can be attributed a computing function
but whose components cannot be attributed a computing function. I call them
primitive computing components. Then I’ll discuss other kinds of components,
whose function is something other than performing a computation. In the next
chapter, I will discuss how primitive components can be put together to form more
complex components, such as Boolean circuits, arithmetic logic units, etc.

2. Primitive Computing Components

Primitive computing components are mechanisms that perform computations con-
tributing to what their containing mechanism computes, but whose components do
not perform any computation relative to what primitive computing components
compute. In other words, the computations performed by primitive computing
components cannot be analyzed in terms of simpler computations. So their compu-
tations are primitive relative to the multi-level computing mechanism under
investigation.
Primitive computing components belong to the class of input-output devices, i.e.,

devices whose function is to receive physical variables as inputs and yield physical
variables as outputs in response to their inputs. Examples of input-output devices
include washing machines, refrigerators, and mousetraps. But unlike typical input-
output devices, the inputs and outputs of primitive computing components are not
individuated by their specific physical properties (e.g., chemical composition, tem-
perature, pressure, etc.) but only by their possession of appropriate degrees of
freedom that the components can process in different ways, regardless of how such
degrees of freedom are physically implemented. What matters is that the component
can differentiate types of input and process them in different ways, so as to generate
appropriate types of output given certain types of input.
Inputs and outputs of primitive digital computing components belong to finitely

many types, each of which can be distinguished by the corresponding digital com-
puting component and processed accordingly. If there are only finitely many types,
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each type can be labeled by a letter from a finite alphabet, or symbol, without losing
information about the function of the components. At any given time, primitive
digital computing components take a finite number of digits as inputs and yield a
finite number of digits as output. Typically, the output of primitive digital computing
components is a deterministic function of the inputs of the component, but it can
also be a stochastic function of them.

The primitive computing components of most contemporary computers are logic
gates.1 Logic gates are devices with two or three extremities. During any relevant time
interval, a logic gate receives one or two input digits through one or two of its
extremities and produces one output digit through another extremity. Logic gates’
input and output digits belong to one of two types, usually called ‘1’ and ‘0’. Digits of
these types are normally called binary digits or bits. In analyzing and designing logic
gates, ‘1’ and ‘0’ are respectively interpreted as truth and falsehood, so that functional
operations on them can be interpreted as logical functions applied to truth values.
Under the standard interpretation of logic gates’ digits, the type of a logic gate’s
output digit corresponds to what would be generated by applying a logical connect-
ive, such as conjunction, disjunction, or negation, to the types of the input digit(s).
This is why these devices are called logic gates. Accordingly, the input-output
behavior of logic gates can be represented by truth tables or, equivalently, by logic
equations written in Boolean algebra.

Figure 8.1 depicts four examples of logic gates. A NOT gate takes a digit (i.e., either
a ‘0’ or ‘1’) as input and yields a digit that belongs to the other type (i.e., a ‘1’ or a ‘0’,
respectively) as output. An AND gate takes two digits as input and yields a ‘1’ if and
only if two ‘1’s were received as input, a ‘0’ otherwise. An OR gate also takes two
digits as input and yields a ‘1’ as output if and only if it received at least one ‘1’ as
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Figure 8.1 A NOT gate, an AND gate, an OR gate, and an
XOR (exclusive OR) gate.

1 Logic gates should not be confused with logical connectives. Logical connectives are components of a
logical system; logic gates are concrete components of a physical system.
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input, a ‘0’ otherwise. An XOR gate takes two digits as inputs and yields a ‘1’ if and
only if one of the two inputs (but not both) was a ‘1’.
Not all computing mechanisms are constructed out of logic gates. For example,

analog computers contain physical devices that manipulate their inputs, which are
not digits but continuous variables, such that the values of their outputs stand in a
certain arithmetical relation to the values of their input (such as addition or multi-
plication), or they are the integral of the input, etc. When such physical devices
receive certain input variables, they generate output variables whose relevant physical
properties stand in relation to the same property of the inputs in a way that
corresponds to a certain function of the input. These devices are primitive computing
components too. As in the case of logic gates, the input-output behaviors of primitive
computing components of analog computers can be composed together to execute
the steps of a procedure that takes their operations as primitive, so that their
combined work produces the computation of their containing mechanism.
Any physical realization of a primitive computing component is a particular

mechanism made out of physical components, which have particular physical prop-
erties and interact in particular ways to generate the desired input-output behavior.
For instance, the primitive computing components of most modern computing
mechanisms are made out of electrical circuits, which are made out of wires, switches,
resistors, and other components studied by electrical circuit theory. The same
component, for example, an AND gate, can be made using different electrical circuits
so long as they exhibit the relevant input-output properties. And the same electrical
circuit can be made by using different physical materials.
The mechanistic explanation of a particular physical realization of a primitive

computing component—say, an AND gate—explains how that component exhibits
its specific input-output behavior. In our example, the components of a particular
electrical circuit, their properties, and their configuration explains how it realizes an
AND gate. This is still a mechanistic explanation, because it explains the behavior of
the whole mechanism in terms of the functions performed by its components. But it
is not a computational explanation, because its components are identified in terms of
their specific physical properties (e.g., voltage levels) and not in terms of digits and
operations on digits. Each physical realization of a primitive computing component
that uses different physical components or a different design requires a specific
mechanistic explanation that appeals to the specific physical properties of those
components or that specific design.
What primitive computing components are made of and how they work makes a

big difference to those who have to physically implement a given computational
design. The many logic gates (as well as other components) that are used in building
a particular computing mechanism must all be technologically compatible with each
other. In implementing a design for a complex computing mechanism made out of
logic gates, it makes no sense to use a certain device as a logic gate unless there are
other devices (other putative logic gates) that it can be physically connected with. If
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we take two devices that act as logic gates within two different machines and hook
them up together, we don’t reconstitute a computing mechanism unless the two
devices physically interact in the right way. As I pointed out in the previous chapter,
in building a computing mechanism, we must take into account a lot of details about
the physics of the device. But almost all the physical stuff—except for the transform-
ation of some computational vehicles into others—happens below the level of
primitive computing components. And everything below the level of primitive
computing components, such as the physical realizations of primitive computing
components, can be abstracted away from computational explanation because it is
irrelevant to the mechanistic explanation of computing mechanisms as such. It may
be mechanistic explanation but not computational explanation.

Once we reach the level of primitive computing components from below, and
assuming that the physical implementation is well designed, we can ignore lower
levels and worry only about the input-output properties of primitive computing
components. The behavior of primitive computing components is relevant to the
mechanistic explanation of computing mechanisms only insofar as they generate
certain outputs in response to certain inputs, where the inputs and outputs are
defined independently of the implementing medium. These input-output behaviors,
together with the way primitive computing components are interconnected, can then
be used to explain the computations performed by larger components. Aside from
their input-output behaviors, when we give computational explanations or design the
logic circuits of computers, primitive computing components can be treated as black
boxes. Since the mechanistic explanation of primitive computing components does
not appeal to computations by their components, while at the same time primitive
computing components’ input-output behavior can be used as primitive computa-
tional operations to explain the computations performed by larger components,
primitive computing components are the simplest components to be ascribed com-
putations within a mechanism, and that’s why I call them primitive.

The main reason for attributing computations to logic gates is that they can be
composed to form more complex mechanisms that compute more complex func-
tions, and the complex functions computed by the complex mechanisms can be
deduced from those computed by their components together with the way the
components are connected in combination with Boolean algebra or truth tables.
This makes logic gates extremely useful and versatile in computer design, and it
explains why they are usually ascribed computations even though what they do is
computationally trivial. They compute because their function is to produce certain
(medium-independent) outputs in response to certain (medium-independent)
inputs. This function arises as part of the computational behavior of their containing
mechanism, and the computational behavior of their containing mechanism can be
analyzed in terms of their input-output behavior by means of Boolean algebra or
some other computational formalism.
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Since computers are built out of primitive computing components, the fact that
primitive computing components can be built out of an indefinite number of
different materials and designs is why computers can be built out of components
with indefinitely many different physical properties.
This multiple realizability of primitive computing components may have tempted

some people to see everything as a computer (e.g., Putnam 1967b; Searle 1992; and
Churchland and Sejnowski 1992; see Chapter 4 for a discussion of pancomputation-
alism). But that temptation should be resisted: from the fact that many different
materials can be used to build a primitive computing component, it doesn’t follow
that everything is a computer. This is because in order to constitute a primitive
computing component, a physical system must still exhibit certain very specific and
well-defined input-output properties, which can be exploited in designing and
building computing mechanisms. And in order for a mechanism made out of
primitive computing components to be a full-blown computer, those components
must be functionally organized in very specific ways.
One of the burdens of this book is to show that for something to be a computing

mechanism of nontrivial computing power, its components must be functionally
organized in very specific ways so as to exhibit very specific properties. What is
peculiar to computing mechanisms is that in order to understand their computa-
tions, they can be analyzed or designed (up to their primitive computing compo-
nents) with complete disregard for their physical composition and specific physical
properties except for those degrees of freedom that are needed for the computation
and the ability to process them, using only principles of computer design and
computability theory.2

3. Cummins on Primitive Computing Components

The only philosopher who has devoted significant attention to the primitive compo-
nents of computing systems is Robert Cummins (1983). The present account of
primitive computing components can be usefully contrasted with Cummins’s
account. Under both accounts, the input-output behaviors of primitive components
are taken as primitive relative to the computing system they are part of, i.e., the input-
output behaviors of primitive computing components are not analyzed in terms of
simpler computations performed by them or their components. But there are some
important differences between the two accounts.
First, Cummins says that primitive computing components “instantiate” the

functions from their inputs to their outputs as a matter of physical law, without

2 Real hardware designers, of course, design their machines while keeping in mind constraints coming
from the technology that is being used to implement their design. This does not affect the point that, in
principle, different technologies can be used to implement the same design or similar designs. For a
historical example, see Cohen 2000.
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specifying whether the law is strict or ceteris paribus. I add to Cummins’s account
that primitive computing components instantiate their input-output functions ceteris
paribus, i.e., not because they fall under a strict law but because it is the function of
the component to instantiate it. Primitive computing components, just like any other
functional mechanisms, can malfunction, break, or be malformed or defective.3 This
point generalizes to non-computing components (see Section 4 of this chapter) and
to anything built out of primitive computing components, for two reasons: (1) if a
primitive computing component malfunctions, or breaks, or is malformed or defect-
ive, this may carry over into a malfunction, or break-down, or malformation or defect
in the containing system—though this may not be the case if there is redundancy in
the system; (2) the containing system is a functional mechanism too, so it has its own
ways of malfunctioning, breaking, being malformed, or being defective. From now
on, I will take this point for granted and won’t repeat it for other kinds of compo-
nents or mechanisms.

Second, for Cummins the input-output function instantiated by a primitive
computing component is a step in the computation performed by the whole com-
puting mechanism, whereas for me it is only part of the activity performed by
the component that contains the primitive computing component. The activity of
the containing system may or may not be a computation; if it is a computation, the
input-output function instantiated by a primitive computing component may be a
step in that computation but it may also be a part of a step (which, combined with
other parts performed by other primitive computing components, constitutes a step).

In Cummins’s account, computation is always the execution of a program, which
is analyzed into primitive operations. These operations are the primitive steps and
may all be performed by the same components. In my account, computation may or
may not be the execution of a program. In addition, even in the case of computations
that are executions of programs, before we get to see the role a primitive component
plays in program execution, we have to understand the complex components made
out of primitive computing components (next chapter). For now, all that a primitive
component contributes to is its containing mechanism, which is not necessarily a
program-executing mechanism. When we get to program execution in the next two
chapters, we’ll see that there is no need to assume that what a primitive computing
component computes is an elementary step in the execution of a program.

Third, for Cummins it is inappropriate to say that a primitive computing compo-
nent computes a function. We should say only that it instantiates a function (because
for Cummins computation amounts to program execution, and a primitive comput-
ing component does not execute a program all by itself). This restriction is unjustified
and unnecessary. Computer designers do say that logic gates compute, and so do
other scientists, at least on occasion. If a “logic gate” is operating in isolation—not as

3 Cummins’s account of functions leaves little or no room for the notion of malfunction. I am relying on
the account of functions I offered in Chapter 6.
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part of a larger computing mechanism or even a non-computing functional
mechanism—it may be somewhat debatable whether we should say that the “logic
gate,” all by itself, computes a function (e.g., that an AND gate computes whether
both of its inputs are ‘1’s). But in the context of a computing mechanism and of
designing computing mechanisms, and even in the context of other functional
mechanisms, it is appropriate and may be accurate to ascribe computations to
primitive computing components. It is appropriate and accurate whenever a com-
ponent fulfills the function of processing medium-independent vehicles according to
an appropriate rule, as primitive computing components do when they are embed-
ded in a functional mechanism. In the case of complex computing mechanisms,
attributing computations to their primitive components is especially useful because it
allows us to analyze the computations performed by the whole mechanism in terms
of the computations performed by the primitive components using certain kinds of
analytic tools, such as Boolean algebra or truth tables.

4. Primitive Non-computing Components

Not every component of a computing mechanism performs computations. We’ve
already seen this in the case of the components of primitive computing components,
which perform no computations relative to the computations of the system under
analysis.
More generally, computing mechanisms contain many components whose func-

tion is something other than computing. Some of these non-computing components
act as physical support for the other components, others provide energy to the
mechanism, others generate and transmit the signals that keep the mechanism
synchronized, yet others transmit inputs and outputs from one computing compo-
nent to another, etc. Although none of these components perform any computation,
they are necessary for the functioning of the whole mechanism. So, in judging
whether a system is a certain kind of computing mechanism, which requires certain
non-computing components for its proper functioning (such as components that
keep the system synchronized), it may be useful to see whether it has those non-
computing components.
In most computing mechanisms that can change their internal states, synchron-

ization among components is obtained through the use of a clock. In modern
computing mechanisms, a clock is a device that generates a signal with a fixed
cycle time. A cycle time is a temporal interval divided into two subintervals, during
which the clock signal takes, respectively, a high and a low value. A fixed cycle time is
a cycle time of fixed length, which repeats itself. In computing mechanisms that have
internal states, such as ordinary computers, the function of clocks is to determine
how often, and at what times, the relevant components update their states. The main
constraint of clocked computing mechanisms is that the clock cycle time must be
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long enough to allow the signals determining state changes to stabilize on the values
that are relevant to the state changes.

When a component receives an input signal that is not already synchronized with
its internal clock, the signal must be synchronized with the component so that it can
be properly processed. Synchronizers are components that take asynchronous signals
and a clock’s signal as input and yield a signal synchronous with the input clock as
output.

Clocks and synchronizers are usually ignored in computability theory, where the
synchronization of mathematically defined computations can be assumed to be
perfect by theoretical fiat. But clocks and synchronizers are among the most import-
ant non-computing components of concrete computing mechanisms. A clock mal-
function or a mistake in the design of the clock and related synchronization devices,
such as a cycle time that’s too short, can render a computing mechanism useless,
because its components will not update their states at the time when their input
signals have stabilized on the relevant values, or will update their states in the wrong
order.

Another important function of certain non-computing components is to help
isolate computing mechanisms from various aspects of their environment, which
might interfere with the mechanisms’ proper functioning. Like other functional
mechanisms, computing mechanisms can be damaged, or their proper functioning
can be disrupted, by an indefinite number of environmental factors, such as too
much pressure, too high or too low temperature, electrical or magnetic fields, etc.
What factors interfere depends on the specific physical and functional characteristics
of a given mechanism. In order to protect computing mechanisms from the inter-
ference of relevant external factors, precautions (e.g., surrounding the mechanism by
a protective shell) must be taken in designing and building them.

5. Conclusion

In summary, computing mechanisms are built out of two broad classes of primitive
components: computing and non-computing components.

Primitive non-computing components serve a variety of functions that are neces-
sary to perform computations: synchronizing the computing components, holding
other components together, protecting mechanisms from environmental threats, etc.

Primitive computing components have the function of manipulating medium-
independent vehicles—specifically, transforming input vehicles into output
vehicles—in accordance with a general rule that applies to all vehicles; thus, their
function is to perform computations. For example, the vehicles manipulated by
primitive digital computing components are atomic strings—they consist of single
digits. The computations of primitive computing components cannot be analyzed
into simpler computations. Because of this, primitive computing components are
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the simplest components that can be ascribed a computing function within a
mechanism.
But primitive computing components can be combined with other primitive

computing and non-computing components to form complex computing and non-
computing components. In the next chapter, we’ll look at how primitive components
are put together into complex components. After that, we’ll look at how complex
components come together to form entire computing systems.
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9

Complex Components of
Computing Mechanisms

1. Complex Computing Components

Having introduced primitive computing components in the previous chapter, we can
now see how primitive computing components can be combined together and with
non-computing components to form complex computing components. This chapter
analyzes in mechanistic terms complex computing components (e.g., arithmetic-
logic units) and complex non-computing components (e.g., memory units) that are
built out of simpler components and, ultimately, are analyzed in terms of primitive
components. The most interesting computing components are processors, which
have the function of performing operations on data. The most interesting processors
are those whose function is executing instructions.

Instructions are strings of digits that have an internal semantics. As we saw in
Chapter 7, an internal semantics assigns instructions a narrow content: roughly
speaking, each instruction is interpreted as representing what the processor is
going to do while executing it. An internal semantics should be distinguished from
an external semantics, which interprets a representational vehicle as representing
objects and properties external to the system. An external semantics ascribes wide
content, that is, content that supervenes on more than the internal physical proper-
ties of a mechanism, whereas internal semantics ascribes narrow content, that is,
content that supervenes solely on (some of) the intrinsic properties of the system. To
flesh out the notion of internal semantics, I will specify what mechanistic properties
of what components are relevant to assigning an internal semantics to instructions
and vindicate the claim, made in Chapter 7, that having an internal semantics does
not entail having any external semantics. This clarifies an important sense in which
some computational states have narrow content, what the source of this narrow
content is, and what the relationship between this kind of narrow content and wide
content may be.

Besides the clarification of the notion of internal semantics, the account of
complex components presented in this chapter has several virtues. First, it matches
both our everyday understanding of computing mechanisms and the language and
practices of computer scientists and engineers. Second, it can be used to classify



different kinds of computing mechanisms based on their computing power (desid-
eratum 6), which in turn clarifies our terminology pertaining to computing
mechanisms.
The important point is that the computation performed by a complex component

can be exhaustively analyzed in terms of computations performed by its primitive
computing components and manipulations performed by its non-computing com-
ponents. So we can design a complex component by appealing only to the known
functional properties of its components with respect to vehicle manipulation, without
worrying about how the primitive computing components will work together with
respect to their lower level properties. The details of the physical interactions between
primitive components are abstracted away by relying on the assumption that those
who build the mechanism use components that are physically compatible with one
another and connect them in appropriate ways. Since all complex computing com-
ponents are identified by their computational properties, the same point applies to
complex computing components built out of simpler but non-primitive computing
components.
The way the components of a computing mechanism are combined together to

form the whole mechanism depends on the specific characteristics of the compo-
nents. Typically, each component has appropriate extremities, which carry signals
into and out of the component. The extremities of two components can be physically
joined together, so that the signals coming out of one component enter the other
component.
An important property of complex computing components is that their compu-

tational properties are composed, and therefore can be deduced from, the computa-
tional properties of their components together with their functional organization,
without needing to take into account their physical composition or lower-level
physical properties. I will focus on digital computing mechanisms.

2. Combinational Computing Components

Combinational computing components take a fixed finite number of input digits and
yield a fixed finite number of output digits that depend only on their input (and not
on internal states). Combinational computing components cannot assume different
internal states, and thus they always yield the same output in response to the same
input.
In modern computers, complex computing components are built by joining a

number of logic gates at their extremities. Logic gates can be hooked up to one
another to form combinational computing components called Boolean circuits
(because they are combinations of logic gates, each of which computes a Boolean
operation). Some sets of logic gates are called universal, because combinations of
them are sufficient to design all Boolean circuits, i.e., circuits for all logic functions,
i.e., functions expressible as truth tables or logic equations in Boolean algebra. For
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example, the set {AND, NOT} is a universal set, and so is the set {OR, NOT}. This
sense of universality should not be confused with the computational universality of
universal Turing machines (see Appendix).

Figure 9.1 presents a simple Boolean circuit called a half adder, which is composed
of two AND gates, one OR gate, and one NOT gate, connected together at their
extremities. A half adder takes two digits, labeled A and B, as input and yields two
digits, labeled Sum and Carry, as output. The function of this circuit is to generate an
output that is naturally interpreted as the sum of the two input signals, each of which
is now interpreted as representing the numbers 1 and 0. The Sum output is ‘1’ if
and only if either A or B is ‘1’, but not both. The Carry output is ‘1’ if and only if
both A and B are ‘1’. Under this interpretation of the digits as representing numbers,
this simple combination of logic gates can be seen as performing the arithmetical
operation of two-bit addition. Due to the versatility of arithmetic, this is very
convenient in designing complex computing components.

The circuit in Figure 9.1 takes only two digits (A and B) as input, which may be
seen as two strings of one digit each. In designing nontrivial computing mechanisms,
we need mechanisms that manipulate strings of more than one digit. For example,
one way to add two strings of more than one bit each is to couple the individual bits
of the two strings in the order in which they occur within the strings (the first two bits
of the two strings, the second two bits, etc.), then add the individual pairs of bits while
also adding any eventual carry out digits from each of the pairs of bits to the next
couple of bits. In order to do this, the circuit in Figure 9.1 is insufficient, because it
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Figure 9.2 Full (two-bit) adder.
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does not take a carry out signal as input. If we want to generate the sum of two strings
that are longer than one digit each, we need the slightly more complex circuit
depicted in Figure 9.2.
By combining two half adders like those of Figure 9.1 in the way depicted in

Figure 9.2, we generate a full adder, which takes three digits—A, B and Carry in—as
input and yields two digits—Sum and Carry out—as output. Any number of full
adders can then be combined together, and the result is a circuit that generates a
string of digits that is naturally interpreted as the sum of two strings of digits of fixed
finite length.
When this is done, an ordering is introduced in the input and output digits. Until

now, we dealt with operations on two single digits at a time. When we move to
operations on strings of multiple digits, which digit is first in the string and how the
digits are concatenated makes a difference to what output must be generated. For
example, in the case of addition, the carry out from the first two bits in the string
must be given as input to the full adder that adds the second two bits in the string,
and so on until the end of the string. Therefore, circuits that manipulate strings of
digits impose an implicit ordering on their input and output digits, so that there is a
unique first digit of each string and a unique successor of each digit in the string. This
ordering of digits to form strings is a crucial property of complex computing
mechanisms, which is implicitly exploited in designing computing mechanisms
that perform more complex computations.
Analogously to adders, one can design Boolean circuits that perform other logical

or arithmetical operations, such as subtraction, identity check, conjunction, negation,
etc., on two strings of digits of arbitrary (finite) length.
Boolean circuits are very convenient because given a desired input-output function

constructed out of logical connectives (or equivalently, Boolean operations), there is
an effective method for constructing a Boolean circuit that computes it. It is enough
to replace each connective by the corresponding logic gate and connect the logic gates
together in a way that corresponds to the nesting of the parentheses in the logic
equation. Also, given a Boolean circuit, there is an effective method for constructing a
truth table or a logic equation representing the logical function computed by the
circuit. It is enough to represent each logic gate by the corresponding logical
connective (or Boolean operation) and nest the logical formulae in a way that
corresponds to the connections between the logic gates.

3. Arithmetic Logic Units

Boolean circuits can be combined to form more complex computing components. In
modern digital computers, a particularly important complex computing component
is a combination of Boolean circuits called an Arithmetic Logic Unit (ALU). An ALU
operates on two data strings of fixed length, such as 16 or 32 bits, in combination
with a few other input digits that act as control signals. Control signals determine
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which operation the ALU performs on the two data strings. ALUs then yield
one output string of fixed length, which is the result of the operation performed on
the input strings. Like complex Boolean circuits, ALUs impose an ordering on their
data and results, so that there is a unique first digit of each data string and result
string, and a unique successor to each digit. The name ‘arithmetic logic unit’ comes
from the fact that in modern computers, ALUs are designed so that their operations
are naturally interpreted as either arithmetic operations (such as addition and
subtraction) or logical operations (such as conjunction and disjunction) on their
data.

ALUs are part of the processing core of modern computers, but computers do not
have to be built around ALUs. Arithmetic and logical operations are used as
primitives in modern computers because computer designers find them convenient
to use in defining more complex operations. Other primitive operations could be
used. Moreover, in explaining the behavior of an ALU we don’t need to appeal to the
fact that the functions it computes are arithmetic or logical; all we need to understand
is how its components interact in the presence of certain inputs. ALUs and their
operations are characterized as arithmetic or logical because this is useful in design-
ing and programming the whole computing mechanism, just as the characterization
of logic gates as logical is useful in designing complex computing components.

4. Sequential Computing Components

Sequential computing components are composed of combinational computing
components and memory units. Memory units are described in more detail in
Section 8. For now, suffice it to say that the presence of memory units allows
sequential computing components to take a number of internal states. The output
digits generated by sequential computing components depend on both the input
digits the components receive and the content of their memory, that is, their
internal state.

Since they use memory components, sequential computing components are more
powerful than combinational computing components. Their computational behavior
cannot be described by truth tables or logic equations, but it can be described by finite
state automata (FSA). A FSA can be represented formally as a finite set of states plus
two functions, called next-state function and output function. The set of states
corresponds to all the possible contents of the memory of the component. The
next-state function says, given the current state of the component and its input,
what the next state will be. The output function says, given the current state of the
component and its input, what the output of the component will be. The FSAs used
in designing modern computers are synchronous, i.e., they update their internal state
and generate their output once every clock cycle.
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Just as there are effective methods for generating a circuit design given a logic
equation or truth table and vice versa, there are effective methods for generating a
circuit design given a FSA and vice versa.1

5. Multiplication and Division Components

In modern computers, multiplication and division are heavily used, so there are
circuits that are hardwired to perform these operations on strings of fixed length (e.g.,
32 bits). Multiplying finite strings of digits requires several additions or subtractions
of strings while keeping track of both intermediate results and how many steps have
been performed. Thus multiplication and division of finite strings of digits are more
complex operations than addition and subtraction. They cannot be performed by
standard ALUs, which have no means to store intermediate results and keep track of
intermediate steps. Multiplication and division components are sequential comput-
ing components.
Multiplication and division components are simple FSAs made out of an ALU, a

few memory registers to keep track of intermediate results, and a control mechanism
that keeps track of the number of steps to be performed at any given time. But like
ALUs, multiplication and division components take strings of fixed length as data
and yield a fixed number of digits as result. They go through a cycle of internal
operations that stops when the operation is completed, at which time they output
their result and reset themselves to their initial state.2

6. The Computation Power of Complex
Computing Components

The computation power of complex computing components is nontrivial and much
more interesting than that of primitive computing components, but there are still
interesting differences between different kinds of complex computing components.
One way to understand the difference in computation power between different
computing components is to distinguish between ordinary algorithms and what
I call finite-domain algorithms.
An ordinary algorithm may define a total or partial function but, either way, it is

defined over infinitely many inputs of arbitrary length such as strings of letters from a
finite alphabet. In other words, an ordinary algorithm manipulates any input within
an infinite domain and yields outputs for infinitely many inputs, even though there
may be inputs for which it yields no output. Of course, physical systems have
limitations of space and time that may prevent them from following ordinary,

1 For details, see Patterson and Hennessy 1998, B38–9.
2 For more details on the design of multiplication and division components, see Patterson and

Hennessy 1998, 250–74.
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infinite-domain algorithms for arbitrary inputs, but that is a separate point; I discuss
those issues in Chapters 15 and 16.

By contrast, a finite-domain algorithm is defined over finitely many inputs of
bounded length, and that’s it! A finite-domain algorithm cannot manipulate inputs
larger than a certain size because it’s not defined over them, let alone infinitely many
inputs. The distinction between infinite-domain algorithms and finite-domain algo-
rithms is often underappreciated.3

Finite-domain algorithms can be further divided into simple ones, which require at
most one operation from each component of a mechanism, and complex ones, which
require more than one operation from at least one component of the mechanism.
Complex finite-domain algorithms, such as finite-domain algorithms for 32-bit
multiplication, require a mechanism to go through several cycles of activity before
terminating and generating a result. This requires recurrent connections within the
mechanism and a control structure that keeps track of the cycles of activity.

In simple Boolean circuits, the interest in their computations derives on one hand
from the fact that the function computed by the circuit can be exhaustively analyzed
in terms of the computations performed by its component logic gates using Boolean
algebra or truth tables, and on the other hand from the fact that Boolean circuits can
be put together to form ALUs and other complex computing components. There is
no sense in which Boolean circuits can be said to execute a program or a genuine
algorithm, because they operate on inputs of bounded length. But Boolean circuits
can be said to follow simple finite-domain algorithms on their inputs.

ALUs are computing mechanisms capable of following a finite number of simple
finite-domain algorithms, but they still have no power to either execute or follow
genuine algorithms or even complex finite-domain algorithms. ALUs are computa-
tionally more powerful than ordinary Boolean circuits in that they can perform more
than one operation on their data, depending on their control signal. Just as in the case
of Boolean circuits, the simple finite-domain algorithms followed by an ALU are not
represented by a program in the ALU but are hardwired in the functional organiza-
tion of the ALU. That is why I say that they follow, rather than execute, their finite-
domain algorithms.

Multiplication and division components, and other similar fixed-length sequential
computing components, follow complex finite-domain algorithms, which require
them to go through several cycles of activity before generating a result. In order to do
this, they must have a control structure that keeps track of their cycles of activity and
terminates the computation at the appropriate time. Because they require several

3 For example, Cummins states that four-bit adders execute algorithms for addition (Cummins 1983,
Appendix). This makes it sound like every computing mechanism, including a simple four-bit adder, has
the same computation power; namely, the power to execute an algorithm. But four-bit adders do not
literally compute the whole addition function; they compute at most four-bit addition. So they cannot
possibly execute (genuine) algorithms for addition; at most they execute (or, to put it even better, follow)
finite-domain algorithms for four-bit addition.
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cycles of activity, multiplication and division are more complex operations than
those computed by ALUs, and multiplication and division components are corres-
pondingly more powerful components than ALUs. But multiplication and division
components, like ALUs and Boolean circuits, are still limited to computing functions
of data of bounded length.
None of these components have the power to execute or follow ordinary (finite-

domain) algorithms, in the way that ordinary FSAs or Turing machines do. A fortiori,
they don’t execute or follow programs and are not computationally universal. To
obtain computing mechanisms with these interesting properties, we need to reach
higher levels of functional organization.

7. Complex Non-computing Components

Computing and non-computing components can be combined together to form
complex non-computing components. For example, decoders are components that
receive n input digits during a time interval and yield up to 2n output digits during
the next time interval, in such a way that only one of the output digits takes the value
‘1’ for each of the possible input combinations while all the other output digits take
the value ‘0’. Decoders are built out of logic gates and are useful in building larger
computing and non-computing mechanisms (e.g., memory units), but their function
is simply to turn a specific string of digits coming from a bundle of communication
lines into a single digit with value ‘1’ coming out of a specific line.4 The reverse
operation of decoders is performed by encoders.

8. Memory Units

A memory unit is an input-output component that takes and maintains one among a
number of stable states, which may vary or be fixed depending on some of the
memory’s input digits, and can generate (when triggered by an appropriate signal)
one or more output digits that reflect its internal state. After the state of a memory
unit is updated, it remains the same until it is updated again. Because of this, a
(digital) memory unit effectively stores one or more digits. Memory units employed
in the design of modern computers are clocked, i.e., they update their state at the
appropriate time during every clock cycle. This ensures that their state change is
synchronized with the behavior of components that generate the memory units’
inputs.
Logic gates can be combined together to formmemory cells, i.e., memory units that

store one digit. Memory cells can be combined together in arrays to form memory
registers, which can store a string of multiple digits. Registers can be combined with

4 For more details on the design of decoders and other relatively simple non-computing components
out of logic gates, see Patterson and Hennessy 1998, B8–18.
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other non-computing mechanisms (such as decoders) to form register files and
RAMs (random access memories). These are large memory units arranged so that
supplying a specific string of digits (called address) as input to the whole unit can be
used to retrieve or update the content of a specific register.5

Memory cells and larger memory units don’t compute by themselves, but they are
necessary components of computing mechanisms that need to store data, programs,
and intermediate results of computations.

The fact that memory units can be made out of logic gates shows that something
that can be usefully seen as a computing component, such as a logic gate, can be used
to build larger components whose function is different from computing, such as
memory components. (More generally, logic gates have applications outside com-
puter design.)

9. Datapaths

Memory components and other non-computing components can be added to ALUs
and multiplication and division components to form datapaths, i.e., components that
execute the operations that are primitive within a computer. Datapaths act on data
strings of fixed (finite) length and generate the corresponding results of fixed (finite)
length. Datapaths perform one out of a finite number of operations on their data
depending on their control state.

We’ve seen that ALUs and other computing components, such as multiplication
and division components, perform a finite number of operations on data strings of
fixed length. For simplicity we’ll only speak of ALU operations, but the same point
applies to other complex computing components such as multiplication and division
components. Which operation an ALU performs depends on control inputs it
receives. So for any operation that an ALU can perform, there are strings of digits
that—when given as input to the ALU—both determine which operation the ALU
performs and specify the inputs on which it operates. Strings of digits that trigger
operations on certain data strings by the ALU can be stored in memory registers and
are a type of instruction called arithmetic-logic instruction. One function of the
datapath is to retrieve arithmetic-logic instructions from the registers in which they
are stored, convey them to the ALU, and put the result of the operation into an
appropriate memory register. This process is a form of instruction execution.

After one instruction is executed, the datapath must be prepared to execute
another instruction. Instructions are stored in memory registers, and the content of
each memory register can be either written or retrieved by sending a certain string of
digits as input to the memory. This is called addressing the memory. One function of
the datapath is to keep track of which instruction is being executed at any given time

5 For more details on the design of memory units, see Patterson and Hennessy 1998, B22–33.
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by holding the string corresponding to the register that holds the instruction in an
appropriate register, called program counter. A related function of the datapath is to
determine which instruction comes next, which can be done by updating the content
of the program counter in an appropriate way. This can be done by a combination of
the following: storing instructions in consecutive memory registers, having a con-
vention for addressing memory registers that uses consecutive strings for consecutive
registers, and replacing the string in the program counter by its successor after every
instruction execution.
Instead of having arithmetic-logic instructions specify the data for the arithmetic-

logic operations, it is convenient to have those data stored in an appropriate register
file within the datapath. The content of the register file can be altered by appropriate
strings of digits, which specify which register must be altered and what must be put
into it. An analogous string of digits can be used to take the content of a register
within the datapath and copy it into a register in the main memory of the computing
mechanism. These strings of digits, whose function is to store data in the main
memory or load them into the datapath of the computing mechanism, are called
memory-reference instructions. By using memory-reference instructions, data for
computations can be moved back and forth between the datapath and the main
memory independently of the instructions that specify which operations must be
performed on them. One function of the datapath is to retrieve memory-reference
instructions, retrieve the string of digits from the input register indicated by the
instruction, and put the same string of digits into the output register indicated by the
instruction.
As described so far, the datapath is confined to executing instructions in the order

in which they are stored in memory, without ever going back to previously executed
instructions or skipping some of the instructions. This limits the computation power
of a computing mechanism.6 To overcome this limitation, the datapath can be set up
so that it can update the program counter in a way that depends on whether the
content of a certain register satisfies some condition that can be checked by the
ALU. If the datapath is set up this way, there will be strings of digits that determine
whether the program counter should be updated by going to the next instruction or
by jumping to an arbitrary instruction, and what instruction it should jump to. These
strings are called branch instructions. One function of the datapath is to retrieve
branch instructions from the memory registers where they are stored, use the ALU to
determine whether the condition they indicate is satisfied, and update the program
counter accordingly.
It should be clear by now that the datapath has many important functions, whose

fulfillment in the appropriate order constitutes the computations performed by a
computing mechanism capable of executing instructions. What the datapath needs in

6 Specifically, such a computing mechanism is limited to computing primitive recursive functions. It
cannot compute partial recursive functions that are not primitive recursive.
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order to accomplish its various jobs is a mechanism that determines, for each type of
instruction, which job the datapath must accomplish. One way to determine which
type each instruction belongs to is to include within each instruction a sub-string, in a
conventional fixed place (e.g., the beginning of the whole string), and to use different
sub-strings for different instructions types. To react appropriately to that instruction
sub-string is the function of the control unit.

10. Control Units

A control unit receives as input the part of an instruction that determines its
instruction type and outputs a signal that sets up the datapath to do the job
corresponding to that instruction type. When seen in isolation, a control unit can
be described as a computing component, such as a Boolean circuit or a simple FSA
with inputs and outputs of fixed size. But the control unit’s contribution to its
containing mechanism is a control function. A control unit has the function of
setting up the datapath to perform the kind of operation that corresponds to each
type of instruction when an instruction is executed.

Depending on the design and timing methodology, a control unit may be a
combinational or a sequential computing component. For instance, if all the events
within the datapath take place during one clock cycle, then the control unit can be a
combinational component. But if different events within the datapath take place
during distinct clock cycles, then the control must keep track of which event is taking
place at any given time and which event comes next, so that it can send the
appropriate signals to the datapath. In order to do this, the control unit must have
a register that keeps track of the different stages of the execution, so it must be a
sequential component.

A crucial function of the control unit is to deal with at least some kinds of events
that may result in a mistake in the computation. An event of this type is the presence
of an instruction whose execution requires more memory than is available.7

Together, the control unit and the datapath constitute the processor, which is the
core computing component of modern computers. In modern computers, the pro-
cessor is the component that actually carries out the computers’ computations.

Just as in the case of ALUs and other complex computing components, the inputs
and outputs of memory units and processors are strings of concatenated digits, in
which each digit occupies a well-defined position. Different parts of the string may
have a different functional significance depending on where they are located along
the string. For example, the first part of a string may determine the instruction type,
whereas other parts may determine which registers must be accessed for retrieving
data. This ordering of strings is accomplished within the mechanism by the structure

7 For more details about how control units avoid certain kinds of miscomputations, see Patterson and
Hennessy 1998, 410–16.
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of components together with the appropriate ordering of the communication lines
between the components. Because of this, an observer can tell which digit is first in a
string, which is its successor, and so on until the end of the string, so that each string
is unambiguously identified. Without this ordering of the digits to form strings,
complex computing and non-computing mechanisms would not be able to function.

11. Input and Output Devices

An input device is a mechanism through which a computing mechanism receives
inputs coming from the environment external to it. Input to digital computers must
be concatenated in appropriate ways, so that the computer can respond differentially
to the first digit in a string and to the successor of each digit in a string. This ordering
of the input digits is guaranteed by the input devices and is then preserved through-
out the computing mechanism. In ordinary digital computers, examples of input
devices include keyboards, mice, and scanners.
An output device is a mechanism that conveys the results generated by a comput-

ing mechanism, or outputs, to the mechanism’s environment. Output from digital
computers are also ordered, so that the receiver of an output from a digital computer
can (in principle) tell which digit starts a string and which digit follows each other
digit, until the end of the output string is reached. This ordinal arrangement of
outputs is guaranteed by the functional properties of the output device. In ordinary
digital computers, examples of output devices include monitors and printers.

12. Internal Semantics

We’ve seen that in designing and analyzing digital computing mechanisms, the
operations computed by logic gates and Boolean circuits are naturally interpreted
as logical operations, and the operations computed by arithmetic-logic units are
naturally interpreted as arithmetic and logical operations. This natural interpretation
is an external semantics, relating the inputs and outputs of these computing mech-
anisms to something external to the mechanism. External semantics is not necessary
to individuate these components and the computations they perform because, as
I argued in Chapter 7, they are fully individuated as computations defined over
strings. But external semantics is useful in designing complex components out of
simpler components or in analyzing the computations of complex components into
those of their simpler constituents.
In discussing the operations of ordinary processors, the data, the intermediate

results, and the final results of the computation are naturally interpreted as referring
to numbers. The same considerations apply: this external semantics is not necessary
to identify the strings of digits and the operations performed on them. Everything
that processors do could be characterized in terms of operations on strings, without
saying anything about what the strings represent.
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Not all strings manipulated by a processor are data, intermediate results, or final
results. Many are instructions or parts of instructions. It is natural and useful, in
designing and programming a computer, to interpret instructions as representing
what a processor is going to do in executing them. This interpretation does not assign
an external semantics, because it does not relate strings to objects external to the
machine. I call it internal semantics.

A processor shifts instructions and data between the main memory of the com-
puting mechanism and its internal registers, shifts data between its internal registers
and its datapath, and controls its datapath so that it performs certain operations on
the data. All of this is possible because of how the instructions are written and how
the processor is functionally organized to respond to various parts of the instructions.

Part of each instruction is fed to the control unit, and the way it affects the control
unit determines which operation the processor performs. This part of the instruction
is naturally interpreted as representing a type of operation (e.g., addition, subtraction,
loading, writing, branching, etc.). Depending on the instruction, parts of the instruc-
tion may be fed to the datapath’s register file, where they activate different registers
depending on their value. These parts of the instruction are naturally interpreted as
containing addresses of the registers within the datapath, i.e., as naming the registers.
Depending on the instruction, parts of an instruction may be fed to registers of the
main memory, where they activate different registers depending on their value. These
parts of the instruction are naturally interpreted as naming the registers within the
main memory. Finally, part of an instruction may be fed to the datapath as input to
an operation. This part is naturally interpreted as containing data.

Not all instructions have all of the above-mentioned parts, although in modern
digital computers, all of them have the first part. Moreover, each (machine-language)
instruction part of a given type must have a specific and fixed length and be placed in
a fixed position within the instruction, so that the processor can react appropriately
to each part of the instruction. Only when placed in an appropriate position within
the rest of the instruction does a string of digits acquire its internal semantics. The
same string of digits, placed in different parts of an instruction, or in the same
position within different instructions, will represent different kinds of things (e.g., a
memory address, a datum, or an operation). In this sense, internal semantics is not
intrinsic to the “syntactic” type of the strings (that is, which digits constitute the
string), but rather it is context sensitive.8

Because of how their parts are segmented and manipulated by the processor,
arithmetic-logic instructions can be interpreted as telling which registers’ contents
must be manipulated in which ways, and which registers the results must be put in.
Memory-reference instructions are naturally interpreted as telling which registers’
contents must be shifted into which other registers. Branch instructions are naturally

8 This is not only true for instruction parts. The same string of digits may constitute an instruction or a
datum depending on which part of the memory it is placed in.
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interpreted as telling how the program counter must be updated under which
circumstances. Designers and programmers use this natural, internal semantics of
instructions to interpret and write instructions and programs. Under this internal
semantics, instructions and programs constitute a code, which is commonly referred
to as the computer’s machine language.

13. Conclusion

Complex non-computing components serve a variety of functions that are necessary
to perform complex computations: taking inputs from the environment, holding
internal states constant over time, determining which operation needs to be per-
formed at a given time, delivering outputs to the environment, etc.
Complex computing components have the function of performing complex com-

putations. Unlike the strings manipulated by primitive computing components,
those manipulated by complex computing components are not atomic but have
varying degrees of complexity. In addition, the rules for manipulating non-atomic
strings have varying degrees of complexity, which require components of varying
degrees of complexity to implement. As a result, complex computing components
can be classified based on their computing power.
By combining computing and non-computing components in appropriate ways,

we can construct various kinds of computing mechanisms, such as calculators and
computers. Conversely, various kinds of computing mechanisms can be mechanis-
tically explained in terms of the components described in this chapter. I offer such an
analysis in the following three chapters.
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10

Digital Calculators

1. Introduction

In the previous two chapters, I introduced both the primitive components of
computing mechanisms and the main ways they can be put together to form complex
components. We are now ready to see how all these components can be organized to
form complete computing systems, which are computationally more powerful than
any of their components taken in isolation. We begin with digital calculators in this
chapter. In the next chapter we will look at digital computers and see why they are
more powerful than calculators. After that we’ll look at analog computers and neural
networks.

In our everyday life, we distinguish between things that compute, such as pocket
calculators, and things that don’t, such as bicycles. We also distinguish between
different kinds of computing device. Some devices, such as abaci, have parts that need
to be moved by hand. They may be called computing aids. Other devices contain
internal mechanisms that, once started, produce a result without further external
intervention. They may be called computing machines. Among computing machines,
we single out a special class and call them digital computers. At the very least, digital
computers are special because they are more versatile than other computing
machines—or any other machine, for that matter. Digital computers can do arith-
metic but also graphics, word processing, Internet browsing, and myriad other
things. No other artifact comes even close to having so many capacities. Digital
computer versatility calls for an explanation, which I will sketch in the next chapter.

In contrast with the above intuitive picture, some authors suggest that there is
nothing distinctive about digital computers. Consider the following passage:

[T]here is no intrinsic property necessary and sufficient for all computers, just the interest-
relative property that someone sees value in interpreting a system’s states as representing states
of some other system, and the properties of the system support such an interpretation. . . .
Conceivably, sieves and threshing machines could be construed as computers if anyone has
reason to care about the specific function reflected in their input-output behavior (Churchland
and Sejnowski 1992, 65–6).

If these authors are correct, then the distinctions between (i) systems that compute
and systems that don’t and (ii) digital computers and other computing machines, are



ill-conceived. For according to these authors, there is no fact of the matter whether
something is a digital computer, some other computing machine, or something that
performs no computations at all. Whether anything is said to be a computer, for these
authors, depends merely on how we look at it.
This is an example of what in Chapter 4 I called interpretivist pancomputational-

ism: every physical system is a digital computer as long as someone interprets it as
such. In the absence of a viable account of what is distinctive about digital computers,
interpretivist pancomputationalism is tempting. But interpretivist pancomputation-
alists have a lot to explain away. They should explain away our intuition that there is
something special about what we normally call computers and our consequent
practice of applying the term ‘computer’ only to some machines—such as our
desktop and laptop machines—and not others. They should explain why we think
that the invention of computers was a major intellectual breakthrough and there are
special sciences—computer science and computer engineering—devoted to studying
the specific properties of computers. Finally, they should explain why the systems we
ordinarily call computers, but not other computing machines that pre-date them,
inspired the hypothesis that minds or brains are computers (von Neumann 1958;
Fodor 1975).
Explaining all of this away is hopeless, for three reasons. First, as I argued in

Chapter 4, pancomputationalism is primarily due to confusing computational mod-
eling and computational explanation. Second, as I argued in Chapter 7, computing
systems in general are a special class of physical systems: they are physical systems
whose function is manipulating medium-independent vehicles according to appro-
priate rules. Third, there is a fact of the matter that is specific to digital computers and
distinguishes them from other computing systems:

Digital Computer: A digital computing system of “large capacity.”1

Digital Calculator: A digital computing system whose function is to perform a few
computational operations on strings of digits of bounded but nontrivial size.

This chapter defends the second thesis by explicating digital calculators. The follow-
ing chapter will defend the first thesis by explicating digital computers and the
relevant notion of large capacity. Needless to say, the boundary between digital
computers and digital calculators is a fuzzy one, and that’s ok.

2. Digital Computing Mechanisms

As we saw in Chapter 7, computing mechanisms’ capacities are explained in terms of
their components, their components’ functions, and the way their components and
functions are organized. Digital computing mechanisms are distinguished from other

1 I borrow the phrase ‘large capacity’ from John V. Atanasoff, who was among the first people to use the
term ‘computer’ for a kind of machine (Atanasoff 1940, 1984).
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mechanisms, including non-digital computing mechanisms, in that they perform a
specific kind of process: digital computations. A digital computation, in turn, is the
generation of output strings of digits from input strings of digits in accordance with a
general rule that depends on the properties of the strings and (possibly) the internal
state of the system. Finally, a string of digits is an ordered sequence of discrete
elements of finitely many types, where each type is individuated by the type of effect
it has on the mechanism that manipulates the strings.

Although strings of digits can be and usually are assigned semantic interpretations,
the present notion of string is the one employed in computability theory and
computer science, where semantic properties are not part of the identity conditions
of strings (Chapter 3). This is a mechanistic, non-semantic notion of string. It is
explicated in terms of how each type of digit, together with its position within a
string, affects the computing components of a mechanism. Thus, this notion of string
does not depend on semantic properties.

In analyzing calculators and computers, I will build on the account of computing
and non-computing components presented in the previous chapter. Accordingly,
I will distinguish between three classes of strings on the basis of the function they
fulfill: (1) data, whose function is to be manipulated during a computation; (2)
results, whose function is to be the final string of a computation; and (3) instructions,
whose function is to cause appropriate computing mechanisms to perform specific
operations on the data. Lists of instructions are called programs. I will also appeal to
four kinds of large-scale components: (1) processing units, whose function is to
execute any of a finite number of primitive operations on data; (2) memory units,
whose function is to store data, intermediate results, final results, and possibly
instructions; (3) input devices, whose function is to receive strings of digits from
the environment and deliver them to memory units, and (4) output devices, whose
function is to take strings of digits from memory units and deliver them to the
external environment. Some processing units can be further analyzed into datapaths,
whose function is to perform operations on data, and control units, whose function is
to set up datapaths to perform the operation specified by any given instruction.

3. Calculators

Sometimes, the terms ‘calculator’ and ‘computer’ are used interchangeably. Follow-
ing the more common practice, I reserve ‘computer’ for systems that are computa-
tionally more powerful than calculators. Given this restricted usage, a good way to
introduce digital computers (in the next chapter) is to contrast them with their close
relatives, ordinary digital calculators.

Few people use self-standing calculators anymore because they’ve been replaced by
the calculator function on computers, tablets (which are portable computers that use
an LCD screen as input device) and smartphones (which are small portable com-
puters with a cellular phone function). But calculators used to be their own devices
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and were ubiquitous until a few years ago. If you don’t know what a self-standing
calculator is, ask your parents.
A digital calculator is a computing machine made out of four main kinds of

appropriately connected digital components: input devices, output devices, memory
units, and processing units. I only discuss non-programmable calculators. So-called
“programmable calculators,” from a mechanistic perspective, are special purpose
digital computers with small memory, and are subsumed within the next chapter.2

Input devices of digital calculators receive two kinds of input from the environ-
ment: (i) data and (ii) a command that causes the processing unit to perform a
certain operation on the data. Commands are usually inserted in calculators by
pressing appropriate buttons. An operation is a transformation of data into results.
Calculators’ memory units hold the data, and possibly intermediate results, until the
operation is performed. Calculators’ processing units perform one operation on the
data. Which operation is performed depends only on which command was inserted
through the input device. After the operation is performed, the output devices of a
calculator return the results to the environment. The results returned by calculators
are computable (recursive) functions of the data. Since digital calculators manipulate
strings of digits according to a general rule defined over the strings, they are genuine
digital computing mechanisms. The computing power of ordinary calculators is
limited, however, by three important factors.
First an ordinary calculator’s result is the value of one of a fixed finite number of

functions of the data, and the set of those functions cannot be augmented (e.g., by
adding new instructions or programs to the calculator). The set of functions that can
be computed by a calculator is determined by the primitive operations on strings that
can be performed by the processing unit. Which of those functions is computed at
any given time is determined by the command that is inserted through the input
device. The command sets the calculator on one of a finite number of initial states,
which correspond to the functions the calculator can compute. In short, calculators
(in the present sense) are not programmable.
Second, an ordinary calculator performs only one operation on its data, after

which it outputs the result and stops. It has no provision for performing several of
its primitive operations in a specified order, so as to follow an algorithm automat-
ically. Of course, each primitive operation of a calculator is performed by following a
finite-domain algorithm (that is, an algorithm defined over finitely many inputs of
bounded length). But a calculator—unlike a computer—cannot follow an ordinary
algorithm or a finite-domain algorithm defined in terms of its primitive operations.
In other words, a calculator has no control structure besides the insertion of

2 For more details on programmable calculators, including a statement that they are a kind of computer,
see Engelsohn 1978.
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commands through the input device.3 The operations that a calculator can compute
on its data can be combined in sequences, but only by inserting successive commands
through the input device after each operation is performed.

Finally, the range of values that calculators can compute is limited by the size of
their memory, input devices, and output devices. Ordinary calculator memories are
of fixed size and cannot be increased in a modular fashion. Also, ordinary calculator
input and output devices only take data and deliver results of bounded size. Calcu-
lators can only operate within the size of those data and results, and cannot outrun
their limited memory capacity.

As a consequence of these limitations, ordinary calculators lack digital computers’
most interesting functional properties: calculators have no “virtual memory” and do
not support “complex notations” and “complex operations.” In short, they have no
“functional hierarchy.” (These terms are explained in the next chapter.)

In summary, calculators are computationally more powerful than simpler com-
puting mechanisms, such as logic gates or arithmetic-logic units. Nevertheless, the
computing power of ordinary calculators is limited in a number of ways. Contrasting
these limitations with the power of digital computers sheds light on why computers
are so special and why digital computers, rather than digital calculators, have been
used as a model for the brain.

3 A consequence of this is the often-remarked fact that calculators cannot perform branches; namely,
they cannot choose among different operations depending on whether some condition obtains. (Branching
is necessary to compute all computable functions.)
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11

Digital Computers

1. Digital Computing Systems of Large Capacity

In the previous chapter, I argued that calculators are digital computing systems
whose function is to perform a few computational operations on strings of digits of
bounded but nontrivial size. In this chapter, I argue that digital computers are digital
computing systems of large capacity. Computers’ capacity is larger than the capacity
of ordinary calculators in a number of ways that I’ll articulate. Along the way,
I develop a systematic taxonomy of computers based on their mechanistic properties,
including hard-wired vs. programmable, general-purpose vs. special-purpose, analog
vs. digital (Chapter 12), and serial vs. parallel (Chapter 13), giving explicit criteria for
each kind. My account is mechanistic: which class a system belongs in, and which
functions are computable by which system, depends on the system’s mechanistic
properties. Finally, I briefly illustrate how my account sheds light on some important
theoretical issues in the history and philosophy of computing as well as the philoso-
phy of cognitive science.
Digital computers are of philosophical interest for at least three reasons. First,

digital computers are sufficiently important, both practically and conceptually, that
understanding what they are is valuable in its own right. Second, a proper distinction
between computers and other mechanisms and between different classes of com-
puters is part of the foundations of computer science. In computer science there is no
universally accepted notion of computer, and there have been controversies over
whether certain machines count as computers of one kind or another. Some of those
controversies have significant legal consequences (cf. Burks 2002). Resolving those
controversies requires clear and cogent criteria for what counts as a computer of any
significant kind. I provide such criteria in Sections 1–5. In Section 6, I will give an
example of how my account illuminates a historical controversy. Third, as I will
illustrate in Sections 7 and 8, a robust notion of digital computer gives substance to
theories according to which the brain is a digital computer.
Like ordinary calculators, digital computers are made out of four main types of

components: input devices, output devices, memory units, and processing units. The
processing units of modern computers are called processors and can be analyzed as a
combination of datapaths and control units (Chapter 9). A schematic representation
of the functional organization of a modern computer is shown in Figure 11.1.



The difference between (ordinary) calculators and digital computers lies in their
mechanistic properties and organization. Computers’ processors are capable of
branching behavior and can be set up to perform any number of their primitive
operations in any order (until they run out of memory or time). Computers’memory
units are orders of magnitude larger than those of ordinary calculators, and often
they can be increased in a modular fashion if more storage space is required. This
allows today’s computers to take in data and programs, and yield results, of a size that
has no well-defined upper bound. So computers, unlike calculators, are program-
mable, capable of branching, and capable of taking data and yielding results of a
relatively large size, whose bounds are not well-defined. Because of these character-
istics, today’s computers are called ‘programmable’, ‘stored-program’, and compu-
tationally ‘universal’. (These terms are defined more explicitly in the next sections.)

If we were to define ‘computer’ as something with all the characteristics of today’s
computers, we would certainly obtain a robust notion. We would also make it
difficult to distinguish between many classes of computing machines that lack
some of those characteristics, yet are significantly more powerful than ordinary
calculators, are similar to modern computers in important ways, and were often
called ‘computers’ when they were built. Because of this, I recommend using the term
‘computer’ so as to encompass more than today’s computers, while introducing
functional distinctions among different classes of computers. Ultimately, our under-
standing does not depend on how restrictively we use a term; it depends on how
careful and precise we are in classifying computing systems based on their relevant
functional properties.

Until at least the 1940s, the term ‘computer’ was often used to designate people
whose job was to perform calculations, usually with the help of a calculator or abacus.
Unlike the calculators they used, these computing humans could string together a
number of primitive operations (each of which was performed by the calculator) in
accordance with a fixed plan, or algorithm, so as to solve complicated problems
defined over strings of digits. By analogy, any machine with an analogous capacity
may also be called a ‘computer’.
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Figure 11.1 The main components of a computer and their functional relations.
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To a first approximation, then, a computer is a computing machine with a control
unit that can string together a sequence of primitive operations, each of which can be
performed by the processing unit(s), so as to follow an algorithm. Among computers,
there is wide variation in how many operations their control unit can string together
in a sequence and how complex an algorithm their control unit can follow (and
consequently, how complex a problem a computer can solve). For instance, some
machines that were built in the first half of the 20th century—such as the IBM 601—
could string together a handful of arithmetical operations. They were barely more
powerful than ordinary calculators, and a computing human could easily do any-
thing that they did. Other machines—such as the Atanasoff-Berry Computer
(ABC)—could perform long sequences of operations on their data; a computing
human could not solve the problems that they solved without taking a prohibitively
long amount of time.
The ABC, which was completed in 1942 and was designed to solve systems of up to

29 linear algebraic equations in 29 unknowns, appears to be the first machine that
was called ‘computer’ by its inventor.1 So, a good place to draw the boundary
between calculators and computers might lie somewhere between machines that
can be replaced by computing humans, such as ordinary calculators and the IBM
601, and machines that outperform computing humans at solving at least some
problems, such as the ABC.2 The exact boundary is best left vague. What matters is
not how many machines we honor with the term ‘computer,’ but that we identify
mechanistic properties that make a difference in computing power, and that whether
a machine possesses any of these properties is a matter of fact, not interpretation.
We’ve seen that one of those properties is the capacity to follow an algorithm defined
in terms of the primitive operations that a machine’s processing unit(s) can perform.
Other important mechanistic properties of computers are discussed in the rest of this
chapter.
Digital computers and their components can also be classified according to the

technology they use (mechanical, electro-mechanical, electronic, etc.) as well as
according to other characteristics (size, speed, cost, etc.). These differences don’t
matter for our purposes, because they don’t affect which functions can in principle be
computed by different classes of computing mechanisms. Historically, however, the
introduction of electronic technology, and the consequent enormous increase in
computation speed, made a huge difference in making computers practically useful.

2. Programmability

A computing human can do more than follow one algorithm to solve a problem. She
can follow any (classical, i.e., non-quantum) algorithm, which is typically given to her

1 Atanasoff 1940. On the ABC, see also Burks and Burks 1988; Burks 2002; and Gustafson 2000.
2 A similar proposal is made by Burks and Burks 1988, chap. 5.
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in the form of instructions, and thus she can compute any function for which she has
an algorithm. More generally, a human being can be instructed to perform the same
activity (e.g., knitting or playing the piano) in many different ways. Any machine that
can be easily modified to yield different output patterns may be called ‘program-
mable’. In other words, ‘being programmable’ means being modifiable so as to
perform relatively long sequences of different operations in a different way depend-
ing on the modification.

Digital computers are not the only programmable mechanisms. This is especially
relevant in light of the persistent tendency by some philosophers to identify compu-
tation with program execution (e.g., Cummins 1989, 91–2; Roth 2005, 458). On the
contrary, some types of non-computing mechanisms, such as certain looms and
music boxes, execute programs too. Computers’ characteristic activity is computing,
so a programmable digital computer is a digital computer that can be modified to
compute in different ways. Furthermore, as will soon be clear, the kind of program-
mability that comes with the ability to execute computer programs is only one species
of computer programmability among others, just as programmable computation is
only one species of computation among others.

The simplest kind of programmability involves the performance of specified
sequences of operations on an input, without the characteristics of the input making
any difference on what operations must be performed. For instance, (ceteris paribus)
a loom programmed to weave a certain pattern will weave that pattern regardless of
what kinds of thread it is weaving. The properties of the threads make no difference
to the pattern being woven. In other words, the weaving process is insensitive to
the properties of the input. (Though, of course, whether the pattern is easy to observe
and how it appears will depend on whether relevant threads have different colors,
and what colors they have.)

This kind of programmability is insufficient for computing, because computing is
sensitive to relevant differences in input. One reason for this is that a mathematical
function typically yields different values given different arguments. Any mechanism
that is computing that function must respond differentially to the different input
arguments so as to generate the correct output values. Digital computing mechan-
isms do this by responding differentially to the different types of digit that make up
the input and to the order in which they are concatenated into strings. Accordingly,
programming a digital computer requires specifying how it must respond to different
strings of digits by specifying how it must respond to different types of digit and
different positions within a string.3

What counts as a legitimate modification for the purpose of programming a
computer depends on the context of use and the means that are available to make

3 The present distinction between programmability insensitive to the input and programmability
sensitive to the input was partially inspired by a somewhat similar distinction, made by Brennecke 2000,
62–4, between executing a fixed sequence and using the output as input.
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the modification. In principle, we could modify a calculator by taking it apart and
rewiring its circuits or adding new parts, and then it would compute new functions.
But this kind of modification would ordinarily be described as building a new
machine rather than programming the old one. So we should relativize the notion
of programmability to the way a machine is ordinarily used. This will not make a
difference in the end, especially since the kind of programmability that matters for
most purposes is soft-programmability (see below), where what counts as a relevant
modification is determined unambiguously by the functional organization of the
computer.
Programmability comes in two main forms, hard and soft, depending on the type

of modification that needs to be made for the machine to behave in a different way.

2.1 Hard programmability

Some early computers—including the celebrated ENIAC (Van der Spiegel et al.
2000)—had switches, plug-ins, and wires with plugs, which sent signals to and
from their computing components. Flipping the switches or plugging the wires in
different configurations had the effect of connecting the computing components of
the machine in different ways, to the effect that the machine would perform different
series of operations. I call any computer whose modification involves the mechanical
modification of its functional organization hard-programmable. Hard programming
requires that users change the way the components of a computer are spatially joined
together, which changes the number of operations that are performed or the order in
which they are performed, so that different functions are computed as a result. Hard
programming is relatively slow and cumbersome. Programming is easier and faster if
a machine is soft-programmable.

2.2 Soft programmability

Modern computers contain computing components that are designed to respond
differentially to different sequences of digits, so that different operations are per-
formed. These sequences of digits, then, act as instructions to the computer, and lists
of instructions are called programs. In order to program these machines, it is enough
to supply the appropriate arrangement of digits, without manually rewiring any of
the components. I call any computer whose modification involves the supply of
appropriately arranged digits (instructions) to the relevant components of the
machine soft-programmable.
Soft programmability allows us to use programs of quasi-unbounded size, which

are given to the machine as part of its input or internal states. Since the whole
program is written down as a list of instructions, in principle a soft-programmable
machine is not bound to execute the instructions in the order in which they
are written down in the program; it can execute arbitrary instructions in the list at
any particular time. This introduces the possibility of conditional branch instruc-
tions, which require the machine to jump from one instruction to an arbitrary
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instruction in the program based on whether a certain condition—which can be
checked by the processing unit(s)—obtains. Conditional branch instructions are the
most useful and versatile way of using intermediate results of a computation to
influence control, which in turn is a necessary condition for computing all comput-
able functions (cf. Brennecke 2000, 64–5). Since soft-programmable computers can
execute programs of unbounded size and use intermediate results to influence
control, they can be computationally universal (see Section 4).

There are two kinds of soft programmability: external and internal. A machine that
is externally soft-programmable requires the programs to be inserted into the
machine through an input device, and it does not have components that copy and
store the program inside the machine. For example, universal Turing machines and
some early punched cards computers—such as the famous Harvard Mark I (Cohen
1999)—are externally soft-programmable.

A machine that is internally soft-programmable contains components whose
function is to copy and store programs inside the machine and to supply instructions
to the machine’s processing units. Internal soft programmability is by far the most
flexible and efficient form of programmability. It even allows the computer to modify
its own instructions based on its own processes, which introduces a final and most
sophisticated level of computational control (cf. Brennecke 2000, 66).

Given the ability to modify their instructions, internally soft-programmable com-
puters have a special, seldom-appreciated property. In principle, a soft-program-
mable computer may be able to increase its computational power by operations that
are not computable by a Turing machine.4 If an internally soft-programmable
computer has the ability to modify its program(s) in a non-computable way (e.g.,
at random), then in principle it may modify its program so as to compute an
increasingly larger number of functions. This increase in computational power
need not be governed by any algorithm.

Internal soft-programmability has become so standard that other forms of pro-
grammability are all but forgotten or ignored. One common name for machines that
are internally soft-programmable, which include all of today’s desktop and laptop
computers, is ‘stored-program computer’. For present purposes, however, it is better
to use the term ‘stored-program’ to refer to the presence of programs inside a
machine, whether or not those programs can change.

3. Stored-Program Computers

A stored-program computer has an internal memory that can store strings of digits.
Programs are stored in memory as lists of instructions placed in appropriate memory

4 Alan Turing is one of the few people who discuss this feature of internally soft-programmable
computers; he uses it in his reply to the mathematical objection to the view that machines can think.
For an extended discussion, see Piccinini 2003a.
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registers. A stored-program computer also contains at least one processor. The
processor contains a tracking mechanism (program counter) that allows the proces-
sor to retrieve instructions from a program in the appropriate order. The processor
can extract strings of digits from memory and copy them into its internal registers (if
they are data) or execute them on the data (if they are instructions). The same string
can act as data or as an instruction in different occasions, depending on where it is
located within a memory register and how the machine is functionally organized.
After an instruction is executed, the tracking mechanism allows the control unit to
retrieve the next instruction until all the relevant instructions are executed and the
computation is completed.
A stored-program machine need not be programmable. Some kinds of memory

unit are read-only, namely, they can communicate their content to other components
but their content cannot change. Other kinds of memory unit are such that digits can
be inserted into them. This opens up the possibility that a program be inserted from
the outside of the computer (or from the inside, i.e., from the processor) into a
memory unit, allowing a computer to be (soft) programmed and the existing
programs to be modified. Once the program is in the appropriate part of the memory,
the computer will execute that program on the data. A programmable stored-
program computer can even be set up to modify its own program, changing what
it computes over time. Stored-program computers are usually designed to be soft-
programmable and to execute any list of instructions, including branch instructions,
up to their memory limitations; if so, they are computationally universal (see
Section 4). For this reason, the term ‘stored-program computer’ is often used as a
synonym of ‘universal computer’ even though, strictly speaking, a stored-program
computer may or may not be universal.
The idea to encode instructions as sequences of digits in the same form as the data

and the idea of storing instructions inside the computer are the core of the notion of
programmable, stored-program computer, which is perhaps the most fundamental
aspect of modern artificial computing.5 At this point, it should be clear that not every
computing mechanism is a computer, and not every computer is a programmable,
stored-program computer. In order to have a programmable, stored-program com-
puter, we need to have a system of digits organized into strings, a scheme for
encoding instructions, a re-writable memory to store the instructions, and a proces-
sor that is appropriately organized to execute those instructions. Several technical
problems need to be solved, such as how to retrieve instructions from memory in the
right order and how to handle malformed instructions. I have briefly described these
properties of computers, the problems that need to be solved to design them, and the
solutions to those problems, in terms of the components and their functional
organization—that is, in mechanistic terms. I will soon describe other properties of

5 In their authoritative textbook on computer organization, Patterson and Hennessy list these two ideas
as the essence of modern computers (Patterson and Hennessy 1998, 121).
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computers using the same strategy. This shows how the mechanistic account sheds
light on the properties of computers.

4. Special-Purpose, General-Purpose, or Universal

Many old computers, which were not stored-program, were designed with specific
applications in mind, such as solving certain classes of equations. Some of these
machines, like the ABC, were hardwired to follow a specific algorithm. They are
called special-purpose computers to distinguish them from their general-purpose
successors. Special-purpose computers are still used for a number of applications;
for instance, many computers installed in automobiles are special-purpose.

In the 1940s, several computers were designed and built to be programmable in the
most flexible way, so as to solve as many problems as possible.6 They were called
general-purpose or, as von Neumann (1945) said, all-purpose computers. The extent
to which computers are general-purpose is a matter of degree, which can be evaluated
by looking at how much memory they have and how easy they are to program and
use for certain applications.7 General-purpose computers are programmable but
need not be soft-programmable, let alone stored-program.

Assuming the Church-Turing thesis, namely the thesis that every effectively
computable function is computable by a Turing machine, Alan Turing (1936–7)
showed how to design universal computing mechanisms, i.e., computing mechan-
isms that would take any appropriately encoded program as part of their input and
respond to that program so as to compute any computable function (see Appendix).
Notice that Turing’s universal computing mechanisms—universal Turing machines—
are not stored-program (see Section 6 below for a defense of this claim).

We have seen that soft programmable computers can respond to programs of
unbounded length and manipulate their inputs (of finite but unbounded length)
according to the instructions encoded in the program. This does not immediately
turn them into universal computers, because, for example, they may not have the
ability to handle branch-instructions.8 But no one builds computers like that. Ordin-
ary soft-programmable computers, designed to execute all the relevant kinds of
instruction, are universal computing mechanisms. For example, ordinary computers
like our desktop and laptop machines are universal in this sense. Even Charles
Babbage’s legendary analytical engine, with minor modifications, would have been
universal.9 Universal computers can compute any Turing-computable function until
they run out of time or memory. Because of this, the expressions ‘general-purpose

6 For an overview of early computers, see Rojas and Hashagen 2000.
7 For a valuable attempt at distinguishing between degrees to which a computer is general-purpose, see

Bromley 1983.
8 Strictly speaking, branching is not necessary for computational universality, but the alternative is too

impractical to be relevant (Rojas 1998).
9 Thanks to Doron Swade for this point.
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computer’ and ‘all-purpose computer’ are sometimes loosely used as synonyms of
‘universal computer’.

5. Functional Hierarchies

Above, I briefly described the functional organization that allows soft-programmable
computers to perform a finite number of primitive operations in response to a finite
number of the corresponding kinds of instruction. Computers with this ability are
computationally universal up to their memory and time limitations. In order to get
them to execute any given program operating on any given notation, all that is
needed is to encode the given notation and program using the instructions of the
computer’s machine language.
In early stored-program computers, human programmers did this encoding

manually. Encoding was slow, cumbersome, and prone to errors. To speed up the
process of encoding and diminish the number of errors, early computer designers
introduced ways to mechanize at least part of the encoding process, giving rise to a
hierarchy of functional organizations within the stored-program computer. This
hierarchy is made possible by automatic encoding mechanisms, such as assemblers,
compilers, and operating systems. These mechanisms are nothing but programs
executed by the computer’s processor(s), whose instructions are often written in
special, read-only memories. These mechanisms generate virtual memory, complex
notations, and complex operations, which make the job of computer programmers
and users easier and quicker. I will now briefly explain these three notions and their
functions.
When a processor executes instructions, memory registers for instructions and

data are functionally identified by the addresses of the memory registers that contain
the data or instructions. Each memory register has a fixed storage capacity, which
depends on the number of memory cells it contains. Virtual memory is a way to
functionally identify data and instructions by virtual addresses, which are independ-
ent of the physical location of the data and instructions, so that a programmer or user
need not keep track of the physical location of the data and instructions. During the
execution phase, the physical addresses of the relevant memory registers are auto-
matically generated by the compiler on the basis of the virtual addresses. Since virtual
memory is identified independently of its physical location, in principle it has
unlimited storage capacity, although in practice the total number of physical digits
that a computer can store is limited by the size of its physical memory.10

In analyzing how a processor executes instructions, all data and instructions must
be digital strings corresponding to the physical signals traveling through the proces-
sor, and the functional significance of these strings is determined by their location

10 For more details on virtual memory, including its many advantages, see Patterson and Hennessy
1998, 579–602.
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within an instruction or data string. Moreover, all data and instruction strings have a
fixed length, which corresponds to the length of the memory registers that contain
them. Complex notations, instead, can contain any characters from any finite alpha-
bet, such as the English alphabet. Programmers and users can use complex notations
to form data structures that are natural and easy to interpret in a convenient way,
similarly to natural languages. Thanks to virtual memory, these strings can be
concatenated into strings of any length (up to the computer’s memory limitations).
During the execution phase, the encoding of data structures written in complex
notations into data written in machine language is automatically taken care of by
the functional hierarchy within the computer (operating system, compiler, and
assembler).

The processor can only receive a finite number of instruction types corresponding
to the primitive operations that the processor can execute. Complex operations are
operations effectively defined in terms of primitive operations or in terms of already
effectively defined complex operations. As long as the computer is universal, the
Church-Turing thesis guarantees that any Turing-computable operation can be
effectively defined in terms of the primitive operations of the computer. Complex
operations can be expressed using a complex notation (e.g., an English word or
phrase; for instance, a high-level programming language may include a control
structure of the form UNTIL P TRUE DO ___ ENDUNTIL) that is more transparent
to the programmers and users than a binary string would be, and placed in a virtual
memory location. A high-level programming language is nothing but a complex
notation that defines a set of complex operations that can be used when writing
programs. For their own convenience, programmers and users will typically assign a
semantics to strings written in complex notations. This ascription of a semantics is
often largely implicit, relying on the natural tendency of language users to interpret
linguistic expressions of languages they understand. Thanks to virtual memory,
complex instructions and programs containing them can be of any length (up to
the memory limitations of the computers). During the execution of one of these
programs, the encoding of the instructions into machine language instructions is
automatically taken care of by the functional hierarchy within the computer.

Notice that the considerations made in this section apply only to programmable,
stored-program, universal computers. In order to obtain the wonderful flexibility of
use that comes with the functional hierarchy of programming languages, one needs a
very special kind of mechanism: a programmable, stored-program, universal
computer.

The convenience of complex notations and the complex operations they represent,
together with the natural tendency of programmers and users to assign them a
semantics, makes it tempting to conclude that computers’ inputs, outputs, and
internal states are individuated by their content. For example, both computer
scientists and philosophers sometimes say that computers understand their instruc-
tions. This analogy was briefly discussed in Chapter 7, Section 2.7. Now we can

190 DIGITAL COMPUTERS



return to that topic and clarify further in what sense computers do understand their
instructions.
Computer instructions and data have functional significance, which depend on

their role within the functional hierarchy of the computer. Before a program written
in a complex notation is executed, its data and instructions are automatically encoded
into machine language data and instructions. Then they can be executed. All the
relevant elements of the process, including the programs written in complex nota-
tion, the programs written in machine language, and the programs constituting the
functional hierarchy (operating system, compiler, and assembler), are strings of
digits. All the operations performed by the processor in response to these instructions
are operations on strings. The resulting kind of “computer understanding” is mech-
anistically explainable without ascribing any external semantics to the inputs,
internal states, or outputs of the computer.
At the same time, data and instructions are inserted into computers and retrieved

from them by programmers and users who have their own purposes. As long as the
functional hierarchy is working properly, programmers and users are free to assign
an external semantic interpretation to their data and instructions in any way that fits
their purposes. This semantics applies naturally to the data and instructions written
in the complex notation used by the programmers and users, although it may cease to
be helpful when the complex code is compiled and assembled into machine language
data and instructions. The semantics of a computer’s inputs, outputs, and internal
states is helpful in understanding how and why computers are used, but it is
unnecessary to individuate computing mechanisms and the functions they compute.

6. Application 1: Are Turing Machines Computers?

Turing machines (TMs) can be seen and studied mathematically as lists of instruc-
tions or sequences of abstract strings, with no mechanism acting on the strings. They
can also be seen as a type of computing mechanism, made out of a tape divided into
squares and a unit that moves along the tape, acts on it, and is in one out of a finite
number of internal states (see the Appendix and Davis et al. 1994 for more details).
The tape and the active unit are the components of TMs. Their functions are,
respectively, storing digits and performing operations on digits. The active unit of
TMs is typically treated as a black box, though in principle it may be analyzed as a
finite state automaton, which in turn may be analyzed as a Boolean circuit plus a
memory register. When they are seen as mechanisms, TMs fall naturally under the
present account of computation. They are uniquely defined by their mechanistic
description, which includes their list of instructions.
There are two importantly different classes of TMs: ordinary TMs and universal

TMs. Ordinary TMs are not programmable and a fortiori not universal. They are
“hardwired” to compute one and only one function, as specified by the list of
instructions that uniquely individuates each TM. Since TMs’ instructions constitute
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full-blown algorithms (i.e., algorithms defined over an infinite domain), by the light
of the present account they are special-purpose computers.

By contrast, universal TMs are programmable (and of course universal), because
they respond to a portion of the digits written on their tape by computing the
function that would be computed by the TM encoded by those digits. Nevertheless,
universal TMs are not stored-program computers, because their architecture has no
memory component—separate from its input and output devices—for storing data,
instructions, and results. The programs for universal TMs are stored on the same
tape that contains the input and the output. In this respect, universal TMs are
somewhat analogous to early punched cards computers. The tape can be considered
an input and output device, and with some semantic stretch, a memory. But since
there is no distinction between input device, output device, and memory, a universal
TM should not be considered a stored-program computer properly so called, for the
same reason that most punched cards machines aren’t.

This account contrasts with a common way of understanding TMs, according to
which TM tapes are analogous to internal computer memories, but it is in line with
Turing’s original description of his machines:

We may compare a man in the process of computing a real number to a machine which is only
capable of a finite number of conditions q1, q2, . . . qR which will be called “m-configurations”.
The machine is supplied with a “tape” (the analogue of paper) running through it, and divided
into sections (called “squares”) each capable of bearing a “symbol”. At any moment there is
just one square, say the r-th, bearing the symbol G(r) which is “in the machine”. We may call
this square the “scanned square”. The symbol on the scanned may be called the “scanned
symbol”. The “scanned symbol” is the only one of which the machine is, so to speak, “directly
aware”. However, by altering its m-configuration the machine can effectively remember some of
the symbols which it has “seen” (scanned) previously (Turing 1936–7, 117; emphasis added).

Turing defines his machines by analogy with computing humans. As Eli Dresner
(2003) points out, Turing does not even describe his machines as including the tape
as a component, let alone as a memory component—the tape is “the analogue of
paper” on which a human writes. For Turing, the analogue of human memory is not
the machine’s tape, but the machine’s internal states (“m-configurations”). Only in
1945 and afterwards, when the design and construction of stored-program com-
puters were under way, did Turing describe TM tapes as components of the machine
and draw a functional analogy between TM tapes and computer memory (Turing
1945). Still, this analogy remains only partial, because computer memories properly
so called are structurally and functionally distinct from input and output devices
(Chapter 9). The distinction between memory, input devices, and output devices
renders stored-program computers much more flexible in their use than literal TMs
would be, making it possible to install and remove programs from memory, store
multiple programs, switch between them, create a functional hierarchy, etc. These, in
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turn, are some reasons why no one builds literal implementations of TMs for
practical applications.11

Even after the invention of TMs, it was still an important conceptual advance
to design machines that could store instructions in an internal memory component.
So, it is anachronistic to attribute the idea of the stored-program computer to Turing
(as done, e.g., by Aspray 1990 and Copeland 2000). This conclusion exemplifies how
a nuanced, mechanistic understanding of computation sheds light on the history of
computing.

7. Application 2: A Taxonomy of
Computationalist Theses

Computing mechanisms have been employed in computational theories of cognition.
These theories are sometimes said to be metaphors (Eliasmith 2003), but a careful
reading of the relevant literature shows that computationalism is a literal mechanistic
hypothesis (Piccinini 2003b, 2004a). The mechanistic account of computation can be
used to add precision to computationalist theses about the brain by taxonomizing
them in order of increasing strength. The theses range from the commonsensical and
uncontroversial thesis that the brain processes information to the strong thesis that it
is a programmable, stored-program, universal computer. Each thesis presupposes the
truth of the preceding one and adds further assumptions to it, except for thesis (7),
which presupposes (2) but rejects (3)–(6):

1) The brain is a collection of interconnected neurons that deal with information
and control (in an intuitive, formally undefined sense).

2) The brain is a computing mechanism (generic connectionist or neurocompu-
tational computationalism).

3) The brain is made out of Boolean circuits or finite state automata (McCulloch
and Pitts 1943; Nelson 1982).

4) The brain is a programmable digital computer (Devitt and Sterelny 1999).
5) The brain is a programmable, stored-program digital computer (Fodor 1975).12

6) The brain is a universal digital computer (Newell and Simon 1976).
7) The brain is an analog computer (Rubel 1985).

Strictly speaking, (6) does not presuppose (5). For instance, universal TMs are not
stored-program. In practice, however, all supporters of (6) also endorse (5), for the
good reason that there is no evidence of a storage system in the environment—

11 For an extended argument that computers have important features lacked by Turing machines, see
Sloman 2002. Some of the features listed by Sloman are made possible, in part, by the distinction between
memory, input devices, and output devices. For some friendly amendments to Sloman’s argument, see
Piccinini 2005.

12 This thesis should not be confused with the uncontroversial fact that human beings are “program-
mable” in the sense of being able to follow different algorithms.
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analogous to the tape of TMs—that would store the putative programs executed by
brains.

Thesis (1) is sufficiently weak and generic that it entails nothing controversial
about neural mechanisms. Even a non-cognitivist (e.g., a behaviorist) should agree
with it. I mention it here to distinguish it from nontrivial computationalist theses and
leave it out of the discussion.

Historically, thesis (3) is the first formulation of computationalism (Piccinini
2004a). Its weakening leads to (2), which includes modern connectionist and neu-
rocomputational computationalism (Piccinini 2011; Piccinini and Shagrir 2014). Its
strengthening leads to what is often called classical computationalism. Classical
computationalism is usually identified with (5) or (6), but sometimes (4) and even
(3) have been discussed as options. The above taxonomy allows us to see that
different formulations of computationalism are not equivalent to one another, and
that they vary in the strength of their assumptions about the mechanistic properties
of neural mechanisms.

The above list includes only the theses that have figured prominently in the
computationalist literature. It is by no means exhaustive of possible computationalist
theses. First, notice that (3) can be divided into a relatively weak thesis, according to
which the brain is a collection of Boolean circuits, and a much stronger one,
according to which the brain is a collection of finite state automata. The mechanistic
account of computation shows how to construct theses that are intermediate in
strength between these two. For instance, we could hypothesize that the brain is a
collection of components that can execute complex finite-domain algorithms (i.e.,
effective procedures defined only on finitely many inputs of bounded length), like the
multiplication and division components of modern computers.

Another possible version of computationalism is the hypothesis that the brain is an
ordinary calculator (as opposed to a digital computer, which is a special kind of
calculator). This possibility is intriguing because I know of no one who has ever
proposed it, even though calculators are bona fide computing machines. The mech-
anistic account sheds light on this fact. Among other limitations calculators have,
their computational repertoire is fixed. There is no interesting sense in which they
can learn to compute new things or acquire new computational capacities. One
important factor that attracted people to computationalism is the flexibility and
power of computers—flexibility and power that calculators lack. Because of this, it
is unsurprising that no one has proposed that brains are calculators.

The kinds of computer that are most strongly associated with computationalism
are programmable, stored-program, universal computers. Again, the mechanistic
account sheds light on this fact: those machines, unlike other computing mechan-
isms, have the exciting property that given appropriate programs, they can automat-
ically compute any computable function and even modify their own programs.
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8. Application 3: Questions of Hardware

It is often said that even if the brain is a computing system, it need not have a von
Neumann architecture (Pylyshyn 1984; Churchland and Sejnowski 1992). In these
discussions, ‘von Neumann architecture’ is used as a generic term for the functional
organization of ordinary digital computers. The claim that the brain need not have a
von Neumann architecture is used to discount apparent dissimilarities between the
functional organization of brains and that of ordinary digital computers as irrelevant
to computationalism. The idea is that brains may compute in ways other than those
exploited by modern digital computers.
It is true that computing systems need not have a von Neumann architecture. For

example, Turing machines don’t. But this does not eliminate the constraints that
different versions of computationalism put on the functional organization of the
brain, if the brain is to perform the relevant kinds of computation. During the current
discussion, I intentionally avoided the term ‘von Neumann architecture’ because it is
so vague that it obscures the many issues of functional organization that are relevant
to the design and computing power of (digital) computing mechanisms. The present
account allows us to increase the precision of our claims about computer and brain
architectures, avoiding generic terms like ‘von Neumann architecture’ and focusing
on various mechanistic properties of computing systems (and thus on what their
computing power is).
If the brain is expected to be a programmable, stored-program, universal com-

puter, as it is by some versions of computationalism, it must contain programs as well
as components that store and execute programs. More generally, any kind of digital
computation, even the most trivial transformation of one digit into another (as
performed by a NOT gate) requires appropriate hardware. So any nontrivial digital
computationalist thesis, depending on the computation power it ascribes to the brain,
constrains the functional and structural properties that brains must exhibit if they are
to perform the relevant computations. The following are general questions about
neural hardware that apply to some or all digital computationalist theses about the
brain:

1. What are the digits manipulated in the neural computation, and what are their
types?

2. What are the elementary computational operations on neural digits, and what
are the components that perform them?

3. How are the digits concatenated to one another, so that strings of them can be
identified as inputs, internal states, and outputs of neural mechanisms and
nontrivial computations from input strings to output strings can be ascribed to
neural mechanisms?

4. What are the compositional rules between elementary operations, and the
corresponding ways to connect the components, such that complex operations
can be formed out of elementary ones and performed by the mechanism?
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5. If the mechanism stores programs or even just data for the computations, what
are the memory cells and registers and how do they work?

6. What are the control units that determine which operations are executed at any
given time and how do they work? This question is particularly pressing if there
has to be execution of programs, because the required kind of control unit is
particularly sophisticated and needs to correctly coordinate its behavior with
the components that store the programs.

When McCulloch and Pitts (1943) initially formulated computationalism, they
had answers to the relevant versions of the above questions. In answer to (1), they
argued that the presence of a neural spike and its absence are the two types of digit on
which neural computations are defined. In answer to (2), they appealed to Boolean
operations and claimed that they are performed by neurons. In answer to (3) and (4),
they relied on a formalism they in part created and in part drew from Carnap, which
is computationally equivalent to finite state automata. In answer to (5), they hypothe-
sized that there are closed loops of neural activity, which act as memory cells. In
answer to (6), they largely appealed to the innate wiring of the brain (Piccinini
2004a).

When von Neumann formulated his own version of computationalism (von
Neumann 1958), he also tried to answer at least the first two of the above questions.
In answer to (1), he maintained that the firing rates of neurons are the digit types. In
answer to (2), he maintained that the elementary operations are arithmetical and
logical operations on these firing rates. Although von Neumann’s answers take into
account the functional significance of neuronal spikes as it is understood by modern
neurophysiologists, von Neumann did not have answers to questions 3 to 6, and he
explicitly said that he did not know how the brain could possibly achieve the degree
of computational precision that he thought it needed (Piccinini 2003b).

Today’s digital computationalists no longer believe McCulloch’s or von Neu-
mann’s versions of computationalism. But if digital computationalism is to remain
a substantive, empirical hypothesis about the brain, these questions need to find
convincing answers. If they don’t, it may be time to abandon digital computational-
ism, at least as a general thesis about the brain, in favor of other mechanistic versions
of computationalism (Piccinini and Bahar 2013).

9. Conclusion

Contrary to what some authors maintain (e.g., Churchland and Sejnowski 1992;
Searle 1992), whether something is a digital computer, and what kind of digital
computer it is, is an objective feature of a system. Digital computers are digital
computing systems of large capacity, whose function is to perform computations that
involve long sequences of primitive operations on strings of digits, operations that
can be performed automatically by the computers’ processors. Digital calculators are a
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less powerful kind of digital computing machine. Digital computing machines, in
turn, are distinct from other systems in that they manipulate strings of digits
according to rules defined over the digits.
Different classes of digital computers can be programmed in different ways or

compute different classes of functions. These and other useful distinctions between
classes of digital computers can be drawn by looking at computers’ mechanistic
properties, and they can be profitably used in historical and philosophical discussions
pertaining to computers and other computing mechanisms.
This mechanistic account of digital computers has several advantages. First, it

underwrites our intuitive distinctions between systems that compute and systems
that don’t as well as between digital computers and other computing machines, such
as digital calculators. Second, it explains the versatility of digital computers in terms
of their functional organization. Third, it sheds light on why digital computers, not
calculators or other computing systems, inspired the computational theory of cog-
nition. Fourth, it explicates the notion of explanation by program execution, i.e., an
explanation of a system’s capacity by postulating the execution of a program for that
capacity.
Explanations by program execution are invoked in the philosophy of mind

literature (cf. Piccinini 2004b). Given the mechanistic account of digital computers,
explanations by program execution are a special kind of mechanistic explanation that
applies to soft-programmable computers. Soft-programmable computers are digital
computers with processors that respond differentially to different strings of digits, to
the effect that different operations are performed on data. Within a digital computer,
program execution is a process by which (a stable state of) a certain part of the
mechanism, the program, affects another part of the mechanism, the processor, so
that the processor performs appropriate operations on (a stable state of yet) another
part of the mechanism, the data. Only mechanisms with the relevant mechanistic
properties are subject to explanation by program execution. By identifying more
precisely the class of computers that support explanation by program execution and
how they do so, the mechanistic account makes explicit the commitments of those
who appeal to explanation by program execution in the philosophy of mind.
Finally, the present account of digital computers can be used to formulate a

rigorous taxonomy of computationalist theses about the brain, which makes explicit
their empirical commitments to specific functional and structural properties of
brains, and to compare the strength of the different empirical commitments
of different computationalist theses. This makes it ideal to ground discussions of
computational theories of cognition.
My taxonomy of computationalist theses ended with the thesis that the brain is an

analog computer. Analog computers preceded digital computers and competed with
them for a few decades. Although they are no longer in widespread use, they remain
an important class of computing systems. The next chapter takes a closer look.
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12

Analog Computers

1. Disambiguating ‘Analog’

In the previous chapter, I explicated digital computers. There are also analog
computers. The distinction between analog and digital computers has generated
confusion. For example, it is easy to find claims to the effect that analog computers
(or even analog systems in general) can be approximated to any desired degree of
accuracy by digital computers, countered by arguments to the effect that some analog
systems are computationally more powerful than Turing machines (Siegelmann
1999). In this section, I will draw some of the distinctions that are lumped together
under the analog-digital banner. In the next section, I will sketch a mechanistic
account of analog computers properly so called.

First, analog computation properly so called should be distinguished from analog
modeling. Sometimes, certain kinds of models or modeling technologies, such
as wind tunnels and certain electrical circuits, are called ‘analog computers’ (e.g.,
Hughes 1999, 138) or ‘direct analog computers’ (e.g., Care 2010, 18 who uses
‘indirect analog computers’ for what I call analog computers properly so called).
And sometimes analog models are used as the basis for the claim that the brain is a
computer—according to this view, the brain is an analog computer because it
contains analog models of its environment (Shagrir 2010a, b).

This use of the term ‘analog computer’ for analog models appears due to the
following. Analog models in the class that is relevant here represent target systems,
and can be used to draw inferences about target systems, because there is an
“analogy,” or similarity, between the model and the target system. Typically, both
the model and the target system satisfy the same system of differential equations. The
system of differential equations is the “analogy” between the model and the target
system. Analog computers properly so called are often used to model target systems
by implementing mathematical methods that solve systems of differential equations
satisfied by the target system. Again, the system of differential equations is the
“analogy” between the model and the target system. There is an important difference:
the methods used by analog computers properly so called rely on integration, which
is performed by integrators, which are absent in analog models. But, since both
analog models and analog computers properly so called are used for modeling, and



both rely on an “analogy” with a target system, in some contexts it seems natural to
call both of them ‘analog computers’.
An immediate concern with this broad use of the term ‘analog computer’ is that

lots of things can be said to be analogous to something else in some respect, perhaps
captured by a system of differential equations satisfied by both systems, and used to
draw inferences about it. This turns lots of things into an analog computer in this
sense, which waters down the notion of analog computer.
This trivialization concern can be alleviated by considering only mechanisms

whose function is bearing certain analogies to certain other systems. This functional
restriction on analog models is similar to the functional restriction on computing
mechanisms that grounds the present mechanistic account of computation (Chapters
6, 7). Still, the resulting class of systems remains too broad for present purposes; it
includes systems that do not rely on any mathematical method for solving the
equations that model their target system—rather, they model by simply satisfying
the same system of equations.
More importantly, the notion of analog modeling is a semantic notion—it defines

‘analog’ in terms of a representational relation between the model and the target
system. True, analog computers (like other analog models) are typically used to
model other systems. Also true, the history of analog modeling is intertwined with
the history of analog computing properly so called (Care 2010). But, as we saw in
Chapter 3, computation does not require representation.
The notion of an analog model is legitimate and useful, but it is orthogonal to the

notion of analog computation. Some analog computations are models, while other
analog computations may be done for purely mathematical purposes or purely for
fun without modeling anything at all. Conversely, some analog models do their
modeling job by being implemented in an analog computer, whereas other analog
models may be implemented in digital computers or simply by standing in certain
stable relations to the system they model. Since analog modeling is orthogonal to
analog computation, I will leave the notion of analog modeling aside.
A second issue concerns whether a system is continuous or discrete. Analog

systems are often said to be continuous, whereas digital systems are said to be
discrete. When some computationalists claim that neural systems are analog,
their motivation seems to be that some of the variables representing neural
networks can take a continuous range of values.1 One problem with grounding
the analog-digital distinction in the continuous-discrete distinction alone is that a
system can only be said to be continuous or discrete under a given mathematical
description, which applies to the system at a certain level of analysis. Thus, the

1 Cf.: “The input to a neuron is analog (continuous values between 0 and 1)” (Churchland and
Sejnowski 1992, 51).
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continuous-discrete dichotomy, although relevant, seems insufficient to distin-
guish between analog and digital computers other than relative to a level.2

The only way to establish whether physical systems are ultimately continuous or
discrete depends on fundamental physics. On one hand, some authors speculate that,
at the most fundamental level, everything will turn out to be discrete (e.g., Toffoli
1984; Wolfram 2002; cf. Chapter 4, Section 4). If this were true, under this usage there
would be no analog computers at the fundamental physical level. On the other hand,
the physics and engineering of middle-sized objects are still overwhelmingly done
using differential equations, which presuppose that physical systems as well as
spacetime are continuous. This means that at the level of middle-sized objects,
there should be no digital computers. But the notions of digital and analog computers
have a well-established usage in computer science and engineering, which seems
independent of the ultimate shape of physical theory. It is this usage that originally
motivated analogies between brains and computers. Therefore, the continuous-
discrete distinction alone is not enough to draw the distinction between analog and
digital computers that is of interest to computer scientists, engineers, and theoretical
neuroscientists.

Previous philosophical treatments of the digital-analog distinction have addressed
a generic, intuitive distinction, with emphasis on modes of representation, and do not
take into account the functional properties of different classes of computers
(Goodman 1968; Lewis 1971; Haugeland 1981; Blanchowicz 1997; Katz 2008;
Maley 2011; Schonbein 2014). Those treatments do not serve our present purposes,
for two reasons. First, our current goal is to understand computers qua computers
and not qua representational systems. In other words, we should stay neutral on
whether computers’ inputs, outputs, or internal states are representations, and if they
are, on how they get to represent. Second, we are working within the mechanistic
account of computation, according to which computing mechanisms should be
understood in terms of their (non-semantic) mechanistic properties.

2. Processing Continuous Variables

Analog and digital computers are best distinguished by their mechanistic properties.3

Like digital computers, analog computers are made of (appropriately connected)
input devices, output devices, and processing units (and in some cases, memory
units). Like digital computers, analog computers manipulate medium-independent
vehicles and have the function of generating outputs in accordance with a general
rule whose application depends on their input and (possibly) internal states. Aside

2 By contrast, when I characterized digits as discrete, I implicitly assumed that the relevant level(s) of
analysis was (were) determined by the system’s functions.

3 Authoritative works on analog computers, which I have used as sources, include Jackson 1960;
Johnson 1963; Korn and Korn 1972; and Wilkins 1970.
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from these broad similarities, however, analog computers are mechanistically very
different from digital ones.
The most fundamental difference is in the vehicles they manipulate. Whereas the

inputs and outputs of digital computers and their components are strings of digits,
the inputs and outputs of analog computers and their components are continuous or
real variables (Pour-El 1974). From a mechanistic perspective, real variables are
physical magnitudes that (i) vary over time, (ii) (are assumed to) take a continuous
range of values within certain bounds, and (iii) (are assumed to) vary continuously
over time. Examples of real variables include the rate of rotation of a mechanical shaft
and the voltage level in an electrical wire.
The operations performed by computers are defined over their inputs and outputs.

Whereas digital computers and their components perform operations defined over
strings of digits, analog computers and their components perform operations on
portions of real variables. Specifically, analog computers and their processing units
have the function of transforming an input real variable received during a certain
time interval into an output real variable that stands in a specified functional relation
to the input. The discrete nature of strings makes it so that digital computers perform
discrete operations on them (that is, they update their states only once every clock
cycle), whereas the continuous change of a real variable over time makes it so that
analog computers must operate continuously over time. By the same token, the rule
that specifies the functional relation between the inputs and outputs of a digital
computer is an effective procedure, i.e., a sequence of instructions, defined over
strings from a finite alphabet, which applies uniformly to all relevant strings, whereas
the rule that represents the functional relation between the inputs and outputs of an
analog computer is a system of differential equations.
Due to the nature of their inputs, outputs, and corresponding operations, analog

computers are intrinsically less precise than digital computers, for two reasons. First,
analog inputs and outputs can be distinguished from one another, by either a
machine or an external observer, only up to a bounded degree of precision, which
depends on the precision of the preparation and measuring processes. By contrast, by
design digital inputs and outputs can always be unambiguously distinguished from
one another. Second, analog operations are affected by the interference of an
indefinite number of physical conditions within the mechanism, which are usually
called “noise,” to the effect that their output is usually a worse approximation to the
desired output than the input is to the desired input. These effects of noise may
accumulate during an analog computation, making it difficult to maintain a high
level of computational precision. Digital operations, by contrast, are unaffected by
this kind of noise—either they are performed correctly, regardless of noise, or else
they return incorrect results, in which case the system miscomputes.
Another limitation of analog computers, which does not affect their digital coun-

terparts, is inherited from the limitations of any physical device. In principle, a real
variable can take any real number as a value. In practice, a physical magnitude within
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a device can only take physical values within bounds set by the physical limits of the
device. Physical components malfunction or break down if some of their relevant
physical magnitudes, such as voltage, take values beyond certain bounds. Therefore,
the values of the inputs and outputs of analog computers and their components must
fall within certain bounds; for example, �100 volts. Given this limitation, using
analog computers requires that the problems being solved be appropriately scaled so
that they do not require the real variables being manipulated by the computer to
exceed the proper bounds of the computer’s components. This is an important
reason why the solutions generated by analog computers need to be checked for
possible errors by employing appropriate techniques (which often involve the use of
digital computers).

Analog computers are designed and built primarily to solve systems of differential
equations. The most effective general technique for this purpose involves successive
integrations of real variables. Because of this reliance on integration, the crucial
components of analog computers are integrators, whose function is to output a real
variable that is the integral of their input real variable. The most general kinds of
analog computer that were traditionally built—general-purpose analog computers—
contain a number of integrators combined with at least four other kinds of processing
unit, which are defined by the operations they have the function to perform on their
input. Constant multipliers have the function of generating an output real variable
that is the product of an input real variable multiplied by a real constant. Adders have
the function of generating an output real variable that is the sum of two input real
variables. Variable multipliers have the function of generating an output real variable
that is the product of two input real variables. Finally, constant function generators
have the function of generating an output whose value is constant. Many analog
computers also include special components that generate real variables with special
functional properties, such as sine waves. By connecting integrators and other
components in appropriate ways, which may include feedback (i.e., recurrent)
connections between the components, analog computers can be used to solve certain
classes of differential equations.

Pure analog computers can be set up to perform different sequences of primitive
operations, and in this sense, they are programmable. This notion is similar to that of
hard programmability for digital computers but, unlike hard programmability,
analog programmability is not a precursor to soft programmability, because it does
not involve programs. Programs, which are the basis for soft programming digital
computers, are sequences of instructions defined over strings. They are not defined
over the real variables on which analog computers operate. Furthermore, programs
cannot be effectively encoded as values of real variables. This is because for a program
to be effectively encoded, the device that is responding to it must be able to
unambiguously distinguish it from other programs. This can be done only if a
program is encoded as a string. Effectively encoding programs as values of real
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variables would require unbounded precision in storing and measuring a real
variable, which is beyond the limits of current (and foreseeable) analog technology.
Analog computers can be divided into special-purpose computers, whose function

is to solve limited classes of differential equations, and general-purpose computers,
whose function is to solve larger classes of differential equations. Insofar as the
distinction between special- and general-purpose analog computers has to do with
flexibility in their application, it is analogous to the distinction between special- and
general-purpose digital computers. But there are important disanalogies: these two
distinctions rely on different functional properties of the relevant classes of devices,
and the notion of general-purpose analog computer, unlike its digital counterpart, is
not an approximation of Turing’s notion of computational universality (see
Chapter 10, Section 4). Computational universality is a notion defined in terms of
computation over strings, so analog computers—which do not operate on strings—
are not devices for which it makes sense to ask whether they are computationally
universal. Moreover, computationally universal mechanisms are computing mech-
anisms that are capable of responding to any program (written in an appropriate
language). We have already seen that pure analog computers are not in the business
of executing programs; this is another reason why analog computers are not in the
business of being computationally universal.
It should also be noted that general-purpose analog computers are not maximal

kinds of computer in the sense in which standard general purpose digital computers
are. At most, a digital computer is capable of computing the class of Turing-
computable functions.4 By contrast, it may be possible to extend the general-purpose
analog computer by adding components that perform different operations on real
variables, and the result may be a more powerful analog computer.5

Since analog computers do not operate on strings, we cannot apply Turing’s
notion of computable functions over strings directly to measure the power of analog
computers. Instead, we can measure the power of analog computers by employing
the notion of function of a real variable. Refining work by Shannon (1941), Pour-El
identified precisely the class of functions of a real variable that can be generated by
general-purpose analog computers. They are the differentially algebraic functions,
namely, functions that arise as solutions to algebraic differential equations (Pour-El
1974; see also Lipshitz and Rubel 1987; and Rubel and Singer 1985). Algebraic
differential equations are equations of the form P(y, y 0, y 0 0, . . . y(n)) = 0, where P is
a polynomial function with integer coefficients and y is a function of x. It has also
been shown that there are algebraic differential equations that are “universal” in the
sense that any continuous function of a real variable can be approximated with
arbitrary accuracy over the whole positive time axis 0�t<1 by a solution of the

4 I am here ignoring the possibility, for now rather speculative, of building hypercomputers
(cf. Chapter 16).

5 For a step in this direction, see Rubel 1993.
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equation. Corresponding to such universal equations, there are general-purpose
analog computers with as little as four integrators whose outputs can, in principle,
approximate any continuous function of a real variable arbitrarily well (Duffin 1981;
Boshernitzan 1986).

We have seen that analog computers do not do everything that digital computers
do; in particular, they do not perform operations defined over strings of digits and do
not execute programs. On the other hand, there is an important sense in which digital
computers can do everything that general purpose analog computers can. Rubel has
shown that given any system of algebraic differential equations and initial conditions
that describe a general-purpose analog computer A, it is possible to effectively derive
an algorithm that will approximate A’s output to an arbitrary degree of accuracy
(Rubel 1989). From this, however, it doesn’t follow that the behavior of every physical
system can be approximated to any desired degree of precision by digital computers.

Some limitations of analog computers can be overcome by adding digital compo-
nents to them and by employing a mixture of analog and digital processes. In fact, the
last generation of analog computers to be widely used were analog-digital hybrids,
which contained digital memory units as well as digital processing units capable of
being soft-programmable (Korn and Korn, 1972). In order to build a stored-program
or soft-programmable analog computer, one needs digital components, and the
result is a computer that owes the interesting computational properties that it shares
with digital computers (such as being stored-program and soft-programmable) to its
digital properties.

3. Conclusion

Given how little (pure) analog computers have in common with digital computers,
calculators, and other computing mechanisms, and given that analog computers do
not even perform computations in the sense defined by the mathematical theory of
computation, one may wonder why both classes of devices are called ‘computers’.

Part of the answer lies in the history of these devices. As I mentioned, the term
‘computer’ was apparently first used for a digital computer in something close to the
contemporary sense by John Atanasoff in the early 1940s. At that time, what we now
call analog computers were called differential analyzers. Digital machines operating
on strings of digits, such as Atanasoff ’s ABC, were often designed to solve problems
similar to those solved by differential analyzers—namely, solving systems of differ-
ential equations—by the manipulation of strings. Since the new digital machines
operated on digits and could replace computing humans at solving complicated
problems by following algorithms, they were dubbed ‘computers’. The differential
analyzers soon came to be re-named ‘analog computers’, perhaps because both
classes of machines were initially designed for similar practical purposes, and for a
few decades they competed with each other. These historical factors should not blind
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us to the fact that analog computers manipulate vehicles and perform operations that
are radically different from those of digital computers.
The rest of the answer is provided by the mechanistic account of computation.

Both analog and digital computers are devices whose function is manipulating
vehicles according to rules that are sensitive to differences between different portions
of the vehicles—in other words, both analog and digital computers manipulate
medium-independent vehicles. In the case of digital computers, their vehicles are
strings of digits and their rules are instructions defined over the strings. In the case of
analog computers, their vehicles are real variables and their rules are systems of
differential equations. Since both digital and analog computers manipulate vehicles
in accordance with appropriate rules, they count as systems that perform (digital and
analog, respectively) computations.
Having accounted for both analog and digital computers, there remains an

important class of computing devices that are often invoked both in computer
science, cognitive science, and elsewhere: neural networks. The next chapter is all
about them.
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13

Parallel Computers and
Neural Networks

1. Neural Networks

In the previous two chapters, we looked at digital and analog computers. Neural
networks are another important class of systems that are often mentioned in discus-
sions of computation. There are long-standing disputes about whether neural
networks perform computations and which kind of computation they perform.

This chapter applies the mechanistic account to neural networks and resolves these
disputes. I distinguish several notions of parallel computing, introduce neural net-
works, identify the sense in which neural networks are parallel computing systems,
and distinguish several classes of neural networks based on the kind of computation
they perform. I explicate and defend the following theses: (1) Many neural networks
compute—they perform computations. (2) Some neural networks compute in a
classical way. Ordinary digital computers, which are very large networks of logic
gates, belong in this class of neural networks. (3) Other neural networks perform
digital computations in a non-classical way. (4) Yet other neural networks perform
non-digital computations. Brains may well fall into this last class.

Neural networks are sets of connected signal-processing units. Typically, they have
units that receive inputs from the environment (input units), units that yield outputs
to the environment (output units), and units that communicate only with other units
in the system (hidden units). Each unit receives input signals and delivers output
signals as a function of its input and current state. As a result of their units’ activities
and organization, neural networks turn the input received by their input units into
the output produced by their output units.

A neural network may be either a concrete physical system or a mathematically
defined system, which in turn can be used as a description of a physical system
(cf. Chapter 1). A mathematically defined neural network may be used to model
another system to some degree of approximation. The modeled system may be either
a concrete neural network or something else; e.g., an industrial process.

Psychologists and neuroscientists of a connectionist or neurocomputational per-
suasion use mathematically defined neural networks to model cognitive and neural
systems. They often propose their theories as alternatives to classical, or “symbolic,”



computational theories of cognition. According to classical theories, the brain is
analogous to a digital computer (Newell and Simon 1976; Fodor and Pylyshyn 1988;
Pinker 1997; Rey 1997; Gallistel and Gibbon 2002). According to connectionist and
neurocomputational theories, the brain is a (collection of ) neural network(s).
Given the standard way neural networks are defined, classical, connectionist, and

neurocomputational theories are not necessarily in conflict. Nothing in the definition
of ‘neural network’ prevents the brain, a concrete neural network par excellence,
from being a (classical) digital computer.
The term ‘connectionist system’ is more or less synonymous with ‘neural net-

work’.1 Brains, of course, are neural networks. More precisely, there is overwhelming
evidence that nervous systems carry out their information processing, cognitive, and
control functions primarily in virtue of the activities of the neural networks they
contain. In this sense, it should be uncontroversial that brains are concrete connec-
tionist systems and cognition is explained by connectionist processes. Both connec-
tionists and classicists should agree on this much.
To bring out the contrast between the two theories, we need a more qualified

statement: according to paradigmatic connectionist and neurocomputational theor-
ies, the brain is a (collection of ) non-classical neural network(s). This statement is
informative only insofar as there is a nontrivial distinction between classical and
non-classical systems. This is not the same as the distinction between systems that
compute and systems that don’t. We should be able to ask whether any, some, or all
non-classical neural networks are computational. A clear answer to this question is
needed to resolve the dispute between classicists and anti-classicists about the nature
of cognition.
Many mainstream connectionist and neurocomputational theorists agree with

classicists that brains perform computations and neural computations explain cog-
nition (Marr and Poggio 1976; Feldman and Ballard 1982; Hopfield 1982; Rumelhart
and McClelland 1986; Schwartz 1988; Churchland 1989; Cummins and Schwarz
1991; Churchland and Sejnowski 1992; Koch 1999; Bechtel and Abrahamsen 2002;
Eliasmith 2003; Roth 2005; O’Brien and Opie 2006; Shagrir 2006b,; Smolensky and
Legendre 2006). The claim that distinguishes such connectionist or neurocomputa-
tional computationalists from classicists is that according to connectionist/neuro-
computational computationalism, non-classical neural networks are a better model
of the brain than classical computing systems. In reply, some classicists argue that
(non-classical) connectionist systems do not perform computations at all (Fodor
1975; Pylyshyn 1984; Gallistel and Gibbon 2002). According to such classicists, only

1 Models in the connectionist tradition tend to be constrained solely or primarily by behavioral
evidence, whereas models in the computational neuroscience tradition tend to be constrained both by
behavioral evidence and neurophysiological and neuroanatomical evidence. This important difference
between the two traditions does not affect that when the two classes of models are mathematically defined,
they are defined more or less in the same way—roughly, as sets of connected signal-processing units.
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classical systems perform genuine computations. This may not bother a different
group of connectionist theorists, who reject or downplay the claim that brains
compute (Perkel 1990; Edelman 1992; Globus 1992; Horgan and Tienson 1996;
Freeman 2001).

Who’s right? Do brains compute? Do (non-classical) neural networks compute?
Which kind of system—classical or non-classical, computational or non-computa-
tional—is the best model for the brain?

Making progress on these debates—between classicists and anti-classicists as well
as between computationalists and anti-computationalists—requires independently
motivated distinctions between, on the one hand, systems that compute and systems
that don’t, and on the other hand, classical and non-classical systems. By applying
such distinctions to neural networks, we can find out which neural networks, if any,
do or do not perform computations, and which, if any, are classical or non-classical.
Yet it has proven difficult to draw such distinctions in a satisfactory way.

The same problem may be framed in terms of theories of cognition. Is cognition
explained by non-classical, neural computations? The answer depends on both what
the brain does and where we draw two lines: (i) the line between neural computation
and other kinds of neural processes and (ii) the line between classical computation
and non-classical computation. Drawing these lines in a satisfactory way is a contri-
bution to several projects: a satisfactory account of computation, a correct under-
standing of the relationship between classical and connectionist theories of cognition,
and an improved understanding of cognition and the brain.

2. Do Neural Networks Compute?

Accounts of the nature of computation have been hindered by the widespread view
that computing requires executing programs. Several authors embrace such a view
(Fodor 1975; Pylyshyn 1984). Some authors endorse the stronger view that comput-
ing is program execution: “To compute function g is to execute a program that gives o
as its output on input i just in case g(i) = o. Computing reduces to program
execution” (Cummins 1989, 91; Roth 2005). The weaker view—namely, that pro-
gram execution is a necessary condition for genuine computing—is strong enough
for our purposes. Such a view is plausible when we restrict our attention to at least
some classical systems. The same view gives rise to paradoxical results when we
consider non-classical systems.

The view that computation requires program execution leads to a dilemma: either
neural networks execute programs or they don’t compute. Different people have
embraced different horns of this dilemma.

A computationalist who is opposed to (paradigmatic) connectionist theories might
wish to deny that neural networks—or at least, paradigmatic examples of neural
networks—perform computations. Here is something close to an outright denial: “so
long as we view cognition as computing in any sense, we must view it as computing
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over symbols. No connectionist device, however complex, will do” (Pylyshyn 1984,
74, italics original). A denial that neural networks compute is also behind the view
that connectionism is not a computationalist framework, but rather, say, an associ-
ationist framework, as if the two were mutually exclusive (Gallistel and Gibbon
2002).
In light of the thesis that computing requires executing programs, rejecting the

idea that neural networks perform computations may sound like a reasonable
position. Unfortunately, this position doesn’t fit with the observation that the
input-output mappings produced by many paradigmatic neural networks may be
characterized by the same formalisms employed by computability theorists to char-
acterize classical computing systems.
It is difficult to deny that many paradigmatic examples of neural networks perform

computations in the same sense in which Turing machines and digital computers do.
The first neural network theorist to call his theory ‘connectionist’ appears to be Frank
Rosenblatt (1958). Rosenblatt’s Perceptron networks and subsequent extensions and
refinements thereof can be studied by the same formalisms and techniques that are
employed to study other paradigmatic computing systems; their computing power
can be defined and evaluated by the same measures (e.g., Minsky and Papert 1988).
Nowadays, the term ‘connectionist system’ is used to encompass more than

Perceptrons. It usually encompasses all neural networks, as in my definition above.
Rosenblatt himself was building on previous neural network models. He openly
acknowledged that “the neuron model employed [by Rosenblatt] is a direct descend-
ant of that originally proposed by McCulloch and Pitts” (Rosenblatt 1962, 5).
It just so happens that, roughly speaking, a McCulloch and Pitts neuron is

functionally equivalent to a logic gate. A collection of (connected, synchronous,
ordered) logic gates with input and output lines and without recurrent connections
is a Boolean circuit. Boolean circuits are the components of ordinary (classical)
digital computers (Chapter 8). Because of this, there is a straightforward sense in
which digital computers are neural networks, aka connectionist systems. Classicism
is a form of connectionism!
Of course, as I discussed in Chapter 11, digital computers are computationally

more powerful than Boolean circuits, because they have recurrent connections
between their components and because of their specific functional organization. In
terms of their computation power, digital computers are finite state automata. Under
the idealization of taking their memory to be unbounded, digital computers are
computationally equivalent to universal Turing machines.
That digital computers are just one (quite special) kind of neural network is

underappreciated by those who debate the merits of connectionist versus classical
computational theories of cognition (cf. Macdonald and Macdonald 1995). In that
debate, connectionist systems (neural networks) are often pitched without further
qualifications against classical systems such as digital computers. But unless Boolean
circuits and collections thereof are excluded from consideration—which there is no
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principled reason for doing—denying that neural networks perform computations is
tantamount to denying that computers compute.

Digital computers execute programs, and executing programs is an important
aspect of the way they compute. Insofar as digital computers qualify as neural
networks, at least some neural networks execute programs. But as we have seen,
many non-classical neural networks, such as systems in Rosenblatt’s tradition,
perform computations too. Whether they compute by executing programs will be
discussed in the next section.

In summary, the view that computation requires program execution generates a
dilemma: either neural networks execute programs or they don’t compute. We have
now ruled out the second horn of the dilemma. To put the point bluntly, the
computational properties of many neural networks are studied by one branch of
computability and computational complexity theory among others.

3. Do Neural Networks Execute Programs?

Having ruled out one horn of our dilemma, let’s consider the other. Perhaps (non-
classical) neural networks execute programs, after all. Except for one small detail:
where are such programs? Did we somehow miss the memory components in which
(non-classical) neural networks store their programs? Of course not. The view that
neural networks execute programs requires weakening the notion of program exe-
cution to the point that, contrary to what you might have supposed, executing
programs does not require writing, storing, or physically manipulating a concrete
program in any way—at least in the sense in which programs are manipulated by
ordinary computers.

Here is an example: “programs . . . are just specifications of functional dependen-
cies, and . . . a system executes a program if the system preserves such dependencies in
the course of its state changes” (Roth 2005, 465).

This is not just an ad hoc proposal. Something like this weak notion of program
execution predates the rise of neo-connectionism in the mid-1980s, which brought
the question of whether connectionist systems (i.e., neural networks) perform com-
putations to the attention of philosophers. A similar notion was often employed
during discussions of classical computing systems: “programs aren’t causes but
abstract objects or play-by-play accounts” (Cummins 1983, 34; see also Cummins
1977, 1989; Cummins and Schwarz 1991).

This proposal may be put as follows: all that program execution requires is acting
in accordance with a program. Acting in accordance with a program, in turn, may be
explicated in at least two ways.

In the ordinary sense, ‘acting in accordance with a program’means performing the
operations specified by a program in the specified order. For instance, a program for
multiplication might require the computation of partial products followed by their
addition. A system that acts in accordance with such a program must generate
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intermediate results corresponding to partial products and then generate a final
result corresponding to their sum.
This notion of acting in accordance with a program does not solve the present

problem. Typical non-classical neural networks do not generate successive outputs
corresponding to separate computational operations defined over their inputs.
Rather, they turn their inputs into their outputs in one step, as it were. Thus, they
do not act in accordance with a program in the ordinary sense.
More recently, Martin Roth (2005) proposed a novel construal of what I’m calling

‘acting in accordance with a program’. Under his construal, acting in accordance with
a program does not require the temporal ordering of separate operations. Instead, it
requires that the weights of a neural network be defined in a way that (i) satisfies the
logical relations between the program’s operations and (ii) results in a system input/
output equivalent to the program.
Consider again a neural network that performs multiplications. Under Roth’s

proposal, the system acts in accordance with a partial products program if and
only if the system’s connection weights are derived from a partial products program,
even though the system produces its output in one step. By contrast, if the connection
weights are derived from a different multiplication program—such as a program for
multiplying by successive additions—then the system doesn’t act in accordance with
a partial products program (but rather, a successive additions program).
Roth’s notion of acting in accordance with a program appears to provide an

ingenious solution to the present conundrum. If we accept that executing a program
amounts to acting in accordance with one, we can now use Roth’s notion of acting in
accordance with a program to conclude that at least those neural networks that act in
accordance with a program in Roth’s sense do execute programs. This suggestion is
not as helpful as it seems.
First, how can we derive connection weights from programs? Roth refers to a

technical report by P. Smolensky, G. Legendre, and Y. Miyata, which was later
expanded into a book (Smolensky and Legendre 2006). Smolensky and colleagues
describe a technique for defining the weights of certain neural networks from certain
computer programs. The resulting neural networks are input/output equivalent to
the programs.
This technique applies only to a special class of neural networks. What about the

others? Roth’s notion of program execution does not appear to apply to them. If we
wish to say that they compute, as per Section 2, we need another account of neural
network computation.
It also remains to be seen whether, after the connection weights are defined using

Smolensky et al.’s technique, the best thing to say is that—as Roth puts it—the neural
network executes the program. It seems more appropriate to say that the neural
network computes the function defined by the program without executing the
program. The latter, sensibly enough, is Smolensky and Legendre’s view.
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Finally, suppose you want to say that a neural network executes a program based
on Roth’s proposal. Which programming language is it written in? In ordinary
computers, this question has a well-defined answer. But it appears that the neural
networks described by Roth act in accordance with any program, written in any
programming language, which specifies the relevant operations in the relevant order.
This makes it difficult to pick one of these programs as the one the system is
executing. Or does it execute them all?

We need not press these questions further. For even if we grant Roth his notion of
acting in accordance with a program, we should resist his conclusion that the neural
networks he describes execute programs in the relevant sense. If acting in accordance
with a program is sufficient for executing programs, then at least the systems defined
using Smolensky et al.’s technique may well execute programs. This might work as a
new meaning of ‘program execution’. But in the sense of ‘program execution’
employed in computer science, acting in accordance with a program is hardly
sufficient for program execution.

As we saw in Chapter 11, a program is a list of instructions implemented by a
concrete string of digits; ‘executing a program’means responding to each instruction
by performing the relevant operation on the relevant data. As I’m using the term,
digits are discrete stable states that can be stored in memory components and
transmitted from component to component.

The modern notion of program execution originates as a way to characterize a
special property of modern program-controlled computers (and some other
machines; more on this soon). Program-controlled computers do much more than
act in accordance with a program. They can act in accordance with any number of
programs. This is because they can store physical instantiations of the programs, and
it is those physical instantiations that, together with input data, drive computer
processes.

Programs in this sense are much more than “specifications of functional depend-
encies.” They are strings of digits that program-controlled computers can respond to
and manipulate in the same way that they respond to and manipulate data. Programs
can be written, tested, debugged, downloaded, installed, and, of course, executed. It is
the execution of programs in this sense that explains the behavior of ordinary
computers. This is also the notion of program execution that contributed to inspire
the analogy between minds and computers, on which many computational theories
of cognition are based.

If we want to honestly assess whether neural networks execute programs and use
this assessment to compare different computational theories of cognition, we should
use the standard notion of program execution that is used in computer science. And
in this sense of ‘program execution’, paradigmatic non-classical neural networks do
not execute programs.
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4. Neural Networks and the Mechanistic
Account of Computation

Our hands are tied. We have found that neural networks (or connectionist systems)
perform computations even though they don’t execute programs. We must conclude
that computation does not require program execution. This is a good outcome.
Several independent considerations point to the same conclusion.
First, nothing in the notion of computation studied by computer scientists and

computability theorists entails that computation must be performed by executing a
program. The original mathematical notion of computation is that of a process that
accords with the steps of an algorithm or effective procedure—there is no further
requirement that the algorithm be implemented by a program or that the program be
executed.
Second, the notion of program-controlled machines, of which program-controlled

computers are a species, did not even originate in the field of computing. It originated
in the textile industry. The first technology for programming machines—punched
cards and the mechanisms for executing them—was developed in the 18th Century
to control the weaving of patterns in mechanical looms. In 1801, Joseph Marie
Jacquard developed an improved version of this technology for his Jacquard Loom.
Only later did Charles Babbage borrow Jacquard’s idea to control his Analytical
Engine. The Analytical Engine, which Babbage never managed to construct, was the
first (hypothetical) program-controlled computer.
Third, in computer science there is a useful distinction between computing

systems that execute programs and computing systems that don’t. Computation,
including mechanical computation, is much older than program-controlled com-
puters. Ordinary calculators (Chapter 10) and many other computing devices don’t
execute programs in the sense in which full-blown computers do. Aside from neural
networks, there are plenty of systems that compute without executing programs.
Finally, the standard explanation of how computers execute programs appeals to

components that compute without executing programs (Chapter 9). Computers
execute programs in virtue of possessing the relevant kind of processors. Such
processors contain a control unit and a datapath. When an instruction reaches the
processor, the control and the datapath perform two different functions. The control
receives one part of the instruction—the part that encodes a command (e.g., sum,
multiply, etc.). Then, the control unit determines which operation must be per-
formed on the data and sends an appropriate signal to the datapath. The datapath
receives the command from the control unit plus the remaining part of each
instruction—the part that encodes the data. After that, the datapath performs the
relevant operation on the data and sends the result out.
The control and the datapath are computing components—in the language of

computability theory, they are finite state automata. But neither of them alone
executes any program—it is only their organized effort, in cooperation with memory
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components, which allows the computer to execute programs. Thus, in ordinary
digital computers, program execution itself requires components that compute
without executing programs.

For all these reasons, we need an account of computation that accommodates both
computing systems that execute programs and computing systems that don’t. Luck-
ily, I articulated and defended such an account in previous chapters.

In my terminology, a functional mechanism is a system of organized components,
each of which has functions to perform (Chapter 6). When appropriate components
and their functions are appropriately organized and functioning properly, their
combined activities constitute the capacities of the functional mechanism. Con-
versely, when we look for an explanation of the capacities of a functional mechanism,
we decompose the mechanism into its components and look for their functions and
organization. The result is a mechanistic explanation of the system’s capacities.

Computing systems are a special class of functional mechanisms. They are distin-
guished from other mechanisms by the peculiar capacity they have. Their function is
to manipulate medium-independent vehicles so as to generate output vehicles from
input vehicles and (possibly) internal states in accordance with a general rule that
applies to all relevant vehicles and depends on the inputs and (possibly) internal
states for its application.

Classical computing mechanisms are computing systems that manipulate strings
of digits one discrete step at a time (Chapters 7–11). Each step occurs during a
functionally well-defined time interval. During each time interval, the mechanism
produces an output string of digits. Thus, the mechanism’s processes are in accord-
ance with a program that defines a classical computation. (This is not yet program
execution, which requires a program to be physically instantiated and manipulated.)

Classical computing mechanisms are computationally decomposable in the fol-
lowing sense. As a whole, a classical computing mechanism performs computations
in accordance with a general rule defined over the strings of digits that are its vehicles.
For instance, it computes the square root of its input. The performance of such a
computation may be explained in terms of the mechanisms’ components and the
computations they perform. For instance, a square root computation is explained by
the combined action of a memory component storing a square root program and a
processor executing the program.

This explanatory strategy can be iterated. The processor’s capacity to execute
programs is explained by the computations performed by the control and datapath
that constitute it and the way they are wired together (as mentioned above). The
computations performed by the control and datapath are explained by the compu-
tations performed by the circuits that constitute them and the way those circuits are
organized. Finally, the computations performed by circuits are explained by the
operations performed by the logic gates that constitute the circuits and the way
those gates are connected. Since the operations performed by logic gates are com-
putationally primitive, computational decomposition stops with them. The capacities
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of logic gates can still be mechanistically explained in terms of the organized
functions performed by their components (resistors, capacitors, or whatever). But
such mechanistic explanations no longer appeal to computations performed by their
components.
To recapitulate where we’ve gotten so far, the idea that executing programs is

necessary for computing leads to the dilemma that either neural networks execute
programs or they don’t compute. On the first horn, we must disconnect the notion of
program execution from the special type of mechanism that gave rise to the idea of
(computational) program execution in the first place. On the second horn, we must
say that systems that compute by the lights of computability theory do not, in fact,
compute. Fortunately, we need not impale ourselves on either horn. It is much better
to embrace a broader, mechanistic view of computation, according to which com-
putation doesn’t require program execution. This is a good result, with plenty of
independent motivation. After abandoning the mistaken notion that computation
requires program execution, we can gain a better understanding of neural network
computation.

5. Serial vs. Parallel Computation

Neural networks are parallel systems par excellence. But the distinction between
serial and parallel computers has generated some confusion. A common claim is that
the brain cannot be a “serial computer” like our ordinary digital computers, because
it is “parallel” (e.g., Churchland et al. 1990, 47; Dennett 1991, 214; Churchland and
Sejnowski 1992, 7). In evaluating this claim, we should keep in mind that digital
computers can be parallel too, in several senses of the term. There are several
distinctions to be made, and our understanding of computation can only improve
if we make at least the main ones explicit.
First, there is the question of whether in a computing system only one computa-

tionally relevant event—for instance, the transmission of a signal between
components—can occur during any relevant time interval. In this limited sense,
virtually all complex computing mechanisms are parallel. For example, in most
computing mechanisms, the existence of many communication lines between differ-
ent components allows data to be transmitted in parallel. Even Turing machines do at
least two things for every instruction they follow: they act on their tape and update
their internal state.
A separate question is whether a computing mechanism can perform only one or

more than one computational operation during any relevant time interval. Analog
computers are parallel in this sense. This appears to be the sense that connectionist
computationalists appeal to when they say that the brain is “massively parallel.” But
again, most complex computing mechanisms, such as Boolean circuits, are parallel in
this sense. Since most (digital) computers are made out of Boolean circuits and other
computing components that are parallel in the same sense, they are parallel in this
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sense too. In this respect, then, there is no principled difference between ordinary
computers and (other, non-classical) neural networks.

A third question is whether a computing mechanism executes one or more than
one instruction at a time. There have been attempts to design parallel processors,
which perform many operations at once by employing many executive units (such as
datapaths) in parallel. Another way to achieve the same goal is to connect many
processors together within one computer. There are supercomputers and networks of
computers that include thousands of processors working in parallel. The difficulty in
using these parallel computers consists of organizing computational tasks so that
they can be modularized, i.e., divided into sub-problems that can be solved inde-
pendently by different processors. Instructions must be organized so that executing
one (set of ) instruction(s) is not a prerequisite for executing other (sets of ) instruc-
tions in parallel to it (them) and does not interfere with their execution. This is
sometimes possible and sometimes not, depending on which part of which compu-
tational problem is being solved. Some parts of some problems can be solved in
parallel, but others can’t, and some problems must be solved serially. Another
difficulty is that in order to obtain the benefits of parallelism, typically the size of
the hardware that must be employed in a computation grows (linearly) with the size
of the input. This makes for prohibitively large (and expensive) hardware as soon as
the problem instances to be solved by parallel computation become nontrivial in size.
This is the notion of parallelism that is most relevant to computability theory. Strictly
speaking, it applies only to computing mechanisms that execute instructions. There-
fore, it is irrelevant to ordinary analog computers and most neural networks, which
do not execute instructions.

In the connectionist and neural network literature, there is a tendency to call
neurons ‘processors’ (e.g., Siegelmann 2003). In many cases, this language implicitly
or explicitly suggests an analogy between a brain and a parallel computer that
contains many processors, so that every neuron corresponds to one processor. This
is misleading, because there is no useful sense in which a neuron can be said to
execute instructions in the way that a computer processor can. In terms of their
functional role within a computing mechanism, neurons are more similar to logic
gates than to the processors of digital computers. In fact, modeling neurons as logic
gates was the basis for the first formulation of a computational theory of cognition
(McCulloch and Pitts 1943). Nevertheless, it may be worth noticing that if the
comparison between neurons and processors is taken seriously, then in this
sense—the most important for computability theory—neurons are serial processors,
because they perform only one functionally relevant activity (i.e., they fire at a
certain rate) during any relevant time interval. Even if we consider an entire neural
network as a processor, we obtain the same result; namely, that the network is
a serial processor (it turns one input string into one output string). However,
neither neurons nor ordinary neural networks are really comparable to computer
processors in terms of their organization and function—they certainly don’t execute
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instructions. So, to assimilate neural networks to computer processors in this respect
is inappropriate.
Finally, there is the question of whether a processor starts executing an instruction

only after the end of the execution of the preceding instruction, or whether different
instructions are executed in an overlapping way. The latter becomes possible when
the processor is organized so that the different activities that are necessary to execute
instructions (e.g., fetching an instruction from memory, performing the correspond-
ing operation, and writing the result in memory) can all be performed at the same
time on different instructions by the same processor. This kind of parallelism in the
execution of instructions diminishes the global computation time for a given pro-
gram, and it applies only to processors that execute instructions. It is a common
feature of contemporary computers, where it is called pipelining.
The above parallel-serial distinctions apply clearly to computing mechanisms, but

the parallel-serial distinction is obviously broader than a distinction between modes
of computing. Many things other than computations can be done in parallel. For
example, instead of digging ten holes by yourself, you can get ten people to dig ten
holes at the same time. Whether a process is serial or parallel is a different question
from whether it is digital or analog (in various senses of the term), computational or
non-computational.

6. Digital Neural Network Computation

Many neural networks perform digital computations—they manipulate strings of
digits in accordance with an appropriate rule.
When the properties of paradigmatic neural networks are characterized compu-

tationally, the inputs to their input units and the outputs from their output units are
relevant only when they are in one of a finite number of (equivalence classes of )
states. Therefore, these neural networks’ inputs and outputs—though not necessarily
the inputs and outputs of their hidden units—are digits in the present sense.
Even when the values of a neural network’s inputs or outputs are assumed to vary

continuously, in many cases there are discontinuities in the way the different values
are classified. Typically, only values in certain neighborhoods (e.g., two neighbor-
hoods labeled ‘0’ and ‘1’) are counted as determining what the whole system’s input
or output is; there may be gaps between neighborhoods; and all values within each
neighborhood are counted as functionally equivalent. Therefore, the systems’ inputs
and outputs still constitute digits.
Furthermore, depending on the kind of system, either the spatial ordering of the

input units or the temporal sequence of the input units’ inputs constitute a string of
digits, and either the spatial ordering of the output units or the temporal sequence of
the output units’ outputs constitute a string of digits. Such strings are the entities in
terms of which the computation power of the system is defined.

PARALLEL COMPUTERS AND NEURAL NETWORKS 217



Finally, the way the system’s outputs are (or are supposed to be) functionally
related to its inputs (plus, perhaps, its internal states) constitute a rule defined over
the digits. Such a rule defines the computation performed (or approximated) by the
system.

The first authors who defined a class of neural networks and ascribed computa-
tions to them were Warren McCulloch and Walter Pitts (McCulloch and Pitts 1943).
The above account applies straightforwardly to McCulloch-Pitts networks. Each unit
receives and returns only two values, typically labeled ‘0’ and ‘1’. These are the digits.
Each unit returns an output that stands in a definite logical relation to its inputs (e.g.,
AND, OR). The units have a discrete dynamics and are synchronous, so that each
unit processes its inputs and returns its output during the same time intervals. Input
and output units are arranged in well-defined layers; units in each layer can be
ordered from first to last. So during any time interval, the inputs going into the input
units and the outputs coming from the output units constitute well-defined strings of
digits. Finally, the structure of the network doesn’t change over time.

Rosenblatt’s Perceptrons (of any number of layers) are nothing but McCulloch-
Pitts networks in which the last condition is dropped. Instead of having a fixed
structure, Perceptrons can be trained by varying their connection weights during a
special period of time, called the “training period.” The same is true of Adalines,
another early and influential type of neural network (Widrow and Hoff 1960).

Being trainable makes no difference to whether a system is computational. After a
Perceptron or Adaline is trained, the system maps its input string of digits onto its
output string of digits according to a fixed rule. An elementary example of such a rule
is EXCLUSIVE OR (either x or y, but not both). EXCLUSIVE OR is notorious in
connectionist circles because its computation requires Perceptrons or Adalines with
hidden units; until the 1970s, some authors doubted that multi-layer networks could
be trained reliably (Minsky and Papert 1988). The discovery of training methods for
such networks (Werbos 1974) proved such doubts to be unfounded.

Thus, Perceptrons and Adalines are nothing but trainable McCulloch-Pitts net-
works (cf. Cowan 1990). After they are trained, they compute the same function
computed by the corresponding McCulloch-Pitts network. (Of course, trainable
neural networks may be trained more than once; after each training period, they
may compute a different function.) Other classes of neural networks can be defined
by relaxing more of McCulloch and Pitts’s assumptions.

We may allow units to take any real-valued quantity as input, internal state, or
output (instead of only finitely many values, such as ‘0’ and ‘1’), and we may let the
input-output function of the processing units be nonlinear. To be physically realistic,
the range of values that units can take and process must be restricted to a finite
interval. And in many paradigmatic applications, the inputs to and outputs from the
network are defined so that all values within certain intervals are taken to be function-
ally equivalent. For instance, the real-valued quantities may be restricted to the interval
[0, 1]; all values near 0 may be labeled ‘0’; all values near 1 may be labeled ‘1’.
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Thus, all values within the right neighborhoods count as digits of the same type,
which may be ordered into strings according to the ordering of the network’s input
and output units. When such a convention is in place, the power of such networks
can be defined in terms of classical computability theory.
We may also let the units be asynchronous, let the network’s dynamics be

continuous in time, or both. When this is done, there may no longer be any way to
individuate input and output strings of digits, because there may no longer be a well-
defined way of classifying inputs or outputs into discrete equivalence classes (digits)
and ordering different digits into strings. Unless, that is, the network receives its
inputs all at once and there are conventions for grouping outputs into equivalence
classes and ordering them into strings. A standard way of doing so is to consider
network dynamics that stabilize on a stable state, from which networks produce
constant outputs. Under such circumstances, inputs and outputs still constitute
strings of digits. Unsurprisingly, these conditions are in place whenever the power
of such networks is analyzed in terms of classical computability theory. I will discuss
networks that fail to satisfy these conditions in the next section.
One moral of the above discussion is that digital neural network computation can

be either classical or non-classical. For instance, McCulloch-Pitts nets are perfectly
classical. They are so classical that digital computers are essentially made out of them.
Now it’s time to say more explicitly what’s peculiar about non-classical (but still
digital) neural network computation.
Unlike classical computing systems, (paradigmatic) neural networks may be

trained. Training is the adjustment of the connections between the units to fit a
desired input-output rule. Thus, the dynamics of neural networks may change over
time independently of which inputs they get. In other words, a neural network may
evolve so as to yield different outputs in response to the same inputs at different
times. Understanding the causal mechanism behind the system’s input-output rule
and its evolution over time requires understanding the dynamical relations between
the system’s units and the way they can change.
Besides trainability, there is a deeper difference between classical and non-classical

systems. Unlike the former, the latter do not act in accordance with a step-by-step
procedure, or program. Classical computation proceeds by performing one operation
at a time, where an operation is a change of one string of digits into another. Since
strings are (sequences of ) discrete entities, changing one string into another is a
discrete operation. Thus, a classical computational dynamics—involving many trans-
formations of one string into another—is by definition discrete. By contrast, many
neural networks proceed by letting their units affect each other’s activation values
according to dynamical relations that vary in continuous time. A neural network’s
dynamics is the analog of an ordinary computer’s digital logic. Whereas digital
logic determines discrete dynamics, the typical dynamic of a neural network is
continuous.
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Because of this, many neural networks are not computationally decomposable like
classical computing systems. That is, such neural networks have computational
capacities, but these capacities cannot be explained in terms of digital computational
steps performed by their components together with the way their components are
organized. The reason is that in the case of an irreducibly continuous dynamics, there
is no well-defined way of breaking down the process by which a system generates its
outputs from its inputs into intermediate, discrete computational steps, equivalent to
the transformation of one input string into an output string.

It doesn’t follow that there is no mechanistic explanation of neural network
computations. The activities of neural networks are still constituted by the activities
of their components and the way the components are organized and they may even
be constituted by simpler computations, provided that those are not digital compu-
tational steps. It’s just that to explain how typical neural networks work, we need
mathematical tools different from digital logic and computability theory—tools like
cluster analysis, nonlinear dynamics, and statistical mechanics.

In brief, there are two dimensions along which classical and non-classical com-
puting systems differ. First, they may or may not be trainable. Second, they may
compute either by acting in accordance with a program (or algorithm) or by
following a dynamics that cannot be decomposed into intermediate digital compu-
tational steps. Purely classical systems (e.g., digital computers, McCulloch-Pitts nets)
have the first two characteristics (fixed structure and acting in accordance with a
program). Many non-classical systems have the second two characteristics (train-
ability and continuous dynamics), but there are also systems that are non-classical
only in one way (e.g., the original Perceptrons and Adalines, which are trainable but
have discrete dynamics).

If this is right, why do many connectionists speak of connectionist algorithms, as
they often do, even when talking about systems with continuous dynamics? The term
‘connectionist algorithm’ is used in several ways. The present account allows us to
distinguish and elucidate all of them.

Sometimes, ‘connectionist algorithm’ is used for the procedure that trains a neural
network, that is, the procedure for adjusting the dynamical relations between units.
This is typically an algorithm in the classical sense—a list of instructions for
manipulating strings of digits. Training algorithms, of course, are not what actually
drives any given neural network computation: neural network computations are
driven by the state of and dynamical relations between a system’s units. Thus, from
the fact that a system is trained using an algorithm, it doesn’t follow that the system
itself computes by following an algorithm.

But ‘connectionist algorithm’ is also often used for the process by which a neural
network produces its output. Based on what we have seen, typically this is not an
algorithm in the classical sense. Many neural networks do not have the kind of
discrete dynamics defined over strings of digits that can be accurately described by
algorithms in the classical sense. Therefore, this second usage of ‘connectionist
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algorithm’ is equivocal. But given how common it has become, it may be considered a
new or extended sense of the term ‘algorithm’—not to be confused with the classical
sense.
Finally, the process by which a series of neural networks, each one feeding into the

next, generates a final output through intermediate processes is sometimes called a
‘connectionist algorithm’. This may well be an algorithm in the classical sense—or
something close—provided that each intermediate process is definable as a trans-
formation of strings of digits. Or else, it is an algorithm in the extended sense
explicated in the previous paragraph.

7. Non-digital Neural Network Computations

In previous sections, I gave an account of what it takes for a neural network to
perform digital computations: its inputs and outputs must be strings of digits, and its
input-output relationship must accord with a rule defined over the digits (and
possibly internal states). Implicitly, such an account also specifies conditions under
which a neural network performs non-digital computations or does not perform
computations—all it takes is for a system to fail to satisfy the conditions under which
a system performs digital computations. This happens when its input-output rela-
tionship does not accord with an appropriate rule, its inputs and outputs are not
strings of digits, or both.
The best example of a system that does not act in accordance with a rule at all is a

system that generates random outputs. Since its outputs are random, there is no rule
that relates the outputs to the inputs. There are also systems that act in accordance
with a rule, but the rule is not defined over medium-independent vehicles
(Chapter 7). An example is a mechanical loom, which performs the same actions
regardless of what its inputs are like (or even whether it receives any inputs at all).
Neither random systems nor mechanical looms are computing systems, because they
don’t act in accordance with the right kind of rule.
It is certainly possible to define neural networks with random outputs or outputs

that are unrelated to properties of the inputs. They would be atypical. Typical neural
networks (have the function to) respond to the properties of their inputs in accord-
ance with a rule defined over the inputs in a medium-independent way. Therefore,
typical neural networks qualify as computing systems under the mechanistic account.
But there are many neural networks whose inputs and outputs, for one reason or
another, are not strings of digits.
For instance, some neural networks manipulate continuous variables (Chen and

Chen 1993). Understanding the processing of continuous variables requires special-
ized mathematical tools, which differ from the discrete mathematics normally
employed by computability theorists and computer scientists. At the very least,
there is no straightforward way to assign computation power, in the standard
sense defined over effectively denumerable domains, to systems that manipulate
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continuous variables. Because of this, it seems appropriate to conclude that neural
networks that process continuous variables do something other than digital com-
puting. They are much closer to analog computers (Chapter 12).

More generally, any neural network whose inputs and outputs violate the condi-
tions sketched in the previous section, conditions which allow the inputs and outputs
to be characterized as strings of digits, performs non-digital computations (if it
performs computations at all). This point has special relevance to neuroscience and
psychology, where the question of whether the brain computes is central to many
debates.

In the case of artificial neural networks, it is somewhat open to stipulation which of
their properties count as inputs and outputs. We may consider only networks with
properties that are conducive to classifying their inputs and outputs as strings of
digits. We may choose to send inputs to our network all at once at well-defined times,
consider only network dynamics that stabilize on stable states, group inputs and
outputs into finitely many equivalence classes, and impose a well-defined order on
the input and output units, so as to characterize inputs and outputs as strings of
digits.

When we switch to studying natural systems such as brains, we must not import
such stipulations into our theories without justification. Brain theories must be based
on empirical evidence about which properties of neural activity are functionally
significant, not on which putative properties can be conveniently characterized in
terms of computability theory.

Earlier in Section 2, I pointed out that Rosenblatt, who first characterized his
neural network theory as connectionist, was building on McCulloch and Pitts’s work.
McCulloch and Pitts, in turn, were building on work by the mathematical biophysics
group led by Nicholas Rashevsky (cf. Piccinini 2004a).

Rashevsky and his collaborators, young Walter Pitts among them, studied the
properties of certain idealized neural systems mathematically. They defined and
studied neural systems using differential and integral equations that represented,
among other variables, the frequency of neuronal pulses travelling through idealized
neuronal fibers. They analyzed systems with different structural and functional
properties, characterizing their behavior and offering explanations of phenomena
such as discrimination, perception, reflexes, learning, and thinking (Rashevsky 1938,
1940; Householder and Landahl 1945). From a modern perspective, they should
count as pioneers of computational neuroscience. Yet they never even claimed that
their networks compute, much less that they perform digital computations.

The present account of computation makes sense of this fact. The mathematical
tools Rashevsky and his collaborators used to analyze their networks didn’t include
logic or computability theory. Furthermore, the main variable in terms of which they
characterized neuronal activity was the frequency of neuronal pulses in continuous
time—roughly corresponding to what today is called ‘firing rate’. Since Rashevsky’s
time, theoretical neuroscientists have learned to study firing rates using more
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sophisticated mathematical tools. Now as then, firing rates appear to be the most
important neurophysiological variable. Now as then, theoretical and computational
neuroscientists who study spike trains and firing rates (Dayan and Abbott 2001;
Ermentrout and Terman 2010) make no significant use of logic or computability
theory. This is not an accident: as in the case of continuous variables, there doesn’t
seem to be any clear or theoretically useful way to characterize firing rates as strings
of digits. Nor is there any clear or theoretically useful way to characterize firing rates
varying in continuous time as continuous variables like those manipulated by analog
computers. If this is correct, then neural computations are neither digital nor analog
computations; neural computations are sui generis (Piccinini and Bahar 2013).
If it turns out that neural processes are sui generis, some theories of cognition will

have to change. Many theorists assume that cognition is digital computation (in the
sense here explicated). This includes classicists, whose view is that cognition is
classical computation, as well as many connectionists, whose view is that cognition
is non-classical (but still digital) computation. Their theories postulate some digital
computation or other to explain cognitive phenomena, but they usually gloss over the
issue of how such computations are implemented in the brain. This may be ok as
long as neural processes are (or “implement”) digital computations: somehow, neural
computations must implement the digital computations postulated by cognitive
theorists.
But if neural computations are sui generis, theorists of cognition must learn how

nervous systems work and formulate theories in terms that can be implemented by
actual neural processes. There are those who have been doing this all along, and there
are those who are moving in that direction. It may be time for the rest of the
community to join them.

8. Conclusion

Nowadays, many authors use ‘computation’ loosely. They use it for any processing of
signals, for “information processing,” for whatever the brain does, or even more
broadly. In these loose senses, all neural networks—brains and computers included—
compute. But this is rather uninformative: it doesn’t lead to applying the mathem-
atical theory of computation to analyze neural networks, their power, and their
limitations. They should not be confused with the interesting proposal first made
by McCulloch and Pitts.
When McCulloch and Pitts claimed that their networks compute, their claim was

strong and informative. They claimed that what we now call ‘computability theory’
would allow us to analyze and evaluate the power of neural networks. This is the kind
of claim that I have explicated in this chapter.
If the above considerations are on the right track, several conclusions can be

drawn. First, many neural networks perform digital computations: they manipulate
strings of digits in accordance with a rule defined over the inputs (and possibly
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internal state). This allows us to apply the mathematical theory of computation to
them and evaluate their computation power. Second, some neural networks (such as
McCulloch-Pitts networks) perform digital computations in a classical way: they
compute by operating in accordance with a program (or algorithm) for generating
successive strings of digits, one step at a time. Digital computers, which are very large
networks of logic gates, belong in this class of neural networks. Third, other neural
networks perform digital computations but in a non-classical way: they are trainable,
turn their input into their output in virtue of their continuous dynamics (which
cannot be broken down into intermediate computational steps), or both. Fourth, yet
other neural networks (such as Rashevsky’s networks) perform non-digital compu-
tations: their inputs and outputs are not strings of digits. Brains may well fall into this
last class.

This chapter concludes my examination of some important classes of computing
systems. The next three chapters will address two other important topics pertaining
to concrete computation. In this and previous chapters, periodically we encountered
the notions of information and information processing, which are often equated to
computation. The next chapter argues that information processing entails computa-
tion but not vice versa. We also encountered the question whether some physical
systems are computationally more powerful than Turing machines. I address that
question in the last two chapters.
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14

Information Processing

1. Computation = Information Processing?

Computation is typically used to process information, so much so that the notions of
computation and information processing are often used interchangeably. This is built
into some versions of the semantic account (Chapter 3), according to which there
is no computation without representation. Here is a representative example: “I . . .
describe the principles of operation of the human mind, considered as an informa-
tion-processing, or computational, system” (Edelman 2008, 10, emphasis added). This
statement presupposes that computation is the same as information processing. Is
this right?
There are two immediate complications. First, as I argued beginning with

Chapter 3, computation does not, in fact, require representation—computation can
occur in the complete absence of representation. Second, there are several notions of
both computations and information. As we have seen in previous chapters, compu-
tation comprises importantly different notions: computation in the generic sense,
digital computation, analog computation, etc. The same is true of information. This
chapter is devoted to distinguishing different notions of information and assessing
the assimilation of computation to information processing.1

Information plays a central role in many disciplines. In the sciences of mind,
information is invoked to explain cognition and behaviour (e.g., Miller 1951; Minsky
1968). In communication engineering, information is central to the design of efficient
communication systems such as television, radio, telephone networks, and the
internet (e.g., Shannon 1948; Fano 1961; Pierce 1980). A number of biologists have
suggested explaining genetic inheritance in terms of the information carried by DNA
sequences (e.g., Smith 2000; see also Godfrey-Smith 2000; Griffiths 2001). Animal
communication theorists routinely characterize non-linguistic communication in
terms of shared information (Bradbury and Vehrencamp 2000). Some philosophers
maintain that information can provide a naturalistic grounding for the intentionality
of mental states, namely, their being about states of affairs (Dretske 1981; Millikan

1 This chapter derives mostly from Piccinini and Scarantino 2011, so Andrea Scarantino deserves partial
credit for most of what is correct here.



2004). Finally, information plays important roles in several other disciplines, such as
computer science, physics, and statistics.

To account for the different roles information plays in all these fields, more than
one notion of information is required. I begin this chapter by distinguishing between
three main notions of information: Shannon’s non-semantic notion plus two notions
of semantic information. After that, I’ll go back to the relation between information
processing and computation.

2. Shannon information

I use ‘Shannon information’ to designate the notion of information initially formal-
ized by Claude Shannon (Shannon 1948).2 I distinguish between information theory,
which provides the formal definition of information, and communication theory,
which applies the formal notion of information to engineering problems of commu-
nication. I begin by introducing two measures of information from Shannon’s
information theory. Later I will discuss how to apply them to the physical world.

Let X and Y be two discrete random variables taking values in AX={a1, . . . , an} and
AY={b1, . . . ,br}, respectively, with probabilities p(a1), . . . , p(an) and p(b1), . . . , p(br).
We assume that p(ai) > 0 for all i=1, . . . , n, p(bj)>0 for all j=1, . . . , r,

Pn
i¼1pðaiÞ ¼ 1

and
Pr

j¼1pðbjÞ ¼ 1.
Shannon’s key measures of information are the following:

HðXÞ ¼ �
Xn

i¼1
p ðaiÞlog2pðaiÞ

IðX;YÞ ¼
Xn;r

i¼1;j¼1

pðai; bjÞlog2
pðai j bjÞ
pðaiÞ

H(X) is called ‘entropy’, because it’s the same as the formula for measuring thermo-
dynamic entropy; here, it measures the average information produced by the selection
of values in AX={a1, . . . ,an}.

3 We can think of H(X) as a weighted sum of n expressions
of the form I(ai)=�log2p(ai). I(ai) is sometimes called the ‘self-information’ produced
when X takes the value ai. Shannon obtained the formula for entropy by setting
a number of mathematical desiderata that any satisfactory measure of uncertainty

2 Shannon was building on important work by Boltzmann, Szilard, Hartley, and others (Pierce 1980).
3 The logarithm to the base b of a variable x—expressed as logb x—is defined as the power to which b

must be raised to get x. In other words, logb x=y if and only if by=x. The expression 0 logb 0 in any of the
addenda of H(X) is stipulated to be equal to 0. Shannon (1948, 379) pointed out that in choosing a
logarithmic function he was following Hartley (Hartley 1928) and added that logarithmic functions have
nice mathematical properties, are more useful practically because a number of engineering parameters
“vary linearly with the logarithm of the number of possibilities,” and are “nearer to our intuitive feeling as
to the proper measure” of information.
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should satisfy, and showing that the desiderata could only be satisfied by the formula
given above.4

Shannon information may be measured with different units. The most common
unit is the “bit.”5 A bit is the information generated by a variable, such as X, taking a
value ai that has a 50 percent probability of occurring. Any outcome ai with less than
50 percent probability will generate more than 1 bit; any outcome ai with more than
50 percent probability will generate less than 1 bit. The choice of unit corresponds to
the base of the logarithm in the definition of entropy. Thus, the information
generated by X taking value ai is equal to 1 bit when I(ai)=�log2 pi=1; that is,
when pi =0.5.

6

Entropy has a number of important properties. First, it equals zero when X takes
some value ai with probability 1. This tells us that information as entropy presup-
poses uncertainty: if there is no uncertainty as to which value a variable X takes, the
selection of that value generates no Shannon information.
Second, the closer the probabilities p1 , . . , pn are to having the same value, the

higher the entropy. The more uncertainty there is as to which value will be selected,
the more information is generated by the selection of a specific value.
Third, entropy is highest and equal to log2 n when X takes every value with the

same probability.
I(X;Y) is called ‘mutual information’; it is the difference between the entropy

characterizing X, on average, before and after Y takes values in AY. Shannon proved
that X carries mutual information about Y whenever X and Y are statistically
dependent, i.e., whenever it is not the case that p(ai, bj)=p(ai)p(bj) for all i and j.
This is to say that the transfer of mutual information between two sets of uncertain
outcomes AX={a1, . . . ,an} and AY={b1, . . . ,br} amounts to the statistical dependency
between the occurrence of outcomes in AX and AY. Information is mutual because
statistical dependencies are symmetrical.
Shannon’s measures of information have many applications. The best-known

application is Shannon’s own: communication theory. Shannon was looking for an
optimal solution to what he called the “fundamental problem of communication”
(Shannon 1948, 379), that is, the reproduction of messages from an information
source to a destination. In Shannon’s sense, any device that produces messages in a
stochastic manner can count as an information source or destination.

4 The three mathematical desiderata are the following: (i) The entropy H should be continuous in the
probabilities pi, (ii) The entropy H should be a monotonic increasing function of n when pi=1/n, and (iii) If

n=b1+ . . . + bk with bi positive integer, then H(1/n, . . . , 1/n)=H(b1/n, . . . , bk/n)+
Xk

i¼1
bi/n H(1/bi, . . . ,1/bi).

Shannon further supported his interpretation of H as the proper measure of information by demonstrating
that the channel capacity required for most efficient coding is determined by the entropy (Shannon 1948;
see Theorem 9 in Section 9).

5 Shannon credits John Tukey, a computer scientist at Bell Telephone Laboratories, with introducing
the term in a 1947 working paper.

6 �log2 0.5=1.
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Shannon distinguished three phases in the communication of messages: (a) the
encoding of the messages produced by an information source into channel inputs, (b)
the transmission of signals across a channel with random disturbances generated by a
noise source, (c) the decoding of channel outputs back into the original messages at
the destination.

The process is summarized by the picture of a communication system shown in
Figure 14.1.

Having distinguished the operations of coding, transmission and decoding, Shan-
non developed mathematical techniques to study how to perform them efficiently.
Shannon’s primary tool was the concept of information, as measured by entropy and
mutual information.

A common misunderstanding of Shannon information is that it is a semantic
notion. This misunderstanding is promoted by the fact that Shannon liberally
referred to messages as carriers of Shannon information. But Shannon’s notion of
message is not the usual one. In the standard sense, a message has semantic content
or meaning—there is something it stands for. By contrast, Shannon’s messages need
not have semantic content at all—they need not stand for anything.7

I will continue to discuss Shannon’s theory using the term ‘message,’ but you
should keep in mind that the usual commitments associated with the notion of
message do not apply. The identity of a communication-theoretic message is fully
described by two features: it is a physical structure distinguishable from a set of
alternative physical structures, and it belongs to an exhaustive set of mutually
exclusive physical structures selectable with well-defined probabilities.

Under these premises, to communicate a message produced at a source amounts to
generating a second message at a destination that replicates the original message so as
to satisfy a number of desiderata (accuracy, speed, cost, etc.). The sense in which the
semantic aspects are irrelevant is precisely that messages carry information merely
qua selectable, physically distinguishable structures associated with given probabil-
ities. A seemingly paradoxical corollary of this notion of communication is that a

Information
source transmitter

signal
received

signal
receiver

noise
source

message message
destination

Figure 14.1 Shannon’s depiction of a communication system (Shannon 1948).

7 Furthermore, Shannon’s messages don’t even have to be strings of digits of finitely many types; on the
contrary, they may be continuous variables. I defined entropy and mutual information for discrete
variables, but the definitions can be modified to suit continuous variables (Shannon 1948, Part III).
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nonsense message such as “#r %h@” could in principle generate more Shannon
information than a meaningful message such as “avocado”.
To understand why, consider an experiment described by a random variable

X taking values a1 and a2 with probabilities p(a1) = 0.9999 and p(a2) = 0.0001
respectively. Before the experiment takes place, outcome a1 is almost certain to
occur, and outcome a2 almost certain not to occur. The occurrence of both outcomes
generates information, in the sense that it resolves the uncertainty characterizing the
situation before the experiment takes place.
The occurrence of a2 generates more information than the occurrence of a1,

because it is less expectable, or more surprising, in light of the prior probability
distribution. This is reflected by the measure of self-information we introduced
earlier: I(ai)=�log2p(ai). Given this measure, the higher p(ai) is, the lower I(ai)
=�log2p(ai) is, and the lower p(ai) is, the higher I(ai)=�log2p(ai) is. Therefore,
if “#r %h@” is a more surprising message than “avocado”, it carries more Shannon
information, despite its meaninglessness.
Armed with his measures of non-semantic information, Shannon proved a num-

ber of seminal theorems that had a profound impact on the field of communication
engineering. The “fundamental theorem for a noisy channel” established that it was
theoretically possible to make the error rate in the transmission of information across
a randomly disturbed channel as low as desired up until the point in which the source
information rate in bits per unit of time becomes larger than the channel capacity,
which is defined as the mutual information maximized over all input source prob-
ability distributions.8 Notably, this is true regardless of the physical nature of the
channel (e.g., true for electrical channels, wireless channels, water channels, etc.).
Communication theory has found many applications, most prominently in com-

munication engineering, computer science, neuroscience, and psychology. For
instance, Shannon information is commonly used by neuroscientists to measure
the quantity of information carried by neural signals about a stimulus and estimate
the efficiency of coding (what forms of neural responses are optimal for carrying
information about stimuli) (Dayan and Abbott 2001, chap. 4; Baddeley et al. 2000).
I now move on from Shannon information, which is non-semantic, to semantic
information.

3. Semantic Information

Suppose that a certain process leads to the selection of signals. Think, for instance, of
how you produce words when speaking. There are two dimensions of this process
that are relevant for the purposes of information transmission. One is the uncertainty

8 Shannon defined the channel capacity C as follows: MaxPðaÞ IðX;YÞ ¼ MaxPðaÞ½HðXÞ�HðXjYÞ�. The
conditional entropy is calculated as follows: HðXjYÞ ¼ Pn;r

i¼1;j¼1pðai; bjÞlog2 1
pðai jbjÞ.
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that characterizes the speaker’s word selection process as a whole—the probability
that each word be selected. This is the non-semantic dimension that would interest a
communication engineer and is captured by Shannon’s theory. A second dimension
of the word selection process concerns what the selection of each wordmeans (in the
context of a sentence). This would be the dimension of interest, for example, to a
linguist trying to decipher a tribal language.

Broadly understood, semantic notions of information pertain to what a specific
signal broadcast by an information source means. To address the semantics of a
signal, it is neither necessary nor sufficient to know which other signals might have
been selected instead and with what probabilities. Whereas the selection of, say, any
of twenty-five equiprobable but distinct words will generate the same non-semantic
information, the selection of each individual word will generate different semantic
information depending on what that particular word means.

Semantic and non-semantic notions of information are both connected with the
reduction of uncertainty. In the case of non-semantic information, the uncertainty
has to do with which among many possible signals is selected. In the case of semantic
information, the uncertainty has to do with which among many possible states of
affairs is the case.

To tackle semantic information, let’s begin with Grice’s distinction between two
kinds of meaning that are sometimes conflated, namely, natural and non-natural
meaning (Grice 1957). Natural meaning is exemplified by a sentence such as ‘those
spots mean measles’, which is true—Grice claimed—just in case the patient has
measles. Non-natural meaning is exemplified by a sentence such as ‘those three
rings on the bell (of the bus) mean that the bus is full’ (Grice 1957, 85), which is true
even if the bus is not full.

I extend the distinction between Grice’s two types of meaning to a distinction
between two types of semantic information: natural information and non-natural
information.9 Spots carry natural information about measles because there is a
reliable physical correlation between measles and spots. By contrast, the three rings
on the bell of the bus carry non-natural information about the bus being full by virtue
of a convention.10 I will now consider each notion of semantic information in more
detail.

3.1 Natural (Semantic) Information

When smoke carries information about fire, the basis for this informational link is
the causal relation between fire and smoke. By the same token, when spots carry

9 By calling this kind of information non-natural, I am not taking a stance on whether it can be
naturalized, that is, reduced to some more fundamental natural process. I am simply using Grice’s
terminology to distinguish between two importantly different notions of semantic information.

10 This is not to say that conventions are the only possible source of non-natural meaning. For further
discussion, see (Grice, 1957).
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information about measles, the basis for this informational link is the causal relation
between measles and spots. Both are examples of natural semantic information.
The most basic task of an account of natural semantic information is to specify the

relation that has to obtain between a source (e.g., fire) and a signal (e.g., smoke) for
the signal to carry natural information about the source. Following Dretske (1981),
I discuss natural information in terms of correlations between event types. On the
view I propose, an event token a of type A carries natural information about an event
token b of type B just in case A reliably correlates with B.
Reliable correlations are the sorts of correlations information users can count on to

hold in some range of future and counterfactual circumstances. For instance, smoke-
type events reliably correlate with fire-type events, spot-type events reliably correlate
with measles-type events, and ringing-doorbell-type events reliably correlate with
visitors-at-the-door-type events. It is by virtue of these correlations that we can
dependably infer a fire-token from a smoke-token, a measles-token from a spots-
token, and a visitors-token from a ringing-doorbell-token.
Yet correlations are rarely perfect. Smoke is occasionally produced by smoke

machines, spots are occasionally produced by mumps, and doorbell rings are occa-
sionally produced by naughty kids who immediately run away. Dretske (1981) and
most subsequent theorists of natural information have disregarded imperfect correl-
ations, either because they believe that they carry no natural information (Cohen and
Meskin 2006) or because they believe that they do not carry the sort of natural
information necessary for knowledge (Dretske 1981). Dretske focused only on cases
in which signals and the events they are about are related by nomically underwritten
perfect correlations.
This is unfortunate because, although not necessarily knowledge-causing, the

transmission of natural information by means of imperfect yet reliable correlations
is what underlies the central role natural information plays in the descriptive and
explanatory efforts of many sciences. In other words, most of the natural information
signals carry in real world environments is probabilistic: signals carry natural infor-
mation to the effect that o is probably G, rather than natural information to the effect
that, with nomic certainty, o is G. In the present account, all-or-nothing natural
information—the natural information that o is G with certainty—is a special, limiting
case of probabilistic natural information.
Unlike the traditional (all-or-nothing) notion of natural information, this prob-

abilistic notion of natural information is applicable to the sorts of signals studied by
many empirical sciences, including the science of cognition. Organisms survive and
reproduce by tuning themselves to reliable but imperfect correlations between
internal variables and environmental stimuli, as well as between environmental
stimuli and threats and opportunities. In comes the sound of a predator, out comes
running. In comes the redness of a ripe apple, out comes approaching.
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But organisms do make mistakes, after all. Some mistakes are due to the reception
of probabilistic information about events that fail to obtain.11 For instance, some-
times non-predators are mistaken for predators because they sound like predators; or
predators are mistaken for non-predators because they look like non-predators.

Consider a paradigmatic example from ethology. Vervet monkeys’ alarm calls
appear to be qualitatively different for three classes of predators: leopards, eagles, and
snakes (Struhsaker 1967; Seyfarth and Cheney 1992). As a result, vervets respond to
eagle calls by hiding behind bushes, to leopard calls by climbing trees, and to snake
calls by standing tall.

A theory of natural information with explanatory power should be able to make
sense of the connection between the reception of different calls and different behav-
iors. To make sense of this connection, we need a notion of natural information
according to which types of alarm call carry information about types of predators.
But any theory of natural information that demands perfect correlations between
event types will not do, because as a matter of empirical fact when the alarm calls are
issued the relevant predators are not always present.

The present notion of probabilistic natural information can capture the vervet
monkey case with ease, because it only demands that informative signals change the
probability of what they are about. This is precisely what happens in the vervet alarm
call case, in the sense that the probability that, say, an eagle/leopard/snake is present
is significantly higher given the eagle/leopard/snake call than in its absence.

Notably, this notion of natural information is graded: signals can carry more or
less natural information about a certain event. More precisely, the higher the
difference between the probability that the eagle/leopard/snake is present given the
call and the probability that it is present without the call, the higher the amount of
natural information carried by an alarm call about the presence of an eagle/leopard/
snake.

This approach to natural information allows us to give an information-based
explanation of why vervets take refuge under bushes when they hear eagle calls
(mutatis mutandis for leopard and snake calls). They do because they have received
an ecologically significant amount of probabilistic information that an eagle is
present.

To sum up, an event’s failure to obtain is compatible with the reception of natural
information about its obtaining, just like the claim that the probability that o is G is
high is compatible with the claim that o is not G. No valid inference rules take us
from claims about the transmission of probabilistic information to claims about how
things turn out to be.12

11 This is not to say that natural information is enough to explain why acting on the basis of received
natural information sometimes constitutes a mistake and sometimes it does not.

12 A consequence of this point is that the transmission of natural information entails nothing more than
the truth of a probabilistic claim (Scarantino and Piccinini 2010). It follows that the present distinction

232 INFORMATION PROCESSING



3.2 Non-natural (Semantic) Information

Cognitive scientists routinely say that cognition involves the processing of infor-
mation. Sometimes they mean that cognition involves the processing of natural
information. At other times, they mean that cognition involves the processing of
non-natural information. This second notion of information is best understood as
the notion of representation, where a (descriptive) representation is by definition
something that can get things wrong.13

Some cognitive scientists simply assimilate representation with natural semantic
information, assuming in effect that what a signal represents is what it reliably
correlates with. This is a weaker notion of representation than the one I endorse.
Following the predominant usage in the philosophical literature, I reserve the term
‘representation’ for states that can get things wrong or misrepresent (e.g., Millikan
2004).
Bearers of natural information, I said, “mean” states of affairs in virtue of being

physically connected to them. I provided a working account of the required connec-
tion: there must be a reliable correlation between a signal type and its source type.
Whatever the right account may be, one thing is clear: in the absence of the
appropriate physical connection, no natural information is carried.
Bearers of non-natural information, by contrast, need not be physically connected

to what they are about in any direct way. Thus, there must be an alternative process
by which bearers of non-natural information come to bear non-natural information
about things they may not reliably correlate with. A convention, as in the case of
the three rings on the bell of the bus, is a clear example of what may establish a
non-natural informational link. Once the convention is established, error (misrep-
resentation) becomes possible.
The convention may either be explicitly stipulated, as in the rings case, or emerge

spontaneously, as in the case of the non-natural information attached to words in
natural languages. But non-natural information need not be based on convention
(cf. Grice 1957). There may be other mechanisms, such as learning or biological
evolution, through which non-natural informational links may be established. What
matters for something to bear non-natural information is that, somehow, it stands
for something else relative to a signal recipient.
An important implication of the present account is that semantic information of

the non-natural variety does not entail truth. On the present account, false non-

between natural and non-natural meaning/information differs from Grice’s original distinction in one
important respect. On the present view, there is nothing objectionable in holding that those spots carry
natural information about measles, but he doesn’t have measles, provided measles are more likely given
those spots than in the absence of those spots.

13 There are also imperative representations, such as desires. And there are representations that
combine descriptive and imperative functions, such as honeybee dances and rabbit thumps (cf. Millikan
2004). For simplicity, I focus on descriptive representations.
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natural information is a genuine kind of information, even though it is epistemically
inferior to true information. The statement ‘water is not transparent’ gets things
wrong with respect to the properties of water, but it does not fail to represent that
water is not transparent. By the same token, the statement ‘water is not transparent’
contains false non-natural information to the effect that water is not transparent.

Most theorists of information have instead followed Dretske (Dretske 1981;
Millikan 2004; Floridi 2005) in holding that false information, or misinformation,
is not really information. This is because they draw a sharp distinction between
information, understood along the lines of Grice’s natural meaning, and representa-
tion, understood along the lines of Grice’s non-natural meaning.

The reason for drawing this distinction is that they want to use natural informa-
tion to provide a naturalistic reduction of representation (or intentionality). For
instance, according to some teleosemantic theories the only kind of information
carried by signals is of the natural variety, but signals come to represent what they
have the function of carrying natural information about (e.g., Millikan 1984).
According to theories of this sort, what accounts for how representations can get
things wrong is the notion of biological function: representations get things wrong
whenever they fail to fulfill their biological function.

But my present goal is not to naturalize intentionality. Rather, my goal is to
understand the central role played by information and computation in computer
science and cognitive science. If scientists used ‘information’ only to mean natural
information, I would happily follow the tradition and speak of information exclu-
sively in its natural sense. The problem is that the notion of information as used in
the special sciences often presupposes representational content.

Instead of distinguishing sharply between information and meaning, I distinguish
between natural information, understood roughly along the lines of Grice’s natural
meaning (cf. Section 3.1), and non-natural information, understood along the lines of
Grice’s non-natural meaning. We lose no conceptual distinction, while we gain an
accurate characterization of how the concept of information is used in the sciences.
This is a good bargain.

We are now in a position to refine the sense in which Shannon information is
non-semantic. Shannon information is non-semantic in the sense that Shannon’s
measures of information are not measures of semantic content or meaning, whether
natural or non-natural. Shannon information is also non-semantic in the sense that,
as Shannon himself emphasized, the signals studied by communication theory need
not carry any non-natural information.

But the signals studied by communication theory always carry natural information
about their source when there is mutual information in Shannon’s sense between
source and receiver. When a signal carries Shannon information, there is by defin-
ition a reliable correlation between source events and receiver events. For any
receiver event, there is a nonzero probability of the corresponding source event.
And as I defined natural information, A carries natural information about B just in
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case A reliably correlates with B—thus, receiver events carry natural information
about source events whenever there is mutual information between the two. In
addition, in virtually all practical applications of communication theory (as opposed
to information theory more generally), the probabilities connecting source and
receiver events are underwritten by a causal process.
For instance, ordinary communication channels such as cable and satellite televi-

sion rely on signals that causally propagate from sources to receivers. Because of this,
the signals studied by communication theory, in addition to producing a certain
amount of mutual information in Shannon’s sense based on the probability of their
selection, also carry a certain amount of natural semantic information about their
source (depending on how reliable their correlation with the source is). Of course, in
many cases, signals also carry non-natural information about things other than their
sources—but that is a contingent matter, to be determined case by case.

4. Other Notions of Information

There are other notions of information, such as Fisher information (Fisher 1935) and
information in the sense of algorithmic information theory (Li and Vitányi 1997).
There is even an all-encompassing notion of physical information. Physical infor-
mation may be generalized to the point that every state of a physical system is defined
as an information-bearing state. Given this all-encompassing notion, allegedly the
physical world is, at its most fundamental level, constituted by information (Wolfram
2002; Lloyd 2006). If computation is defined as information processing in this sense,
then this is just a variant formulation of ontic pancomputationalism, which I rejected
in Chapter 4, Section 4.
In one or more of these senses of the term, computing entails processing infor-

mation (cf. Milkowski 2013, 42–51). But these notions of information are not directly
relevant to our present concerns, so I set them aside.
Nir Fresco and Marty Wolf have recently introduced an interesting notion of

instructional information (Fresco 2013, Chapter 6; Fresco and Wolf 2014). Fresco
and Wolf ’s formulation relies on notions of data and meaning that I don’t fully
understand, so I’ll offer an alternative account that captures the gist of what they are
after. Let s be a control signal affecting system C:

s carries instructional information e within system C just in case when C acts in
accordance with s, C generates action e.

Notice that smay be but doesn’t have to be a string of digits that acts as an instruction
in the sense of Chapter 9. Signal s is any signal external to C that activates a capacity
of C. For example, consider a Boolean circuit that can perform two different
operations depending on a single control digit. That single control digit counts as
carrying instructional information. In any case, acting in accordance with s means
doing what s causes within the system (i.e., action e), which may be seen as what s
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says to do. Thus, Fresco and Wolf ’s notion of instructional information gives rise to
a more inclusive notion of instruction than the one discussed in Chapter 9. Fresco
and Wolf maintain that “nontrivial” digital computation is the processing of discrete
data in accordance with instructions in their sense. Since discrete data in Fresco and
Wolf ’s sense are strings of digits and Fresco and Wolf ’s instructions are a kind of
rule, Fresco and Wolf ’s account of “nontrivial” digital computation appears to be
a digital version of the causal account of computation (Chapter 2) restricted to
systems that respond to control signals. If we formulate Fresco and Wolf ’s account
in terms of functional mechanisms (Chapter 6), then their account is equivalent to
the mechanistic account of digital computations that respond to control signals
(Chapter 7).

In what follows, I focus on the relations between computation and the following
three notions of information: Shannon information (information according to Shan-
non’s theory), natural information (truth-entailing semantic information based on a
physical connection between signal and source), and non-natural information (non-
truth-entailing semantic information).

The differences between these three notions can be exemplified as follows.
Consider an utterance of the sentence ‘I have a toothache’. It carries Shannon
information just in case the production of the utterance is a stochastic process that
generates words with certain probabilities. The same utterance carries natural infor-
mation about having a toothache just in case utterances of that type reliably correlate
with toothaches. Carrying natural information about having a toothache entails that
a toothache is more likely given the signal than in the absence of the signal. Finally,
the same utterance carries non-natural information just in case the utterance has
non-natural meaning in a natural or artificial language. Carrying non-natural infor-
mation about having a toothache need not raise the probability of having a toothache.

5. How Computation and Information
Processing Fit Together

Do the vehicles of computation necessarily bear information? Is information pro-
cessing necessarily carried out by means of computation? What notion of informa-
tion is relevant to the claim that a computational system is an information processor?
Answering these questions requires combining computation and information in
several of the senses I have discussed.

I will focus on two main notions of computation, digital and generic, and three
main notions of information processing: processing Shannon information, process-
ing natural semantic information and processing non-natural semantic information.
It’s time to see how they fit together.

I will argue that the vehicles over which computations are performed may or may
not carry information. Yet, as a matter of contingent fact, the vehicles over which
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most computations are performed generally do carry information, in several senses
of the term. I will also argue that information processing must be carried out by
means of computation in the generic sense, although it need not be carried out by
computation in any more specific sense.
Before I begin, I should emphasize that there is a trivial sense in which computa-

tion entails the processing of Shannon information. I mention it now but will
immediately set it aside because it is not especially relevant to computer science
and cognitive science.
Consider an electronic digital computer. Each of its memory cells is designed to

stabilize on one of two thermodynamically macroscopic states, called ‘0’ and ‘1’.
Suppose that, as soon as the computer is switched on, each memory cell randomly
goes into one of those states. A nonzero Shannon entropy is associated with this state
initialization process, since it is a random process, and manipulation of randomly
generated initial states by the computer amounts to the processing of Shannon
information in this trivial sense.
Note, however, that the digits created by random initialization of the memory cells

carry no non-natural semantic information, since the digits in question do not have
any conventional semantic content. They carry no functionally relevant natural
semantic information either, since they do not reliably correlate with any source
other than the thermal component of the electrons’ dynamics in the memory cell at
power up. Random noise is not the kind of source of natural information that is
relevant to the way computers are used or to the explanation of cognition. Thus, the
digits do not carry any natural semantic information beyond the theoretically
unimportant natural information they carry about what caused them—whatever
that may be.
Since a computer manipulates its digits and, in the above sense, a nonzero

Shannon information is associated with randomly generated digits, it follows that a
computer processing randomly generated digits is processing information-bearing
states. In this trivial sense, such a computer is necessarily a processor of Shannon
information. But here I am not interested in whether computation can be regarded as
processing information in this trivial sense. I am interested in how computation fits
with the processing of Shannon information, natural semantic information, and non-
natural semantic information about sources in the system’s distal environment—the
sources the system needs to respond to. I will take up each of these in turn.

5.1 Computation and the Processing of Shannon Information

The notion of processing Shannon information is not entirely clear. Shannon infor-
mation is not a property of individual signals, which can be manipulated as the signal
is manipulated. Instead, Shannon entropy and mutual information quantify statis-
tical properties of a selection process and a communication channel as a whole.
The first thing to note is that, strictly speaking, computational vehicles need

not carry Shannon information at all. This is because Shannon information
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requires random variables—deterministic variables carry no Shannon information
whatsoever—whereas computation is compatible with deterministic variables. For
instance, consider again a digital computer. For its inputs to be regarded as carriers of
Shannon information, they have to be selected in a stochastic way. But the computer
works just the same whether its inputs are selected deterministically or probabilis-
tically. The same point can be made about other computing devices, such as analog
computers and neural networks. Thus, computation does not entail the processing of
Shannon information.

Another relevant observation is that computation need not create Shannon infor-
mation. This is because computation may be either probabilistic or deterministic—in
most real-world applications, computation is deterministic. Deterministic computa-
tion cannot create Shannon information—it can only conserve or destroy it. More
precisely, Shannon information is conserved in logically reversible computations
(which are necessarily deterministic), is reduced in logically irreversible deterministic
computations, and may be created, conserved, or destroyed in noisy computations.

These points should not obscure the fundamental importance of communication
theory to the understanding of computing systems. Even though, strictly speaking,
computing systems need not process Shannon information, it is useful to assume that
they do. That is, it is useful to characterize the inputs, internal states, and outputs of
computing systems and their components stochastically and analyze system per-
formance and resource requirements using information-theoretic measures and
techniques. On this view, the components of computing systems may be treated as
sources and receivers in the sense of communication theory (Winograd and Cowan
1963). This allows engineers to design efficient computer codes and effective com-
munication channels within computing systems. Similar techniques may be used to
analyze neural codes and signal transmission within the nervous system.

So far, I have discussed whether computation is the processing of Shannon
information. What about the converse? Processing Shannon information may or
may not be done by means of digital computation. First, for Shannon information
processing to be done by digital computing, the information must be produced and
carried by strings of digits. But Shannon information can also be produced and
carried by continuous signals, which may be processed by analog means. Second,
even when the bearers of Shannon information are digits, there exist forms of
processing of such digits other than digital computation. Just to give an example, a
digital-to-analog converter transforms digits into analog signals.

Shannon information processing is, however, a form of computation in the generic
sense. As I defined it, generic computation is the functional manipulation of any
medium-independent vehicle. Shannon information is a medium-independent
notion, in the sense that whether Shannon information can be associated with a
given vehicle does not depend on its specific physical properties, but rather on its
probability of occurrence relative to its physically distinguishable alternatives. Thus,
generic computation is broad enough to encompass the processing of Shannon
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information. In other words, if a vehicle carries Shannon information, its processing
is a computation in the generic sense.
The bottom line is this: although, strictly speaking, computation need not process

vehicles that carry Shannon information, it usually does and, at any rate, it is useful to
assume that it does. Conversely, the processing of Shannon information amounts to
some form of generic computation. Communication theory places constraints on any
kind of signal transmission (and hence on the processing of any information carried
by the transmitted signals) within computing systems, including cognitive ones. This
does not yet tell us what we are most interested in: how does computation relate to
semantic information?

5.2 Computation and the Processing of Natural Information

Many people use ‘computation’ and ‘information processing’ interchangeably. What
they often mean by ‘information processing’ is the processing of natural semantic
information carried by the computation vehicles. This use of ‘information process-
ing’ is common in the behavioral and brain sciences. It is thus important to examine
whether and in what sense computation is the processing of natural information.
The notion of digital computation does not require that the computation vehicles

carry natural information—or more precisely, digits are not required to carry natural
information about the computing system’s distal environment.14 In this section, I will
focus on whether digital computation entails the processing of natural information
about the system’s distal environment.
Granted, natural information is virtually ubiquitous—it is easy enough to find

reliable correlations between physical variables. This being the case, the digits within
a digital computer may well carry natural information about cognitively relevant
sources, such as environmental stimuli that the computer responds to. Consider a
car’s computer, which receives and responds to natural information about the state of
the car. The computer uses feedback from the car to regulate fuel injection, ignition
timing, speed, etc. In such a case, a digital computation will be a case of natural
information processing.
But digits—the vehicles of digital computation—need not correlate reliably with

anything (in the distal environment) in order for a digital computation to be
performed over them. Thus, a digital computation may or may not constitute the
processing of natural information (about the distal environment). If the computation
vehicles do carry natural information (about the distal environment), this may be
quite important. In our example, that certain digits carry natural information about

14 At least for deterministic computation, there is always a reliable causal correlation between later
states and earlier states of the system as well as between initial states and whatever caused those initial
states—even if what caused them are just the thermal properties of the immediate surroundings. In this
sense, (deterministic) digital computation entails natural information processing. But the natural infor-
mation that is always “processed” is not about the distal environment, which is what theorists of cognition
are generally interested in.
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the state of the car explains why the car’s computer can regulate, say, fuel injection
successfully. My point is simply that digital computation does not entail the pro-
cessing of natural information about the distal environment.

This point is largely independent of the distinction between semantically inter-
preted and non-semantically-interpreted digital computation. A semantically inter-
preted digital computation is generally defined over the non-natural information
carried by the digits—independently of whether they carry natural information
(about the distal environment) or what specific natural information they carry. For
instance, ordinary mathematical calculations carried out on a computer are defined
over numbers, regardless of what the digits being manipulated by the computer
reliably correlate with. Furthermore, it is possible for a digital computation to yield
an incorrect output, which misrepresents the outcome of the operation performed.
As we have seen, natural information cannot misrepresent. Thus, even semantically
interpreted digital computation does not entail the processing of natural information
(about the distal environment). (More on the relation between natural and non-
natural information in the next sections.)

This point generalizes to generic computation, which includes, in addition to
digital computation, at least analog computation. Nothing in the notion of analog
computation mandates that the vehicles being manipulated carry natural informa-
tion (about the distal environment). More generally, nothing in the notion of
manipulating medium-independent vehicles mandates that such vehicles carry nat-
ural information (about the distal environment). Thus, computation may or may not
be the processing of natural information.

What about the converse claim: that the processing of natural information must
be carried out by means of computation? The answer is that yes, it must, although the
computation need not be digital or of any specific kind. Natural information may be
encoded by continuous variables, which cannot be processed by digital computers
unless they are first encoded into strings of digits. Or it may be encoded by strings
of digits, whose processing consists in converting them to analog signals. In both
of these cases, natural information is processed, although not by means of digital
computation.

But if natural information is processed, some kind or other of generic computation
must be taking place. Natural information, like Shannon information, is a medium-
independent notion. As long as a variable reliably correlates with another variable, it
carries natural information about it. Any other physical properties of the variables
are immaterial to whether they carry natural information. Since generic computation
is just the processing of medium-independent vehicles, any processing of natural
information amounts to a computation in the generic sense.

In sum, computation vehicles need not carry natural information, but natural
information processing is necessarily some kind of generic computation—though not
necessarily either digital or analog computation.
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5.3 Computation and the Processing of Non-natural Information

Non-natural information is a central notion in our discourse about minds and
computers. We attribute representational contents to each other’s minds. We do
the same with the digits manipulated by computers. I will now examine whether and
in what sense computation is the processing of non-natural information.
Digital computation may or may not be the processing of non-natural informa-

tion, and vice versa. This case is analogous to that of natural information, with one
difference. In the case of semantically interpreted digital computation—digital com-
putation that has semantic content by definition—most notions of semantic content
turn digital computation into non-natural information processing. (The primary
exception are notions of semantic content based solely on natural information; but
since natural information is not representational, such notions would be inadequate
to capture the main notion of semantic content—representational semantic content.)
As a matter of fact, almost all (digital) computing conducted in artifacts is informa-
tion processing, at least in the ordinary sense of non-natural information.
But the main question I am trying to answer is whether necessarily, digital

computation is the processing of non-natural information. It is if we define a notion
of digital computation that entails that the digits are representations. But as I have
repeatedly pointed out, nothing in the notion of digital computation used by
computer scientists and computability theorists mandates such a definition. The
theoretically most important sense of digital computation is the one implicitly
defined by the practices of computability theory and computer science, and which
provides a mechanistic explanation for the behavior of digital computers. In this
theoretically most important sense of digital computation, digital computation need
not be the processing of non-natural information.
Conversely, the processing of non-natural information need not be carried out by

means of digital computation. Whether it is depends on whether the non-natural
information is digitally encoded and how it is processed. It may be encoded either
digitally, by continuous variables, or by other vehicles. Even when encoded digitally,
non-natural information may be manipulated by digital computation or by other
processes, as in digital-to-analog conversion.
Generic computation may or may not constitute the processing of non-natural

information, for similar reasons. Nothing in the notion of analog computation
mandates that the vehicles being manipulated carry non-natural information. They
could be entirely meaningless and the computations would proceed just the same.
More generally, nothing in the notion of manipulating medium-independent
vehicles mandates that such vehicles carry non-natural information.
As in the case of natural information, the converse does not hold. Instead,

non-natural semantic information processing is necessarily done by means of
computation in the generic sense. For non-natural semantic information is medium-
independent—it’s defined in terms of the association between an information-carrying
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vehicle and what it stands for, without reference to any physical properties of
the vehicles. Since generic computation is defined as the processing of medium-
independent vehicles, the processing of non-natural semantic information (i.e., the
processing of vehicles carrying non-natural semantic information) is computation in
the generic sense.

Our work is not done yet. I defined non-natural information in terms of the
association between bearers of non-natural information and what they stand for.
This representation relation requires explication.

In recent decades, philosophers have devoted a large literature to representation.
They have articulated several theoretical options. One option is anti-naturalism:
representation cannot and need not be explained or reduced in naturalistic or
mechanistic terms—the representational character of cognition simply shows that
psychology and perhaps neuroscience are sui generis sciences. A second option is
anti-realism: representation is not a real (i.e., causally efficacious and explanatory)
feature of cognition, although ascriptions of non-natural information-bearing states
may be heuristically useful (Egan 2010). Finally, naturalists look for explanations of
representation in non-intentional terms (Rupert 2008).

A prominent family of naturalistic theories attempts to reduce non-natural infor-
mation to natural information—plus, perhaps, some other naturalistic ingredients.
As I mentioned earlier, several efforts have been made to this effect (Dretske 1981;
Millikan 2004; Dretske 1988; Barwise and Seligman 1997; Fodor 1990). According to
these theories, non-natural information is, at least in part, natural information. But
theories according to which non-natural information reduces to natural information
are only one family of naturalistic theories among others. According to other
naturalistic theories, non-natural information reduces to things other than natural
information (e.g., Millikan 1984; Harman 1987; Papineau 1987; Grush 2004; Ryder
2004).

Summing up the contents of this section, I have reached two main conclusions.
First, computation may or may not be the processing of non-natural information—
with the exception of semantically interpreted computation, which is not the core
notion of computation. Second, the processing of non-natural information is a kind
of generic computation.

6. Computation is Not Information Processing

In this chapter, I have charted some conceptual relations between computation and
information processing. ‘Computation’ and ‘information processing’ are commonly
used interchangeably, which presupposes that they are roughly synonymous terms. If
that were true, computation would entail information processing, and information
processing would entail computation. Alas, things are not so simple. Each of the
two assimilated notions has more than one meaning, and the entailment relations do
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not hold on many legitimate ways of understanding computation and information
processing.
Here are my main conclusions:

Question: Is digital computation the same as information processing?

Thesis 1: Digital Computation vs. Processing Shannon Information
(a) Digital computation does not entail the processing of Shannon information;
(b) The processing of Shannon information does not entail digital computation.

Thesis 2: Digital Computation vs. Processing Natural Information
(a) Digital computation does not entail the processing of natural information

(about the distal environment);
(b) The processing of natural information does not entail digital computation.

Thesis 3: Digital Computation vs. Processing Non-natural Information
(a) Non-semantically interpreted digital computation does not entail the process-

ing of non-natural information;
(b) Semantically interpreted digital computation entails the processing of non-

natural information;
(c) The processing of non-natural information does not entail digital

computation.

Question: Is generic computation the same as information processing?

Thesis 4: Generic Computation vs. Processing Shannon Information
(a) Generic computation does not entail the processing of Shannon information;
(b) The processing of Shannon information entails generic computation.

Thesis 5: Generic Computation vs. Processing Natural Information
(a) Generic computation does not entail the processing of natural information

(about the distal environment);
(b) The processing of natural information entails (semantically interpreted) gen-

eric computation.
Thesis 6: Generic Computation vs. Processing Non-natural Information
(a) Non-semantically interpreted generic computation does not entail the pro-

cessing of non-natural information;
(b) Semantically interpreted generic computation entails the processing of non-

natural information;
(c) The processing of non-natural information entails (semantically interpreted)

generic computation.

These six theses summarize some of the relations of conceptual entailment, or lack
thereof, between ‘computation’ and ‘information processing’, depending on what
each notion is taken to mean.
Having dealt with the relation between computation and information processing,

the final two chapters will address another pervasive and controversial topic: the
computational power of physical systems.
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The Bold Physical Church-Turing
Thesis

One of the outstanding and most fascinating puzzles about physical computation is
how powerful it is. In previous chapters, we occasionally encountered the suggestion
that some physical systems might be computationally more powerful than Turing
machines. This suggestion appears to violate the Church-Turing thesis, according to
which Turing machines capture the limits of what is computable. This chapter and
the next address the computational limitations of physical systems.

The Church-Turing thesis (CT) may be stated as follows:

CT: Any function that is intuitively computable is computable by some Turing
machine (Turing-computable for short). (Figure 15.1)

Or in Alan Turing’s terms, CT pertains to functions that may be “naturally regarded
as computable” (Turing 1936–7, 135).1

The converse of CT is the thesis that any Turing-computable function is intuitively
computable. This is true in the sense that any competent human being (or digital
computer) can carry out the computation in question as long as she has resources
such as time, writing material, etc. She can do so because she can execute the
instructions that make up the program that defines the Turing machine. It is
irrelevant that for most inputs and programs, she lacks sufficient resources to
complete the computation (or even to read the whole input and program, if they
are long enough).

While the converse of CT is relatively easy to establish, CT itself is more difficult to
assess. For starters, how should we explicate “intuitively” or “naturally regarded as”?
In recent decades, the literature on CT has mushroomed. While some aspects of CT
have become clearer, little consensus has emerged on how to formulate and evaluate
CT. This Chapter and the next offer some suggestions on how to make progress.

Following an established recent trend, I distinguish between Mathematical CT,
which is the thesis supported by the original arguments for CT, and Physical
CT, which pertains to the computational limitations of physical processes. In

1 Turing talked about computable numbers rather than functions, but that makes no difference for
present purposes.



addition, I distinguish between bold formulations of Physical CT, according to which
any physical process—anything doable by a physical system—is computable by a
Turing machine, and modest formulations, according to which any function that is
computable by a physical system is computable by a Turing machine.

Mathematical CT: Any function that is computable by following an effective
procedure is Turing-computable. (Figure 15.2)

Bold Physical CT: Any physical process is Turing-computable. (Figure 15.3)

Modest Physical CT: Any function that is physically computable is Turing-
computable. (Figure 15.4)

The converses of these theses are easily established on the same grounds as the
converse of (generic) CT. The converse of Mathematical CT is that any Turing-
computable function is computable by following an effective procedure. The con-
verse of Bold Physical CT is that any Turing-computable process can be physically
realized. Finally, the converse of Modest Physical CT is that any Turing-computable
function can be physically computed. All of these are true for the same reason
that the converse of generic CT is true. The computational behavior of any
Turing machine is exhaustively specified by an effective procedure consisting
of Turing machine instructions. Any competent human being or digital computer
can follow those instructions and carry out the computations as long as they have
appropriate resources. While performing the computation, either a computing
human or a digital computer physically realize the relevant Turing-computable

Intuitively computable
functions

Turing-computable
functions

Turing-computable
functions

Intuitively computable
functions

CT Converse of CT

Figure 15.1 Venn diagrams representing The Church-Turing thesis and its converse.

Functions computable
by effective procedure

Turing-computable
functions

Turing-computable
functions

Functions computable
by effective procedure

Mathematical CT Converse of Mathematical CT

Figure 15.2 The Mathematical Church-Turing thesis and its converse.
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process. Although such physical realizations may be unable to completemost Turing-
computable processes for lack of sufficient resources, this is beside the point.

Once again, however, the specialized versions of CT—especially the physical
versions—are more difficult to assess. It’s not even clear which version of CT is the
correct physical analogue of Mathematical CT. Accordingly, this chapter and
the next have two main purposes: to determine which version of Physical CT is the
physical analogue of Mathematical CT and to determine whether any version of
Physical CT is plausible.

In Section 1, a few remarks about Mathematical CT will establish that the notion of
computability that grounds CT is an epistemological notion. In the case of Math-
ematical CT, it is the notion of what can be obtained by a finite observer exploiting
procedures defined over a denumerable domain that are executable, automatic,
uniform, and reliable. More precisely, a function defined over a denumerable domain
(such as the natural numbers) is computable just in case a finite observer can find the
function’s values by a procedure that is executable, automatic, uniform, and reliable.

In Section 2, I will introduce and articulate a usability constraint on physical
computation: for a physical process to count as a computation (and thus for it to be
relevant to Physical CT properly so called), it must be usable by a finite observer to
obtain the desired values of a function defined over a denumerable domain using a
process that is executable, automatic, uniform, and reliable.

In Section 3, I will argue that Bold Physical CT is both implausible and irrelevant
to the epistemological concerns that motivate CT properly so called—Bold Physical
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Figure 15.4 The Modest Physical Church-Turing thesis and its converse.
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Figure 15.3 The Bold Physical Church-Turing thesis and its converse.
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CT is not about what a finite observer can discover about the desired values of a
function. Thus, contrary to what some authors assume, Bold Physical CT is not
suitable as a physical analogue of Mathematical CT.

1. The Mathematical Church-Turing Thesis

Many authors assume that the intuitive sense of ‘computable’ has to do with what can
be computed by physical systems. This is too simplistic without some qualifications.
CT was originally proposed and evaluated by a group of mathematical logicians, who
were investigating the foundations of mathematics not the general properties of
physical systems. They were concerned with what can be established by following
certain procedures, namely, effective procedures for generating values of functions
defined over effectively denumerable domains, such as the natural numbers or strings
of letters from a finite alphabet. This notion of effective procedure was closely related
to the notion of proof within a formal logical system (as explicated by, e.g., Church
1956, §7).
An effective procedure for evaluating a given function may be informally charac-

terized as follows:

• Executability: The procedure consists of a finite number of deterministic instruc-
tions (i.e., instructions determining a unique next step in the procedure), which
have finite and unambiguous specifications commanding the execution of a
finite number of primitive operations.

• Automaticity: The procedure requires no intuitions about the domain (e.g.,
intuitions about numbers), no ingenuity, no invention, and no guesses.

• Uniformity: The procedure is the same for each possible argument of the
function.2

• Reliability: If the procedure terminates, the procedure generates the correct value
of the function for each argument after a finite number of primitive operations
are performed.

To determine what can be accomplished by following effective procedures, differ-
ent authors proposed and studied different formalisms, such as Turing machines,
general recursive functions, and º-definable functions. They suggested that these
formalisms capture in a precise way the informal notion of what can be calculated by
effective procedures. Since Alonzo Church and Alan Turing were the first to make
this suggestion, Stephen Kleene dubbed it the Church-Turing thesis.3

2 This condition rules out Kálmar’s “arbitrary correct methods”, which may change from one argument
of a function to another (Kálmar 1959).

3 For more on the history of computability theory, including more details on the epistemological
concerns that motivated it, see Davis 1982; Shapiro 1983; Gandy 1988; Sieg 1994, 1997, 2005, 2006a,
Soare 1999; Piccinini 2003a, Copeland 2006; Hodges 2006; Shagrir 2006a, and Copeland, Posy, and Shagrir
2013.
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The logicians who initially proposed and endorsed CT did not base their defense of
CT on the limitations of physical systems. Their main reasons were the following:

1) Lack of counterexamples. Every function known to be effectively calculable,
and every operation for defining a function effectively from other functions,
has been shown to be Turing-computable.

2) Failure of diagonalization. Diagonalization over Turing machines, which might
be expected to yield a function that is not Turing-computable, does not lead
outside the class of Turing-computable functions.

3) Confluence. A number of authors, working with different primitive notions,
defined different mathematical formalisms and proposed that the functions
definable within their formalism be identified as the class of effectively calcul-
able functions. Some of the earliest formalisms are: general recursiveness
(Gödel 1934), º-definability (Church 1932; Kleene 1935), Turing-computability
(Turing 1936–7), and reckonability (Gödel 1936). These notions have been
proven to be extensionally equivalent to one another in the sense that any
function that falls within one of these formally defined classes falls within all of
them. Since the different formalisms have little in common and yet they all
define the same class of functions, it is likely that the class of functions so
defined is the intended one.4

4) Turing’s argument. A Turing machine seems capable of reproducing any
operation that a human being can perform while following an effective pro-
cedure (Turing’s main argument for CT in his 1936–7, 135–6).

I will call these the original arguments for CT.5

It doesn’t take a detailed analysis to see that the original arguments have little to do
with the general properties of physical systems. The view that CT pertains directly to
what can be computed by physical systems makes no sense of the fact that most
logicians and theoretical computer scientists accept CT on the grounds of one or
more of the original arguments. Such a view implies that logicians are confused as to
the proper justification for CT. Of course, they might be confused in many ways, but
it is implausible that they are confused that badly. It is more charitable to distinguish
two versions of CT. One, Mathematical CT, is the version supported by the original
arguments.

Mathematical CT: Any function that is computable by following an effective
procedure is Turing-computable.

4 The argument from confluence is the most popular in computer science, where CT is often formulated
as the thesis that any new formalization of the notion of effectively calculable functions will yield the same
old class—that of the Turing-computable functions (e.g., Newell 1980).

5 The earliest systematic exposition of the original arguments is in Kleene 1952, } 62, } 67.
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The other is the version that pertains to what can be done or computed by physical
systems. It may be called Physical CT (following Pitowsky 1990).
During the last two decades or so, the distinction between Mathematical and

Physical CT has become fairly well established, on grounds similar to those I
discussed.6 The distinction between Mathematical and Physical CT is an important
clarification, but it by no means completes the task of understanding CT. If anything,
it doubles the task. We now have to understand two theses instead of just one.
There is much to say about Mathematical CT. The two largest areas of disagree-

ment are how to further explicate Mathematical CT and whether it is rigorously
provable.7 I will not address those debates, because I wish to focus on Physical
CT. I will conclude this brief discussion of Mathematical CT by reiterating a few
points that should8 be uncontroversial. First, Mathematical CT—however it ought to
be further explicated—is supported by the original arguments. Second, one or more
of the original arguments are good enough to establish that Mathematical CT is true.
Third, Mathematical CT is formulated in terms of functions defined over effectively
denumerable domains. Therefore, it does not apply directly to functions defined over
domains of larger cardinality. Fourth, the notion of computation in whose terms
Mathematical CT is formulated is an epistemological notion: it is the notion of
what can be established by following effective procedures defined over effectively
denumerable domains. Fifth, Mathematical CT does not pertain directly to what can
be computed by physical systems in general.
Well, then, what should we say about what can be computed by physical systems in

general?

2. A Usability Constraint on Physical Computation

If Physical CT is to be analogous to Mathematical CT, it must be formulated in terms
of a suitable notion of physical computation. The above considerations suggest that a
physical process should not count as a computation unless a finite observer can use it
to generate the desired values of a given function. This principle can be formulated as
an explicit constraint on physical computation:

6 E.g., Gandy 1980; Earman 1986; Odifreddi 1989; Pitowsky 1990; Mundici and Sieg 1995; Sieg 2002;
Shagrir 1997; Copeland 2002b; Shagrir and Pitowsky 2003; Fitz 2006; Button 2009. For examples of people
who conflate or fail to distinguish explicitly between Mathematical and Physical CT, see Churchland and
Churchland 1990; Cleland 1993; Hogarth 1994; Siegelmann 1999; Smith 2006a.

7 On how to explicate Mathematical CT, see Kleene 1952, 1987b; Gandy 1980; Shapiro 1981, 1993, 2013;
Shagrir 2002; Sieg 2002, 2008, Copeland 2002b; Rescorla 2007; and Arkoudas 2008. On whether it’s
provable, see Gandy 1980; Mendelson 1990; Shapiro 1993, 2013; Sieg 1994, 1997; Folina 1998; Black
2000; Smith 2007; Dershowitz and Gurevich 2008; and Kripke 2013.

8 For a recent though unsuccessful attempt to challenge the notion of effective procedure that grounds
Mathematical CT, see Hogarth 2004. For a rebuttal, see Button 2009.
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Usability Constraint: If a physical process is a computation, it can be used by a
finite observer to obtain the desired values of a function.

The usability constraint is an epistemic constraint.9 It can be made more precise by
specifying what it means to be usable by a finite observer and who counts as a finite
observer.

As to the latter question, one possibility is to include among finite observers
human beings and any other intelligent beings of similarly bounded capacities.
Under this notion of finite observer, the usability constraint is relevant to computer
scientists, engineers, entrepreneurs, and consumers, whose aims are designing,
building, selling, and using computers now or in the future. If we include among
observers real or hypothetical creatures at regions of spacetime that are physically
inaccessible to us, the usability constraint is also relevant to physicists whose aim is
investigating the computational power of physical systems anywhere in spacetime.

Another possibility is to construe ‘finite observer’ more broadly, to include any
functionally organized system whose behavior is influenced by a computation in an
appropriate way. If nervous systems are computing systems, then observers in this
extended sense are the bodies of organisms whose behavior is influenced by their own
neural computations. Under this broader notion of finite observer, the usability
constraint is relevant to scientists interested in the computational explanation of
cognition.

The constraints I will propose may be applied to observers in either sense. Given
that the special relationship between organisms and their nervous systems may
require additional caveats, however, I will focus the discussion on finite observers
understood under the former, more restricted construal.

As to what it means for a physical process to be usable by a finite observer, we need
a physical counterpart to the notion of effective procedure that grounds Mathemat-
ical CT. As per Section 1 of this chapter, a finite observer can follow an effective
procedure because an effective procedure is executable, automatic, uniform, and
reliable. By analogy, in order to be usable by a finite observer, a physical process
must be executable, automatic, uniform, and reliable. These requirements ought to be
qualified to take into account the differences between effective procedures and
physical processes more generally.

• An executable physical process is one that a finite observer can set in motion to
generate the values of a desired function until it generates a readable result. This
requires that the observer can discover which function is being computed, that
the process’s inputs and outputs10 be readable by the observer, and that the finite

9 The usability constraint is weaker than the verifiability constraint discussed, and rightly rejected, by
Shagrir and Pitowsky 2003, 90–1.

10 Do computations have to have inputs and outputs? The mathematical resources of computability
theory can be used to define “computations” that lack inputs, outputs, or both. But the computations that
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observer be able to construct the system that exhibits the process. An executable
physical process is also a process that, like an effective procedure, in principle
can be repeated if a finite observer wishes to run it again. Each of these aspects of
executability will be spelled out as a usability sub-constraint.

• An automatic physical process is one that runs without requiring intuitions,
ingenuity, invention, or guesses.

• A uniform physical process is one that doesn’t need to be redesigned or modified
for different inputs.

• Finally, a reliable physical process is one that generates results at least some of
the time and, when it does so, its results are correct. Reliability will be spelled out
further shortly.

These principles follow from the usability constraint by analogy with effective
procedures. While automaticity and uniformity are essentially the same as their
analogues for effective procedures, executability and reliability deserve to be expli-
cated further. I suggest six sub-constraints: 1) Readable inputs and outputs; 2)
process-independent rule: 3) repeatability; 4) settability; 5) physical constructibility;
6) reliability. The first five sub-constraints cash out executability; the sixth explicates
reliability.

2.1. Readable inputs and outputs

The inputs and outputs of a computation must be readable. A quantity readable in
this sense is one that can be measured to the desired degree of approximation, so as to
be used as output, and either prepared or discovered by a finite observer to the
desired degree of approximation, so as to be used as input. One important reason
why computing technology is paradigmatically digital is that strings of digits are the
only known inputs and outputs to be reliably readable without error.11,12

For an output to be readable in the intended sense, the computing system must
have a recognizable halting state. As a counterexample, consider a machine that
purportedly computes characteristic function f. Suppose that for any argument of f,
the machine is guaranteed to output its correct value at some future time. The
machine gives its output as a one or a zero on a display. Suppose further that at
any time, the value on the display may change from a one to a zero or vice versa and

are generally relevant for applications are computations with both inputs and outputs. Here I focus on the
ordinary case.

11 This point is discussed in more detail in Chapter 7, especially Section 3.4. Terminological note: I use
‘digit’ to denote a concrete instantiation of a letter from a finite alphabet.

12 Someone might ask, what about analog computers? Don’t they have real-valued quantities as inputs
and outputs? Actually, analog computers (in the sense of Pour-el 1974) are designed to yield the values of
functions of real variables, which is not quite the same as functions of real-valued quantities. What analog
computers do is useful for solving certain classes of equations. Their output is still a string of digits
representing a real number to some degree of approximation. Analog computers and their relation to
digital computers were discussed in Chapter 12.
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there is no known time after which the result of the computation is definitive. It may
seem that the output is readable, because one can see whether it’s a zero or a one. But
it is not readable in the relevant sense, because the user never knows whether she is
reading the desired value of f.

2.2. Process-independent rule

In a genuine computation, the problem being solved (or equivalently, the function
being computed) must be definable independently of the process of solving it
(computing it). Computation is interesting precisely because it finds the values of
functions defined independently of the processes that compute them. If we can’t find
out what function f is before we run process P, we are not going to learn anything
interesting about f, such as the values we desire to know for selected arguments, by
running P. Hence, we should not count P as a physical computation.

A classic example of Turing-uncomputable function is the halting function for
Turing machines. It is an explicitly defined function from strings of digits to strings
of digits: the function that returns ‘1’ if Turing machine t halts on input x, ‘0’
otherwise. Any putative machine that solves the halting problem by reliably gener-
ating (measurable) values of the function for any argument (of reasonable size)
satisfies this second sub-constraint (as well as the first sub-constraint, readable inputs
and outputs).13

2.3. Repeatability

For a physical process to count as a genuine computation, it must be in principle
repeatable by any competent observer who wishes to obtain its results.14 Of course,
the very same sequence of particular concrete events cannot occur twice. But physical
processes may be repeatable in the sense that the same sequence of states (as defined
by, say, a set of dynamical equations) can occur either within the same physical
system at different times or within two relevantly similar physical systems (e.g., two
systems satisfying the same equations). So for a physical process to count as a
computation, any competent observer must be able to set up a physical system that
undergoes the relevant sequence of state transitions.

Unrepeatable processes can only be observed by the lucky few who happen to be in
their presence. They cannot be used by others who might be interested in learning
from them. If no one is present, no one can learn from an unrepeatable process. If
someone is present but makes a mistake in recording a result, that mistake can never
be corrected. But again, computation matters to us (and to the logicians who created

13 The process-independent rule sub-constraint entails that modeling one physical system using
another is not enough for computing. For example, testing a model of an airplane in a wind tunnel does
not constitute a computation because there is no way to define the function being putatively computed
apart from performing the modeling experiments.

14 I owe this observation to Michael Rabin. I don’t know whether he agrees with the rationale I offer
for it.
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computability theory) because we can learn from it. If we can’t repeat a process when
we need it, it is not computation, and hence it is irrelevant to an adequate formula-
tion of Physical CT.
Like the other sub-constraints, repeatability must be taken with a grain of salt.

A computing system may be able to perform only one computation (or part thereof )
during its lifetime, but it should be possible to repeat the same computation on
another system. Repeatability applies during ordinary conditions of use, whatever
they may be. It does not entail that a computing system must work under all physical
conditions, or that computation must be instantaneous to allow for cases in which
users want a computation repeated immediately after it starts. Within ordinary
conditions of use, it must be possible to repeat a process, or else the process does
not count as a computation.15

2.4. Settability

An ordinary computing system is something that, within its limits, can compute any
value of one or more functions. Universal computers can compute any value of any
Turing-computable function until they run out of memory or time. For this to be the
case, normally a user sets the system to its initial state and feeds it different
arguments of the function being computed. When a new computation is needed,
the system is reset to its initial state, where it may be given either the same or a
different input. If the system is given the same input, it should yield—barring
malfunctions—the same output. Thus, resettability plus repeatability of the input
entails repeatability of the output. But resettability is not required for computation;
settability is enough for present purposes. If a system is not even settable, so that a
user cannot choose which value of the function is going to be generated in a given
case, then that system does not count as computing.

2.5. Physical constructibility

If a system cannot be physically constructed, it may count as performing notional
computations, but it is irrelevant to Physical CT. A system is physically constructible
in the present sense just in case the relevant physical materials can be arranged to
exhibit the relevant properties. The materials may well include entities that are very
large, small, or distant, so long as they can be made to exhibit the relevant properties.
Suppose that firing n pulses of energy into a sunspot reliably and repeatedly causes

f(n) pulses of radiation to be emitted, for some nontrivial f. The system that includes
the sunspots as well as the apparatus for emitting and receiving energy pulses counts

15 Repeatability may also be needed to establish reliability (see Section 2.6). One standard way to check
that a computer is functioning properly is to run the same computation more than once, making sure that
each time the results are the same. (Of course, repeatability does not rule out all malfunctions, since the
results of repeated computations could be the same but still wrong.)
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as physically constructible in the present sense. By the same token, every computing
technology exploits natural properties of existing materials.

Developing computing technology involves many engineering challenges. That is
why we don’t yet have (computationally nontrivial) DNA or quantum computers, in
spite of their apparent possibility in principle. The practical obstacles facing these
technologies may be surmountable. But suppose that a putative computing technol-
ogy involved obstacles that are practically insurmountable, for principled physical
reasons. For instance, a putative computer might require physically unattainable
speeds, more matter-energy than the universe contains, or parts smaller than the
smallest physical particles. Such a technology would not be relevant to our practical
interests. What can’t be physically constructed can’t refute Physical CT.

Someone might object as follows. Consider Turing machines, with their tape of
unbounded length. If the universe contains only a finite amount of matter-energy,
then tapes of unbounded length might not be physically constructible. Furthermore,
it seems unlikely that a finite user would ever be able to harness an infinite amount of
matter-energy. Most likely, the best we can do is to construct finite approximations of
Turing machines, such as our ordinary digital computers. But Turing machines are
the very machines in terms of which CT is formulated. If Turing’s idealization is
legitimate, someone might conclude, other idealizations are legitimate too. Since we
accept Turing machines as relevant to CT, we should also accept other machines,
regardless of whether they are physically constructible.

Arguments along these lines may be found in the literature on physical comput-
ability.16 They miss the way in which Turing machines are relevant to CT. All that
CT says is that any function that is intuitively computable is computable by some
Turing machine. Computability by Turing machines is the upper bound on what CT
deems intuitively computable. And acting as an upper bound does not require being
physically constructible.

Perhaps the objection against physical constructibility derives some allure from
the frequent practice of lumping CT and its converse together and calling their
conjunction “the Church-Turing thesis”. Such a lumping may be innocuous in
other contexts, but it is misleading here. If CT and its converse are lumped together,
Physical CT is taken to be the thesis that the physically computable functions are the
same as the Turing-computable ones. If we take this to be Physical CT and notice that
Turing machines may not be physically constructible, we might find nothing wrong
in considering whether other physically non-constructible machines extend the

16 See Button (2009, 775–8) for a recent discussion. According to Button, the argument just rehearsed
may be resisted if there is an appropriate notion of physical possibility according to which, roughly, for any
computation by a Turing machine, there is a possible world containing enough physical resources to
complete the computation. Although I side with Button against the argument in question, Button’s request
for a specialized notion of physical possibility, postulating enough physical resources for any Turing
machine computation, is both ontologically onerous and ad hoc. The considerations to follow in the main
text provide a simpler and more principled reply.
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range of the physically computable, thereby refuting Physical CT. This would be a
mistake. To see that it is, it helps to keep CT and its converse separate.
When we focus on what can be physically computed, we know that any machine

with a finite memory, such as our digital computers, computes less than Turing
machines (for lack of a literally unbounded tape). We may then ask whether there are
physical means to compute as much as or more than what Turing machines can
compute. But to surpass the power of Turing machines and falsify Physical CT, it is
not enough to show that some hypothetical machine is more powerful than Turing
machines. That’s easy and yet says nothing about what can be physically computed.
What we need to show is that some machine is both more powerful than Turing
machines and physically constructible. Given that Turing machines themselves are
unlikely to be physically constructible, this is quite a tall order.
In conclusion, neither CT nor its converse entail that Turing machines are

physically constructible, and this is as it should be. But anyone who maintains that
some physically computable functions are not Turing computable ought to show
that the systems that compute such functions are physically constructible.

2.6. Reliability

Demanding machines that never break down would be unrealistic, but machines that
never complete their computation successfully are not worth building. To be useful, a
computing system must operate correctly long enough to yield (correct) results at
least some of the time. For this to happen, the system’s components must not break
too often. In addition, the system’s design must be such that noise and other external
disturbances are generally insufficient to interfere with the results. The history of
electronic computation illustrates this point nicely.
When large electronic computers were initially proposed, some skeptics argued

that their vacuum tubes would break too often for the computers to be useful. The
skeptics were proven wrong, but this was no small feat. Even so, early electronic
computers broke often enough that they required full-time technicians devoted to
fixing them. Since then, computers have become remarkably reliable; this contributes
to making them useful and accessible to a large public. The case of early computers
shows that yielding a correct result even a low percentage of the time is compatible
with usefulness. But we should be wary of computer designs that are guaranteed to
break, self-destroy, or destroy the user (see next chapter) before the results of the
computation can be known. Those early skeptics had a point: if a machine is
unreliable as a matter of principle, it is not worth building.

2.7. Conclusions

This list of constraints should be enough to illustrate the kind of property that is
required for something to be useful for physical computing, and hence to be relevant
to Physical CT. The constraints are not meant to be exhaustive; the list is open ended.
For what makes a system useful for computing depends in part on how the physical
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world is, and that is not a matter for philosophers to settle. The important point is
that we are interested in computation because of what we (finite observers) can learn
from it. If we can’t learn anything from a putative computation, then that process is
not relevant to Physical CT.

Another important point is that there is a close connection between the usability
constraints and the mechanistic account of computation (Chapter 7). According to
the mechanistic account, a computation is a process performed by a functional
mechanism that manipulates appropriate vehicles in accordance with a rule defined
over the vehicles (and possibly internal states). The processes performed by com-
puting mechanisms satisfy the first four usability sub-constraints. For computing
mechanisms follow a rule defined over the vehicles they manipulate; that means there
is a process-independent rule (Sub-constraint 2). They must also have readable
inputs and outputs (Sub-constraint 1) and their processes must be repeatable (Sub-
constraint 3) and settable (Sub-constraint 4), or else they would fail to fulfill their
function. In the other direction, any system whose processes satisfy the first four
usability sub-constraints is a notional computing mechanism or at least may function
as such. That is, it is a notional system that may be used to perform a computational
function.

If a functional mechanism is also physically constructible (Sub-constraint 5) and
reliable (Sub-constraint 6), then it is usable in practice to perform computations. And
if a system is usable in practice to perform computations, it is definitely either a
computing mechanism or something that functions as such.

3. The Bold Physical Church-Turing Thesis

To obtain a physical version of CT that we can evaluate, we need to do two things.
First, we need to replace Mathematical CT’s appeal to effective procedures with an
appeal to physical processes. Second, we need this appeal to physical processes to be
relevant to the epistemological notion of computation—the generation of values of
functions over strings, the solution of mathematical problems, etc.—that motivates
CT in the first place.

The simplest starting point is the following:

Bold Physical CT: Any physical process is Turing-computable.

This is not very precise, but we need to start here because in the literature, Physical
CT is often formulated in roughly these terms. Bold Physical CT ranges over
all physical processes—implicitly, it counts all physical processes as computations,
or at least as something that can be described exactly (not just approximately) by
a computation. This is reminiscent of pancomputationalism—the view that every
physical system is computational. In Chapter 4, I argued that pancomputationalism
is mostly due to a conflation between computational modeling and computational

256 THE BOLD PHYSICAL CHURCH-TURING THESIS



explanation. I will now argue that Bold Physical CT suffers from closely related
shortcomings.
Sometimes, versions of (Bold) Physical CT are formulated that are more clear and

precise, and hence more clearly evaluable. The following is a list of representative
formulations:

(A) Any physical process can be simulated by some Turing machine (e.g., Deutsch
1985; Wolfram 1985; Pitowsky 2002).

(B) Any function over denumerable domains (such as the natural numbers) that
is computable by an idealized “computing machine” that manipulates arbi-
trary real-valued quantities (as defined by Blum et al. 1998) is Turing-
computable.17

(C) Any system of equations describing a physical system gives rise to computable
solutions (cf. Earman 1986; Pour-El 1999). A solution is said to be computable
just in case given computable real numbers as initial conditions, it returns
computable real numbers as values. A real number is said to be computable
just in case there is a Turing machine whose output effectively approximates
it.

(D) For any physical system S and observable W, there is a Turing-computable
function f: N ! N such that for all t2N, f(t)=W(t) (Pitowsky 1990).

Each of (A)–(D) deserves to be discussed in detail. Here I will limit my discussion
to a few general points to the effect that none of these formulations are adequate
physical analogues of Mathematical CT. I will argue that Bold Physical CT is both too
broad in its scope and too indifferent to epistemological considerations to be relevant
to the notion of computability that motivates CT. In other words, Bold Physical CT
fails to satisfy the usability constraint defended in Section 2. As a consequence, Bold
Physical CT needs to be replaced by a more modest formulation of Physical CT,
which pertains to what can be computed by physical means in a restricted sense that
encompasses more than what can be accomplished by following effective procedures
but does not include all physical processes.

17 Thesis (B) is a special case. Unlike (A), (C), and (D), it does not range over all physical processes but
is restricted to a certain specific “computations”. Blum, Cucker, Shub and Smale (1998) set up a
mathematical theory of “computation” over real-valued quantities, which they see as a fruitful extension
of ordinary computability theory. They define idealized “computing machines” that perform addition,
subtraction, multiplication, division, and equality testing as primitive operations on arbitrary real-valued
quantities. They easily prove that such “machines” can “compute” all sets defined over denumerable
domains by encoding their characteristic function as a real-valued constant (Blum et al. 1998, 405). Of
course, most such sets are not Turing-computable; thus, (B) is far from true. Blum et al. do not discuss this
result as a refutation of Physical CT. Nevertheless, Blum et al.’s result is often mentioned by critics of
Physical CT, even though, as I will argue, Blum et al.’s “computations” are not computations in the
epistemological sense that motivates CT and so should not be seen as counterexamples to Physical CT
properly so called. Because of this, it is appropriate to include (B) as a version of Bold Physical CT. More on
this later in this chapter.
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3.1. Lack of confluence

One of the original arguments for Mathematical CT is that seemingly disparate
notions (Turing machines, general recursive functions, etc.) turn out to be exten-
sionally equivalent. This confluence is a major strength of Mathematical CT.

By contrast, different formulations of Bold Physical CT appear to be logically
independent of one another. They appeal to disparate notions whose mutual con-
nections are less than transparent. This state of affairs demonstrates, at the very least,
that clarity and consensus on Physical CT are lacking. It also raises doubts on the
widespread practice of formulating putative physical formulations of CT without
introducing constraints on what counts as a relevant physical process. Should we
accept any of these formulations as our physical formulation of CT? Which one? On
what basis should we choose one over the others? If we are to choose one, presumably
we need arguments to rule out the others as irrelevant (or less likely, to show that the
others reduce to our preferred one). This already shows that before we settle on a
formulation of Physical CT, there is work to do.

3.2. Unconstrained appeals to real-valued quantities

Many current physical theories assume that nature contains real-valued quantities
that vary along a continuum. These may include the velocity of objects, the coord-
inates that define the position of their center of gravity in the spacetime manifold,
and more. If these physical theories are correct, then many properties of many
entities take arbitrary real numbers as their values. Therefore, systems of physical
equations, whose simulations, solutions, or observables are appealed to, respectively,
by (A), (C), and (D), involve arbitrary real numbers. In addition, (B) explicitly
involves arbitrary real-valued quantities. So typical versions of Bold Physical CT
involve, explicitly or implicitly, arbitrary real numbers.

But most real numbers in any continuous interval are Turing-uncomputable. In
fact, there are only countably many Turing-computable numbers, while any con-
tinuous interval contains uncountably many real numbers. Thus, the probability that
a randomly selected real-valued quantity is Turing-computable is zero. Therefore, if
our physical theories are correct, most transformations of the relevant physical
properties are transformations of Turing-uncomputable quantities into one another.

For instance, an object’s change of speed, or even its simple change of spatial
location may be transformations of one Turing-uncomputable real-valued quantity
into another. A transformation of one Turing-uncomputable value into another
Turing-uncomputable value is certainly a Turing-uncomputable operation, for the
simple reason that there is not even a Turing-computable way of writing down
the first value.18 Therefore, it would seem that given many of our physical theories,

18 Unless the first uncomputable value is already given and there is a computable operation returning
the second value from the first. For example, if x is a Turing-uncomputable numeral written on an infinite
tape, a Turing machine can easily calculate, say, 1+x.

258 THE BOLD PHYSICAL CHURCH-TURING THESIS



the physical world is chock-full of operations that outstrip the power of Turing
machines. If this is correct, it falsifies Bold Physical CT.
But there is no reason to believe that a finite observer can use the Turing-

uncomputable operations just mentioned to compute in the epistemological sense
that motivates CT in the first place—to solve mathematical problems, to generate the
values of desired functions for desired arguments. While Blum et al. (1998) may find
it useful to define notional “machines” that manipulate arbitrary real-valued quan-
tities, this kind of manipulation cannot be exploited by a finite observer.
In order to measure a real-valued quantity exactly at an arbitrary time, or even in

order to measure the exact value of an arbitrary digit in the expansion of a real-valued
quantity, an observer needs unbounded precision in measurement. Since the value of
the variable may change over time, the observer also needs unbounded precision in
the timing of the measurement. There is no reason to believe that such unbounded
precision is available to a finite observer. Furthermore, there is no reason to believe
that a finite observer can discover the exact value of a real-valued quantity, either
computable or not, by means other than measurement. Finally, preparing a real-
valued quantity with an arbitrary exact value also requires unbounded precision.
Again, there is no reason to believe that unbounded precision in preparation is
available to a finite observer.
As far as we know, finite observers are limited to preparing and measuring physical

quantities to a finite degree of approximation. Thus, manipulations of arbitrary real-
valued quantities should not count as computation—at least until someone shows
how a finite observer can exploit them in practice. Bold Physical CT, which is falsified
by such manipulations, is not interestingly analogous to Mathematical CT.19

3.3. Falsification by Irrelevant Counterexamples

Bold Physical CT encompasses all physical processes regardless of whether they can
be used by a finite observer to generate the values of a function. As a consequence,
Bold Physical CT is liable to be refuted by irrelevant counterexamples. By an
‘irrelevant counterexample’, I mean a process that is either obviously not physically
implementable or useless for generating the values of a desired function. I will now
argue that by encompassing all physical processes and thereby exposing itself to
irrelevant counterexamples, Bold Physical CT abandons the epistemological notion
of computation that motivated CT in the first place. Thus, it is not a good physical
analogue of Mathematical CT.

19 The point just made does not impugn analog computation in the standard sense of Pour-El (1974).
Analog computation does not manipulate exact values of arbitrary real-valued quantities but rather
continuous variables. Although a continuous variable may be assumed to take any real value within a
relevant interval, a successful concrete analog computation requires only the measurement of real variables
to some degree of approximation. No exact values of arbitrary real-valued quantities are exploited by an
analog computation, so analog computation does not falsify Bold Physical CT (cf. Rubel 1989).
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Specifically, formulations (A)-(D) would be falsified by a sequence generated by a
random (i.e., nondeterministic) physical process. Consider a discrete random pro-
cess, such as the decay of atoms from a radioactive sample, over an infinite period of
time. Its output at regular time intervals is a string of digits—‘0’ if no atoms decay
during a time interval, ‘1’ if one or more atoms decay during a time interval. A simple
cardinality consideration shows that, with probability one, the sequence produced by
our random process is not Turing-computable.

There are uncountably many infinite strings of digits. (Even more strongly, there
are uncountably many infinite strings of digits with any given limiting frequency of
‘0’s and ‘1’s.) But there are only countably many Turing-computable infinite strings.
Therefore, assuming that each infinite string (or each infinite string with a certain
limiting frequency) has the same probability of occurring as a result of a random
process, the probability that a random process would generate a Turing-computable
string of digits is zero, whereas the probability that the string of digits is not Turing-
computable is one.20 Thus, simply by using a random process to generate a string,
there is a sense in which we would have physical means that go beyond what is
Turing-computable. As Alan Turing (1950, 438–9) pointed out, a machine with a
“random element” can do “more” than a Turing machine.

Someone might be tempted to bite the bullet and conclude that if there are
genuinely random processes, then Physical CT is false (e.g., Bowie 1973, 74; Calude
2005, 10). But there are several reasons to deny that a genuine random process P
should count as a computation.

First, there is no process-independent rule (sub-constraint 2). There is no way to
define the function f: N ! {0,1} whose values are being generated by P without
reference to P itself. Of course, f exists in the set-theoretic sense of a set of pairs whose
output values P happens to emit. But in this context, defining f means actually
specifying the relationship that obtains between the arguments and values of f, as
we do when we define, for instance, the halting function for Turing machines. If P is
genuinely random, there is no way to specify f without generating the values of f by
running P. Therefore, we should not count Bold Physical CT, which is falsified by P’s
existence, as a genuine version of CT.21

20 Abbott et al. (2012) prove a stronger result: there are quantum random “number” generators that
generate binary sequences that are not Turing-computable and, even more strongly, bi-immune, where a
sequence is bi-immune just in case none of its infinite subsequences is Turing-computable.

21 Determining which f is such that its values are generated by a random process P is not only
impossible to do ahead of running P. It also contains two other elements of arbitrariness that constitute
disanalogies with genuine computation. First, in the case of P, we can define indefinitely many f ’s
depending merely on which time intervals we consider when observing P’s outputs. We could count P’s
outputs per second, or millisecond, or year. Each temporal criterion will give rise to a different f. Second, in
the case of P, we can define indefinitely many f ’s depending merely on which time interval we decide to
count as the first one. By contrast, genuine computing systems come with a univocal criterion for what
counts as the function being computed and the beginning of the computation. For instance, in the case of
Turing machines, the process begins with the machine acting on a designated first square of the tape while
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A second reason against counting random processes as computations is that they
are not repeatable, whereas computations must be repeatable (sub-constraint 3).
A third reason is that a random process is not settable. Ordinary computing

systems can be set so as to compute the value of a function for a desired argument
(sub-constraint 4). But a “user” of a random process P cannot select the value of f she
wishes P to generate. If she wishes to obtain the nth value of f, and assuming the P has
not generated such a value yet, all she can do is let P take its course and wait until the
nth value is generated. If this won’t happen until a million years from now, that’s too
bad.
Someone might object that the case of a random process that takes too long to be

useful is analogous to ordinary unfeasible computation. But there is an important
disanalogy. The reason that ordinary computations are unfeasible is that they take
too many steps for our current technology. Although some computations require so
many steps that they will always be unfeasible, that is beside the point. For in general,
as long as we shorten each computational step, more and more (ordinary) compu-
tations become feasible. Not so in the case of random processes. Since there is no way
to repeat them, a fortiori there is no way to repeat them using faster technology. If the
function f whose values are produced by our random process is defined to take one
year per output digit, it will take one thousand years to obtain the thousandth value
of f. We can’t do anything to obtain faster results.
In fact, the objection from lack of settability does not depend on how long it takes

to generate a future value. Suppose a user wishes to obtain a value that P produced 24
hours ago and no one recorded. There is just no way she can set P (or any other
process, for that matter) to generate that value.
The above remarks converge on the conclusion that genuine random processes are

not computations. Unlike computations properly so called, random processes cannot
be used to generate the desired values of a function or solve the desired instances of a
general problem. Random processes can be exploited by a computation, of course—
there are important computational techniques that rely on random or pseudo-
random choices at some stages of a computation.22 But no computational technique
can amount to a mere sequence of random choices. So any thesis, such as Bold
Physical CT, that would be falsified by a sequence generated by a random process is
too broad in scope to capture the notion of physical computability—the physical
analogue of computability by effective procedure. Contrary to what some authors
seem to assume, Bold Physical CT is not the physical analogue of Mathematical CT.

in a designated initial state; the function being computed is the one whose arguments and values are
written on the tape, respectively, at the beginning and at the end of the process.

22 If some quantum random sequences were random in the sense of algorithmic information theory,
they may even raise the probability of obtaining correct solutions from computational techniques that rely
on random choices (Calude 2005, 10).
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4. From the Bold to the Modest Physical
Church-Turing Thesis

In order to put the debate over Physical CT on more fertile ground, we need to
distinguish the issue of physical computability proper—the issue that pertains to the
physical analogue of Mathematical CT—from other issues that connect computabil-
ity and physics. Many questions about the relationship between physical processes
and computability deserve to be asked.

What can be computationally approximated to what degree under what circum-
stances (cf. Chapter 4)? What can be accomplished by performing certain operations
over arbitrary real-valued quantities? Which systems of equations describing a
physical system give rise to computable solutions? This is presumably what (A),
(B), and (C), respectively, are after. These questions are interesting and deserve to be
investigated. (I don’t see that (D) is formulated well enough to address any interest-
ing question.) Nevertheless, these questions do not properly belong in discussions of
CT, because they are different from the question of what can be physically computed,
which is the question that motivates CT in the first place.

In the end, so-called Bold Physical CT is a cluster of more or less interesting theses
relating computation and physics, none of which is a version of CT properly so
called. To find the physical analogue of Mathematical CT, we need to moderate our
ambition. That’s what the next chapter is about.
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16

The Modest Physical
Church-Turing Thesis

In the previous chapter, I introduced the Church-Turing thesis (CT) and distin-
guished between its Mathematical version, which is supported by the original
arguments or CT, and its Physical version, which is about physical processes in
general. I also introduced a usability constraint on physical computation: in order to
count as a computation, a physical process must be usable by a finite observer to
generate the values of a function defined over a denumerable domain. Finally,
I argued that Bold Physical CT, which says that any physical process is Turing-
computable, is inadequate as a physical analogue of Mathematical CT, precisely
because it encompasses processes that fail to satisfy the usability constraint.
In this chapter, I will argue that the correct physical analogue of Mathematical CT

is Modest Physical CT, which is grounded in a notion of physical computation based
on the usability constraint I introduced in the previous chapter. In other words,
genuine physical computation must be usable. I will also argue that current proposals
for machines that falsify Physical CT are still far from doing so because they have not
been shown to satisfy this usability constraint. I will conclude that Modest Physical
CT is the correct physical formulation of CT and is plausible in light of current
evidence.
Of course, many others have previously suggested or assumed that for a physical

process to count as a genuine computation, it must be usable. But previous efforts in
this direction have not clarified what ‘usable’ means and have failed to persuade the
many authors who remain largely indifferent to considerations of usability. In light of
this, here I build on the notion of usability, articulated in terms of explicit sub-
constraints, that I defended in the previous chapter. These sub-constraints delimit the
scope of the version of Physical CT that deserves its name, i.e., the modest version.

1. The Modest Physical Church-Turing Thesis

If Physical CT is to be grounded on the epistemological notion of computation,
thereby avoiding the pitfalls of Bold Physical CT, it needs to cover less than what can
be physically done. What Physical CT needs to cover is any process of genuine



physical computation, where physical computation is explicated in terms of our
usability constraint and its sub-constraints (Chapter 15, Section 2).

This proposal turns Physical CT into the following:

Modest Physical CT: Any function that is physically computable is Turing-
computable.

Modest Physical CT asserts that every function defined over a denumerable domain
that can be physically computed—every usable transformation of input strings into
output strings in accordance with a process-independent rule defined over the
strings—is Turing-computable.

Modest Physical CT has two desirable features. First, it is relevantly analogous to
Mathematical CT, because it is faithful to the epistemological concerns that motiv-
ated CT in the first place. In other words, Modest Physical CT has to do with physical
processes that can be used by a finite observer to generate the values of a desired
function. The second desirable feature is that Modest Physical CT is open to
empirical refutation.1

Prototypical examples of physical computation are the processes of ordinary
digital computers and their components, including digital circuits. Such processes
can be exhaustively described by effective procedures, which are already covered by
Mathematical CT. Mathematical CT says that any function computable by an
effective procedure is Turing-computable. Thus, any physical process such as an
ordinary digital computation, which follows an effective procedure, is Turing-
computable.

But physical computation in the present sense is a broader notion than computa-
tion by effective procedure. A process may count as a physical computation even if
there is no effective procedure for describing the process, perhaps because there are
no finite instantaneous descriptions of the internal states that constitute the process
or no way to finitely and exactly specify the transition from one instantaneous
description to the next. Many neural networks are like that (Chapter 13). Thus,
Modest Physical CT, which is formulated in terms of physical computability, is

1 By contrast, consider the alternative approach to Physical CT that originates with Robin Gandy (1980)
and has been developed primarily by Wilfried Sieg (2002, 2006b, 2008). According to Gandy and Sieg,
Physical CT pertains to what can be “computed” by certain “discrete dynamical systems”. Gandy and Sieg
define their discrete dynamical systems in terms of a set of assumptions. Specifically, they postulate
finiteness and locality conditions, such as discrete states, discrete dynamics, a lower bound on the size of
atomic components, and an upper bound on signal propagation. Gandy and Sieg prove that anything
“computable” by any of their discrete dynamical systems is computable by Turing machines. Some of their
assumptions—such as a lower bound on the size of atomic components and an upper bound on signal
propagation—are empirically well-motivated. But other assumptions—such as discreteness of states and
discreteness of dynamics—are not empirically justified. Thus, there remains the empirical question of
whether there are physical systems that violate Gandy and Sieg’s assumptions and yet are computationally
more powerful than Turing machines. This is the real question of interest here, and it is not settled by
Gandy and Sieg’s work. This is probably why Gandy and Sieg’s work has had relatively little impact on
discussions of physical computability. For related discussions of Gandy and Sieg’s approach, see Shagrir
and Pitowsky 2003 and Copeland and Shagrir 2007.
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stronger than Mathematical CT, which is formulated in terms of computability by
effective procedure. In addition to physical processes that follow effective procedures,
Modest Physical CT may cover processes that exploit properties of spacetime (as in
relativistic computing), continuous dynamical processes (as in analog computers
and certain kinds of neural networks), and quantum processes (as in quantum
computing).
Since Modest Physical CT is restricted by epistemologically relevant criteria, it

doesn’t raise the worries associated with Bold Physical CT—namely, that it’s too easy
to falsify and irrelevant to the epistemological notion of computability that motivates
CT. It also allows us to shed light on why most computability theorists and computer
scientists believe in Physical CT. To illustrate how to assess Modest Physical CT and
why it is plausible, I will briefly discuss some purported counterexamples.

2. Hypercomputation: Genuine and Spurious

The term hypercomputer is often used for any system that yields the values of a
Turing-uncomputable function. If what counts as yielding the values of a function is
left unspecified, any of the systems discussed in Section 3 of Chapter 15, such as
systems with genuinely random outputs and systems that manipulate arbitrary real-
valued quantities, would count as hypercomputers. But in discussing Bold Physical
CT, we saw that yielding the values of a function that is Turing-uncomputable,
without further constraints, is not enough for genuine physical computation.
By analogy with the distinction between Bold Physical CT and Modest Physical

CT, let’s distinguish between a weak and a strong notion of hypercomputation by
distinguishing between genuine and spurious hypercomputers.
A spurious hypercomputer is a physical system that fails to satisfy at least one of

the first four constraints on physical computation (Chapter 15, Section 2). Examples
include processes whose inputs or outputs are arbitrary real-valued quantities (which
are not readable without error) and genuine random processes (which have no rule
characterizing the inputs and outputs independently of the process, and are neither
repeatable nor settable). These putative hypercomputers are spurious because they
cannot be used by an observer to compute arbitrary values of an independently
defined function on an input chosen by the user, as ordinary computing systems can
(given enough time and space). Since spurious hypercomputers are not computing
systems, they are irrelevant to Modest Physical CT.
A genuine hypercomputer is a physical system that satisfies at least the first four

constraints on physical computation. It has readable inputs and outputs, there is a
rule characterizing its input-output properties that may be defined independently of
the process itself, and its processes are repeatable and settable. There remains the
question of whether any genuine hypercomputers are physically constructible and
reliable. If they are, they refute Modest Physical CT.
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Many schemes for putative hypercomputers have been proposed. In some cases, it
is obvious that they are not physically constructible. For instance, infinitely acceler-
ating Turing machines (Copeland 2002a) are Turing machines that perform each
computational operation twice as quickly as the previous one. As a consequence,
infinitely accelerating Turing machines complete an infinite number of operations
(a supertask) within twice the time it takes them to perform their first operation. This
allows infinitely accelerating Turing machines to compute functions, such as the
halting function, that are not Turing-computable. But infinitely accelerating Turing
machines are usually discussed as notional entities, without suggesting that they can
be constructed. Purely notional systems, of course, do not falsify Modest Physical
CT. To do that, a system must satisfy at least the fifth and sixth constraints on
physical computation: it must be physically constructible and it must operate reliably.

One way to construct something like an infinitely accelerating Turing machine
would be to make a computing machine that, after performing some computational
operations, builds a smaller and faster copy of itself (Davies 2001). The smaller and
faster copy will also perform some operations and then build a faster and smaller
copy, and so on. Given appropriate assumptions, the resulting series of infinitely
shrinking machines will be able to complete an infinite number of computational
operations within a finite time, thereby surpassing the power of Turing machines.
While infinitely shrinking machines appear to be consistent with Newtonian mech-
anics, Davies (2001, 672) points out that the atomic and quantum mechanical nature
of matter in our universe makes infinitely shrinking machines physically impossible.

In recent years, several designs for hypercomputation have been proposed. If
genuine hypercomputation turns out to be physically constructible and reliable,
Modest Physical CT would be refuted.

3. Relativistic Hypercomputers

One of the best-known proposals for a hypercomputer is due to Mark Hogarth (1994,
2004), who developed an idea of Itamar Pitowsky (1990; see also Etesi and Németi
2002). I will now briefly discuss Hogarth’s proposal to illustrate what is required for a
genuine hypercomputer to falsify Modest Physical CT.

Hogarth’s relativistic hypercomputers exploit the properties of a special kind of
spacetime, called Malament-Hogarth spacetime, which is physically possible at least
in the sense of constituting a solution to Einstein’s field equations for General
Relativity. Malament-Hogarth spacetimes contain what may be called spacetime
edges—regions containing an infinite time-like trajectory º that can be circumvented
by a finite time-like trajectory g. In other words, º and g have a common origin—here
called a bifurcation—and there is a spacetime point p on g such that º, even though it
is infinite, lies entirely in p’s chronological past.

In addition to the operations performed by Turing machines (TMs), relativistic
hypercomputers exploit five further primitive operations, described by the following
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instructions: (1) Position yourself at a bifurcation (where both º and g start); (2)
Launch a TM along º while you remain on g; (3) Pass the edge (i.e., go to point p, by
which time g has circumvented º); (4) Send a signal (from º to g); and (5) Receive a
signal (coming from º).
With the resources offered by relativistic hypercomputers, we can define a pro-

cedure for solving the halting problem for Turing machines. The halting problem
asks, given a TM t and an input x, does t halt on x? Exploiting the power of relativistic
hypercomputers, a procedure for solving the halting problem can be defined as
follows:

1. Prepare t with input x and add to t’s instructions the instruction to send a signal
(from º to g) upon halting.

2. Position yourself at a bifurcation.
3. Launch t along º while you remain on g.
4. Pass the edge while receiving a signal coming from º, if there is one.

In the finite time it takes an observer to travel through g, this procedure determines
whether t halts on x. This is because by the time g circumvents º, which it will do by
the definition of Malament-Hogarth spacetime, the observer traveling through g will
receive a signal if and only if t halts on x. Therefore, the above procedure solves the
halting problem for TMs.2

Are relativistic hypercomputers genuine hypercomputers? They are if they satisfy
Sub-constraints 1–4. Since they operate on strings of digits, they appear to satisfy
Sub-constraint 1 (readable inputs and outputs). This appearance hides the difficulty
in transmitting t’s output from º to g in such a way that the receiver can read it. This
is a serious challenge, which I will discuss later under the rubric of reliability.
Since the functions relativistic hypercomputers allegedly compute (e.g., the halting
function) are defined independently of their activity, they satisfy Sub-constraint 2
(process-independent rule). As Hogarth initially defines them, however, relativistic
hypercomputers fail to satisfy Sub-constraints 3 (repeatability). This is because
relativistic hypercomputers, as they are usually defined, have access to at most
one spacetime edge. If there is only one accessible edge, a relativistic hypercom-
puter may be run only once, on one input, in the history of the universe. This
violates repeatability. This point is generally ignored in the literature on relativistic
hypercomputers.
Hogarth also defines Malament-Hogarth spacetimes that contain an infinite num-

ber of edges. For our purposes, we don’t need an actual infinity of edges; we only need
a large number. If they are accessible one after the other, each of them may be
exploited to run a distinct computation. That would give us enough resources to
repeat computations or compute different values of the same function, thereby

2 For a more detailed treatment of what relativistic hypercomputers can compute under various
conditions, see Welch 2008.
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satisfying Sub-constraint 3.3 As we shall see, however, the hypothesis that one space-
time edge can be exploited successfully by a relativistic hypercomputer is fantastic
enough.

As to settability, some components of a relativistic hypercomputer get lost in the
course of the computation—they are never recovered after they are launched along º.
So relativistic hypercomputers are not resettable. But at least they are settable,
because each TM can be set to compute the value of a desired function for a desired
input. Thus, relativistic hypercomputers satisfy Sub-onstraint 4 (Settability).

Given the above discussion, we may tentatively conclude that relativistic hyper-
computers satisfy Sub-onstraints 1–4, which makes them genuine hypercomputers. It
remains to be seen whether they falsify Modest Physical CT. For that, they must be
physically constructible and reliable.

Constructing a relativistic hypercomputer is highly nontrivial. The first question is
whether our spacetime is Malament-Hogarth; the answer is currently unknown. An
example of a region possessing the Malament-Hogarth property is the region sur-
rounding a huge, slowly rotating black hole; there is evidence that our universe
contains such regions (Etesi and Németi 2002). If the universe contains no Mala-
ment-Hogarth regions, Hogarth’s relativistic computers are not physically construc-
tible. But even if there are Malament-Hogarth regions in our universe, there remain
formidable obstacles.

In order to exploit the special properties of Malament-Hogarth spacetimes, rela-
tivistic hypercomputers need to be started at a bifurcation. So, for a user to do
anything with a relativistic hypercomputer, there must be bifurcations within regions
of spacetime that she can access. Otherwise, if all bifurcations are out of reach, she
cannot exploit them to run relativistic hypercomputers. But notice that the huge,
rotating black hole that is closest to us, which is the basis for Etesi and Németi’s
proposed implementation of a relativistic hypercomputer, is presumably out of our
reach as well as the reach of our descendants.4

Additionally, in order to work with a relativistic hypercomputer, a user needs to
know that she is at a bifurcation. She must also know how to launch a TM along the
infinite trajectory º that starts at the bifurcation while proceeding along the finite
trajectory g. Finally, she must know when she has circumvented º. Therefore, for
relativistic hypercomputers to be constructible, it must be possible to discover when
one is in the presence of a bifurcation, how to launch machines along º, how to

3 Repeatability is not the purpose for which Hogarth introduces his spacetimes with infinitely many
edges; I’m putting them to a different use. Cf. Shagrir and Pitowsky’s discussion of their Objection #3,
which they eventually handle in the same way (2003, 91–3).

4 Someone may object that the interest in Modest Physical CT is simply the question of what
computations the physical laws allow; whether the needed resources are too far away is irrelevant. But
this is precisely what I’ve been arguing against. If needed resources are too far away, a finite observer (of
finiteness comparable to ours) cannot use them. Any scheme requiring resources that are too far away
violates the usability constraint and thus fails to refute Modest Physical CT.

268 THE MODEST PHYSICAL CHURCH-TURING THESIS



proceed along g, and when one has circumvented º. I’ve never seen any mention of
these issues in the current literature on relativistic hypercomputation. Yet an obser-
ver who happens to travel on g while a Turing machine happens to travel on º

performs a computation only if the observer can deliberately use this set up to learn
the desired values of a function.
Another difficulty is that in order to run their TM for an infinite amount of time,

which they may need to do, relativistic hypercomputers need an unbounded memory
store. The reason is that in some cases, the hypercomputer gives a correct output just
in case its TM does not halt; to perform its infinitely many steps correctly, the TM
needs an unbounded memory in which to store an unbounded number of digits
(cf. Shagrir and Pitowsky 2003, 88–90). Because of this, a relativistic hypercomputer
demands more than a Turing machine, which requires only a finite amount of
memory to produce any given correct output. (Plus, recall from Chapter 15,
Section 2 that according to Modest Physical CT, Turing machines act as the upper
bound to what is physically computable, which does not require that they be
physically constructible.)
An unbounded memory may require an unbounded amount of matter-energy.

Recent evidence suggests that the universe is infinite not only in space and time, but
also in matter-energy. Thus, letting our relativistic hypercomputer spread over the
universe, and assuming that the universe’s expansion does not keep accelerating
forever, there may be enough matter-energy for a relativistic hypercomputer (Németi
and Dávid 2006). But it’s not clear how spreading a relativistic hypercomputer over
the entire universe can be reconciled with its need to travel through a specific
time-like trajectory º. If we are unlucky and there is no way to harness an unbounded
amount of matter-energy, there might be other ways to keep a relativistic hyper-
computer running; for one thing, recent developments in quantum computing
suggest that storing one digit does not require a fixed amount of matter-energy
(Németi and Dávid 2006). In any case, building an unbounded memory is a daunting
challenge.
Yet more exotic obstacles to the physical constructibility of relativistic hypercom-

puters involve the evaporation of black holes and the eventual decay of matter, both
of which are possible within a finite amount of time according to some current
physical theories. Either of these possibilities might prevent the completion of a
putative relativistic hypercomputation. I cannot do justice to these issues here. Suffice
it to say that the solutions proposed, such as sending matter into a black hole to
prevent its evaporation (Németi and Dávid 2006), have not been worked out in great
detail. If all of these practical obstacles could be overcome, and if our other needs
were fulfilled—two very big ifs—then relativistic hypercomputers would be physic-
ally constructible.
The final constraint is reliability. One serious problem is the successful decoding of

the signal, coming from º, that carries the result of the computation. It is difficult to
ensure that the signal is distinguishable from other possible signals coming from
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outer space. In addition, the signal is subject to amplification. If the signal has
infinitely long duration, upon amplification it will destroy the receiving agent
(Earman and Norton 1993). In such a case, the completion of the computation
leads to the user’s destruction. If the signal is finite, under Etesi and Németi’s
proposal, gravitational forces would shorten the signal: as the receiver approaches
the edge, the signal tends to zero length. Therefore, decoding the signal will require
time measurements of unbounded precision (Etesi and Németi 2002). Since such
measurements are unlikely to be available and appear to violate quantum mechanical
constraints, Németi and Dávid (2006) and Andréka, Németi, and Németi (2009,
508–9) propose alternative solutions to the reception problem. One solution involves
sending a messenger from º towards g; roughly speaking, although the messenger
cannot reach g, it can come close enough to transmit the signal in a decodable form
without damaging the receiver. None of these solutions appear especially easy to
implement.

Even if the problem of decoding the signal can somehow be solved, two more
problems remain. First, it is unlikely that a machine can operate for an infinite
amount of time without breaking down and eventually being unable to repair itself.5

Second, as Pitowsky (2007) argues, the singularities involved in relativistic hyper-
computation (such as electromagnetic waves whose energies are too high to be
described by known laws of physics) may indicate a limitation of General Relativity
rather than the physical possibility of hypercomputation.

Relativistic hypercomputers are fascinating. They are a fruitful contribution to the
debate on the foundations of physics. But at the moment, they are not even close to
being technologically practical. It’s not clear that relativistic hypercomputers are
physically possible in any robust sense, and in any case it is extremely unlikely that
relativistic hypercomputers will ever be built and used successfully. So for now and
the foreseeable future, relativistic hypercomputers do not falsify Modest Physical CT.

4. Other Challenges to Modest Physical CT

I will not discuss all hypercomputer designs proposed in the literature in detail, but
I will briefly mention two other widely discussed examples.

Neural networks (Chapter 13) have sometimes been proposed as computing
systems that may go beyond Turing-computability.6 This opinion is unwarranted.
During the last couple of decades, there has been considerable progress in the study
of the computational and complexity properties of large classes of neural networks.

5 Button has independently argued that a relativistic hypercomputer will malfunction with probability 1
and concludes that this is enough to make it useless (2009, 779).

6 Cf.: ‘connectionist models . . . may possibly even challenge the strong construal of Church’s Thesis as
the claim that the class of well-defined computations is exhausted by those of Turing machines’
(Smolensky 1988, 3). See also Horgan 1997, 25.
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The relevant systems have digital inputs and outputs (so as to satisfy Constraint 1)
but may have, and typically do have, non-digital internal processes. If we restrict our
attention to classes of connectionist systems that contain all systems with current or
foreseeable practical applications, the main results are the following. Feedforward
networks with finitely many processing units are computationally equivalent to
Boolean circuits with finitely many gates. Recurrent networks with finitely many
units are equivalent to finite state automata. Networks with unbounded tapes or with
an unbounded number of units are equivalent to Turing machines.7

Neural networks more powerful than Turing machines may be defined, however,
by exploiting the expressive power of real numbers. The best-known networks of this
kind are Analog Recurrent Neural Networks (ARNNs) (Siegelmann 1999). ARNNs
should not be confused with analog computers in the traditional sense (Chapter 12)
or with neural networks that manipulate continuous variables similarly to analog
computers (Chen and Chen 1993). Whereas analog computers and neural networks
that are similar to analog computers manipulate real (i.e., continuous) variables
without relying on the exact value of arbitrary real-valued quantities, ARNNs
manipulate strings of digits by (possibly) relying on the exact value of arbitrary
real-valued quantities. Specifically, the weights connecting individual processing
units within ARNNs can take exact values of arbitrary real numbers, including values
that are Turing-uncomputable. When their weights are Turing-uncomputable,
ARNNs can go beyond the power of Turing-machines: they can compute any
function over binary strings. The very features that make some ARNNs more
powerful than Turing machines, however, also prevent them from being built and
operated reliably. The reasons are roughly the same that militate against Blum et al.’s
“computations” (Chapter 15, Section 3): first, hypercomputational ARNNs require
unboundedly precise weights, and second, such weights are not Turing computable
(Davis 2004a, Schonbein 2005, Siegelmann 1999, 148).
Quantum computing has also been invoked as a possible source of hypercomputa-

tion. Quantum computing is the manipulation of qubits (or more generally, qudits)
in accordance with the laws of quantum mechanics. Qubits are variables that, like
bits, can be prepared or measured in one or two states, ‘0’ and ‘1’. Unlike bits, qubits
can (i) take states that are a superposition of ‘0’ and ‘1’ and (ii) become entangled
with each other during a computation. A surprising feature of quantum computing is
that it allows computing certain functions much faster than any known classical
computation (Shor 1994). But while mainstream quantum computing may be more
efficient than classical computing, it does not allow computing any functions beyond
those computable by Turing machines (Nielsen and Chuang 2000).

7 For some classical results and discussions, see McCulloch and Pitts 1943; Kleene 1956; Minsky 1967;
Minsky and Papert 1988. For more recent results, reviews, and discussions, see Hartley and Szu 1987; Hong
1988; Franklin and Garzon 1990; van der Velde 1993; Siu et al. 1995; Sima and Orponen 2003.
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Some authors have questioned whether the mainstream quantum computing
paradigm is general enough and, if not, whether some aspects of quantum mechanics
may be exploited to design a quantum hypercomputer (Nielsen 1997; Calude and
Pavlov 2002). The most prominent proposal for a quantum hypercomputer is by
Tien Kieu (2002, 2003, 2004, 2005). He argues that an appropriately constructed
quantum system can decide whether an arbitrary Diophantine equation has an
integral solution—a problem which is known to be unsolvable by Turing machines.
Kieu’s method involves encoding a specific instance of the problem in an appropriate
Hamiltonian, which represents the total energy of a quantum system. Kieu shows
that such a system can dynamically evolve over time into an energy ground state that
encodes the desired solution.

Unfortunately, Kieu’s scheme does not appear to be workable. For one thing, it
requires infinite precision in setting up and maintaining the system (Hodges 2005).
For another thing, Kieu does not provide a successful criterion for knowing when the
system has evolved into the solution state, and the problem of determining when the
solution state is reached is unsolvable by Turing machines (Smith 2006b; Hagar and
Korolev 2007; Pitowsky 2007). Thus, operating Kieu’s proposed hypercomputer
would require already possessing hypercomputational powers.

In conclusion, the most prominent candidate hypercomputers proposed so far
have not been shown to be physically constructible and reliable.8 For the time being,
Modest Physical CT remains plausible. It may well be that, for all practical purposes,
any function that is physically computable is Turing-computable.

5. Conclusion

In the literature on computation in physical systems, there is growing concern with
whether various proposals for physical computation lead to physically usable pro-
cesses (e.g., Fitz 2006; Németi and Dávid 2006; Ord 2006; Smith 2006a; Beggs and
Tucker 2007; Button 2009). In this chapter and the previous one, I have urged a more
explicit, careful, and systematic treatment of this problem and the related problem of
formulating an adequate version of Physical CT.

In formulating Physical CT, we should mind the reason computability is interest-
ing in the first place—it’s the epistemological notion of which antecedently defined
problems, defined over denumerable domains, can be solved, either by effective
procedures (Mathematical CT) or by physical means (Physical CT).

Mathematical CT does not rule out the possibility that we construct a genuine
hypercomputer. It merely rules out the possibility that a hypercomputer computes
Turing-uncomputable functions by following an effective procedure.

8 For some related skepticism about these and other hypercomputation proposals, see Cotogno 2003;
Davis 2006; Galton 2006; Potgieter 2006. For a mistake in Cotogno’s paper (which is irrelevant here), see
Welch 2004 and Ord and Kieu 2005.
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If we formulate physical versions of Physical CT too strongly—what I called Bold
Physical CT—we face two related problems. First, it becomes relatively easy to falsify
CT, but the putative counterexamples have no apparent practical utility. Second, and
more importantly, these versions of CT are irrelevant to the epistemological notion of
computability that motivated CT in the first place. They change the subject.
There is nothing wrong with changing the subject if you are interested in some-

thing else. There are legitimate and interesting questions pertaining to which aspects
of which physical systems can be computationally approximated to what degree,
which systems of equations give rise to computable solutions, and more. These
questions are not the same as whether Physical CT (properly so called) is true, but
they do deserve to be investigated in their own right.
Physical CT should be formulated modestly, using a notion of physical computa-

tion that is broader than that of computation by effective procedure but considerably
narrower than the general notion of a physical process. Such a notion should satisfy
an appropriate usability constraint: For a process to count as a genuine physical
computing system, it need not follow an effective procedure but it must still be usable
by a finite observer to solve problems of a certain kind. That is, it must generate
readable outputs from readable inputs according to a fixed rule that links the inputs
to the outputs without making reference to the physical process itself. It must also be
repeatable, settable, constructible, and reliable.
It is important to understand the exact scope of Modest Physical CT. Modest

Physical CT does not entail that everything physical is a computing system (cf.
Chapter 4). It only says that if something physical is a computing system, then the
functions it computes are Turing-computable.
Modest Physical CT is true if and only if genuine hypercomputers are impossible in

the sense that they do not satisfy our usability constraints. Whether any hypercom-
puter does satisfy our usability constraints remains an open empirical question, as does
Modest Physical CT. As yet, however, there is no hard evidence against Modest
Physical CT. Instead, there are good reasons to believe Modest Physical CT. All
computing systems that have been physically built, are in the process of being built,
or are likely to ever be built, only compute functions that are Turing-computable.
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Epilogue: The Nature of
Computation

In this book, I defended a mechanistic account of concrete, or physical, computation.
A physical system is a computing system just in case it has the following
characteristics:

• It is a functional mechanism.
• One of its functions is to manipulate vehicles based solely on differences
between different portions of the vehicles according to a rule defined over the
vehicles.

This is not a set of sharp necessary and sufficient conditions but a set of features
that any paradigmatic computing system has, and any paradigmatic case of non-
computing system lacks.

Any physical process that is performed by a functional mechanism and satisfies the
second clause above is a concrete computation. For instance, the characteristic
processes performed by Turing machines, finite state automata, neural networks
(including standard digital computers, which are a kind of neural network—
cf. Chapter 13), analog computers, and genuine hypercomputers qualify as
computations.

Any physical process that lacks at least one of these characteristics may be subject
to computational modeling but is not a concrete computation (cf. Chapter 4). For
instance, hurricanes, spin-glasses, and galaxies do not perform computations because
they are not even functional mechanisms—they do not have any teleological
functions—although they are mechanisms in a broader, non-teleological sense.
Stomachs and washing machines are functional mechanisms but their functions
are defined in terms of specific physical effects, such as specific chemical transform-
ations of edible substances or removing dirt from clothes; therefore, their function is
not computational. Finally, any device that produces random outputs fails to follow
an appropriate rule; therefore, it does not perform computations.

As with most interesting notions, there may well be cases at the boundaries
between clear cases of computations and clear cases of non-computational processes.
An example may be a device, not hooked up to any larger system, which could be
described as a lonely logic gate. Is one of its functions to manipulating vehicles based



solely on differences between different portions of the vehicles according to a rule
defined over the vehicles? In principle, the answer to this question depends on its
contributions to the goals of organisms (Chapter 6). In practice, there may be devices
for which a definitive answer may be difficult to come by. Maybe there are devices
whose computational contributions to the goals of organisms are so rare and unstable
that they fall in the grey area between systems that compute and systems that do not
compute. If so, that’s ok.
In addition to being extensionally adequate, the mechanistic account has a number

of desirable consequences.
Computation is objective. Whether a system performs a computation is one of its

objective properties. Artifacts may be engineered to perform computations in an
objective sense. This provides an objective basis for the practices of computer science
and computer engineering. Natural systems, such as brains, may be empirically
investigated to find out whether they perform computations and which computa-
tions they perform. This provides an objective basis on which to build a computa-
tional science of natural computation.
Computation is explanatory. When a system performs a computation, that com-

putation explains the behavior of the system. Computational explanation is a special
kind of mechanistic explanation that applies to systems that manipulate appropriate
vehicles by following appropriate rules. This distinguishes computing systems from
other systems, which may be modeled computationally but do not perform
computations.
Computation can go wrong. When a computing system is poorly designed, poorly

built, poorly used, or malfunctions, the result is a miscomputation. While it is hard or
impossible to make sense of miscomputation within traditional accounts of compu-
tation, miscomputation finds an adequate explication within the mechanistic
account.
There are many kinds of computation and computing system (Chapters 8–13).

The mechanistic account has the resources to distinguish between and explain
different kinds of computing system with many different properties, including
computations that use different vehicles (digital, analog, neural), systems that are
computationally more or less powerful (computing functions of single digits, Boolean
functions, functions of finite domains, functions of infinite domains, executing
programs), systems that are hardwired vs. systems that are programmable, or systems
that are more or less flexible (special-purpose, general-purpose, universal).
Computation does not presuppose representation but is compatible with it (Chap-

ters 3, 14). Computer scientists and cognitive scientists are free to investigate the
representational properties of the systems they study and use representational con-
tent for legitimate purposes, but they need not assume that computational vehicles
are representations, and even computations that manipulate representations and
may be individuated semantically can also be individuated non-semantically.
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Concrete computation is, most likely, Turing-computable. Any computing system
that has ever been built and is likely to ever be built and used performs computa-
tions that are Turing-computable. Establishing this fact (Chapters 15, 16) requires
examining empirical evidence about what is and isn’t physically possible. How could
this be?

Computation is both a mathematical notion, which may be formalized and studied
mathematically, and a physical one, which must be studied empirically. Therefore,
establishing what is and isn’t computable by various physical means (effective
procedures vs. physical computation more generally) requires considering both
mathematical evidence about what can be computed by effective procedures (a
mathematical notion with direct empirical consequences) and empirical evidence
about what is physically possible. In Chapter 15, we briefly reviewed mathematical
arguments for the Mathematical Church-Turing thesis, according to which every
function that is computable by an effective procedure is computable by a Turing
machine. In Chapter 16, we saw empirical arguments for the Physical Church-Turing
thesis, according to which every function that is computable by a physical system is
computable by a Turing machine.

I have given a mechanistic account of concrete computation. I have explored some
fascinating questions about concrete computation. I hope some of what I said was
interesting and true, or at least valuable. I hope some of you, kind readers, will
continue this exploration.
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Appendix: Computability

1. Effective Calculability

This appendix introduces some basic mathematical notions related to computation and
computability. This first section is devoted to the pre-theoretical notion of effective calculabil-
ity, or computability by an effective procedure (computability for short). This informal notion
motivates the formally defined notion of Turing-computability, which I introduce in the
following section. In the last section, I briefly introduce the Church-Turing thesis, which
says that the formal notion is an adequate formalization of the informal one.

During the first decades of the 20th century, mathematicians’ interest in computable
functions lay in the foundations of mathematics. Different philosophical approaches were
proposed. L. E. J. Brouwer was the main supporter of intuitionism, according to which an
existence proof for a mathematical object was admissible only if constructive (Brouwer 1975).
David Hilbert proposed his proof theory to formalize in axiomatic fashion mathematical
reasoning in an attempt to establish the foundations of mathematics without endorsing
Brouwer’s restrictions (van Heijenoort 1967; Hilbert and Ackermann 1928). This formaliza-
tion allowed Hilbert to formulate rigorously the decision problem for first-order logic. A
decision problem requests a method for answering a yes-or-no question concerning a domain of
objects: “Given any sequence of symbols, is it a formula?” or “Given any formula, is it provable?”
A solution to a decision problem is an effective procedure: a uniform method or algorithm
specified by a finite set of instructions, by which any instance of the question can be answered in a
finite number of steps. “Effective procedure” is a term used by some mathematicians in place of
“algorithm”; an effective procedure cannot appeal to non-extensionally definable capacities like
intuition, creativity, or guesswork, and it always generates the correct answer.1

Lacking a rigorous definition of “effective procedure,”mathematicians called it an “intuitive
concept” to distinguish it from formally defined mathematical concepts.2 Kurt Gödel proposed
replacing “effective procedures” with a rigorously defined concept, that of “recursive func-
tions,” but he didn’t rule out that some effective procedures might not be included within
recursive functions (1931, 1934). Alonzo Church (1936) and Alan Turing (1936–7) strength-
ened Gödel’s tentative identification of effective procedures and recursive functions to a
general thesis, now called the Church-Turing thesis. Based on the Church-Turing thesis,
Church and Turing proved that some functions are not computable. For example, Turing
pointed out that he and Church used different definitions but reached “similar conclusions,”

1 After the work of Turing and others, “effective procedure” was also used for procedures not
guaranteed to generate all values of a total function, that is, they calculated only the values of a partial
function (cf. Wang 1974, 84).

2 To refer to the intuitive notion of effective procedure, different authors used different terms. Instead of
“procedure,” some used “process,” “method,” or “rule.” Instead of “effective,” some used “finite,” “finite
combinatorial,” “mechanical,” “definite,” “constructively defined,” or “algorithmic.” Some of the terms used
as synonyms of “effectively calculable” are listed by Gödel 1965, 72; Kleene 1987a, 55–6.



i.e., that “the Hilbertian Entscheidungsproblem [i.e., the decision problem for first-order logic]
can have no solution” (Turing 1936–7, 116, 117, 145).

The notion of effective procedure can be informally defined as follows:

• Executability: The procedure consists of a finite number of deterministic instructions (i.e.,
instructions determining a unique next step in the procedure), which have finite and
unambiguous specifications commanding the execution of a finite number of primitive
operations.

• Automaticity: The procedure requires no intuitions about the domain (e.g., intuitions
about numbers), no ingenuity, no invention, and no guesses.

• Uniformity: The procedure is the same for each possible argument of the function.
• Reliability: If the procedure terminates, the procedure generates the correct value of the
function for each argument after a finite number of primitive operations are performed.

When we have a formalized language in which both a domain and operations over objects in
that domain are formally defined, we can talk about lists of formalized instructions and call
them programs. Programs are the formal replacement of algorithms or effective procedures.
Because of this, programs are said to implement algorithms (or procedures).

Not all mathematical procedures are effective procedures or algorithms. There are also
heuristics. Heuristics are sequences of operations that search for the value of a function but are
not guaranteed to find all the values of the function for every argument. A heuristic searchmay
find the value of the function being computed but it may also find an output that only
approximates that value to some degree. A heuristic for a given function may be preferable
to an algorithm for the same function when the heuristic produces good enough results within
a reasonable amount of time and using a reasonable amount of memory space, while the
algorithm takes too long or requires too much memory space to produce its results.

A caveat needs to be added about the relationship between programs (and procedures) and the
functions they compute. A program is a definition of a function, from its inputs to its outputs;
when the program doesn’t halt, the function isn’t defined. So, by definition, any program
computes the values of the function that it defines: it implements an algorithm or effective
procedure relative to that function. But typically a program is written to find values for a function
that is defined independently of the program’s existence.When that happens, the programmay or
may not be implementing an algorithm that finds the values of that function. Many programs do
not always find the values of the independently defined function they are designed to compute,
but rather they find approximations to those values. In such cases, relative to the independently
defined functions, those programs are said to implement not algorithms but heuristics.3

3 The philosophical literature is not always clear on this point. For example:

The possibility of heuristic procedures on computers is sometimes confusing. In one sense,
every digital computation (that does not consult a randomizer) is algorithmic; so how can
any of them be heuristic? The answer is again a matter of perspective. Whether any given
procedure is algorithmic or heuristic depends on how you describe the task (Haugeland
1997, 14).

This is unclear at best. Relative to its task (e.g., multiplying numbers, solving the traveling salesman
problem, or winning chess games), a procedure (or a program) is algorithmic or heuristic depending on
whether it is guaranteed to solve each instance of the task. Relative to generating its outputs from its inputs
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2. Computability Theory

This section reviews some notions and results of classical computability theory. Computability
theory studies what functions are computable, what mathematical properties they have, and the
mathematical properties of computingmechanisms. Computable functions are identifiedwith the
class of recursive functions, inductively defined. As a specific example of computing mechanism,
I will give Turing machines. Using Turing machines and recursive functions, I will introduce the
notion of universal computing mechanism and the unsolvability of the halting problem.

2.1. Notation

{a1, a2, . . . an} Set of n objects a1, . . . an

(a1, a2, . . . an) List (or n-tuple) of n objects a1, . . . an

a 2 A a is an element of set A

N Set of natural numbers 0, 1, 2, . . .

f: A1 ! A2 f is a function from A1 to A2

Domain of f Set of all a such that (a, b) 2 f for some b

Range of f Set of all of f(a) for a in the domain of f

Partial function on A Function whose domain is a subset of A

Total function on A Function whose domain is A

Alphabet Nonempty set � of objects called symbols

Word or string on � List of symbols on �, (instead of (a1, a2, . . . an), we write
a1a2 . . . an)

|u| = n, where u = a1a2 . . . an n is the length of u

an1 concatenation of n symbols a1

�* Set of all words on alphabet �

Language on � Any subset of �*

uv, where u, v 2 �* Concatenation of u and v

Predicate on a set A A total function P: A ! N such that for each a 2 A, either
P(a) = 1 or P(a) = 0, where 1 and 0 represent truth values

R = {a 2 A|P(a)}, P a
predicate on A

R is the set of all a 2 A such that P(a) = 1; P is called the
characteristic function of R

Pr (k) kth prime in order of magnitude

�n
M(x1, . . . xn) n-ary function computed by TM program M; when n = 1 we

omit n

(regardless of whether the outputs are a solution to that instance of the task), a procedure (or a program) is
always algorithmic.
Another example of confusion about this point is manifested by Dennett’s statement (1975, 83) that

human beings may not be Turing machines (TMs), because humans may be implementing heuristics
rather than algorithms. This presupposes that TMs implement only algorithms and not heuristics. Now, it
is true that every TM implements an algorithm that generates its outputs given its inputs. But relative to the
problem TMs are designed to solve, TMs—like any other computing mechanisms—may well implement
heuristics.
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Computability theory applies to general word functions f: �*! � 0*, where �* is the set of all
words on alphabet �. Since words can be effectively encoded as natural numbers and vice versa
(see Section 2.4 below for an example of such an encoding), in this section we follow the
standard convention of developing the theory with respect to number-theoretic functions f:
N ! N, without loss of generality.4 Therefore in this section, unless otherwise specified,
‘number’ means natural number, and ‘function’ means function on natural numbers. For
the exposition of the material in this section, I drew mostly from Davis 1958 and Davis et al.
1994.

2.2. Recursive functions

This section introduces the definition of the primitive recursive functions on the basis of three
primitive base functions and two primitive operations. Then, by means of one further primitive
operation, the class of partial recursive functions is defined.

The class of primitive recursive functions is defined inductively as follows.
Base functions:

Null function. n(x) = 0.
Successor function. s(x) = x + 1.
Projection functions. uin(x1, . . . xn) = xi.

Operations:

Composition. Let f be a function of k variables and let g1, . . . gk be functions of n variables.
Let:

hðx1; . . . xnÞ ¼ fðg1ðx1; . . . xnÞ; . . . gkðx1; . . . xnÞÞ:
Then h is obtained from f and g1, . . . gk by composition.

Primitive recursion. Let f be a function of n variables and let g be a function of n+2
variables. Let:

hðx1; . . . xn; 0Þ ¼ fðx1; . . . xnÞ
hðx1; . . . xn; tþ 1Þ ¼ gðt; hðx1; . . . xn; tÞ; x1; . . . xnÞ

Then h is obtained from f and g by primitive recursion.

Definition 1. A function f of n variables is primitive recursive if and only if it can be obtained
from the base functions by finitely many operations of composition and primitive recursion.

Examples of primitive recursive functions include addition, multiplication, exponentiation,
predecessor, and many other useful functions (see Davis et al. 1994, section 3.4).

In the present context, predicates are total functions whose values are 0 or 1 (representing
true and false). Any primitive recursive function whose values are 0 and 1 is called a primitive
recursive predicate. An example of a primitive recursive predicate is equality.

It can be easily shown, by induction on the definition of primitive recursive function, that
every primitive recursive function is total.

4 Computability theory can also be developed directly in terms of string functions (Machtey and Young
1978).
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Next, we introduce a further operation:

Minimalization (unbounded). Let P be a predicate of n+1 variables. We write minyP
(x1, . . . xn, y) for the least value of y for which the predicate P is true if there is one. If
there is no such value of y, then minyP(x1, . . . xn, y) is undefined.

Unbounded minimalization of a predicate can easily produce a function that is not total. An
example is provided by subtraction:

x� y ¼ minzðy þ z ¼ xÞ;
which is undefined for x < y.

Definition 2. A function f is partial recursive if and only if it can be obtained from the base
functions by finitely many operations of composition, primitive recursion, and minimalization.

A partial recursive function that is total is called total recursive.

2.3. Turing machines

Turing machines (TMs) are the best-known computing machines. They have two main
components. First, there is a two-way potentially infinite tape divided into squares; each
square contains one symbol (which may be an empty square). Second, there is an active
device that can be in one of a finite number of states. The active device acts on the tape in
one of four ways: it reads the symbol on a square, writes a symbol on a square, moves one
square to the left, or moves one square to the right. TMs’ active devices operate in discrete
time. At any instant, the active device reads the symbol on one of the tape’s squares. Then,
the symbol on that square and the device’s current state determine what the active device
does: what state it goes into and whether it moves left, moves right, or writes a symbol on the
current square (and which symbol it writes). When this happens, we say that an active
device responds to its internal state and symbol on the tape. All TMs have this structure in
common.

Although strictly speaking it is the active devices of TMs that perform operations (on the tape,
which is passive), for simplicity I follow the standard convention of ascribing activities to TMs
simpliciter. TMs are distinguished from one another by the alphabet they operate on, by the
number of their internal states, and more importantly by the particular actions they perform in
response to their internal states and the symbols on the tape. A description of the way a particular
TM responds to a particular state and symbol is here called an instruction. A set of instructions,
which uniquely identifies a TM, is called a TM program.

To avoid confusion, TMs should be kept distinct from the TM programs that describe
their behavior. Unlike digital computers, which compute by executing programs, ordinary
TMs do not operate by responding to the TM programs that describe their behavior.
Ordinary TMs simply behave in the way described by their TM programs; in other words,
their behavior satisfies the instructions contained in their TM program. A TM program
identifies a computational process uniquely, and a TM that satisfies the instructions listed in
the program is its canonical implementation (i.e., the implementation given by Turing). But
the computations defined by TM programs can also be carried out by humans or machines
other than TMs.

APPENDIX 281



Moreover, in Section 2.4 we shall see that TM programs can be encoded using the alphabet
that TMs operate on, and then written on TM tapes. There are special TMs, called universal
TMs, which can respond to any TM program written on their tape so as to mimic the behavior
of the TMs described by the program. Since universal TMs do compute by responding to TM
programs written on their tape, I say that they execute TM programs. Needless to say, the
behavior of universal TMs is also described by their own TM programs, called universal TM
programs. Universal TMs execute the programs written on their tape, but not the universal
TM programs that describe their behavior.

In formally defining TM tables, I will use the following ingredients:

Symbols denoting internal states of TMs’ active devices: q1, q2, q3, . . .

Symbols denoting symbols that TMs can print on the tape: S0, S1, S2, . . . The set of Si’s is our
alphabet.

Symbols denoting primitive operations: R (move to right), L (move to left).

Expressions: finite sequences of symbols.

Instructions: expressions having one of the following forms:

ð1Þ qiSjSkql;
ð2Þ qiSjRql;
ð3Þ qiSjLql;
ð4Þ qiSjqkql;

Quadruples of the first type mean that in state qi reading symbol Sj, the active device will
print Sk and go into state ql. Quadruples of the second type mean that in state qi reading
symbol Sj, the active device will move one square to the right and go into state ql. Finally,
quadruples of the third type mean that in state qi reading symbol Sj, the active device will move
one square to the left and go into state ql.

5

We are now ready to define (deterministic) TM programs, their alphabets, and their
instantaneous descriptions or snapshots:

(Deterministic) TM program: set of instructions that contains no two instructions whose
first two symbols are the same.

Alphabet of a TM program: all symbols Si in the instructions except S0. For convenience,
sometimes I will write S0 as B (blank), and S1 as 1.

Snapshot: expression that contains exactly one qi, no symbols for primitive operations, and
is such that qi is not the right-most symbol.

A snapshot describes the symbols on a TM tape, the position of the active device along the tape,
and the state of the active device. In any snapshot, the Si’s represent the symbols on the tape, qi
represents the state of the active device, and the position of qi among the Si’s represents the
position of the device on the tape. For any tape and any TM program at any computation step,
there is a snapshot representing the symbols written on the tape, the state of the device, and its
position on the tape. At the next computation step, we can replace the old snapshot by its
successor snapshot, whose difference from its predecessor indicates all the changes (of the tape,

5 Instructions of the fourth type serve to define special TMs called oracle TMs and will not be used here.
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position, and state of the device) that occurred at that step. A snapshot without successors with
respect to a TM program M is called a terminal snapshot with respect to that program.

Using the notion of snapshot, we can rigorously define computations by TM programs:

Computation by a TM program M: finite sequence of snapshots a1 . . . an such that 1�i<p,
ai+1 is the successor of ai, and an is terminal with respect to M. I call an the resultant of a1
with respect to M.6

For example, let M consist of the following instructions:

q1S0R ql;
q1S1R q1:

The following are computations of M, whose last line is the resultant of the first line with
respect to M:

ð1Þ q1S0S0S0
S0q1S0S0
S0S0q1S0
S0S0S0q1

ð2Þ q1S1S1S1
S1q1S1S1
S1S1q1S1
S1S1S1q1

ð3Þ q1S1S0
S1q1S0
S1S0q1:

With each number n we associate the string n = 1n+1. Thus, for example, 4 = 11111. With each
k-tuple (n1, n2, . . . nk) of integers we associate the tape expression (n1, n2, . . . nk), where:

ðn1; n2; :::nkÞ ¼ n1Bn2B:::Bnk:

Thus, for example, (1, 3, 2) = (1, 3, 2) = 11B1111B111.
Given an initial snapshot and a program, either there is a computation or there isn’t (if there

isn’t, it’s because the list of snapshots is infinite).

Definition 3. An n-ary function f(x1, . . . xn) is Turing-computable if and only if there is a
Turing Machine M such that: f(x1, . . . xn) is defined if and only if there is a computation of
M whose first snapshot is q1(x1, . . . xn) and whose resultant contains nj+1 occurrences of the
symbol 1, where f(x1, . . . xn) = nj. I write:

fðx1; . . . xnÞ¼ cn
Mðx1; . . . xnÞ:

Turing-computability and partial recursiveness are equivalent notions in the following sense.
A function is partial recursive if and only if it is Turing-computable, and it is total recursive
if and only if it is a total Turing-computable. In one direction, this is shown by constructing
TM programs computing each of the base functions and by showing that TM programs can be

6 In the rest of the book, I use ‘computation’ more broadly so as to include infinite sequences of
snapshots as computations.

APPENDIX 283



manipulated in ways corresponding to the three operations (for the details of the construction,
see Davis 1958). The other direction is addressed in the following section.

2.4. Gödel numbers of TM programs

One way to develop the theory of TM programs is by using recursive functions. I use a method,
developed by Gödel (1931), that allows us to use natural numbers as a code for TM instruc-
tions, and therefore for TM programs. By studying the properties of TM programs in this way,
I will demonstrate the results that we are interested in, namely the existence of universal TMs
and the unsolvability of the halting problem. The method followed here has the great
advantage of avoiding long and laborious mathematical constructions.

The basic symbols used in formulating TM programs are the following:

R, L
S0, S1, S2, . . .
q1, q2, q3, . . .

We associate each of these symbols to an odd number � 3, as follows:

3 R
5 L
7 S0
9 q1
11 S1
13 q2
etc.

Therefore, for any expression M there is now a finite sequence of odd integers a1, a2, . . . an
associated to M. Now we’ll associate a single number with each such sequence and hence with
each expression.

Definition 4. Let M be an expression consisting of the symbols a1, a2, . . . an. Let b1, b2, . . . bn be
the corresponding integers associated with these symbols. Then the Gödel number of M is the
following integer:

n
r = Π Pr (k)ak

k=1

We write gn(M) = r, and M = Exp (r). If M is the empty expression, we let gn(M) = 1.

Definition 5. Let M1, M2, . . .Mn be a finite sequence of expressions. Then, the Gödel number of
this sequence of expressions is the following integer:

n
r = Π Pr (k)gn(Mk)

k=1

It is easy to prove that any expression and any sequence of expressions have a unique Gödel
number. Since TM programs are sets of instructions not lists of them, any TM program
consisting of n instructions has n! Gödel numbers.
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Definition 6. For each n>0, let Tn(z, x1, . . . xn, y) be the predicate that means, for given
z, x1, . . . xn, y, that z is a Gödel number of a TM program Z, and that y is the Gödel number
of a computation, with respect to Z, beginning with snapshot q1(x1, . . . xn).

These predicates express the essential elements of the theory of TM programs. Davis 1958
contains the detailed construction proving that for each n>0, Tn(z, x1, . . . xn, y) is primitive
recursive, that every Turing-computable function is partial recursive, and that every total
Turing-computable function is total recursive.

2.5. Universal TM programs

We are now ready to demonstrate that there are universal TMs, which compute any function
computable by a TM. Consider the partial recursive binary function f(z, x) = u11(minyT(z, x,
y)). Since this function is Turing-computable, there is a TM program U such that:

cU2ðz; xÞ ¼ fðz; xÞ
This program is called universal TM program. It can be employed to compute any partially
computable (singulary; but generalizable to n-ary) function as follows: If Z0 is any TM program
and if z0 is a Gödel number of Z0, then:

cU2ðz0; xÞ ¼ cZ0
ðxÞ

Thus, if the number z0 is written on the tape of U, followed by the number x0, U will compute
the number cZ0

(x0)

2.6. Unsolvability of the halting problem

We now discuss the function HALT(x, y), defined as follows. For a given y, let P be the TM
program such that gn(P) = y. Then HALT(x, y) = 1 if �P(x) is defined and HALT(x, y) = 0
otherwise. In other words HALT(x, y) = 1 if and only if the TM program with Gödel number
y eventually halts on input x, otherwise it’s equal to 0. We now prove the unsolvability of
the halting problem.

Theorem. HALT(x, y) is not a recursive function.

Proof. Define the total function g(x) = HALT(x, x), and the partial function h(x) = 0 if g(x) = 0,
h(x) undefined if g(x) = 1. If h is partial recursive, then there is a TM program P0 with Gödel
number i such that for all x, h(x) = �P 0(x). But then:

hðiÞ ¼ cP
0 ðiÞ ¼ 0 if and only if gðiÞ ¼ 0 if and only ifcP

0 ðiÞis undefined;
which is a contradiction. Therefore, h cannot be partial recursive, so that g and hence HALT
cannot be total recursive. QED.

This theorem gives us an example of a function that is not computable by a TM program.
Computability theory shows that there are infinitely many such functions. Assuming the truth
of the Church-Turing thesis, which will be discussed in the next section, we conclude that
there is no algorithm computing the halting function. The same holds for any other non-
Turing-computable total function.
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3. The Church-Turing thesis

Turing (1936–7) introduced his machines as a way to make precise the informal notion of
algorithmic computability or effective calculability, as I introduced them in the first section.
Church (1936) proposed a similar thesis using recursive functions, which, as we’ve seen, are
computationally equivalent to TMs. After its proponents, Stephen Kleene (1952) dubbed this
the Church-Turing thesis:

(CT) Any function that is effectively calculable is Turing-computable.

CT is generally accepted among mathematicians and computer scientists on what they
consider overwhelming evidence in its favor.

In summary, this appendix introduced the informal notion of effective calculability and its
formal counterpart—Turing computability. According to the canonical view, CT connects the
informal notion of effective calculability, or computability by effective procedure, with the
formal one of Turing-computability. There can be no rigorous proof of CT, but there is
overwhelming evidence in its favor.

286 APPENDIX



Bibliography

Abbott, A. A., C. S. Calude, J. Conder, and K. Svozil (2012). “Strong Kochen-Specker theorem
and incomputability of quantum randomness.” Physical Review A 86(6): 062109.

Adams, F. (1979). “A Goal-State Theory of Function Attributions.” Canadian Journal of
Philosophy 9(3): 493–518.

Aizawa, K. and C. Gillett (ms.). “Multiple Realization and Methodology in Neuroscience and
Psychology.”

Albert, D. A., R. Munson, and M. D. Resnik (1988). Reasoning in Medicine: An Introduction to
Clinical Inference. Baltimore: The Johns Hopkins University Press.
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Theorem.” In Copeland, Posy, and Shagrir (2013), 77–104.

Leff, H. S. and A. F. Rex (Eds.), (2003). Maxwell’s Demon 2: Entropy, Classical and Quantum
Information, Computing. Bristol: Institute of Physics Publishing.

Leng, M. (2010). Mathematics and Reality. New York, NY: Oxford University Press.
Lewens, T. (2004). Organisms and Artifacts. Cambridge, MA: MIT Press.
Lewis, D. K. (1971). “Analog and Digital.” Noûs 5: 321–7.
Lewis, D. K. (1986). “Postscript to 'Causation'.” In D. Lewis, Philosophical Papers, Vol. 2
(172–213). New York: Oxford University Press.
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