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Preface

Since its first introduction over 60 years ago, the concept of category has been
increasingly employed in all branches of mathematics, especially in studies where the
relationship between different branches is of importance. The categorical ideas arose
originally from the study of a relationship between geometry and algebra; the
fundamental simplicity of these ideas soon made possible their broader application.

The categorical concepts are latent in elementary mathematics; making them more
explicit helps us to go beyond elementary algebra into more advanced mathematical
sciences. Before the appearance of the first edition of this book, their simplicity was
accessible only through graduate-level textbooks, because the available examples
involved topics such as modules and topological spaces.

Our solution to that dilemma was to develop from the basics the concepts of directed
graph and of discrete dynamical system, which are mathematical structures of wide
importance that are nevertheless accessible to any interested high-school student. As the
book progresses, the relationships between those structures exemplify the elementary
ideas of category. Rather remarkably, even some detailed features of graphs and of
discrete dynamical systems turn out to be shared by other categories that are more
continuous, e.g. those whose maps are described by partial differential equations.

Many readers of the first edition have expressed their wish for more detailed
indication of the links between the elementary categorical material and more advanced
applications. This second edition addresses that request by providing two new articles
and four appendices. A new article introduces the notion of connected component,
which is fundamental to the qualitative leaps studied in elementary graph theory and in
advanced topology; the introduction of this notion forces the recognition of the role of
functors.

The appendices use examples from the text to sketch the role of adjoint functors in
guiding mathematical constructions. Although these condensed appendices cannot
substitute for a more detailed study of advanced topics, they will enable the student,
armed with what has been learned from the text, to approach such study with greater
understanding.

Buffalo, January 8, 2009 F. William Lawvere
Stephen H. Schanuel






Organisation of the book

The reader needs to be aware that this book has two very different kinds of ‘chapters’:

The Articles form the backbone of the book; they roughly correspond to the written
material given to our students the first time we taught the course.

The Sessions, reflecting the informal classroom discussions, provide additional
examples and exercises. Students who had difficulties with some of the exercises in
the Articles could often solve them after the ensuing Sessions. We have tried in the
Sessions to preserve the atmosphere (and even the names of the students) of that first
class. The more experienced reader could gain an overview by reading only the Articles,
but would miss out on many illuminating examples and perspectives.

Session 1 is introductory. Exceptionally, Session 10 is intended to give the reader a
taste of more sophisticated applications; mastery of it is not essential for the rest of the
book.

Each Article is further discussed and elaborated in the specific subsequent Sessions
indicated below:

Article 1 Sessions 2 and 3
Article I1 Sessions 4 through 9
Article III Sessions 11 through 17
Article IV Sessions 19 through 29
Article V Sessions 30 and 31
Article VI Sessions 32 and 33

Article VII Sessions 34 and 35

The Appendices, written in a less leisurely manner, are intended to provide a rapid
summary of some of the main possible links of the basic material of the course with
various more advanced developments of modern mathematics.
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SESSION 1

Galileo and multiplication of objects

1. Introduction

Our goal in this book is to explore the consequences of a new and fundamental
insight about the nature of mathematics which has led to better methods for under-
standing and using mathematical concepts. While the insight and methods are sim-
ple, they are not as familiar as they should be; they will require some effort to master,
but you will be rewarded with a clarity of understanding that will be helpful in
unravelling the mathematical aspect of any subject matter.

The basic notion which underlies all the others is that of a category, a
‘mathematical universe’. There are many categories, each appropriate to a particular
subject matter, and there are ways to pass from one category to another. We will
begin with an informal introduction to the notion and with some examples. The
ingredients will be objects, maps, and composition of maps, as we will see.

While this idea, that mathematics involves different categories and their relation-
ships, has been implicit for centuries, it was not until 1945 that Eilenberg and Mac
Lane gave explicit definitions of the basic notions in their ground-breaking paper ‘A
general theory of natural equivalences’, synthesizing many decades of analysis of the
workings of mathematics and the relationships of its parts.

2. Galileo and the flight of a bird

Let’s begin with Galileo, four centuries ago, puzzling over the problem of motion.
He wished to understand the precise motion of a thrown rock, or of a water jet from
a fountain. Everyone has observed the graceful parabolic arcs these follow; but the
motion of a rock means more than its track. The motion involves, for each instant,
the position of the rock at that instant; to record it requires a motion picture rather
than a time exposure. We say the motion is a ‘map’ (or ‘function’) from time to
space.
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The flight of a bird as a map from time to space

TIME SPACE
starting just ending
time later time
Schematically:
flight of bird
TIME = | SPACE

You have no doubt heard the legend; Galileo dropped a heavy weight and a light
weight from the leaning tower of Pisa, surprising the onlookers when the weights hit
the ground simultaneously. The study of vertical motion, of objects thrown straight
up, thrown straight down, or simply dropped, seems too special to shed much light
on general motion; the track of a dropped rock is straight, as any child knows.
However, the motion of a dropped rock is not quite so simple; it accelerates as it
falls, so that the last few feet of its fall takes less time than the first few. Why had
Galileo decided to concentrate his attention on this special question of vertical
motion? The answer lies in a simple equation:

SPACE = PLANE x LINE

but it requires some explanation!
Two new maps enter the picture. Imagine the sun directly overhead, and for each
point in space you’ll get a shadow point on the horizontal plane:

SPACE
shadow
Y
PLANE ¢
shadow of p

This is one of our two maps: the ‘shadow’ map from space to the plane. The second
map we need is best imagined by thinking of a vertical line, perhaps a pole stuck into
the ground. For each point in space there is a corresponding point on the line, the
one at the same level as our point in space. Let’s call this map ‘level’:
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level

Together, we have:

shadow

These two maps, ‘shadow’ and ‘level’, seem to reduce each problem about space to
two simpler problems, one for the plane and one for the line. For instance, if a bird is
in our space, and you know only the shadow of the bird and the level of the bird,
then you can reconstruct the position of the bird. There is more, though. Suppose
you have a motion picture of the bird’s shadow as it flies, and a motion picture of its
level — perhaps there was a bird-watcher climbing on our line, keeping always level
with the bird, and you filmed the watcher. From these two motion pictures you can
reconstruct the entire flight of the bird! So not only is a position in space reduced to a
position in the plane and one on the line, but also a motion in space is reduced to a

motion in the plane and one on the line.
Let’s assemble the pieces. From a motion, or flight, of a bird

TIME

flight of bird

¢ level of p

level of ¢

level

we get two simpler motions by ‘composing’ the flight map with the shadow and level
maps. From these three maps,

SPACE
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TIME

\iight of bird
level

SPACE |—— | LINE

shadow

PLANE

we get these two maps:

level of flight of bird
TIME -

LINE

shadow of
flight of bird

PLANE

and now space has disappeared from the picture.

Galileo’s discovery is that from these two simpler motions, in the plane and on
the line, he could completely recapture the complicated motion in space. In fact, if
the motions of the shadow and the level are ‘continuous’, so that the shadow does
not suddenly disappear from one place and instantaneously reappear in another,
the motion of the bird will be continuous too. This discovery enabled Galileo to
reduce the study of motion to the special cases of horizontal and vertical motion. It
would take us too far from our main point to describe here the beautiful experi-
ments he designed to study these, and what he discovered, but I urge you to read
about them.

Does it seem reasonable to express this relationship of space to the plane and the
line, given by two maps,

level

SPACE |— | LINE

shadow

PLANE
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by the equation SPACE = PLANE x LINE? What do these maps have to do with
multiplication? It may be helpful to look at some other examples.

3. Other examples of multiplication of objects

Multiplication often appears in the guise of independent choices. Here is an exam-
ple. Some restaurants have a list of options for the first course and another list for
the second course; a ‘meal’ involves one item from each list. First courses: soup,
pasta, salad. Second courses: steak, veal, chicken, fish.

So, one possible ‘meal’ is: ‘soup, then chicken’; but ‘veal, then steak’ is not
allowed. Here is a diagram of the possible meals:

Meals 2M courses
soup, steak pasta, steak steak
soup, veal veal

soup, chicken —_— chicken
soup, fish fish
1
L soup I pasta l salad

1%t courses

(Fill in the other meals yourself.) Notice the analogy with Galileo’s diagram:

MEALS [—=| 274 COURSES SPACE |—=| LINE
1* COURSES PLANE

This scheme with three ‘objects’ and two ‘maps’ or ‘processes’ is the right picture
of multiplication of objects, and it applies to a surprising variety of situations. The
idea of multiplication is the same in all cases. Take for example a segment and a disk
from geometry. We can multiply these too, and the result is a cylinder. I am not
referring to the fact that the volume of the cylinder is obtained by multiplying the
area of the disk by the length of the segment. The cylinder itself is the product,
segment times disk, because again there are two processes or projections that take
us from the cylinder to the segment and to the disk, in complete analogy with the
previous examples.
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<>

Every point in the cylinder has a corresponding ‘level’ point on the segment and a
corresponding ‘shadow’ point in the disk, and if you know the shadow and level
points, you can find the point in the cylinder to which they correspond. As before,
the motion of a fly trapped in the cylinder is determined by the motion of its level
point in the segment and the motion of its shadow point in the disk.

An example from logic will suggest a connection between multiplication and the
word ‘and’. From a sentence of the form ‘A and B’ (for example, ‘John is sick and
Mary is sick’) we can deduce 4 and we can deduce B:

John is sick and Mary is sick John is sick
‘Aand B’ ‘A’
Mary is sick
(B’

But more than that: to deduce the single sentence ‘John is sick and Mary is sick’ from
some other sentence C is the same as deducing each of the two sentences from C. In
other words, the two deductions

C

B

amount to one deduction C—(A and B). Compare this diagram

C

——= 4

AandB —» 4

|

B

with the diagram of Galileo’s idea.
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One last picture, perhaps the simplest of all, hints at the relation to multiplication
of numbers:

_
[ ) [ ] [ ]
6 level 6 //. \4.14. 2

shadow

w

Why does3 X2 =67

I hope these pictures seem suggestive to you. Our goal is to learn to use them as
precise instruments of understanding and reasoning, not merely as intuitive guides.

Exercise 1:

Find other examples of combining two objects to get a third. Which of them seem
to fit our pattern? That is, for which of them does the third object seem to have
‘maps’ to the two you began with? It may be helpful to start by thinking of real-
life problems for which multiplication of numbers is needed to calculate the
solution, but not all examples are related to multiplication of numbers.

Exercise 2:

The part of Galileo’s work which we discussed is really concerned with only a
small portion of space, say the immediate neighbourhood of the tower of Pisa.
Since the ground might be uneven, what could be meant by saying that two
points are at the same level? Try to describe an experiment for deciding
whether two nearby points are at the same level, without using ‘height’
(distance from an imaginary plane of reference.) Try to use the most elemen-
tary tools possible.







PART 1

The category of sets

A map of sets is a process for getting from one set to another.
We investigate the composition of maps (following one process
by a second process), and find that the algebra of composition of
maps resembles the algebra of multiplication of numbers, but its
interpretation is much richer.






ARTICLE 1

Sets, maps, composition
A first example of a category

Before giving a precise definition of ‘category’, we should become familiar with one
example, the category of finite sets and maps.

An [object] in this category is a finite set or collection. Here are some exam-
ples:

(the set of all students in the class) is one object,
(the set of all desks in the classroom) is another,
(the set of all the twenty-six letters in our alphabet) is another.

You are probably familiar with some notations for finite sets:
{John, Mary, Sam}

is a name for the set whose three elements are, of course, John, Mary, and Sam. (You
know some infinite sets also, e.g. the set of all natural numbers: {0,1,2,3,...}.)
Usually, since the order in which the elements are listed is irrelevant, it is more
helpful to picture them as scattered about:

where a dot represents each element, and we are then free to leave off the labels when
for one reason or another they are temporarily irrelevant to the discussion, and
picture this set as:

Such a picture, labeled or not, is called an internal diagram of the set.

13
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A [map] fin this category consists of three things:

1. a set A, called the domain of the map,

2. a set B, called the codomain of the map,

3. a rule assigning to each element a in the domain, an element b in the
codomain. This b is denoted by f - a (or sometimes ‘f(a)’), read ‘f of a’.

(Other words for map are ‘function’, ‘transformation’, ‘operator’, ‘arrow’, and
‘morphism’.)

An example will probably make it clearer: Let A = {John, Mary, Sam}, and let
B = {eggs, oatmeal, toast, coffee}, and let f assign to each person his or her favorite
breakfast. Here is a picture of the situation, called the internal diagram of the map:

f= favorite breakfast eges

- g

® foast
e oatmeal

°
coffee

This indicates that the favorite breakfast of John is eggs, written f(John) = eggs,
while Mary and Sam prefer coffee. Note some pecularities of the situation, because
these are features of the internal diagram of any map:

(a) From each dot in the domain (here {John, Mary, Sam}), there is exactly one
arrow leaving.

(b) To a dot in the codomain (here {eggs, oatmeal, toast, coffee}), there may be
any number of arrows arriving: zero or one or more.

The important thing is: For each dot in the domain, we have exactly one arrow
leaving, and the arrow arrives at some dot in the codomain.

Nothing in the discussion above is intended to exclude the possibility that 4 and
B, the domain and codomain of the map, could be the same set. Here is an internal
diagram of such a map g:

g = favorite person

(Many 1950s movie plots are based on this diagram.)
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A map in which the domain and codomain are the same object is called an
endomap. (Why? What does the prefix ‘endo’ mean?) For endomaps only, an alter-
native form of internal diagram is available. Here it is, for the endomap above:

For each object A4, there is a special, especially simple, endomap which has domain
and codomain both 4. Here it is for our example:

Here is the corresponding special internal diagram, available because the map is an
endomap:

A map like this, in which the domain and the codomain are the same set A, and for
each ain 4, f(a) = a, is called an |identity map| To state it more precisely, this
map is ‘the identity map from {Jokhn, Mary, Sam} to {John, Mary, Sam},’ or ‘the
identity map on the object {John, Mary, Sam}.’ (Simpler still is to give that object a
short name, A = {John, Mary, Sam}; and then call our map ‘the identity map on A4’,
or simply ‘1,’.)

Sometimes we need a scheme to keep track of the domain and codomain, with-
out indicating in the picture all the details of the map. Then we can use just a letter
to stand for each object, and a single arrow for each map. Here are the external
diagrams corresponding to the last five internal diagrams:
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A 4 + B
A g
g
e
A v 4

"
A

External diagrams are especially helpful when there are several objects and maps to
be discussed, or when some of the exact details of the maps are temporarily irrele-
vant.

The final basic ingredient, which is what lends all the dynamics to the notion of
category, is [composition of maps|, by which two maps are combined to
obtain a third map. Here is an example:

eggs

ok

® foast
e oatmeal

:'oﬁ'ee

Or, in the external diagram:

42,4218

If we ask: ‘What should each person serve for breakfast to his or her favorite
person?’ we are led to answers like this: ‘John likes Mary, and Mary prefers coffee,
so John should serve coffee.” Working out the other two cases as well, we get: ‘Mary
likes John, and John likes eggs, so Mary should serve eggs; Sam likes Mary, and
Mary likes coffee, so Sam should serve coffee.’ Pictorially:

eggs
L ]

® foast
e oatmeal

.cojfee

Or in the external diagram:

fo
Ry

‘f - g’ is read ‘f following g’, or sometimes ‘f of g’, as in: ‘“The favorite breakfast of the
favorite person of John is coffee,” for ‘f o g o John = coffee.’ Let’s sum up: If we have
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two maps f and g, and if the domain of f is the same object as the codomain of g,
pictorially

x &yl oz

then we can build from them a single map
Seg
X —Z

We will soon be considering an analogy between composition of maps and multi-
plication of numbers. This analogy should not be confused with the analogy in
Session 1, between multiplication of objects and multiplication of numbers.

That's all! These are all the basic ingredients we need, to have a CATEGORY, or
‘mathematical universe’:

Data for a category:

Objects: A,B,C...
Maps: A I, B,...

Identity maps: (one per object): A M 4

g 00

Composition of maps: assigns to each pair of maps of type 4 2.B ER C,
another map called ‘f following g’, 4 —L°8  C

Now comes an important, even crucial, aspect. These data must fit together nicely,
as follows.

Rules for a category:

1. The identity laws:

(a) If A » A » B
then A L Bl s B
S 1p
(b) If A » B y B
then A 182/ =/ » B
2. The associative law:
If A—L % .c—",p

A ho(goef)=(hcg)of

then » D

Here are some pictures to illustrate these properties in the category of sets:
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1. The identity laws:

(2)

Note that this is
the same as g

(b)

Note that this is

the same as f
2. The associative law;
B D
f f < h
A ey [
.

‘l‘: -
e

(i1)
4 ho(gef) o
(111) <:/) ,: :
A B D
[ ] f ho g
o O
A D
° (hog)of
(v) .
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Exercise 1:

Check to be sure you understand how we got diagrams (ii) and (iii) from the
given diagram (i). Then fill in (iv) and (v) yourself, starting over from (i). Then
check to see that (v) and (iii) are the same.

Is this an accident, or will this happen for any three maps in a row? Can you give a
simple explanation why the results

ho(g-f)and (hog)ef
will always come out the same, whenever we have three maps in a row
x Ly 5z we
What can you say about four maps in a row?
One very useful sort of set is a ‘singleton’ set, a set with exactly one element. Fix

one of these, say (@), and call this set ‘1’. Look at what the maps from 1 to {John,
Mary, Sam} are. There are exactly three of them:

‘John’

Definition: A point of a set X is a map 1—X.

(If A is some familiar set, a map from A to X is called an ‘4-element’ of X; thus ‘1-
elements’ are points.) Since a point is a map, we can compose it with another map,
and get a point again. Here is an example:

(] J h =
@ foJohn = eggs eggs
coffee

The equation f - John = eggs is read ‘f following John is eggs’ or more briefly, ‘f of
John is eggs’ (or sometimes ‘f sends John to eggs’).
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To help familiarize yourself with the category of finite sets, here are some
exercises. Take A = {John, Mary, Sam}, B = {eggs, coffee} in all of these.

Exercise 2:
How many different maps f/ are there with domain 4 and codomain B? One
example is

but there are lots of others: How many in all?

Exercise 3: P
Same, but for maps 4 — A4

Exercise 4: p
Same, but for maps B — A4

Exercise 5: P
Same, but for maps B — B

Exercise 6: p
How many maps 4 — A satisfy f o f = f?

Exercise 7:
How many maps B 2.B satisfy gog = g7

Exercise 8: ;
Can you find a pair of maps 4 — B %, A for which gof =147
If so, how many such pairs?

Exercise 9: , .
Can you find a pair of maps B— A4 — B for which ko h = 1p?
If so, how many such pairs?

1. Guide

Our discussion of maps of sets has led us to the general definition of category,
presented for reference on the next page. This material is reviewed in Sessions 2
and 3.
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Definition of CATEGORY

A category consists of the DATA:
(1) OBJECTS
(2) MAPS

(3) For each map f, one object as
DOMAIN of f and one object
as CODOMAIN of f

(4) For each object A an
IDENTITY MAP, which has
domain A and codomain A

(5) For each pair of maps
A4A—B-t.cC
a COMPOSITE MAP

llowi)
g following f C

satisfying the following RULES:

(i) IDENTITY LAWS: If A L» B,
then IBszfandfo_IA :f

(i) ASSOCIATIVE LAW:
ya-l-B-%.c
then (hog)of =ho(gof)

h

+ D,
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. . . with corresponding notation
A,B,C,...
f’ g7 h’ .

To indicate that f is a map,

with domain 4 and codomain B,

we write 4 —— B (orf: A —B)
and we say ‘f/ is a map from A4 to B’

We denote this map by 1,, so
A4

is one of the maps from 4 to A.

We denote this map by

gof
A——C
(and sometimes say ‘g of /7).

These notations are used in the following
external diagrams illustrating the rules:

B 1 A P

Igof=f fel=f
(hog)of
hog
{1 :me
gof /
ho(gof)

The associative law allows us to leave out the parentheses and just write ‘hogof’, which
we read as ‘h following g following f°. A longer composite like hogofoeod is also unambigu-
ous; all ways of building it by composition of pairs give the same result.

Hidden in items (4) and (5) above are the BOOKKEEPING rules. Explicitly these are:

the domain and codomain of 1, are both 4;

g o f is only defined if the domain of g is the codomain of f;

the domain of g o f is the domain of f and the codomain of g o f is the codomain of g.
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Sets, maps and composition

1. Review of Article I

Before discussing some of the exercises in Article I, let’s have a quick review. A set is
any collection of things. You know examples of infinite sets, like the set of all natural
numbers, {0, 1,2,3,...}, but we’ll take most of our examples from finite sets. Here is
a typical internal diagram of a function, or map:

Today's seat selection

Other words that mean the same as function and map are transformation, operator,
morphism, and functional; the idea is so important that it has been rediscovered and
renamed in many different contexts.

As the internal diagram suggests, to have a map f of sets involves three things:

1. a set A4, called the domain of the map f;

2. a set B, called the codomain of the map f; and then the main ingredient:

3. a rule (or process) for f, assigning to each element of the domain 4 exactly one
element of the codomain B.

That is a fairly accurate description of what a map is, but we also need a means to
tell when two different rules give the same map. Here is an example. The first map
will be called / and has as domain and as codomain the set of all natural numbers.
The rule for f will be: ‘add 1 and then square’. (This can be written in mathematical
shorthand as f(x) = (x + 1)2, but that is not important for our discussion.) Part of
the internal picture of f is:

The second map will be called g. As domain and codomain of g we take again the set
of all natural numbers, but the rule for g will be ‘square the input, double the input,

22
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add the two results, and then add 1’, a very different rule indeed. Still, part of the
internal diagram of g is:

the same as for f. Not only that, you can check with any number you like and you
will always get the same thing with the rule for f as with the rule for g. So, because
the two rules produce the same result for each input (and the domains are the same
and the codomains are the same), we say that f and g are the same map, and we write
this as f = g. (Do you know how the encoded formula for the rule g looks? Right,
g(x) = x* + 2x + 1.) What the equation (x + 1) = x? + 2x + 1 says is precisely that
f =g, not that the two rules are the same rule (which they obviously are not; in
particular, one of them takes more steps than the other.) The idea is that a function,
or map of sets, is not the rule itself, but what the rule accomplishes. This aspect is
nicely captured by the pictures, or internal diagrams.

In categories other than the category of sets, ‘a map from A4 to B’ is typically some
sort of ‘process for getting from A4 to B,’ so that in any category, maps f and g are
not considered the same unless they have at least the properties:

1. f and g have the same domain, say 4, and
2. f and g have the same codomain, say B.

Of course, there may be many different maps from A4 to B, so that these two proper-
ties alone do not guarantee that f and g are the same map. If we recall that a point of
a set 4 is a map from a sin/gleton set 1 to A, we see that there is a simple test for
equality of maps of sets 4 — B and 4 2. B

If for each point 1 23 A4, foa=goa, then f = g.

(Notice that f - a and g o a are points of B.) Briefly, ‘if maps of sets agree at points
they are the same map.’
In doing the exercises you should remember that the two maps

and

Emilio

are not the same even though they have the same rule (‘Mike likes Fatima and Sheri
likes Fatima’), because they have different codomains. On the other hand the two
maps
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and

are the same, even though their pictures don’t look quite the same.
You should also remember that the composite of two maps like this:

4581 ¢

is called ‘f o g°, in the opposite order! This is because of a choice that was made by
our great-grandparents. To say ‘Mike is sent by the map f to Fatima’, they wrote:

f(Mike) = Fatima
(read: ‘f of Mike is Fatima’). A better choice might have been:
Mike f = Fatima

Let me show you how the notation ‘f(Mike) = Fatima’ gave rise to the convention of
writing ‘f o g’ for the composite, g followed by /. Imagine we write the composite gf.
Then we would get

(&f)(John) = f(g(John))

which is too complicated. With the present convention, we get

(f - 8)(John) = f(g(John))

which is easier to remember. So, in order not to get confused between the order in
‘f o g’ and the order in the diagram (which is the order in which the rules are applied),
you should get used to reading ‘f - g’ as ‘/ following g’.

The first exercise in Article I was to use internal diagrams to check the associative
law for the composition of the maps

A first step is to fill in the figure

OO E
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which Chad has done like this:

Is this correct? Not quite, because we are supposed to draw two maps, and the thing
drawn for hog is not a map; one of the points of the domain of 4 g has been left
without an assigned output. This deficiency won’t matter for the next step, because
that information is going to get lost anyhow, but it belongs in this step and it is
incorrect to omit it. Chad’s trouble was that in drawing 4 - g, he noticed that the last
arrow would be irrelevant to the composite (ho g) o f, so he left it out.

cHAD: It seems the principle is like in multiplication, where the order in which
you do things doesn’t matter; you get the same answer.

I am glad you mention order. Let me give you an example to show that the order
does matter. Consider the two maps

= Mike
and Sheri

Fatima

Work out the composite f - g, and see what you get:

Mike
Sheri
Fatima
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Now work out the composite in the opposite order:

Mike Mike
Sheri Sheri
Fatima Fatima

The two results are different. In composition of maps the order matters.

When I was little I had a large family, and in large families there are always many
small chores to be done. So my mother would say to one of us: ‘Wouldn’t you like to
wash the dishes?” But as we grew, two or more tasks were merged into one, so that
my mother would say: ‘Wouldn’t you like to wash and then rinse the dishes?’ or:
‘scrape and wash and then rinse and dry the dishes?” And you can’t change the
order. You’ll make a mess if you try to dry before scraping. The ‘associative law for
tasks’ says that the two tasks:

(scrape then wash) then (rinse then dry)

and
scrape then [(wash then rinse) then dry]

accomplish the same thing. All that matters is the order, not when you take your
coffee break. All the parentheses are unnecessary; the composite task is:

scrape then wash then rinse then dry

Think about this and see if it suggests an explanation for the associative law. Then
look back at the pictures, to see how you can directly draw the picture for a com-
posite of several maps without doing ‘two at a time’.

Several students have asked why some arrows disappear when you compose two
maps, i.e. when you pass from the diagrams

f g

and
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to the diagram for ‘g following f~

To understand this you should realize that the composite of two maps is supposed
to be another map, so that it just has a domain, a codomain and a rule. The pasting
together of two diagrams is not the composite map, it is just a rule to find the
composite map, which can be done easily by ‘following the arrows’ to draw the
diagram of the resulting (composite) map. The point of erasing all the irrelevant
detail (like the extra arrows) is that the simplified picture really gives a different rule
which defines the same map, but a simpler rule.

Suppose you carry a sleeping baby on a brief walk around town, first walking in
the hot sun, then through the cool shade in the park, then out in the sun again.

City of
Buffalo
w = your walk t = temperature
Interval _ Temperature
of time fow o line

baby's experience

The map w assigns to each instant your location at that time, and the map ¢ assigns to
each spot in Buffalo the temperature there. (‘Temperature line’ has as its points phy-
sical temperatures, rather than numbers which measure temperature on some scale; a
baby is affected by temperature before learning of either Fahrenheit or Celsius.) The
baby was hot, then cool, then hot again, but doesn’t know the two maps that were
composed to get this one map.

2. An example of different rules for a map

The measurement of temperature provides a nice example of different rules for a
‘numerical’ map. If one looks at a thermometer which has both scales, Celsius and
Fahrenbheit, it becomes obvious that there is a map,

change from Fahrenheit to Celsius
Numbers — Numbers
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which sends the measure in degrees Fahrenheit of a temperature to the measure in
degrees Celsius of the same temperature. In other words, it is the map that fits in the
diagram

°F °C
212 1 -100 Temperatures
90 °F oC
32 0 Numbers » Numbers
0 Change from °F to °C
~40 ~40

How is this map calculated? Well, there are several possible rules. One of them is:
‘subtract 32, then multiply by 5/9.” Another is: ‘add 40, multiply by 5/9, then subtract
40.’ Notice that each of these rules is itself a composite of maps, so that we can draw
the following diagram:

Numbers
-32 X5/9
Numbers Change F to °C » Numbers
+40 -40
Numbers X309 » Numbers

The above example illustrates that a single map may arise as a composite in several
ways.

3. External diagrams

The pasting of the diagrams to calculate composition of maps is nice because from it
you can read what f does, what g does, and also what the composite g o f does. This
is much more information than is contained in g - f alone. In fact internal diagrams
aren’t always drawn. We use schematic diagrams like those in our ‘temperature’
example, or this:
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/N

A—— C

gef

29

These are called external diagrams because they don’t show what’s going on inside.

In Session 1 we met an external diagram when discussing Galileo’s ideas:

TIME

\Tght of bird

level
SPACE —_—
shadow
1.'
PLANE

4. Problems on the number of maps from one
set to another

LINE

Let’s work out a few problems that are not in Article I. How many maps are there

from the set A to the set B in the following examples?

(1) 4=

Answer: There are four maps because all a map does is to tell where Emilio goes, and

there are four choices for that.

(3) Now the set 4 is ... What shall I say? Ah! The set of all purple people-eaters in

this room, and B is as before:
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Answer: There is precisely one map, and its internal diagram is

Sheri
Omer
Alysia |
Mike /

This diagram doesn’t have any arrows, but it doesn’t need any. An internal diagram
needs one arrow for each element of the domain, and in this case the domain has no
element. Try to convince yourself that this is right, but without giving yourself a
headache!

(4) Now we reverse the previous example, that is:

Answer: Zero. We have four tasks, and each of them is impossible.
(5) Both A and B are empty, i.e.:

4=() 3=

Answer: There is one map, and its internal diagram is

O O

which is a valid diagram for the same reason that the one in (3) is valid. Why does
the reasoning in (4) not apply here?

Don’t worry too much about these extreme cases. The reason I mention them is
that as you learn the general setting you will see that they fit in quite nicely.
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Composing maps and counting maps

Let’s look at some of the exercises from Article I, starting with Exercises 2 and 3.
Can you explain why the results Ao (g<f) and (hog) o f always come out the same?
What can you say about four maps in a row, like these?

f g h k

Clarification of these questions is what I was aiming at with the story of my mother
and the tasks of scraping, washing, rinsing, and drying the dishes. The tasks were
meant as an analog of maps, so that the four-step task corresponds to the composite
map. When we first explained composition of maps, we said that the basic thing is to
compose two maps, for example those in the diagram

This diagram, as we said in last session, can itself be regarded as a rule to calculate
the composite map geof, namely the rule: ‘Look at this diagram and follow the
arrows.” The internal diagram of go f,

gof

1s just a simplified rule to calculate the same map. If we do the same thing with 4 and
k, we can pass by steps from

31
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f g h k
[ ]
[ ]
® L ]
®
[ ]
[ ] [ ]
[ ]
to
gof koh

(Fill in any missing arrows yourself.) Then, repeating the process, we get

(koh)o(gof)

But this piecemeal work is unnecessary. The analogy of scrape, then wash, then rinse,
then dry is meant to suggest that we can go from the beginning to the end in one step,
if we stick to the idea that the diagram

f g h k

itself gives a good rule for calculating the composite ko hogof. Just ‘look at the
whole diagram and follow the arrows’; for example:
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Now let’s see if we can find a way to tell the number of maps between any two
finite sets. For that we should start by working out simple cases. For example,
Exercise 4 is to find the number of maps from a three-element set to a two-element
set. How can we do this? The most immediate way I can think of is to draw them
(taking care not to repeat any and not to omit any), and then count them. Say we
begin with

Then we can do something else,

John \ b eggs
Mary = coffee
Sam

and then perhaps
John \ eggs
Mary coffee
Sam

and let’s see .... Do we have all the maps that send John to eggs? Right, we need one
more, sending Mary to eggs and Sam to coffee. So there are four maps that send
‘John’ to ‘eggs’, and I hope it is clear that there are also four maps that send ‘John’ to
‘coffee’, and that their diagrams are the same as the four above, but changing the
arrow from ‘John’. Thus the answer to this exercise is 8 maps. The same method of
drawing all possibilities should give you the answers to Exercises 5, 6, and 7, so that
you can start to fill in a table like this:

Number of DOMAIN 3 3 2 2
Number of CODOMAIN | 2 3 3 2
Number of MAPS 8 1271 9 4

hoping to find a pattern that may allow you to answer other cases as well.

ALYSIA: It seems that the number of maps is equal to the number of elements
of the codomain raised to a power (the number of elements of the domain.)

That’s a very good idea. One has to discover the reason behind it. Let’s see if it also
works with the extreme cases that we found at the end of last session.
Adding those results to our table we get:
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Number of DOMAIN {3312|2]|4(1{0]4}0 n{1]0|n#0
Number of CODOMAIN|2|3(3[2|1[4|4|0]|0)and |1|n|n| O
Number of MAPS 8(2719{4|114[1}0{1 1{n]|1]| O
23 33 32 22 14 41 40 04 OO 1" nl nO 0"

where n is any natural number, with the only exception that in the last column it
must be different from zero. Now you should think of some reason that justifies this
pattern.

cHAD: For every element of the domain there are as many possibilities as there
are elements in the codomain, and since the choices for the different elements of
the domain are independent, we must multiply all these values, so the number of
maps is the number of elements of the codomain multiplied by itself as many
times as there are elements in the domain.

Chad’s answer seems to me very nice. Still we might want a little more explanation.
Why multiply? What does ‘independent’ mean? If John has some apples and Mary
has some apples, aren’t Mary’s apples independent of John’s? So, if you put them all
in a bag do you add them or multiply them? Why?

Going back to Alysia’s formula for the number of maps from a set A4 to a set B, it
suggests a reasonable notation, which we will adopt. It consists in denoting the set of
maps from A to B by the symbol B*, so that our formula can be written in this nice
way

#(BA) — (#B)(#A) or IBA| _ |B||A|

where the notations #A4 and |A4| are used to indicate the number of elements of the
set A. The notation #4 is self-explanatory since the symbol # is often used to denote
‘number’, while |A4| is similar to the notation used for the absolute value of a number.
The bars indicate that you forget everything except the ‘size’; for numbers you forget
the sign, while for sets you forget what the elements are, and remember only how
many of them there are. So, for example, if

ining room

then we wouldn’t say P = R, but rather |P| = |R|. To remember which set goes in the
base and which one in the exponent you can imagine that the maps are lazy, so that
they go down from the exponent to the base. Another way to remember this is to
think of an especially simple case, for instance the case in which the codomain has
only one element, and therefore the set of maps has also only one element (and, of
course, remember that 1" = 1).

In Exercise 9, we don’t ask for the total number of maps from one set to another,
but only the number of maps g
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eggs eggs

such that go g = g. Can you think of one? Right,

eggs y 7> eggs
coffee = coffee

This is the first example anybody would think of. Remember from Article I that this
map is called an identity map. Any set B has an identity map, which is denoted

B-% B

and sends each element of the domain to itself. This map certainly satisfies
Igo 1p = 15. In fact it satisfies much more; namely, for any map A4 AN B, and
any map B 2, C,

lpof=f and golz=g

(These two equations give two different proofs of the property 150 15 = 15: one by
taking f = 15 and one by taking g = I5.) These properties of the identity maps are
like the property of the number 1, that multiplied by any number gives the same
number. So, identity maps behave for composition as the number 1 does for multi-
plication. That is the reason a ‘I’ is used to denote identity maps. What’s another

map g
eggs eggs

which satisfies g - g = g? What about the map

eggs eggs
coffee coffee

This map also has the property, since the composite

eggs — < eggs > eggs
coffee coffee coffee
1s
eggs eggs
coffee coffee

Now try to do the exercises again if you had difficulty before. One suggestion is to
look back and use the special diagrams available only for endomaps explained in
Article 1.

Here are some exercises on the ‘bookkeeping rules’ about domains and codomains
of composites.
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Exercise 1:
A, B, and C are three different sets (or even three different objects in any cate-
gory); f, g, h, and k are maps with domains and codomains as follows:

AL B B4 alc cXoB

Two of the expressions below make sense. Find each of the two, and say what its
domain and codomain are:

@) kohogef (D)kofeog (c)gofogekeoh

Exercise 2:
Do Exercise 1 again, first drawing this diagram:

f
7 A
A--————B
g
N
C

Now just read each expression from right to left; so (a) is ‘/ then g then A then k.’
As you read, follow the arrows in the diagram with your finger, like this:

S
T\ ‘_/’__>
A B A 2 B A B A B
h k
C C C C

The composite makes sense, and goes from 4 to B. See how much easier this
external diagram makes keeping track of domains, etc.




PART 11

The algebra of composition

We investigate the analogy: If composition of maps is like
multiplication of numbers, what is like division of numbers? The
answers shed light on a great variety of problems, including (in
Session 10) ‘continuous’ problems.






ARTICLE II

Isomorphisms

Retractions, sections, idempotents, automorphisms

1. Isomorphisms

It seems probable that before man learned to count, it was first necessary to notice
that sometimes one collection of things has a certain kind of resemblance to another

collection. For example, these two collections

feather

Mother

A | Father stone

Child Sflower

are similar. In what way? (Remember that numbers had not yet been invented, so it
is not fair to say ‘the resemblance is that each has three elements.’)
After some thought, you may arrive at the conclusion that the resemblance is

actually given by choosing a map, for instance this one:

Father \ (.L.
chid - \

> feather

Mother

Stone

—» flower

What special properties does this map f have? We would like them to be expressed
entirely in terms of composition of maps so that we can later use the same idea in
other categories, as well as in the category of finite sets. The properties should
exclude maps like these:

Mother

Father
Child

39



40 Article I1

—» feather

Mother

stone

Father

Sflower

The crucial property that f has, and the other two maps do not have, is that there
is an inverse map g for the map f. Here is a picture of g:

B A

stone \ [_-;
/ AN

flower

feather + Mother

Father
= Child

The important thing to notice is that g and f are related by two equations
gof =14 fog=1Ip

As we will see, neither of these equations by itself will guarantee that 4 and B have
the same size; we need both. This gives rise to the following concepts:

Definitions: 4 map A Z, B is called an isomorphism!, or invertible map, if
there is a map B 2, A for which gof = 14 and fog = 1p.

A map g related to f by satisfying these equations is called an inverse for f.

Tw<} objects A and B are said to be isomorphic if there is at least one isomorphism
A— B

Notice that there are other isomorphisms from {Mother, Father, Child} to {feather,
stone, flower}, for instance

Mother

Father

but to show that these two sets are isomorphic, we only need to find one of the many
—~ how many? — isomorphisms from 4 to B.

Once mankind had noticed this way of finding ‘resemblance’ between collections,
it was probably not too long before some names for the ‘sizes’ of small collections —
words like pair, or triple — came about. But first a crucial step had to be made: one

"The word isomorphism comes from Greek: iso = same; morph = shape, form; though in our category
of finite sets same size might seem more appropriate.
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had to see that the notion of isomorphic or ‘equinumerous’ or ‘same-size’, or what-
ever it was called (if indeed it had any name at all yet), has certain properties:

Reflexive: A is isomorphic to 4.

Symmetric. If A is isomorphic to B, then B is isomorphic to 4.

Transitive:.  If A is isomorphic to B, and B is isomorphic to C, then A4 is
isomorphic to C.

Surprisingly, all these properties come directly from the associative and identity
laws for composition of maps.

Exercise 1:

(R) Show that 4 24, 4is an isomorphism.
(Hint: find an inverse for /4.)

(S) Show that if 4 L Bis an isomorphism, and B - 4 is an inverse for f,
then g is also an isomorphism.
(Hint: find an inverse for g.) kos

(T) Show that if 4 — B and B £, ¢ are isomorphisms, 4 —— C is also
an isomorphism.

These exercises show that the three properties listed before them are correct, but
the exercises are more explicit: solving them tells you not just that certain maps have
inverses, but how actually to find the inverses.

All this may seem to be a lot of fuss about what it is that all three-element sets have
in common! Perhaps you will be partially persuaded that the effort is worthwhile if
we look at an example from geometry, due to Descartes. P is the plane, the plane
from geometry that extends indefinitely in all directions. R? is the set of all lists of
two real numbers (positive or negative infinite decimals like v/3 or —m or 2.1397).
Descartes’ analytic approach to geometry begins with an isomorphism

pL R

assigning to each point its coordinate-pair, after choosing two perpendicular lines in
the plane and a unit of distance:




42 Article 11

The map f assigns to each point p in the plane a pair of numbers, called the
‘coordinates of p in the chosen coordinate system’. (What does the inverse map g
do? It must assign to each pair of numbers, like (7, 7), a point. Which point?)

By systematically using this kind of isomorphism, Descartes was able to translate
difficult problems in geometry, involving lines, circles, parabolas, etc., into easier
problems in algebra, involving equations satisfied by the coordinate-pairs of the
points on the curves. We still use this procedure today, and honor Descartes by
calling these coordinate systems ‘cartesian coordinates’. Our notion of
‘isomorphism’ is what makes this technique work perfectly: we can ‘translate’ any
problem about a plane — i.e. apply the map f to it — to a problem about pairs of
numbers. This problem about pairs of numbers may be easier to solve, because we
have many algebraic techniques for dealing with it. Afterwards, we can ‘translate
back’ — i.e. apply the inverse map for f - to return to the plane. (It should be
mentioned that Descartes’ method has also proved useful in the opposite way —
sometimes algebraic problems are most easily solved by translating them into geo-
metry!)

You will notice that we have sneaked in something as we went along. Before, we
talked of an inverse for f, and now we have switched to the inverse for f. This is
justified by the following exercise, which shows that, while a map f may not have any
inverse, it cannot have two different inverses!

Exercise 2: . p
Suppose B £, 4 and B — A are both inverses for A - B. Show that g = k.

Since the algebra of composition of maps resembles the algebra of multiplication
of numbers, we might expect that our experience with numbers would be a good
guide to understanding composition of maps. For instance, the associative laws are
parallel:

folgeh)=(f-g)°h
3x(5xT)=03x35)x7

But we need to take some care, since

fog#gof

in general. The kind of care we need to take is exemplified in our discussion of
inverses. For numbers, the ‘inverse of 5°, or i, is characterized by: it is e number
x such that 5 x x = 1; but for the inverse of a map, we needed two equations, not just
one.
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More care of this sort is needed when we come to the analog of division. For
numbers, % (or 3 + 5) is characterized as the number x for which

Sxx=3;
but it can also be obtained as

x 3

_1
X =73

Thus for numbers we really don’t need division in general; once we understand
inverses (like %) and multiplication, we can get the answers to more general division
problems by inverses and multiplication. We will see that a similar idea can be used
for maps, but that not all “‘division problems’ reduce to finding inverses; and also that
there are interestihg cases of ‘one-sided inverses’, where f o g is an identity map but
gef is not.

Before we go into general ‘division problems’ for maps, it is important to master
isomorphisms and some of their uses. Because of our earlier exercise, showing that a
map A — B can have at most one inverse, it is reasonable to give a special name, or
symbol, to that inverse (when there is an inverse).

Notation: If 4 L, B has an inverse, then the (one and only) inverse for f is
denoted by the symbol f~! (read ‘f-inverse’, or ‘the inverse of f°.)
Two things are important to notice:

1. To show that a map B £, 4 satisfies g =f"', you must show that
gef=14 and fog=1p

2. If f does not have an inverse, then the symbol ¥~ does not stand for anything;

it’s a nonsense expression like ‘grlbding’ or ‘}'.

Exercise 3:
If f has an inverse, then f satisfies the two cancellation laws:

@) If foh=fok, then h=k.
(b) If hof =kof, then h = k.

Warning: The following ‘cancellation law’ is not correct, even if f has an inverse.
(c) (wrong): If hof = f ok, then h =k.

When an exercise is simply a statement, the task is to prove the statement. Let’s do
part (a). We assume that f has an inverse and that f - h = f o k, and we try to show
that 4 = k. Well, since f o 4 and f - k are the same map, the maps f~' = (f o h) and
f Yo (f o k) are also the same:



44 Article 11

frefey=f" e (k)

But now we can use the associative law (twice — once on each side of our equation),
sO our equation becomes:

ef)oh=("ef)ok
which simplifies to
lyoh=140k (why?)
which then simplifies to
h=k (why?)

So we have finished: h = k is what we wanted to show.

You will notice that this kind of calculation is very similar to algebra with numer-
ical quantities. Our symbols f,4,... stand for maps, not for numbers; but since
composition of maps satisfies some of the rules that multiplication of numbers
does, we can often do these calculations almost by habit; we must only be careful
that we never use rules, like the commutative law, that are not valid for maps.

Part (b) you should now be able to do yourself. Part (c), though, is a different
story. How do you show that a general rule is wrong? To say it is wrong just means
that there are cases (or really, at least one case) in which it is wrong. So to do part (¢)
select one example of a map f which has an inverse, and two maps 4 and k for which
hof =f ok, but not just any example, rather one in which 4 and k are different
maps. The most interesting examples involve only one set, and three endomaps of
that set. You should be able to find endomaps f, 4, and & of a two-element set A,
with f invertible and hof = f ok but h # k.

Here are some exercises with sets of numbers.‘R’ stands for the set of all (real)
numbers; ‘R’ for all the (real) numbers that are > 0. To describe a map with an
infinite set, like R, as domain, it is not possible to list the output of f for each input in
the domain, so we typically use formulas. For instance:

LR LR f(x)=3x+7
2. Ryo — Ry g(x) = x*
3. R -5 R h(x) = x°
4. R -5 Ry k(x) = x°
! 1
5. R.g— R —
>0 >0 I(x) = —

Exercise 4:

For each of the five maps above: decide whether it is invertible; and if it is
invertible, find a ‘formula’ for the inverse map.
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2. General division problems: Determination and choice

In analogy with division problems for numbers (like 3 x x = 21, with exactly one
solution: x = 7; or like 0 x x = 5, with no solutions; or like 0 x x = 0, with infinitely
many solutions) we find two sorts of division problems for maps:

1. The ‘determination’ (or ‘extension’) problem
Given f and h as shown, what are all g, if any, for which 2 = go f?

P}

A—= C

2. The ‘choice’ (or ‘lifting’) problem
Given g and 4 as shown, what are all f, if any, for which h = g o f?

/
f ?,/ g
/ h

A—» C

Let us study the determination problem first. If it has any solution g, we say that A
is ‘determined by’ f, or /4 ‘depends only on’ . (A particular solution g can be called/a
‘determination’ of 4 by f.) The same idea is often expressed by saying that % ‘is a
function of’ f. After we have studied several examples, it will become clearer why this
division problem is called the ‘determination problem’.

Example 1, a ‘determination’ problem

. s . : h

When B is a one-element set, then the possibility of factoring a given 4 — C across
B is a very drastic restriction on 4. This is true because there is only one 4 — B,
whereas to choose a map B —— C is the same as choosing a single element of C.

B=1

Therefore, denoting the element of B by b,

h(x) = (gof)(x) = g(f(x)) = g(b)

for all x in 4. Such a map 4 is called constant because it has constantly the same
value even though x varies.
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Example 2, a ‘choice’ problem

Now consider the following example in which B has three elements and » = 1, where
A = C has two elements, while B > Cis a given map with the property that every
element of C is a value of g, such as

Y
C=4

How many maps f can we find with g o f = 1,4? Such an f must be a map from 4 = C
to B and satisfy g(f(x)) = x for both elements x. That is, f must ‘choose’ for each x
an element z of B for which g(z) = x. From the picture we see that this determines
the value of f at one x but leaves two acceptable choices for the value of f at the
other x. Therefore there are exactly two solutions f to the question as follows:

On the other hand, suppose the first of these f is considered given, and we ask for
all maps g for which gof =1, a ‘determination’ problem. The equation
g(f(x)) = x can now be interpreted to mean that for each element of B which is
of the form f(x), g is forced to be defined so as to take it to x itself; there is one
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element of B to which that does not apply, so g can be defined to take that element to
any of the two elements of 4. Hence there are two such g, one of which is the g given
at the beginning of the discussion of this example.

The fact that we got the same answer, namely 2, to both parts of the above
example is due to the particular sizes of the sets involved, as seen by considering
the two parts for the smaller example

two-element set

fT lg g°f = Ilone

one-eclement set

and also for the larger pair of sets in the following exercise.

Exercise 5:
Given

V-
G0

how many maps f are there with gof = 1,0 1,?
Choosing a particular such f, how many maps g (including the given one)
satisfy the same equation?

Here are two more ‘determination’ examples.

Example 3

It surprised many people when Galileo discovered that the distance a dropped object
falls in a certain time is determined by the time (in the absence of air resistance.)
They had thought that the distance would depend also on the weight and/or density
of the object.

Example 4, Pick’s Formula

Imagine a grid of uniformly spaced points in the plane, and a polygonal figure with
vertices among these points:
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It turns out that the area (in square units) of such a polygon can be calculated from
very little information: just knowing the number of interior dots and the number of
boundary dots (in our example, 3 and 17) is enough. All the complicated details of
the shape of the polygon are irrelevant to computing its area! Schematically

3,17

Set of pairs of
natural numbers

# of interior
and boundary
vertices

10.5

Set of all
real numbers

Set of all our area in square units

polygons

Once you guess there is such a map g, it is not too difficult to figure out a formula for
g. (Try simple examples of polygons first, instead of starting with a complicated one
like ours.)

The history of Galileo’s problem was similar: once Galileo realized that the time of
the fall determined the distance fallen, it did not take too many experiments before
he found a formuia for the distance in terms of the time; i.e. for g in
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duration 1 ?
of fall N

Falling
bodies

Distances

Y

distance fallen

Further examples will be discussed in the sessions that follow.

3. Retractions, sections, and idempotents

The special cases of the determination and choice problems in which 4 is an identity
map are called the ‘retraction’ and ‘section’ problems.

Definitions: If A =N B:
a retraction for f is a map B —— A for which rof = 1;
a section for f is a map B = A for which f os = 1.

The retraction problem looks this way if we draw it as a ‘determination’ problem:

~
”
e
~
9

where we want r to satisfy rof = 1,.
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Similarly, the section problem is a ‘choice’ problem:

A
A
s? f
B——— B
1 B
but it’s simpler just to draw
A
4
,I
‘l
5?1 f
\\\
B

where we ask that s satisfy fos = Ip.

There is a slight advantage to drawing the triangular picture. It reminds us of the
equation we want to satisfy, which just says the triangle ‘commutes’: the two ways of
getting from the left corner to the right corner are equal.

From the examples just discussed we know that if a map has sections, it may have
several, and another map may have several retractions. Moreover, some maps have
retractions but no sections (or vice versa), and many have neither. There are some
important conditions, which we can often check by looking at the map itself, that are
necessary in order that a given map f could have sections or retractions. These
conditions are stated in the following propositions.

The first proposition may be regarded as an analog for maps to the observation
that once we have multiplication and ‘reciprocals’ (numbers like x :% to solve
equations like 3 x x = 1) we can then express the answers to more general division
problems like 3 x x = 5 by x =1 x 5. The proposition says that if the single choice
problem

involving this same f has a solution.
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Proposition 1: If a map A L Bhasa section, then for any T and for any map
T - B there exists a map T = A for which fox = y.

Proof: The assumption means that we have a map s for which fos = I5. Thus
for any given map y as below

T = B

we see that we could define a map x with at least the correct domain and codomain
by taking the composite s following y

X =3 oy
Does this map x actually satisfy the required equation? Calculating
fox=fo(soy)=(fes)ey=Igey=y

we see that it does.

If a map f satisfies the conclusion of the above if . .. then ... proposition (for any y
there exists an x such that fx = y), it is often said to be ‘surjective for maps from 7.’
Since among the T are the one-element sets, and since a map T Y, B from a one-
element set is just an element, we conclude that if the codomain B of f has some
element which is not the value f(x) at any x in A4, then f could not have any section s.

A section s for a map f is often thought of as a ‘choice of representatives.” For
example if A is the set of all US citizens and B is the set of all congressional districts,
then a map f such as

y [= residence

divides the people up into clusters, all of those residing in a given district y consti-
tuting one cluster. If s means the congressional representative choice, then the con-
dition f - s = /5 means that the representative of district y must reside in y. Clearly,
there are theoretically a very large number of such choice maps s unless there hap-
pens to be some district which is uninhabited, in which case there will be no such
maps s, as follows from Proposition 1.

There is a ‘dual’ to Proposition 1, which we’ll call Proposition 1*. It says, as you
might expect, that if the single determination problem
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has a solution (a retraction for /'), then every determination problem with the same f

B
f \\t?
A
A ——g—> T

has a solution. Because the proof is so close to that of Proposition 1, we leave it as an
exercise.

Exercise 6: p
If tt}e map A — B has a retraction, then for any map 4 £, T, there is a map
B — T for which ¢+ f = g. (This is Proposition 1*.)

Here is another useful property of those maps that have retractions.

Proposition 2: Suppose a map A L B has a retraction. Then for any set T and for
any pair of maps T -5 A, T =5 A from any set T to A

lff°x1 =fOX2 thenxl = X»3.

Proof: Looking back at the definition, we see that the assumption means that we
have a map r for which rof = 1,. Using the assumption that x; and x; are such
that f composes with them to get the same 7'— B, we can compose further with r
as follows:

1,
r — — & A » B = A

Definitions: 4 map f satisfying the conclusion of Proposition 2 (for any pair of maps
T Adand T2 A, if fox; =fox; then x| = x,) is said to be injective for
maps from 7.

If f is injective for maps from T for every T, one says that f is injective, or is a
monomorphism.
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Since T could have just one element, we conclude that if there were two elements
x; and x, of A4 for which x; # x, yet f(x;) =f(x;), then there could not be any
retraction for f.

Notice that Proposition 2 says that if f has a retraction, then f satisfies the
‘cancellation law’ (a) in Exercise 3. Proposition 2 also has a ‘dual’ saying that if f
has a section, then f satisfies the cancellation law (b) in Exercise 3.

Exercise 7:

Suppose the map A4 ., B has a section. Then for any set T and any pair
B-S T, B T of maps from Bto T, if t)of =t,of then t; = t,. (This is
Proposition 2*.)

Definition: A map f with this cancellation property (if tyof =tyof then t), = t,) for
every T is called an epimorphism.

Thus both ‘monomorphism’ and ‘epimorphism’ are ‘cancellation’ properties.

When we are given both f and r, and rof = 14 then, of course, we can say both
that r is a retraction for f and that f is a section for r. For which sets 4 and B can
such pairs of maps exist? As we will see more precisely later, it means roughly (for
non-empty A4) that 4 is smaller (or equal) in size than B. We can easily prove the
following proposition which is compatible with that interpretation.

Proposition 3: If A L, B has a retraction and if B -5 C has a retraction, then
A% C has a retraction.

Proof: Let ryof =14 and ryog = Ig. Then a good guess for a retraction of the
composite would be the composite of the retractions in the opposite order (which
is anyway the only order in which they can be composed)

gof

Does it in fact work?

ro(gef)=1(rer)e(gef)=rie(rneg)ef =rneclp-f
=rof =14

proves that r is a retraction for g f.
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Exercise 8:

Prove that the composite of two maps, each having sections, has itself a sec-
tion.

Definition: An endomap e is called idempotent if e e = e.

Exercise 9:

Suppose r is a retraction of f (equivalently f is a section of r) and let e = for.
Show that ¢ is an idempotent. (As we’ll see later, in most categories it is true
conversely that all idempotents can ‘split’ in this way.) Show that if f is an iso-
morphism, then e is the identity.

A map can have many sections or many retractions, but if it has some of each they
are all the same. That is, more exactly, we have:
Theorem (uniqueness of inverses): If f has both a retraction r and a section s then r = s.
Proof: From the definition we have, if 4 =N B, both of the equations
rof =14 and fos= Iy
Then by the identity laws and the associative law

r:r°13=r°(f°S)=(rof)OS:1A°s=s

4. Isomorphisms and automorphisms
Using ‘section’ and ‘retraction’, we can rephrase the definition of ‘isomorphism’.

Definitions: 4 map f is called an isomorphism if there exists another map ' which
is both a retraction and a section for f:

! of 1=7p
A——B flf B
! f oo f=1y

Such a map " is called the inverse map for f: since both of the two equations are
required, the theorem of uniqueness of inverses shows that there is only one inverse.



Isomorphisms 55

Exercise 10:

If 4 7, B -5 C are both isomorphisms, then go f is an isomorphism too, and

(gof ) ' =f"0og™!

The important (and necessary) reversal of order in the statement of the last exer-
cise can be explained in terms of shoes and socks. The act f of putting on socks can
be followed by the act g of putting on shoes, together a composite act gof. The
inverse of an act ‘undoes’ the act. To undo the composite act g - f, I must take off my
shoes, which is the act g~!, then follow that by taking off my socks (the act /1),
altogether performing f~'o g7

What is the relation of 4 to B if there is an isomorphism between them? In the
category of finite sets this just says that 4 and B have the same number of elements.
But this enables us to give a usable definition of ‘same number’ without depending on
counting — a definition which is very significant even for infinite sets. That is, we say
that 4 and B have the same number of elements if they are isomorphic in the
category of sets, where (in any category) A and B are isomorphic means that there
exists an isomorphism from A to B in the category. Categories other than sets usually
involve objects that are more richly structured, and, correspondingly, isomorphic
objects will be alike in much more than just ‘number of elements’ — they will have the
‘same shape’, ‘same structure’, or whatever the category itself involves.

Check the correctness of the above idea of equal number for finite sets:

Exercise 11:
If A = {Fatima, Omer, Alysia} and B = {coffee, tea, cocoa}, find an example of

an isomorphism A R B. If C = {true, false}, can you find any isomorphism
A— C?

Now, how many isomorphisms are there from A to B? This question relates
immediately to another question: How many isomorphisms 4 — A4 are there?
Such a map, which is both an endomap and at the same time an isomorphism, is
usually called by the one word automorphism.
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Exercise 12:

How many isomorphisms are there from A = {Fatima, Omer, Alysia} to
B = {coffee, tea, cocoa}? How many automorphisms of A are there? The
answers should be less than 27 — why?

In general, if there are any isomorphisms 4 — B, then there are the same number
of them as there are automorphisms of 4. This fact we can prove without counting
by remembering the definition of ‘same number’ given above. If we let Auz(A4) stand
for the set of all automorphisms of 4 and Isom(A, B) stand for the set of all iso-
morphisms from A4 to B, the definition says that we need only construct an iso-
morphism between those two sets. Now Aut(A) is always non-empty since at least
1,4 is an example of an isomorphism 4 — A. If there is an isomorphism 4 — B,
choose such an f and use it to construct

Aut(A) R Isom(A, B)
by defining F(a) = f - o for any automorphism a of A4.
A
a f

A————B

F@)=fca

F(a) is indeed a member of Isom(A4, B) because of our previous proposition that any
composite f - a of isomorphisms is an isomorphism. To show that F is itself an
isomorphism, we have to construct an inverse

Isom(4, B) — Aut(A)
for it, and this we can do using the same chosen f as follows:

Sig)=f"-g

for all isomorphisms g in Isom(A, B)
B
7 X
A = A
[log

Thisf~'cgisan automorphism of 4. Finally we have to show that S really is inverse
to F, which involves showing two things:
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for all g, so that

and also

for all a, showing that
SoF = 14,4

An automorphism in the category of sets is also traditionally called a permutation,
suggesting that it shifts the elements of its set around in a specified way. Such a
specified way of shifting is one of the simple, but interesting kinds of structure, so we
can use this idea to describe our second example of a category, the category of
permutations. An object of this category is a set A together with a given automorph-
ism a of 4. A map

from A~* to BP

is a map of sets A4 R B, which ‘respects’ or ‘preserves’ the given automorphisms o
and 3 in the sense that

foo=pef
To compose maps f and g,
goB
f g
Af’)a . CQ?‘

?

the natural thing would seem to be to compose them as maps of sets 4 2, % C,
but we need to check that the composite as maps of sets is still a map in the category
of permutations. That is, we suppose that f respects a and 3 and that g respects 3
and v, and we must verify that g f respects a and v. We are assuming

foa=pof
gef=veg

and so by associativity
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(gof)oa=go(foa)=go(Bof)=(goB)of =(v°8)°f
=7yo(gef)

which completes the verification.

We will learn later that an object in the category of permutations has not only a
total number of elements, but also a whole ‘spectrum’ of ‘orbit lengths’ and
‘multiplicities’ with which these occur. The only point which we want to preview
here is that two objects between which there exists an isomorphism in the sense of this
category will have their whole spectra the same.

5. Guide

We have discussed a number of important properties that a map may have, all
related to division problems; these are summarized on the following page. Many
examples will be presented in Sessions 4-9, followed by sample tests and review
pages. Part II concludes, in Session 10, with an extended geometric example illus-
trating the use of composition of maps, and in particular the use of retractions.
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Summary: Special properties a map | 4 _J .5 may have.

=

in
X|=> i Y ]
means
‘1f X, then Y’
or
‘X implies Y’

Inverse

f is an isomorphism,
or invertible map,
i.e. f has an
inverse, g:

- -

satisfying both
g °f = IA and
fog=1p

(Note: from either pair
of ‘diagonally opposite
properties,

e

r %

’

7

4

you can prove that
f has an inverse!)

Choice and Determination

f has a section: a map s

-————

satisfying f o s = Ip.
OR

The choice problem

s? ,’I X

has a solution.
OR

Cancellation

For every T, f is
‘surjective for maps from 717,
i.e. every choice problem

A
2 7 N\S
N
b
has a solution.

T

B

For every T, and every

1
B=—=T
n
if hof =t0f
thent; =1,

(f is an ‘epimorphism’.)

f has a retraction: a map r

-

satisfying ro f = 1 4.
OR

The determination problem
B
f/’ \\\r ?
\

has a solution.
OR

(The three small boxes in
each large box are just
three ways to state the

same

property of f.)

For every T, every
determination problem

f/( \\\ ?
A

has a solution.

For every T, f is
‘injective for maps

from T, i.e. for every
a

T—= 4,
a

2
iffoay=foa,
then a =a
(f is a ‘monomorphism’
or ‘injective map’.)




SESSION 4

Division of maps: Isomorphisms

1. Division of maps versus division of numbers

Numbers Maps
multiplication composition
division ?

If composition of maps is analogous to multiplication of numbers, what is the
analog of division of numbers? Let’s first review the common features of composi-
tion and multiplication. Both operations are associative and have identities. (The
identity for multiplication is the number 1.)

Multiplication of numbers Composition of maps

For numbers x, y, z For maps 4 — B t.cp
xxl=x=1xx foly=f=lgof
xx(yxz)=(xxy)xz ho(gof)=(hog)of

Like most analogies this one is only partial because in multiplication of numbers
the order doesn’t matter, while in composition of maps it does. If we want both
‘fog” and ‘gof’ to make sense and to have the same domain, we must have
AL d4and 45 A, and even then:

For all numbers x, y, For most maps f, g,
XXy=yXX gof #f-8

Both multiplication of numbers and composition of maps are well-defined pro-
cesses: you start with a pair (of numbers in one case, of maps in the other) and get a
result. Usually, when you have a process like that there arises the question of rever-
sing it, i.e. to find a new ‘process’ by which we can go from the output to the input,
or from the result and one of the data, to the other datum. This reverse process may
not give a unique answer.

For multiplication of numbers this reverse process is called the division problem,
which is relatively simple because given one of the data and the result there is usually
exactly one value for the other datum. For example, if multiplying a number by 3 we
get 15,

3x?7=15
60
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we know that the number could only have been 5.

However, even in multiplying numbers we find problems for which there is no
solution and problems for which there is more than one solution. This occurs when
we multiply by zero. If we are told that multiplying a number by zero we get 7, we
must reply that there is no such number, while if we are asked to find a number
which multiplied by zero gives zero, we see that any number whatsoever is a solution.

0 x?=7 no solution 0 x ?7=0 many solutions

Such problems, which may be considered as exceptional in multiplication, are
instead typical for composition of maps. For maps it usually happens that
‘division’ problems have several solutions or none. There is, however, one very useful
case in which ‘division of maps’ produces exactly one solution, so we will treat this
easier case first.

2. Inverses versus reciprocals

A ‘reciprocal for the number 2’ means a number satisfying ? x 2 = 1 (and therefore
also 2 x 7 = 1). As you know, 2 has precisely one reciprocal, 0.5 or 1/2. The corre-
sponding notion for composition of maps is called ‘inverse.’

Definitions: If A z, B, an inverse for f is a map B 2,4 satisfying both
gef=14 and fog=1Ip

If f has an inverse, we say f is an isomorphism, or invertible map.

We really need both equations, as this example shows:

f

g

gof =14 but fog#lp
You can make up more complicated examples of this phenomenon yourself. (What is
the simplest example of maps f and g for which f - g is an identity map, but go f is
not?) The internal diagram of an isomorphism of sets looks pretty simple:
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though it might be drawn in a less organized way:

These pictures suggest that a map with an inverse has only one inverse: just
‘reverse the arrows in the internal diagram.” This is true, and will be deduced from
just the associative and identity laws for composition of maps:

Uniqueness of inverses: Any map f has at most one inverse.

Proof: Say A L B, and suppose that both B £, A and B 4 are inverses for
f;s0

gef =14 and fog=1Ip
hof—_-IA and thZIB

We only need two of these equations to prove that g and 4 are the same:

g=1lyog=(hof)og=ho(fog)=holg=h

(Do you see the justification for each step? Which two of the four equations did we
use? The easiest way to remember this proof is to start in the middle: the expression
hof o g, with f sandwiched between its two supposed inverses, simplifies two ways.)

There are two standard notations for the reciprocal of 2: 1/2 and 27!, For maps,
only the second notation is used: if f has an inverse map, then its one and only
inverse is denoted by f~!. In both cases, numbers and maps, it makes no sense to use
these symbols if there is no reciprocal or inverse: ‘07", 1/0°, and /""" if f is the map

CRE

are nonsense-expressions that don’t stand for anything. One further small caution:
Whether a number has a reciprocal depends on what your ‘universe of numbers’ is. If
by ‘numbers’ you mean only integers (whole numbers), te. ..., -2,-1,0,1,2,3,...,
then only —1 and 1 have reciprocals; 2 does not. But if by numbers you mean real
numbers (often represented by infinite decimal expansions), then every number
except 0 has a reciprocal. In exactly the same way, whether a map has an inverse
depends on what ‘universe of maps’ (category) you are in. We'll take the category of
abstract sets (and all maps) for now, but much of what we say will depend only on
the associative and identity laws for composition of maps, and therefore will be valid
in any category.
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3. Isomorphisms as ‘divisors’

If you have ever arrived a few minutes late to a movie, you have no doubt struggled
to determine which isomorphism of sets

Names of characters ——— Characters on screen

is involved. When two characters discuss ‘Titus,” you try to gather clues which may
indicate whether that is the tall bald guy or the short dark-haired one. Later, if you
particularly liked the film but the actors were unfamiliar to you, you learn the
isomorphism

Characters on screen ———— Actors in film

or if the actors are familiar, but you cannot recall their names, you learn the iso-
morphism

Actors in film —— Professional names of cast

(An unfortunate recent practice is to show you at the end of the film only the
composite of these three isomorphisms, called ‘cast of characters’.)

After you have grasped all of these isomorphisms, it is remarkable how easily you
compose them. You perform a sort of mental identification of the name ‘Spartacus’
and the slave who led the revolt and the actor with the cleft chin and the name ‘Kirk
Douglas,” even while you are aware that each of these isomorphisms of sets resulted
from many choices made in the past. Different actors could have been selected for
these roles, the actors might have selected different professional names, etc.; each
arrow in the internal diagram of any one of the isomorphisms may represent a story
of its own. At the same time, these four sets are kept quite distinct. You do not
imagine that the slave dined on Hollywood Boulevard, nor that the cleft-chinned
actor contains nine letters. Each set is an island, communicating with other sets only
by means of maps.

" In spite of this seeming complexity, you use these isomorphisms of sets, and
composites of these and their inverses, so freely in discussing the film that it seems
almost miraculous. Apparently an isomorphism is easier to master than other maps,
partly because of its ‘two-way’ character: with each isomorphism comes its inverse,
and passing back and forth a few times along each arrow in the internal diagram
cements it firmly in your mind. But the ease in composing them comes also from the
simplicity of the algebra of composition of isomorphisms. The process of following
(or preceding) maps by a particular isomorphism is itself a ‘reversible’ process, just as
the process of multiplication by 3 is reversed by multiplication by 1/3. There is only
one small difference. Because the order of composition matters, there are two types
of division problems for maps. Each has exactly one solution if the ‘divisor’ is an
isomorphism:
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Problem: Problem:
B B
/ N
f N g? 1y g
X K
A h C A 7 C
Given f and A, find all g for Given g and A, find all f
which go f = h. for which go f = h.
(Analogous to: 7 x 3 = 6) (Analogous to: 3 x 7 = 6)
Solution, if the ‘divisor’ f is an Solution, if the ‘divisor’ g is an
isomorphism: isomorphism:
There is exactly one map There is exactly one map
g for which go f = h; f for which go f = h;
itisg=hof ! itisf =g 'oh.
(Analogous to: ? = 6 x §) (Analogous to: ? =1 x 6)

Please don’t bother memorizing these formulas. It’s easier, and more illuminating,
to learn the proof; then you can instantly get the formulas whenever you need them.
Here it is for the left-hand column. If g were a solution to go f = A, then (trying to
get g by itself on the left-hand side) (gof)of~' =hof~!, but now the left side
simplifies (how?) to g, so g = hof~'. Caution: All that we have shown is that the
only possible solution to our equation is the candidate we found, hof~!. We still
must make sure that this candidate is really a solution. Is it true that
(hof~ 1Yo f = h? Simplify the left-hand side yourself to see that it’s so. Notice that
in the first simplification we used f o f~! = I, and in the second simplification we
used f~'of = I,; we needed both. Now work out the proof for the right-hand
column too, and you will have mastered this technique.

4. A small zoo of isomorphisms in other categories

To appreciate isomorphisms you need to look at examples, some familiar, some
more exotic. This is a bit of a leap ahead, because it involves exploring categories
other than the category of sets, but you can manage it. We’ll start with the more
familiar, but perhaps get you to take a fresh viewpoint.

In algebra, we often meet a set (usually of numbers) together with a rule (usually
addition or multiplication) for combining any pair of elements to get another ele-
ment. Let’s denote the result of combining a and b by ‘a * &’, so as not to prejudge
whether we are considering addition or multiplication. An object in our algebraic
category, then, is a set A together with a combining-rule *. Here are some examples:

(R, +) Real numbers (usually represented by infinite decimal expansions, like
3.14159..., or —1.414..., or 2.000...) with addition as the combining-
rule.

(R, x) Same, but with multiplication as the combining-rule.
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(R.g, x) Only positive real numbers, but still with multiplication.

A map in this category from an object (4, *) to an object (4', ') is any map of sets
A —— A’ which ‘respects the combining-rules,’ i.e.

flaxb) = (fa)+' (fb) foreachaand bin A4
Here are some examples of maps in this category:

1. (R, +) < (R,+) by ‘doubling’: dx =2x. We see that d is a map in our
category, since

d(a+b) = (da) + (db)
ie.
2(a+ b) = (2a) + (2b)

2. (R, x) LN (R, x) by ‘cubing’: cx = x’. We see that ¢ is a map in our category
since

c(ax b) = (ca) x (cb)
1.e.
(ax b)’ = (a°) x (&°)

exp

3. (R, +) » (R.9, X) by ‘exponentiation’: expx = ¢”, and exp is a map in our
category since

exp(a + b) = (expa) x (exp b)
ie.
@b — () x (e%)
(If you don’t know the number ¢ = 2.718..., you can use 10 in its place.)

These examples of maps in our algebraic category were specially chosen: each of
them is an isomorphism. This requires some proof, and I’ll only do the easiest one,
the doubling map d. You’ll guess right away the inverse for the doubling map, the
‘halving map:’

(R, +) 2, (R,+) by ‘halving™ hx =3x

Of course, we should check that 4 is a map in our category, from (R, +) to (R, +). Is
it true, for all real numbers a and b, that

h(a+ b) = (ha) + (hb) ?

Yes. Now we still must check the two equations which together say that 4 is the
inverse for d: Are hd and d h identity maps?
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Exercise 1:

Finish checking that 4 is an isomorphism in our category by showing that hod
and d o h are indeed identity maps.

We can find examples of objects in our algebraic category which aren’t sets of
numbers. You have probably noticed that adding an even whole number to an odd
one always produces an odd result: odd + even = odd. Also, odd + odd = even, and
so on. So the two-element set {odd, even} with the ‘combining-rule,” +, now has
become an object in our algebraic category. Also, you know that multiplying positive
numbers produces a positive result, while positive x negative = negative, and so on.
In this way, the set {positive, negative} with the combining-rule x is also an object in
our category. Our next exercise is an analog of the remarkable example (3) above,
which showed that addition of real numbers and multiplication of positive numbers
have the ‘same abstract form.’

Exercise 2:
Find an isomorphism

({odd,even}, +) —L»({positive, negative}, x)

Hint: There are only two invertible maps of sets from {odd,even} to
{pos., neg.}. One of them ‘respects the combining rules’, but the other doesn’t.

We should also get some experience in recognizing when something is not an
isomorphism; the next exercise will challenge you to do that.

Exercise 3:

An unscrupulous importer has sold to the algebraic category section of our zoo
some creatures which are not isomorphisms. Unmask the impostors.

(a) (R, +) N (R,+) by ‘plus 1”: px = x+ 1.
(b) (R, x) =, (R, x) by ‘squaring’: sqx = x°.
() (R, x) =, (R, X) by ‘squaring’: sqx = x°.
(d) (R, +) — (R, +) by ‘minus’: mx = —x.

(e) (R, x) — (R, x) by ‘minus™ mx = —x.

() (R, x) — (R, x) by ‘cubing” ¢x = x°.
Hints: Exactly one is genuine. Some of the cruder impostors fail to be maps in

our category, i.e. don’t respect the combining-rules. The crudest is not even a
map of sets with the indicated domain and codomain.

If you have always found the algebraic rules that came up in discussing these
examples somewhat mysterious, you are in good company. One of our objectives
is to demystify these rules by finding their roots. We will get to that, and after we
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nourish the roots you will be surprised how far the branches extend. For now,
though, it seemed fair to use the algebraic rules as sources of examples. The rest
of the isomorphisms in our zoo will be easier to picture, and won’t require algebraic
calculations. Since this is only a sightseeing trip, we will be pretty loose about the
details.

In geometry, a significant role is played by ‘Euclid’s category.” An object is any
polygonal figure which can be drawn in the plane, and a map from a figure F to a
figure F' is any map f of sets which ‘preserves distances’: if p and q are points of F,
the distance from fp to fg (in F') is the same as the distance from p to ¢g. (Roughly,
the effect of this restriction on the maps is to ensure that if F were made of some
perfectly rigid material you could pick it up and put it down again precisely onto the
space occupied by F'; but notice that any idea of actually moving F is not part of the
definition.) Objects which are isomorphic in this category are called by Euclid
‘congruent’ figures. Here is an example.

Isomorphic objects in Euclid's category

Do you see what the map f is, and what its inverse is? If so, you should be able to
locate fr and s in the picture. We might enlarge Euclid’s category to include solid
figures, and to allow curved boundaries. Then if you are perfectly symmetric, your
left hand is isomorphic to your right hand when you stand at attention, and your
twin’s right hand is isomorphic to both of these.

In topology, sometimes loosely referred to as ‘rubber-sheet geometry,” maps are
not required to preserve distances, but only to be ‘continuous’: very roughly, if p is
close to g then fp is close to fq. Objects which are isomorphic in such a category are
said to be ‘homeomorphic.” The physique of a tall thin man is homeomorphic to that
of a short stout one unless accident or surgery has befallen one of them.

A radiologist examining images of the human body from X-rays needs to make
sharper distinctions, and so may use a more refined category. An object will have as
additional structure a map associating to each point a density (measured by the
darkness of its image); and a map in the radiologist’s category, in addition to
being continuous, must have the property that if p and ¢ are nearby and the density
at p is greater than that at g, then correspondingly the density at fp is greater than
that at fg. Failure to find an isomorphism in this category from your body to an
‘ideal’ body is regarded as an indication of trouble. (This example is not to be taken
too seriously; it is intended to give you an idea of how one tries to capture important
aspects of any subject by devising appropriate categories.)
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Division of maps: Sections and retractions

1. Determination problems

Many scientific investigations begin with the observation that one quantity f deter-
mines another quantity 4. Here is an example. Suppose we have a cylinder, with a
weighted piston pushing down on a trapped sample of gas. If we heat the system, the
volume of the trapped gas will increase, raising the piston. If we then cool the system
to its original temperature, the gas returns to its original volume, and we begin to
suspect that the temperature determines the volume. (In the diagram below, f assigns
to each state of the system its temperature, and 4 assigns to each state its volume.)

Temperatures
f Ng8?
\
A
States of system = Volumes

Our suspicion is that there is a map g which makes 2 =gof; such a g is called a
determination of h from f. The problem for the scientist is then to find one g (or all g,
if there is more than one) which makes # = g o f true. (In this example, it turns out
that there is exactly one such g. If we choose the zero for temperatures appropriately,
g even has a very simple form: multiplication by a constant.)

Let’s put all this more generally. Suppose that we have a map of sets A 2, Band
a set C. Then every map from B to C can be composed with f to getamap A — C.
Thus f gives us a process that takes maps B—— C and gives maps 4 — C:

B

Givcnf/ wm each g
A—————»C

wegetgof

and we are interested in reversing this process. The determination problem is: Given
maps f from A to B and h from A to C, find all maps g from B to C such that g f = h.
(See diagram below.)

This problem asks: ‘Is h determined by f 7" and more precisely asks for all ways of
determining & from f, as shown in the diagram

68
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B\
f \\g‘-’
)
A——=C
h

Here is an example with finite sets. Let 4 be the set of students in the classroom
and B the set of genders ‘female’ and ‘male’; and let A4 2., Bbethe obvious map that
gives the gender. If C is the set with elements yes and no, and 4 is the map which
answers the question ‘Did this student wear a hat today?’, then depending on who
wore a hat today there are many possibilities for the map 4. But since there are so few

maps
female -
male

(how many?), it is very unlikely that a given 4 is equal to f followed by one of the
maps from B to C.

female
male

N
N
A Y
N

gender=f . &7

\
Set of
students —>
h = wore hat?

. . h iy
Let’s try to figure out what special properties a map 4 — C has if it is equal to

g o f for some
female g -
male

Obviously that means that by knowing whether a student is female or male you can
tell whether the student wore a hat or not. In other words, either all females wore
hats today or none did, and either all the males wore hats or none did. The existence
of a map g such that h = gof would mean that 4 (whether a student wore a hat
today) is determined by f (the gender of the student).

Incidentally, the survey of our class revealed that Ian wore a hat today and Katie
did not. This much information alone would force g to be as shown below
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But even this g does not satisfy g o f = A, since Chad is male but he did not wear a
hat:

(g°f)(Chad) = g(f(Chad)) = g(male) = yes h(Chad) = no

For a general idea of how a map f must be related to a map 4 in order that it be
possible to find an explicit ‘proof” g that 4 is determined by f, try the following
exercise. (Recall that ‘1’ is any singleton set.)

Exercise 1:
(a) Show that if there is a map g for which & = g f, then for any pair a,,a, of
points 1 — A4 of the domain A4 of f (and of /) we have:

if fa, = fa, then ha; = ha,

(So, if for some pair of points one has fa; = fa, but ha, # ha,, then h is not
determined by f.)

(b) Does the converse hold? That is, if maps (of sets) /' and # satisfy the condi-

tions above (‘for any pair ... then ha; = ha,’), must there be a map B Ac
with h=gof?

2. A special case: Constant maps

Let’s suppose now that B is a one-element set, so f is already known: it takes all
elements of A to the only element of B. For which maps 4 does our determination
problem have a solution?

\
\

\
\g?
s 8
Ay

\C
A h >

According to Exercise 1, such a map 4 must send all elements of 4 to the same
element of C. This conclusion can also be reached directly: since B has only one
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element, a map g from B to C is the same as a choice of an element in C; and the
composite g o f will send all elements of 4 to that element of C. Such a map (which
takes only one value) is called a constant map.

Definition: 4 map that can be factored through 1 is called a constant map.

3. Choice problems

Another division problem for maps consists in looking for the other factor, i.e.
looking for f when g and & are given, like this:

B
A

This is called the choice problem because in order to find a map f such that go f = A,
we must choose for each element a of 4 an element b of B such that g(b) = h(a).

Here is a choice problem. Let C be a set of towns, A4 the set of people living in
those towns, and let 2 be the map from A4 to C assigning to each person his or her
town of residence. Let’s take as the set B the set of all supermarkets and as map g the
location of the supermarkets:

Supermarkets

/
f? ./ location

z 5 )
People ——————  Towns
residence

To get a solution to this problem, each person must choose a supermarket located in
his or her town of residence. It should be clear that as long as there are no inhabited
towns without supermarkets, the problem has a solution, and usually more than one.

As with the determination problem (Exercise 1), there is a criterion for the exis-
tence of ‘choice’ maps:

Exercise 2:

(a) Show that if there is an f with gof = A, then A& and g satisfy: For any g in 4
there is at least one b in B for which h(a) = g(b).

(b) Does the converse hold? That is, if 4 and g satisfy the condition above,
must there be a map f with A = go f?
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4. Two special cases of division: Sections and retractions

An important special case of the choice problem arises if the set A is the same as C,
and the map #4 is its identity map.

This asks for a map 4 <, B which chooses for each element a of 4 an element b of B
for which g(b) = a. This is less than being an inverse for g, since only one of the two
conditions demanded of an inverse is required here. Still, this relationship of f to g is
of such importance that we have given it a name:

Definition: 4 > B is a section of B 5+ A if gof = I4.

One of the important applications of a section is that it permits us to give a
solution to the choice problem for any map 4 2, € whatsoever. How? It’s a variant
of ‘If you have 1/2 you don’t need division by 2; multiply by 1/2 instead.” Suppose
that we have a choice problem, such as the one of the supermarkets, and let’s
suppose that the given B -, C has a section s. If we draw all the maps we have,
in a single external diagram,

we see that there is a way to go from A4 to B: the composite s 4. Let’s check whether
putting f = so h gives a solution; that is, whether gof = h. This is easily checked
with the following calculation

gof =go(soh) (sincef =soh)
= (gos)oh) (associative law)
= Icoh (since sis a section of g)
= h (identity law)

This calculation is another example of the algebra of composition of maps, but it
should look familiar. It was half of the calculation by which we showed that a choice
problem with an invertible divisor g has exactly one solution. So, each section of g
gives a solution to any choice problem with g as divisor. However, usually there are
other solutions to the choice problem besides those given by the sections of g (and
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different sections may give the same solution), so that the number of sections often
differs from the number of solutions of the choice problem.

FATIMA: How would that apply to the example of the supermarkets?

Well, a section for the map g = location of the supermarkets assigns to every town a
supermarket in that town. For example, imagine that there is a chain that has one
supermarket in each town. Then one solution to the choice problem (the solution
which comes from the chain’s section of g) is that everybody chooses to shop in the
supermarket of that chain located in his or her own town. You’ll notice that those
solutions to choice problems which come from sections are pretty boring: in each
town, everybody shops in the same supermarket. The same thing will happen for
determination problems and retractions. Retractions give solutions of determination
problems, as Exercise 6 of Article II shows, but the interesting cases of determination
are usually those which do not come from retractions.

OoMER: For the identity map it seems that the order should not matter, or
should it?

I’'m glad you asked, because it is easy to make this mistake, and we should clear it up
so that we will have it all neatly organized. Let’s compare a choice problem for the
identity map, which we just looked at, with a determination problem for the identity
map. It’s clearer if we don’t give the sets and maps any names (since every time you
use these ideas the maps involved may have different names) and just draw the
schematic external diagrams:

Section Retraction
[ ] .\
/l \\
/ - . \
2,/ given given .9
/’ \\\
/

/ \
P i @ L R —— g
1 1

choice determination

You can see why confusion might arise; the only difference is which map is regarded
as given. Iyet’s review.
Say A — B is a map.

(a) A section of fis any map s such that f o5 = Ip.
(b) A retraction of fis any map r such that rof = I ,.

Comparing the definitions, we see that a section of f is not the same as a retraction of
f. The symmetry comes in noticing that a single relationship between two maps can
be described in two ways: if gof is an identity map we can either say that g is a
retraction of f or that f is a section of g. The relationship among maps of ‘section’ to
‘retraction’ is nearly the same as the relationship among women of ‘aunt’ to ‘niece’.
Just be careful not to use these words in isolation. You cannot ask whether a map is
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an inverse, or section, or retraction. It only makes sense to ask that it be an inverse
(or section or retraction) of a specified map.

Try Exercises 6 and 7 of Article II to see how a retraction gives solutions to
determination problems, and how a section gives solutions to choice problems.

5. Stacking or sorting

To find all the sections for a given map A4 Z, B, it is useful to view the map f as
‘stacking’ or ‘sorting’ the elements of 4. Here is an example. Let’s suppose that 4 is
the set of all the books in the classroom and B is the set of people in the same
classroom. We have a map 4 _Delongsto . g which assigns to each book the person
who brought it into the classroom. One way to picture this map is the internal
diagram we have been using,

But another picture can be drawn in which we arrange all the people in a row and
stack on top of each one in a column all the books that belong to him or her:

®
A= ® * = Books
o o
[ J [ J [ ]
l f = Owner
[ [ J [ ] [
B= K C 4 o |~ People

In this picture we can read off easily what f/ does, and at the same time we clearly see
the stack of books that belongs to each student. It might involve a lot of work to
arrange the domain and codomain so as to get the ‘stacks picture’ of a particular
map, but once it is done, it is a very useful picture and, in principle, every map can be
viewed this way.

Coming back to the sections, let’s see how the stacks picture of a map can help us
to find all the sections of that map. What would be a section of the map f which
assigns to every book the person who brought it into the classroom? It would be a
map assigning to every person one of his or her books, such as:
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A= : : = Books
A
)

\. ./ ./ ./
B= K C y 0 = People

Woops! Chad didn’t bring a book. There is no way of assigning one of Chad’s books
to him, so there is no section for f. Thus, this stacks arrangement permits us to see
right away that this particular map has no sections. In general, in order that a map
f : A — B can have a section it is necessary that for every element of B its corre-
sponding stack is not empty. In other words, for every element b of B there should be
an element a of A such that f(a) = b.

The stacks picture of a map allows one to find a formula for the number of
sections of a map. Suppose that f is the following:

Exercise 3:
Draw the internal diagrams of all the sections of f.

You should get eight sections, many fewer than the total number of maps from B
to A4, which according to Alysia’a formula is what? Right, 6° = 36. Any guess as to
the number of sections of an arbitrary map?

CHAD: You multiply the number of elements in one stack by the number of
elements in the next and so on.

That’s right. You multiply them because the choice you make in any stack is inde-
pendent of the choices you made in the other stacks.
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SHERI: So, if one point has its stack empty what do you do?

You count it too. If that stack has zero elements, one of the numbers being multi-
plied is zero. And, of course, the result is zero: there are no sections.

Now, as we saw, the same equation that says that s is a section for f means that f
is a retraction for s, so that whenever we have a ‘commutative diagram’ (i.e. the two
ways of getting from B to B give the same result)

B S =4 f » B
\\_//(

Iy

we are talking about a pair section-retraction.

DANILO: If you want to expand that diagram to include the retraction, would
you have to put the identity of 4?

No. The diagram as it stands means both things: that s is a section for f and that f is
a retraction for s. The identity of 4 would be involved only if we had a retraction for
/. We saw that when both diagrams commute, i.e. if we also have sof = I

N

A f%B - A

1,

then s is the only section of f, and it is called the inverse of f.

6. Stacking in a Chinese restaurant

Let me explain an interesting example of stacking based on the practice of a Chinese
restaurant in New York City that we used to visit after the mathematics seminar.
The example illustrates that the use of the category of sets can be more direct than
translating everything into the more abstract numbers.

In this restaurant the stacking of plates according to shape is consciously used
systematically in order to determine the total bill for each given table of customers
without having to make any written bill at all.

In any restaurant there is the basic map

Kinds of price Amounts of

i —
S—

items money

which may assign five dollars to ‘moo shu pork’, a dollar to ‘steamed rice’, etc.
Each particular group of customers at a particular table on a particular occasion
gives rise (by ordering and consuming) to another map
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Items consumed kind Kinds of
at the table items

which is neither injective nor surjective because more than one item of the same kind
may have been consumed and also some possible kinds were not actually ordered at
all. The prices of the items consumed at the table on that occasion are given by the
composed map f = price o kind:

Items consumed

at the table
kind /
Kinds of price | Amounts of
items " |  money

The total bill for the table is obtained as the sum (}_) of products

Z price(k) - (size of the stack of kind over k)
k

where k ranges over all kinds of items. But knowing f, the total bill for the table can
also be obtained using f alone, as the sum of products

Zx - (size of the stack of f over x)

where x ranges over amounts of money. In most restaurants the specification of f is
recorded in writing on a slip of paper, and the arithmetic is done by the waiter and
checked by the cashier.

In this particular Chinese restaurant, the problem of achieving rapid operation,
even though cooks, customers, servers, and cashier may all speak different lan-
guages, is neatly solved without any writing of words and numbers (and without
any slips of paper at all); the map f is instead recorded in a direct physical way by
stacking plates.

In fact f is calculated via another map f, constructed as the composite of two
maps price and kind. The key to the plan is to have several different shapes of plates:
small round bowls, large round bowls, square plates, round plates, triangular plates,
elliptical plates, etc. (so that it is hard to stack one plate on top of a plate of different
shape), and the cooks in the kitchen always put a given kind of food onto plates of a
definite shape. Thus a map

Kinds of shape Shapes of
items plates
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is set up, but not arbitrarily: it is done in such a way that the price of an item is
determined by the shape of the plate on which it is served. That is, there is a map price
for which price = price - shape:

Kinds of shape | Shapes of
items ~ | plates
]
E price
price 1
Y
Amounts of
money

The cashier knows the map price, but doesn’t need to know the maps shape or price.

The servers take big trays of many different dishes from the cooks and circulate
through the restaurant, the diners at the tables selecting all the dishes that appeal to
them without anyone’s writing down any record. Empty plates are stacked at the
table according to shape after use.

= D

=

Thus when the diners at a table have finished with their dinner, there remain the
empty plates stacked according to shape, as shown in the picture. This defines a map
whose external diagram is

Empty plates
left on table

kind

Shapes of
plates

This map, resulting from the particular choices made by the customers at the parti-
cular table, can be composed with the map price resulting from the general organiza-
tion of the restaurant, to yield a map f (with its own abstract ‘stack’ structure)
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Empty plates
left on table
fnd !
|
Shapes of price | Amounts of
plates " | money

A glance at the table is sufficient for the cashier quickly to calculate the total bill as
the sum of products

Z price(s) - (size of the stack of kind over s)

b

(where s ranges over all shapes of plates). The total can also be calculated using only
the map f since the total bill is also given by

Zprice(s) - (size of the stack of kind over s)

s

= Zx - (size of the stack of f over x)
X

where x ranges over possible amounts of money.

To prove that the last formula in terms of f gives the same result as the eatlier,
more commonly used formula in terms of f, we need only see that for each amount
x, the ‘stack’ sizes of f and f are the same. But that follows from the more basic fact
that f and f are themselves ‘isomorphic’ as we will explain from the following
diagram showing all our maps.

Items consumed dining | Empty plates
at the table = " | leftontable
kind l PARTICULAR lm

Kinds of shape Shapes of
items o plates

price

GENERAL
price

Amounts of
money

Here we have explicitly introduced the map dining, which transforms each item
consumed at the table into an empty plate. Then clearly

shape o kind = kind - dining
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in the ‘particular’ square and price = price o shape in the ‘general’ triangle. The map
shape which occurs in both these equations is the restaurant’s key contact between
the general and the particular. It is also pivotal in the proof, by associativity and by
the definition of f and f, that

f = f o dining
But for every empty plate on the table there was exactly one item consumed, so the
map dining has an inverse. We can say that the two maps f and f (with codomain
amounts of money) are isomorphic, which implies that their stack-sizes over each x
are the same.

While the detailed explanation of these relationships may take a little time to
master, in practice the servers can work with a speed that is amazing to see, and
the diners are well satisfied too. Moreover, the cashier can perform the f-summation
at least as fast as cashiers in other restaurants perform the f-summation, the French
expression ‘I’addition s’il vous plait’ taking on a surprising Chinese twist.

We can see that though abstract sets and maps have more information than the
more abstract numbers, it is often more efficient to use them directly.
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Two general aspects or uses of maps

1. Sorting of the domain by a property

The abstract sets we are talking about are only little more than numbers, but this
little difference is enough to allow them to carry rich structures that numbers cannot
carry. In the example of the Chinese restaurant that we discussed in Session 5, I used
the word ‘stacking.” Now I would like to introduce some other words which are often
used for the same idea.

For a general map X £, B we can say that g gives rise to a sorting of X into B
‘sorts’, or that the map g is a sorting of X by B. (Note that we are speaking of ‘B’ as if
it were 2 number.) Once g is given, every element b of B determines which elements of
X are of the sort b, namely those elements mapped by g to b. For example, suppose
that B has three elements. Then, without changing the map g, we can arrange the
elements of X into the three different sorts so that the picture of g may look like:

.\-
. o\_\
——————.
. ° —e
° —‘//g.
.%//;//

(For other maps g some of the bunches may be empty.) Here we have put in the same
bunch all elements of X that go to the same element (sort) in B.

This way of viewing a map can also be described by saying that the map is a B-
valued property on X. This means the same as saying that g is a stacking of the
elements of X into B stacks. The number of stacks is always equal to the number of
elements of B, while it is the elements of X that get stacked. An example is the
obvious map from the set of presidents of the United States to the set of political
parties that have existed in this country. This map assigns to each president the party
to which he belonged. In this way the presidents get sorted by the parties in the sense
that to each political party there corresponds a sort of presidents, namely the pre-
sidents that belonged to that party. Some of the sorts are empty since there are some
parties which never had a president.

81
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Another word that is used to describe this point of view about a map is fibering, by
the agricultural analogy in which a bunch is imagined in the shape of a line or fiber.
We say that X is divided into B fibers. If one fiber is empty, the map has no sections.
Furthermore, for maps between finite sets the converse is also true: if no sort is
empty, then the map has a section. For such maps one also uses the word partition-
ing.

So, the terms ‘stacking,’ ‘sorting,” and ‘fibering’ are here regarded as synonymous,
while ‘partitioning’ has a more restricted meaning. All of these terms emphasize that
a given map X — B produces a ‘structure’ in the domain X, and when we want to
emphasize this effect we may refer to the map itself as a B-valued ‘property.” An
example is hair color. This is a map from the set of people to the set of colors,
assigning to each person the hair color of that person. People are sorted by the
property of hair color.

Example:

Sorts can themselves be sorted. Let X be the set of all creatures and B the set of
species. Then X — B assigns to each creature the species to which it belongs. We
can go further: species are sorted in genera by a map B £, C which assigns to each
species its genus; and by composing the two maps we obtain a coarser sorting
h=gosof X.

X = All creatures

s (s sorts the creatures; it assigns
to each creature its species)

B = Species
gs=h \ ) )
(sorting the g (but species are in turn sorted
creatures into by g into genera)
genera)

C = Genera

2. Naming or sampling of the codomain

All the words that we have discussed so far express one view of maps. But there is a
second point of view that one can take about a map. Given a map A — X, we can

say that f is a family of 4 elements of X. For example, suppose that 4 has three
elements. Then a map
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is a family of three elements of X. (Some of the three elements may coincide in other
examples.) Again we are using A4 as if it were a number. Another word for this point
of view (coming from geometry) is ‘figure’: a map from A to X is an 4-shaped figure
in X. We can also say ‘A4-element,” meaning the same as ‘figure of shape 4.” An
ancient principle of mathematics holds that a figure is the locus of a varying element.
An A-parameterized family A — X is a varying element, in that (a) if we evaluate it
at various 1 — A, we will vary it through various points of X, but also in that (b) we
can replace the special 1 by D, thus deriving from the given map 4 — X a family of
D-elements of X, one for each D — 4. For example, we can take D = A, and the
identity D — A, thus revealing that (c) the varying element, as a single thing, is a
single figure or element itself.

We can also say that a map 4 — X is a naming of elements of X by A4, or a listing
of elements of X by A. Let me give you an example of this. Suppose that we ask each
student to point out a country on a globe. Then we get a map from the set of students
to the set of countries, and in an accompanying discussion we might speak of ‘Sheri’s
country,” ‘Danilo’s country,” etc. Not all the countries are necessarily named, and
some country may be named more than once. The word ‘listing’ usually has the
connotation of ‘order’; this is not how it is meant in our discussion. Another couple
of words for this point of view about maps are ‘exemplifying’ (in the sense of
‘sampling’) and ‘parameterizing’: we say that to give f: 4 — X is to parameterize
part of X by moving along A4 following f.

The above example of using students as ‘names’ for countries emphasizes that
naming or listing is often done just for convenience and may have no permanent or
inherent significance, in that we didn’t ask ‘why’ each student chose the country he or
she did. In other examples the naming may have more permanent meaning. For
example, let 4 be the set of all fraction symbols, which are just pairs of whole
numbers 3/5, 2/7, 13/4, 2/6, 1/3, ..., and let B be the set of all possible lengths.
We can use the fraction symbols to name lengths with help of a chosen unit such as
‘meter,” as follows. The map 4 — B assigns to the fraction 3/4 the length obtained
by dividing the meter into 4 equal parts, then laying off 3 of these, whereas f(3/5) is
the length obtained by dividing the meter instead into 5 parts and laying off 3 of
those, etc. Many names name the same length since /(2/4) = f(3/6), but 2/4 and 3/6
are different names. Most lengths, such as v/2 meters, are not named at all by f.

The terms ‘naming,” ‘listing,” ‘sampling,” ‘parameterizing’ emphasize that a map
A — X produces a ‘structure’ in the codomain X, and when we want to emphasize
this effect we may refer to the map itself as an A-shaped figure (or as an A-para-
meterized family) in the codomain.

The point of view about maps indicated by the terms ‘naming,’ ‘listing,’
‘exemplifying,” and ‘parameterizing’ is to be considered as ‘opposite’ to the point
of view indicated by the words ‘sorting,’ ‘stacking,’ fibering,” and ‘partitioning’. The
sense in which this ‘opposition’ is meant can be explained philosophically in the
following way.
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3. Philosophical explanation of the two aspects

One explanation for these two aspects of a map comes from philosophy. Reality
consists of fish, rivers, houses, factories, fields, clouds, stars, i.e. things in their
motion and development. There is a special part of reality: for example, words,
discussions, notebooks, language, brains, computers, books, TV, which are in
their motion and interaction a part of reality, and yet have a special relationship
with reality, namely, to reflect it.

REALITY

74

yd
Thinking /

Thinking is going out and looking, manipulating, perceiving, considering, .. ..

The result of this reflective process is knowledge, and the totality of accumulated
knowledge with its inner relationships is science (a purpose of which is to plan
further manipulation of reality). Science is actually a complex of interrelated sciences
focussing on different aspects of reality.

One of the particular sciences is philosophy, reflecting (as general knowledge) this
particular relationship within reality, the relationship between thinking and reality.
Thus within the complex of all scientific thinking there is the particular relation
between objective and subjective:

Thinking

OBJECTIVE

4

Subjective 4 /

In the objective we strive to have as clear an image as possible of reality, as it is and
moves in itself, independent of our particular thoughts; in the subjective we strive to
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know as clearly as possible the laws of thinking (as defined above) in itself, arriving
at laws of grammar, of pure logic, of algebra, etc.

One further reflection within mathematical thinking of this relation between objec-
tive and subjective arises when within some given objective category (such as the
category of sets) we choose some of the objects A, B (say, the sets with fewer than
four elements) to use as subjective instruments for investigating the more general
objects, such as the set of all creatures, all countries, etc. Then a chosen object A may
be used as domain for listing elements of X, and also a chosen B can be used as
codomain for properties of X. The composites of such listings and sortings become
map-expressed structures in and among the chosen objects A4, B, ... themselves, and
these structures record as knowledge the results of investigating X

OBJECTIVE
CATEGORY

= Ny
4 /
Category
of small k /
objects B

With this division of the category into ‘small’ objects among all objects, the two
ways of considering a given map become no longer merely two ‘attitudes’, but a
real difference: maps whose domain is small (listing) versus maps whose codomain
is small (properties). Of course, if X itself happens to be small, we still have two
aspects: a property of indices is the same as a list of values

ISy

for example, the map

i > red

2
3 _________..t: blond

/' black
4 —

may be a record of composing two maps through some set X of actual people,
whereby we sample I people among X, then observe their hair color; from this
map alone (i.e. without further investigation, recorded by like maps) we can’t tell —
and it might be crucial in a criminal investigation — whether the first and third
persons were the same or merely had the same hair color. The resulting ‘listing / of
values’ has a repetition, or (equivalently) the ‘property 4 of indices’ has a sort with
more than one element.
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Isomorphisms and coordinates

1. One use of isomorphisms: Coordinate systems

The idea of ‘subjective contained in the objective,” or ‘familiar contained in the
general,” discussed in the last session, is especially simple if the ‘naming’ map is an
isomorphism. That is, to have an isomorphism from a ‘known’ object A to an object
X allows us to know X as well. To fit with the applications, let’s give the isomorph-
ism and its inverse these names:

plot
A———X

coordinate

coordinate o plot = 1, and plot o coordinate = 1y

Here is an example. Imagine a geometrical line L, extending forever in both
directions. It is often useful to choose an isomorphism from the set R of real numbers
to the line L. The usual way to do this begins by choosing a point p on L, called an
‘origin’, and to decide that plot (0) = p. Choose also a ‘measuring stick’, or unit of
distance (foot, meter, light-year, etc.), and choose a direction on L to call the
‘positive’ direction. Having made these three choices, we get a map

plot

R— L

in a way that is probably familiar to you. For instance, if our choices are as listed
below, then plot (3.5) is the point ¢ and plot (—4.3) is the point r.

——  chosen unit of distance

— chosen positive direction
D (below) chosen origin
L 4 — -@ o—
r = plot (—4.3) x p = plot (0) q =plot (3.5)

The remarkable utility of the map R P2, L comes from its invertibility; there is an
inverse (and hence exactly one inverse) for plot:

—
coordinate

assigning to each point a number. (What, approximately, is coordinate(x) for the
point x in the picture?)

86
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We regard R Ll L as ‘naming’ the points on the line, and so the inverse map
coordinate assigns to each point its numerical name. Of course the decision as to
which objects have been incorporated into our ‘subjective’ realm is not eternally
fixed. Euclid would have found it more natural to treat the geometric line L as
known, and to use points as names for numbers.

There are other well-established isomorphisms with R as domain. When we say
that Columbus sailed to America in 1492, we depend on having fixed an isomorph-
ism from R to the ‘time-line.” (What are the choice of origin, positive direction, and
unit of ‘distance’ involved in specifying this isomorphism? Which of them would
seem natural to an inhabitant of another planet?) If you have read popular accounts
of relativity theory, you may doubt how well established even the time-line is, let
alone an isomorphism from it to R. Nevertheless, such an isomorphism has proved
extremely useful; racing-car drivers, historians, and geologists are equally unwilling
to part with it. Modern scientific theories of time still take our description as an
excellent first approximation to a more refined theory.

Back to geometry. The cartesian (after René Descartes) idea of using an isomorph-
ism from R?, the pairs (x, ) of real numbers, to a geometric plane P was sketched in
Article II. (What choices need to be made in order to specify such an isomorphism?)

coordinate

If you type ‘plot(2, 1.5)’ into a computer programmed for graphing, a dot will appear
on the screen. The computer actually displays the output of the map plor at the input
(2, 1.5). But before all this, you have to tell the computer which particular isomorph-
ism plot, from pairs of numbers to the plane of the screen, you wish it to use. You
must input your choices of origin, unit of distance, and even directions of axes, if you
don’t wish them to be horizontal and vertical. In this example, two additional maps,
which can be called first and second, are relevant:

[R2 Jirst R Rz second R

first(x,y)=x  second(x,y) =y

For instance, first (3.12,4.7) = 3.12. Now if g is a point in the plane, we can compose
these three maps

q coordinate first
1P » R? > R

to get a number, first o coordinate - g, called, naturally enough, ‘the first coordinate
of ¢.

Here is an example which doesn’t involve R. Tennis tournaments are usually
arranged so that a loss of one match will eliminate the loser. For simplicity, let’s
take an eight-player tournament. ‘Brackets’ are set up as in the diagram below. The
names of the eight players are to be listed in the left column. In the first round each
‘bracketed pair’ will play a match and the winner’s name will be entered in the
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adjacent space in the second column, and then the whole process is repeated with the
remaining four players, etc. Before the tournament can begin, though, there is the
job of ‘seeding’ the players, i.e. choosing an isomorphism of finite sets (and thereby
also its inverse):

ran
{1,2,3,...,8} == P = set of players

seed

For example, rank 1| may be Pete Sampras, so that the ‘seed’ of Sampras is the
number 1. Then, no matter who the players are, they are bracketed according to
the following scheme:

rank 1
rank 8
rank 4
rank 5
rank 2
rank 7
rank 3
rank 6

Every effort is made to seed fairly, so that the best player as judged by past perfor-
mance is seeded number one, the next best number two, and so on. (You'’ll notice a
‘particular versus general’ aspect to this example. The assignment of numbers to
positions in the chart above is general, applying to every eight-player tournament,
while the isomorphism seed is particular to the past performances of the eight players
who are involved in this one tournament.) Incidentally, can you figure out any
rational explanation for the curious bracketing above? What would be a suitable
bracketing by rank for four players, or for sixteen players?

The rest of our discussion applies to all examples. Once a coordinate system, a pair

plot
A——X
coordinate
of maps inverse to each other, is established, we tend to pass freely back and forth
between 4 and X as if they were the same object. In the plane example, we speak of
‘the point (2, 3.7),” meaning ‘the point plot (2, 3.7)." In the tennis tournament, we say,
‘There has been an upset; number eight beat number one.” A practice so common,
which seldom seems to cause confusion (but see ‘Abuses’ below), must have its
explanation, and indeed it does. Once we have fixed an isomorphism 4 — X, it
is harmless to treat 4 and X as the same object, precisely because we have the maps f
and f~! to ‘translate.” For example, if we want to specify a map X £, Y we can
instead specify a map A S, Y, and everyone who is awarg of the chosen isomorph-
ism will understand that we mean the composite map X — 4 S, v.But why do we

cause everyone the trouble of making this translation? We shouldn’t, unless 4 is a
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‘better-known’ object than X, i.e. an object incorporated into our ‘subjective’ cate-
gory inside the large ‘objective’ category. Or, as in the tennis example, it may be that
the object A is more familiar to our audience than X. Someone who understands
tournaments in general, but hasn’t followed tennis in recent years, might fail to be
surprised if Becker beat Sampras, but still could understand that a defeat of number
one by number eight is cause for comment. Notice, though, that this is only because
the isomorphism rank from numbers to players was not arbitrary. In a friendly
tournament at school, numbers might be assigned to players at random; then a
defeat of number one by number eight would not be surprising. Our professional
tournament seeding was not just an isomorphism of sets, but an isomorphism in the
category of ‘ordered sets’, sets whose elements are arranged in an order which maps
in the category are required to ‘respect’. The study of various types of ‘structure’ and
the categories to which they give rise will be a recurring theme in the rest of the book,
and you will see how ‘respecting structure’ is made precise.

2. Two abuses of isomorphisms

Since a principal use of isomorphisms is to give coordinate systems, you would
expect the main abuses of isomorphisms to stem from this use, and they do. There
are two fundamental errors to avoid. Most often they occur when the ‘familiar’
object 4 is some set of numbers (or related to numbers, like R? in our ‘plane’
example). Watch carefully for these abuses when you suspect that mathematics is
being misapplied.

The first abuse is to assume that an isomorphism of sets 4 — X means that some
additional structure that 4 has, for instance by virtue of being a set of numbers, will
be meaningful in X. An example was given above: it is neither an honor nor an
advantage to be ranked number one in a tournament if the rankings were drawn
from a hat. Similarly, identifying points on a line with numbers doesn’t make adding
two points to get a third point a reasonable operation.

The second abuse is subtler, involving one familiar object 4 and two objects X and
Y coordinatized by A. I'll just give you one example, to which actual students have
been subjected. (I hope not you!) The physicist Richard Feynman was pleased to see
that his child’s elementary-school textbook gave meaning to large numbers by listing
the distances from the planets to the sun, the masses of the planets, and various other
astronomical data. But then, to his dismay, followed exercises of this type: add the
distance from Venus to the sun, the mass of Mars, and the .... Well, you see the
point. It only appeared to make sense to add a distance to a mass because the objects
‘distances’ and ‘masses’ had each separately been identified with the object
‘numbers,” by choosing a unit of measurement for each.

While these simple examples may appear ludicrous, errors of exactly these two
types have often been made by people who should know better. Soon, when you
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have become familiar with some ‘types of structure,” you should be in little danger of
commiting these abuses. For now, the best advice I can give you is this.

To decide what calculations to do, think in the large ‘objective’ category. As we’ll
see, a surprising variety of calculations can actually be carried out in objective
categories. But if it is necessary, after determining the calculations to be done, you
can choose coordinate systems and calculate in the smaller ‘subjective’ category, and
then translate the results back into the objective category. It will not occur to you to
add two tennis players to get a third player; you could only make this mistake after
identifying (objective) players with (subjective) numbers.
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Pictures of a map making its features evident

Let’s start by doing Exercise 5 from Article II. Given the map g from the set A4 to the
set B pictured below,

r s
/ y

ENVE/Z

/
1

how many maps f are there with gof = 1,y (the identity map on {0,1})?
Obviously such an f must go from B to A4, so that schematically we may picture
the maps f and g as

g
A=—B
f

A map f with this property is called a section of g, so that another way to phrase the
problem is: How many sections does the map g have? Did anybody find any?

KATIE: Yes, I found two.
Tell me one of them.
KATIE: The one that sends 0 to g and 1 to r.

All right, so you have f(0) = g and f(1) = r. To see whether this map is really a
section for g, we have to check the equation go f = I;,;. Now we have two maps
g°f and Iy} and we want to know whether they are equal. When are two maps
equal?

FATIMA: They must have the same domain and the same codomain.
So, you are saying:

1. the domain of g f must be the same as the domain of 1, and
2. the codomain of g f must be the same as the codomain of I ;.

Is that all? No. Let’s review our test for equality of maps of sets. A map of sets f:
X — Y is specified by a rule which to each element of X (the domain of f) assigns
exactly one element of Y (the codomain of /). The question is: If we have two rules,
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when do we say that they specify the same map? Let’s call these two rules 4 and k. In
order to verify that 2 = k you have to check that for each particular input you get the
same output with both rules. In summary: to say # = k means three things:

1. the domain of 4 is the same as the domain of k,
2. the codomain of 4 equals the codomain of k, and most importantly,
3. for each x in the domain of 4 and k, we must have h(x) = k(x).

In the third condition, the number of things one has to check is equal to the number
of elements of the domain, because the condition has to be checked for each element
of the domain.

So, let’s see: f goes from B to A4, and g goes from A to B, so g o f goes from B to B,
and 1y, also goes from B = {0,1} to B. So we do have

1. the domain of gof is B = {0,1}, which equals the domain of 1), and
2. the codomain of gof is B = {0,1}, the same as the codomain of (g ;.

All this writing is really not necessary, though. You can see directly from the dia-
gram with the arrows f and g going back and forth between 4 and B that (1) and (2)
are true. When you get used to this, conditions (1) and (2) aren’t much of a fuss
because you won’t even ask if two maps are equal if they don’t have the same domain
and codomain. It is like asking whether two travellers followed the same route; you
wouldn’t ask the question if one of them travelled from Berlin to Paris and the other
from New York to Boston.

So the essential thing in order to check that go f = Iy 1 is condition (3). We have
to check that g o f acting on any element of its domain (the set {0,1}) gives the same
as Iyo1)- In other words, since the identity ;5 sends 0 to O and 1 to I, what we have
to check is

(gof)(©) =0 and (gof)(1)=1.
Now, what does g f mean?

oMER: First calculate f and then stick g to that.

Right. So first calculate £(0), i.e. ... ¢, and g(g) = 0, so it checks: (g f)(0) = 0. And
for (gof)(1), first f(1), i.e. r, and then g(r) = 1. So we really have:

3. (°f)(0)=0 and (gof)(1)=1

and we are done. The map that Katie gave us was truly a section for g.

But if you found that one, you must be able to find others. Let’s see how all this
can be seen directly in the pictures. We need a map f : B— A. Conditions (1) and
(2) are automatically satisfied. Now we have to guarantee (gof)(0) =0 and
(g°f)(1) = 1. The first means g(f(0)) = 0. But the only things that g sends to 0
are b, p, and ¢, so f(0) has to be one of these three. Similarly, the only things that g
sends to 1 are r or s, so in order that g(f(1)) = 1, it must be that f(1) is equal to
either 7 or 5. So to find a section boils down to finding a map f : B— A such that
f(0) is either b, p or ¢, and f(1) is r or 5. So how many are there?
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KATIE: Six, because if 0 goes to b, 1 can either gotorors, ...

Right. And if 0 goes to p we get two more possibilities, and two more if 0 goes to q.
The pictures of all these possibilities are:

Even better would be to arrange all the possibilities systematically, something like
this:

=] L/
f)=s \ el

(Add the rest of the arrows yourself.)

Someone asked why these maps are called sections. The word ‘section’ here is
actually short for ‘cross section.” Imagine holding a cucumber vertically over the
table. Consider the map that projects each point in the cucumber perpendicularly
down on its shadow on the table. If you take a knife and slice through the cucumber
as in the picture on the right, you have a section of that map! In general, a section of
that projection map may have any funny shape, not just a straight cut.



P
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There is a similar picture for the section f that Katie gave for our map g

where we have put directly above 0 only the elements that are mapped by g to 0, and
above 1 the elements that are mapped by g to 1. In both cases the ‘cross section’ is a
copy of the smaller set at the bottom (the codomain of g) inside the set on top.

You should now be able to answer any question of this type. Let’s see if you can.
Consider the map

.l.

How many sections does it have?
KATIE: Twelve.

Right. Three choices for one point and four for the other .... What about
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where again the map g assigns to every point in the set on top that point in the
bottom set that lies directly below? How many sections does g have? Right,
24 = 3 x 2 x 4, That’s the formula Chad gave us earlier.

A section can also be called a choice of representatives. In fact, a very good
example is the section of the population of the United States constituted by the
congressional representatives. We have a map from the set of people in the United
States to the set of all congressional districts because every person lives in some
congressional district
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