
INTRODUCTION TO SYSTEMS
CARVER MEAD • LYNN CONWAY

3333333333

333333333H
iiiiiiiiiiiiiiiiiin

3333333J*33
liiiiiiiiiiiiiiiillt

l-ii-iiJii^ ^!Jiiiiiiilj!«3lH^:^!=:

n 31111 as^^
3333333333 nr^illS^^n!^^!!!!!!!^^^!.^^

~k!!!iUi;&=^Liiiiiiiilji^]H^!^!=:

33333J*3333jnr^!IIS'^n!^3iiiiiiiai!n^5
iiiiiiiimiiiiiiiiry!!!!iiii^^hiiiiUnlj!^]KE^=:

Eiiiill! 2iS!t!LJfe.>1i

EiiiillS'SlS'blLJt.Mi

2^?!?^,! gi£nin7i

Eiiii]lS^iiS!t!LJk.Mi

lilllliliiiiiiiim'TliniiiJil^^^i nn j^ i*^=:E M! la-^n

IllimilllllllllllC'l^! ! ul^^'J niii L3]kE^=^e iii i^ 2!^:Jk>u
3333333333

3333333333
imiiiiiiiiiiiiiiit

3333333333
liiiiiiiiiiiiiiiiilt

•liniiul^^l^iiiiiiilii^li.^:^

nr^iii[?^r!!=3imii|aj^^
'll!!!^Li;^=dl2iiiiii^ljl^]L!^

Ull2:^

3333333333
liiiiiiiiiiiiiiiiilt

3333333333
liilllllllllliilliiE

3333333333
llliiiiliiilliiiliit

3333333333
llllllllilllilllillE

3333333333
liiilllllllllliillie

3333333333
lilliiiiiiiiiiiiiiie
I 1 It 1 1 1 11 1 rt.iit^=n

nr?;il^=5n!V2i"iiiia3!^a3s
^]k<2^^
mm

rr^iii[?^n!=iiiii

nr^iiir?"^7Ti=iiiii

il^ln!:!?

:i:Eiiii]l!^2a!b!nJi.Mi

5 3'"it,f Si£^:=nM

:i:Eiiii]5!i^la!b!nJt.Mti

=::Eiiii]l!^1iS!!^:JkJlt2

^ 1 J 1 1n H!5 r^zi'^r- "
i

:!:Eiiiiil!^ii2!&!U*iit2

Ijiaii
n^Hm^lSS

iV^Vii^B
Sr£?»i



z^



fet kt K* k* %• l|* k* If* k* li< t|* li*

I

ImIH

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIK-

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIE

iimiiiiiiiiiiiiiiiiiiiiiHiiiir

IIIIIIIIIIIIIIIIIIIIIIIIHIIIIIIC

>HHHHHHHHHHH{*H3HH
iiiimmiiiiiiiiiiiiHiiiiiiiir

iiiimiiimiiiiiiiiiiiiiiiiiiie'

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIK-

>HHHHHHHHHH3HHH}<H'
lllllllillilllllHIIIIIIIIilllllC

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIC

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIK-

IIIIIIIIIIHIIIIIIIIIIIIIIIIIIIIt'

IIIIIIIIHIIIIIIIIIIIIIIIIIIIIIIC

'kiiiiiiii^.

lip

LUMUnUflml

IIIH

:i [111?!!' ^.^:i.?i:

>H3HHHHH33HHH33HH nr;nrj7n:;5nMjii2![(:^5!^""F !IS=r-^'H:f

llij in* nrPF

?n»!«rn^

I
ft- fr»^^^^4 4ftKhhKKKK:l

TlTlTIIlllllTlTllTiniinil



Digitized by the Internet Archive

in 2011

http://www.archive.org/details/introductiontovlOOmead



INTRODUCTION TO

SYSTEMS

CARVER MEAD
Professor of Computer Science, Electrical Engineering,

and Applied Physics, California Institute of Technology

LYNN CONWAY
Research Fellow, and

Manager, VLSI System Design Area

Palo Alto Research Center, Xerox Corporation

ADDISON-WESLEY PUBLISHING COMPANY

Reading, Massachusetts • Menlo Park, California

London • Amsterdam • Don Mills, Ontario • Sydney



This book is in the

Addison-Wesley Series in Computer Science

Consulting Editor

Michael A. Harrison

Library of Congress Cataloging in Publication Data

Mead, Carver A
Introduction to VLSI systems.

1. Integrated circuits—Large scale integration.

2. Microcomputers. 3. Digital electronics.

4. Computer architecture. I. Conway, Lynn A.,

joint author. II. Title.

TK7874.M37 621.3819'535 78-74688

ISBN 0-201-04358-0

Second printing, October 1980

Copyright © 1980 by Addison-Wesley Publishing Company, Inc. Philippines copyright 1980 by
Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or

transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior written permission of the publisher. Printed in the United States of

America. Published simultaneously in Canada. Library of Congress Catalog Card No. 78-74688.

ISBN 0-201-04358-0
KLMNOP-HA-898765



TO W. R. SUTHERLAND





PREFACE

As a result of improvements in fabrication technology, Large Scale Integrated

(LSI) electronic circuitry has become so dense that a single silicon LSI chip may
contain tens of thousands of transistors. Many LSI chips, such as microproces-

sors, now consist of multiple complex subsystems, and thus are really integrated

systems rather than integrated circuits.

What we have seen so far is only the beginning. Achievable circuit density

now doubles with each passing year or two. Physical principles indicate that

transistors can be scaled down to less than 1/lOOth of their present area and still

function as the sort of switching elements with which we can build digital systems.

By the late 1980s it will be possible to fabricate chips containing millions of

transistors. The devices and interconnections in such very large scale integrated

(VLSI) systems will have linear dimensions smaller than the wavelength of visible

light. New high-resolution lithographic techniques have already been demon-

strated that will enable fabrication of such circuitry.

VLSI electronics presents a challenge, not only to those involved in the

development of fabrication technology, but also to computer scientists and com-

puter architects. The ways in which digital systems are structured, the procedures

used to design them, the trade-offs between hardware and software, and the

design of computational algorithms will all be greatly affected by the coming
changes in integrated electronics. We believe this will be a major area of activity in

computer science on through the 1980s.

Until recently the design of integrated circuitry has been the province of

circuit and logic designers working within semiconductor firms. Computer ar-

chitects have traditionally composed systems from standard integrated circuits

designed and manufactured by these firms but have seldom participated in the

specification and design of these circuits. Electrical Engineering and Computer

Science (EE/CS) curricula reflect this tradition, with courses in device physics

and integrated circuit design aimed at a different group of students than those

interested in digital system architecture and computer science.
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This text is written to fill a current gap in the Mterature and to introduce all

EE/CS students \o integrated system architecture and design. Combined with

individual study in related research areas and participation in large system design

projects, this text provides the basis for a graduate course-sequence in integrated

systems. However, it is primarily intended for use in intensive undergraduate

courses on the subject. The material can also be used to augment courses on

computer architecture. We assume the readers background contains the equiva-

lent of introductory courses in computer science, electronic circuits, and digital

design.

There have been major obstacles in the way of those seeking an overall

understanding of integrated systems. Integrated electronics has developed in a

heatedly competitive and often secretive business environment. There has been a

proliferation of different device technologies, circuit design families, logic design

techniques, maskmaking and wafer fabrication techniques, etc. Many of these

technologies have sprung up from the grass roots of "Silicon Valley" in the San

Francisco Bay Area of California, and thus many of the "experts" are located in

that one region. Most workers in the industry have concentrated on narrow

specialties. Separate integrated electronics cultures have independently evolved

within many companies, and thus the terminology and practices of the specialties

vary from company to company.

As a result of this background, texts on integrated electronics have tended to

give detailed accounts of some very narrow horizontal segment of the overall

subject, such as device physics or circuit design, and are often tied in subtle ways

to some specific context, thus limiting their general applicability.

We have chosen instead to provide just enough essential information about

devices, circuits, fabrication technology, logic design techniques, and system

architecture to enable the reader to fully span the entire range of abstractions from

the underlying physics to complete VLSI digital computer systems. A rather small

set of key concepts is sufficient. Only by learning the essence of each topic, and

by carrying along the least amount of mental baggage at each step, will the student

emerge with a good overall understanding of the subject. This understanding can

then be mapped into the reader's own space of application, technology, and

technical culture.

The high rate of change of integrated electronics presents another obstacle:

information often becomes obsolete very rapidly. The major force for obsoles-

cence is the ongoing improvement in fabrication technology, leading to smaller

and smaller devices as time passes and thus to a constant change in device

characteristics. We attack this obstacle by stressing the effects of the scaling-

down of device dimensions. Many of the coming changes in system architectural

parameters are thus anticipated. The reader will learn what is common to systems

composed of 6 /xm. 2 fim. and 0.5 /am devices, and what is not.

While the material in this text is presented in a particular order, it need not be

read in that order. Each chapter presents material from a distinct level in the
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hierarchy of disciplines involved in integrated systems. The material falls into four

major groupings: Chapters 1 and 2 provide the basics of devices, circuits, and

fabrication; Chapters 3 and 4 give the basics of system design and implementation;

Chapters 5 and 6 present an example of LSI system design; topics of current

research interest are discussed in Chapters 7, 8, and 9. We recommend that

readers start in the chapter where they are most knowledgeable, and read until

information is required from an adjacent area described in some other chapter. By
using this algorithm and consulting the suggested references where necessary,

readers can gradually work through the primary material of all chapters. Although

much of the material in this text is previously unpublished, it nevertheless con-

tains only basic concepts. However, these concepts cover quite a wide range of

disciplines and are easily visualized only after the overall context becomes clear.

In any given technology, form follows function in a particular way. The most

efficient first step towards understanding the architectural possibilities of a

technology is the study of carefully selected existing designs. However, system

architecture and design, like any art, can only be learned by doing. Carrying a

small design from conception through to successful completion provides the

confidence necessary to undertake larger designs. The space of possibilities un-

folds only as the medium is worked. This book provides a set of selected design

examples and also describes procedures for implementing one's own designs.

Because of the density, speed, and topological properties of«MOS, and the easy

access to aiMOS wafer fabrication, that technology is used for our examples. The

architectural skill of mapping function into form, when once acquired, can then be

extended to other technologies.

The general availability of courses in VLSI system design at major universi-

ties marks the beginning of a new era in electronics. The rate of systems innova-

tion using this remarkable technology need no longer be limited by the perceptions

of a handful of semiconductor companies and large computer manufacturers. New
metaphors for computation, new design methodologies, and an abundance of new
application areas are already arising within the universities, within many system

firms, and within a multitude of new small enterprises. There may never have

been a greater opportunity for free enterprise than that presented by these circum-

stances.

An atmosphere of excitement and anticipation pervades this field. A growing

community of workers from many backgrounds, computer scientists, electrical

engineers, mathematicians, and physicists are collaborating on a common prob-

lem area that has not yet become classical. The territory is vast, and largely

unexplored. The rewards are great for those who simply press forward.

Pasadena, California CM.
Belmont, California L.C.

July 1979





BACKGROUND

This text has its origins in a series of courses in integrated circuit design given by

Carver Mead at Caltech, beginning in 1970. Starting in 1971, students in these

courses designed and debugged their own integrated circuits. The students under-

took increasingly complex system designs, using only rather simple implementa-

tion aids. The structured design methodology presented in this text has evolved

within this milieu. These early courses greatly benefited from interactions with

friends in industry, particularly Robert Noyce. Gordon Moore, Frederico Faggin,

Dov Frohman-Bentchkowsky, Ted Jenkins, and Joel Sorem.

A separate Computer Science activity was created at Caltech in 1976, with

integrated systems as a focus. An early, informal association was formed with

systems architects in industry, in particular with the then newly formed LSI

Systems Area, led by Lynn Conway, at Xerox Palo Alto Research Center

(PARC). The increased interaction of Caltech students and faculty with industrial

researchers stimulated the research on both sides.

Work on this text began in August 1977. Collaborators from a number of

universities and industrial firms joined in the enterprise. Prior to commercial

publication, several limited printings were distributed to a selected group of

universities as notes for courses on integrated systems. The first three chapters

were used as course notes during the fall of 1977, in courses given by Carver Mead
at Caltech and by Carlo Sequin at U.C. Berkeley. The first five chapters were

used during the spring of 1978 in courses given by Ivan Sutherland and Amr
Mohsen at Caltech, by Robert Sproull at Carnegie-Mellon University, by Dov
Frohman-Bentchkowsky at Hebrew University, Jerusalem, and by Fred Rosen-

berger at Washington University, St. Louis. The third and final prepublication

printing of all nine chapters, in the fall of 1978, was used in the courses at Caltech

and U.C. Berkeley, and in new courses by Kent Smith at the University of Utah,

and by Lynn Conway, while visiting at M.I.T.

IX



Background

The 1978 M.I.T. course provided a final test, prior to publication of this text,

to confirm the transportability of the project-oriented form of the course (in which
as much emphasis is placed on creative architectural activity as on formal analy-

sis), and to also confirm the technical and economic feasibility of the remote-entry

of student LSI designs to a central facility for fast-turnaround implementation. In

the future, M.I.T. will offer this as course 6.371, with Jonathan Allen teaching it in

the fall of 1979.

The following information concerning the M.I.T. experience may be useful to

those planning similar activities. The course began in mid-September and was
attended by 30 students (mostly graduate EE/CS students). Most of the formal

lecture material necessary for undertaking projects (covering selected portions of

Chapters 1 through 6 of this text) was completed by early November. The students

then defined and began work on their LSI design projects. A design cut-off date of

December 5 was set, and most designs were completed by that time. The projects

included a LISP Microprocessor, a Graphics Memory Subsystem for mirroring

and rotating bit-map data, a Writeable PLA project, the Data Path for a Bit-Slice

Microprocessor, an LRU Virtual-Memory Paging subsystem, a Bus-Interfaceable

Real-Time Clock-Calendar, a Multifunction Smart Memory, several digital

signal-processing projects, several subsystems for data-base operations, and

many other innovative designs.

Students described their layouts in a simple subset of CIF2.0, using a standard

text-editor running on a DEC-20. The only hardware added to the DEC-20 system

to support the course were several CRT terminals, two HP four-color pen plotters,

and a connection to the local ARPANET host machine. The only software

developed were programs for parsing the CIF subset, for instantiating data for

plotting, and for driving the plotters. A small library of useful cells, namely input

pads with lightning arrestors, output pads with cascaded drivers, and a set of PLA
cells, were made available in CIF form. Some students developed their own
symbolic layout languages and translaters to CIF, in order to make layout encod-

ing less tedious. By using a structured design methodology the students were able

to complete substantial LSI projects in a short period of time, using only primitive

design tools. Each project contained on the order of several hundred to several

thousand transistors. The logistics of interacting with the large group of student

designers to organize the multiproject chip (updating the rules of the game,

selecting projects for inclusion, negotiating space allocations, answering indi-

vidual questions, etc.) were expedited by using the message system on the DEC-
20. The corresponding interactions with the remote implementation facility

(PARC) were handled via electronic mail.

On December 6, 1978. the individual CIF2.0 design files were transmitted

from M.I.T. via the ARPANET to Xerox PARC. This was an additional test by

these ARPA contractors of the use of such packet-switching networks for trans-

mitting LSI design files and organizing multiproject chip sets. At PARC all the

student designs were merged into a multiproject chip design file, from which
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masks were generated using Micro Mask, Inc/s electron-beam maskmaking facil-

ity. Wafers were fabricated at Hewlett-Packard's Deer Creek Laboratory, which

cooperated in the feasibility test. The wafers were returned to M.I.T. and electri-

cally characterized by tests of the project-set electrical test patterns. They were

then diced and the resulting chips packaged. Packaged chips, with wire-bonding

customized for each project, were made available to all students by January 18,

1979. Many of the projects have since undergone thorough functional testing by

the students. A number of these function completely correctly. Most exhibited

only minor bugs, typically at the logic level of abstraction, of a sort reminiscent of

one's first efforts at constructing large programs in a new language.

As a common VLSI system design cuhure spreads, as higher-level design aids

are developed and shared within this culture, and as standard-interface

commercially-accessible implementation facilities are established, we will un-

doubtedly see far more ambitious courses, projects, and research activities under-

taken by students and faculty within the universities. And thus the period of

exploration begins.
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MOS DEVICES
AND CIRCUITS

We begin with a discussion of the basic properties of the ^-channel, metal-oxide-

semiconductor (MOS), field-effect transistor (FET). We then describe and

analyze a number of circuits composed of interconnected MOS field-effect tran-

sistors. The circuits described are typical of those we will commonly use in the

design of integrated systems. The analysis, though highly condensed, is conceptu-

ally correct and provides a basis for the solution of most system problems typi-

cally encountered.

Integrated systems in MOS technology contain three levels of conducting ma-

terial separated by intervening layers of insulating material. Proceeding from top

to bottom, the levels are termed metal, polysilicon, and diffusion, respectively.

Patterns for paths on the three levels, and the locations of contact cuts through the

insulating material to connect certain points between levels, are transferred into

the levels during the fabrication process from masks similar to photographic nega-

tives. (Details of the fabrication process will be discussed in Chapter 2.)

In the absence of contact cuts through the insulating material, paths on the

metal level may cross over paths on either the polysilicon level or the diffusion

level with no significant functional effect. However, wherever a path on the

polysilicon level crosses a path on the diffusion level, a transistor is created. Such

a transistor has the characteristics of a simple switch, with a voltage on the

polysilicon-level path controlling the flow of current in the diffusion-level path.

Circuits composed of such transistors, interconnected by patterned paths on the

three levels, form our basic building blocks. With these basic circuits, we will

design integrated systems, to be fabricated on the surface of monolithic crystalline

chips of silicon.

1.1 THE MOS TRANSISTOR

An MOS transistor will be produced on the integrated system chip wherever a

polysilicon path crosses a diffusion path, as shown in Fig. 1.1. The electrical sym-



MOS Devices and Circuits

Drain
I

(diffusion)
^gd

Gate

(polysiiicon)

Gate

Source

(dit't'usioii)

Fig. 1.1 MOS transistor,

top view.

Drain

Source

Fig. 1.2 MOS transistor

symbol, subscripts in

+ to - direction

sequence.

bol used to represent the MOS transistor in our circuit diagrams is shown in Fig.

1.2, along with symbols and polarities of certain voltages of interest. Note that the

source and drain terminals of the device are physically symmetrical. For the

^j-channel MOSFET's the terminal labels are assigned such that drain-to-source

voltage Vjg is normally positive. A more detailed view of the rectangular region

called the gate, where the polysiiicon (poly) crosses the diffusion, is given in Fig.

1.3. During fabrication the diffusion paths are formed after the poly paths are

formed (as explained more fully in Chapter 2). The poly gate, and the thin layer of

oxide beneath it, mask the region under the gate during diffusion. Therefore, no

diffusion path forms under the gate, and there is no direct connection on the diffu-

sion level between the source and drain terminals of the transistor. Metal, poly,

and diffusion paths all conduct electricity well enough to be considered "wires"

until further notice.

Source Fig. 1.3 MOSFET gate dimensions.

In the absence of any charge on the gate, the drain-to-source path through the

transistor is like an open switch. The gate, separated from the substrate by the

layer of thin oxide, forms a capacitor. If sufficient positive charge is placed on the

gate so that gate-to-source voltage Vg^ exceeds a threshold voltage V^^^, electrons
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will be attracted to the region under the gate to form a conducting path between

drain and source. Most of the transistors we will use in our systems have threshold

voltages greater than zero. These are called enhancement mode MOSFET's and

their threshold voltage typically is = 0.2 VDD, where VDD is the positive supply

voltage for the particular technology.

The basic operation performed by the MOS transistor is to use charge on its

gate to control the movement of negative charge between source and drain

through the channel under the gate. The current from source to drain equals the

charge induced in the channel divided by the transit time or average time required

for an electron to move from source to drain. The transit time itself is the distance

the electron has to move divided by its average velocity. In semiconductors under

normal conditions, the velocity is proportional to the electric field driving the

electrons. The relationship between drain-to-source current /^s, drain-to-source

voltage V^s, and gate-to-source voltage Vg^ is sketched in Fig. 1.4. For small V^j^,

the transit time T is given by Eq. 1-1:

L2
T =

velocity ixE /xVas

(1-1)

The proportionality constant /jl is called the mobility of the charge carriers, in this

case electrons, under the influence of an electric field in the conducting material

of the channel region. It is a velocity per unit electric field (cmVvolt-sec). We
shall see that the transit time is the fundamental time unit of the entire integrated

system.

/h. a Saturation region

Fig. 1.4 Current versus voltage.

The amount of negative charge in transit Q is just the gate capacitance times

the voltage on the gate in excess of the threshold voltage. The capacitance of two

parallel conductors of area A, separated by insulating material of thickness D,

equals eA/D. The proportionality constant e is called the permittivity of the in-

sulating material and has a simple interpretation. It is the capacitance of parallel

conductors of area A = 1 cm^, separated by a thickness Z) = 1 cm of the insulator

material, and is in the units farad/cm. Therefore, the gate capacitance equals
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eWL/D. Thus the charge in transit is given by Eq. (1-2), and the current is given
byEq.(l-3).

Q=- C,(V«s - V,h) = - (V,, - v,h) (1-2)

D

charge in transit ixeW
/ds = - /sd

= — = {V,s - ViuKVa.) (1-3)
transit time LD

Note that for small V^^, the drain current is proportional to the source -drain vol-

tage and also to the gate voltage above threshold. Any device with a current

through it proportional to the voltage across it may be viewed as a resistor, and in

the case of an MOS device with low drain-to-source voltage, the resistance is

controlled by the gate voltage as given in Eq. (1-4).

= R= (1-4)

/ds /^^(Vgs - Vth)

In Eqs. (1-2) and (1-4), Cg is the gate-to-channel capacitance of the tumed-on
transistor. In the simple case where this transistor is driving the gate of an identi-

cal transistor, the time response of the system will be an exponential with a time

constant RC^, given in Eq. (1-5). This time constant is similar in form to the

expression for transit time t given in Eq. (1-1).

RC^= (1-5)

AKVgs - V,h)

Although the above equations are greatly simplified, they provide sufficient

information to make many design decisions that we will face, and they also give us

insight to the scaling of devices to smaller sizes. In particular, the transit time t

can be viewed as the basic time unit of any system we shall build in the integrated

technology. In almost all situations, the fastest operation that we can perform is to

transfer a signal from the gate of one MOS transistor onto the gate of another. The
transit time is the minimum time in which a charge placed on the gate of one

transistor results in the transfer of a similar charge through that transistor's chan-

nel onto the gate of a subsequent transistor. For example, a transfer of charge

from one transistor onto two identical transistors requires a minimum of two tran-

sit times. Thus, the transit time of the basic transistor in an integrated system can

be viewed as the unit of time in which all other times in the system are scaled.

Although it is a somewhat optimistic approximation, we will use r as the primary

time metric in calculating the delay through elementary inverting-logic stages.

More accurate predictions of circuit behavior can be produced using any one of a

number of available circuit simulation programs.'-
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^'gs-^'th

V(x), in channel

9xfj^-^*-
Increasing V.

Fig. 1.5 Voltage profile across channel.

v = Distance from source

(source) L (drain)

As V(,Js increased, not all the drain-to-source voltage is available for reducing

the transit time. Drain voltage in excess of one threshold below the gate voltage

creates a short region of high electric field, adjacent to the drain, that the carriers

cross very quickly. The electric field in the major portion of the channel from the

source up to this region is proportional to Vg^ - \ ^^^ as shown in Fig. 1.5. For

^ds -^ (^gs ~ ^th)» the drain current becomes independent of V^g. Further increases

in Vjs neither increase /dsHor decrease the transit time. This range of V^j^ values is

known as ^flfwra/ZoA?. In saturation,

ILD
(1-6)

With the exception of the factor of 2 in the denominator, Eq. (1-6) is similar to

Eq. (1-3), with the V^s factor in (1-3) replaced by its maximum effective value,

^gs ~ ^th- The factor of 2 in Eq. (1-6) arises from the nonuniformity of the electric

field in the channel region when in saturation. •' (Richman, 1973)

1.2 THE BASIC INVERTER

The first logic circuit we will describe is the basic digital inverter. Analysis of this

circuit is then extended to analysis of basic NAND and NOR logic gates. The
inverter's logic function is to produce an output that is the complement of its

input. When describing the logic function of circuits in integrated systems, we
assign the value logic- 1 to voltages equaling or exceeding some defined logic

threshold voltage, and logic-0 to voltages less than this threshold voltage.

Were there an efficient way to implement resistors in the MOS technology, we
could build a basic digital inverter circuit using the configuration of Fig. 1 .6. Here,

if the inverter input voltage Vj^ is less than the transistor threshold voltage V^^,

then the transistor is switched off and V^u, is "pulled up" to the positive supply

voltage VDD. In this case the output is the complement of the input. If Vj^ is

greater than V,j„ the transistor is switched on and current flows from the VDD
supply through the resistor R to GND. If/? were sufficiently large, Vout could be

VDD

Fig. 1.6 An inverter.
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*"pulled down" well below \',h. thus again complementing the input. However, the

resistance per unit length of minimum-\^idth lines of various available conducting

elements is far less than the effective resistance of the switched on MOSFET.
Implementing a sufficiently large inverter pull-up using resistive lines would re-

quire a very large area compared to that occupied by the transistor itself.

To circum\ ent this problem a depletion mode MOSFET is used as a pull-up

for the basic inverter circuit, symbolized and configured as shown in Fig. 1.7. In

contrast to the usual enhancement mode transistor, the depletion mode transistor

has a threshold voltage. Vj^^,, that is less than zero. During fabrication, one of the

masks is used to select any desired subset of transistors in the integrated system

for processing as depletion mode transistors. For a depletion mode transistor to

turn off, a voltage is required on its gate relative to its source that is more negative

than V'dpp. But the depletion mode pull-up transistor's gate is connected to its

source, and thus it is always turned on. Hence, when the enhancement mode
transistor is turned off (for example, by connecting zero voltage to its gate) the

output of the inverter will be equal to \'DD. We will find that for reasonable ratios

of the gate geometries of the two transistors, input \oltages abo\e a defined logic

threshold voltage, V,„,. will produce output voltages below that logic threshold

voltage, and vice versa.

\ DD

I—^1* Depletion
'^ mode MOSFET

^i

VDD

(poly)

Connected
(seeCh. :.Ch.4)

;

1

1

.4 #::;

^^•r^-^^

-->

Depletion mode

;

pull-up

((diffusion

)

Fig. 1.7 The basic inverter circuit diagram,

logic symbol, and logic function.

(poi> i

I

'^^' Enhancement
' ^ ' mode pull-down
GND

Fig. 1.8 Basic inverter layout.

-pd

The top view of the layout of an inverter on the silicon surface is sketched in

Fig. 1.8. It consists of two polysilicon regions overhanging a path in the diffusion

level that runs between \DD and GND. This arrangement forms the two MOS
transistors of the inverter. The inverter input A is connected to the poly that forms
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the gate of the lower of the two transistors. The pull-up is formed by connecting

the gate of the upper transistor to its source. (The layout geometry and fabrication

details of such connections are described in Chapter 2.) The output of the inverter

is shown emerging on the diffusion level, from between the drain of the pull-down

and the source of the pull-up. The pull-up is a depletion mode transistor, and it is

usually several times longer than the pull-down in order to achieve the proper

inverter logic threshold.

Figures 1.9 and 1.10 show the characteristics of a typical pair of MOS tran-

sistors used to implement an inverter. The relative locations of the saturation re-

gions of the pull-up and pull-down differ in these characteristics, due to the differ-

ence in the threshold voltages of the transistors.

/d/dep) /d,(enh)

^^f^ds(dep)
0.0 0.5 VDD VDD

Fig. 1.9 Inverter pull-up characteristics.

0.0 0.5 VDD VDD

Fig. 1.10 Inverter pull-down characteristics.

We can use a graphical construct to determine the actual transfer characteris-

tic, Vout versus Vjn, of the inverter circuit. From Fig. 1.7 we see that Vds(enh) of

the enhancement mode transistor equals VDD minus V^sCdep) of the depletion

mode transistor. Also, Vds(enh) equals Vout- In a steady state and with no current

drawn from the output, the /^s of the two transistors is equal. Since the pull-up has

its gate connected to its source, only one of its characteristic curves is relevant,

namely the one for Vgs(dep) = 0. Taking these facts into account, we begin the

graphical solution (Fig. 1.11) by superimposing plots of /dsCenh) versus Vds(enh)

and the one plot of /fis(dep) versus [VDD - Vds(dep)]- Since the currents in both

transistors must be equal, the intersections of these sets of curves yield Vds(enh)

= V'out, versus Vgs(enh) = V^. The resulting transfer characteristic is plotted in

Fig. 1.12.

While studying Figs .1.11 and 1.12, consider the effect of starting with V j^ =

and then gradually increasing Vjn towards VDD. While the input voltage is below

the threshold of the pull-down transistor, no current flows in that transistor, the

output voltage is constant at VDD, and the drain-to-source voltage across the
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Fig. 1.11 /,is(enh) versus V,is(enh), and

/„s(dep) versus [VDD - V,„(dep)].

(// .,'•'
I '^ ^( e n h ) = + . 3 V DD

0.0 0.5 VDD VDD
^ VDD- Ij^dcpl

pull-up transistor is equal to zero. When V\^ is first increased above the enhance-

ment mode threshold, current begins to flow in the pull-down transistor. The out-

put voltage decreases slowly as the input voltage is first increased above V,^.

Subsequent increases in the input voltage rapidly lower the pull-down's drain-to-

source voltage, until the point is reached where the pull-down leaves its saturation

region and becomes resistive. Then as V^ continues to increase, the output vol-

tage asymptotically approaches zero. The input voltage at which V^^ equals V^u, is

known as the logic threshold voltage Vjnv Figure 1.12 also shows the effect of

changes in the transistor length-to-width ratios on the transfer characteristics and

on the logic threshold voltage. The resistive impedance of the MOS transistor is

proportional to the length-to-width ratio Z of its gate region. Using the subscripts

pu (for the pull-up transistor) and pd (for the pull-down transistor) we find that if

-^pu = ^pu/^pu is increased relative to Z,„i = Lp,,/Wp(|, then V^v decreases, and

vice versa. The gain G, or negative slope of the transfer characteristic near Vj^^,

increases as Z^JZ^^ increases. The gain must be substantially greater than unity

for digital circuits to function properly.

VDD

Decreasing iil^^ =^
'-pd^^pd 'Sd

slope! = G'. (gain)

\ > V

Fig. 1.12 V„u, versus V'|„ for the

basic inverter.
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1 .2.1 Inverter Logic Threshold Voltage

The most fundamental property of the basic inverter circuit is its logic threshold

voltage, Vjn^,. The logic threshold here is not the same as V,h0f the enhancement

mode transistor; it is that voltage on the input of the enhancement mode transistor

that causes an equal output voltage. If V^^ is increased above this logic threshold,

Vout falls below it, and if Vj^ is decreased below V^n,,, Vo^, rises above it. The
following simple analysis assumes that both pull-up and pull-down are in satura-

tion, so that Eq. (1-6) applies. Usually the pull-up is not quite in saturation, but

the following is still nearly correct: V^^^. is approximately that input voltage that

would cause saturation current through the pull-down transistor to be equal to

saturation current through the pull-up transistor. Referring to Eq. (1-6), we find

the condition for equality of the two currents given in Eq. (1-7). Currents are

equal when

thus,

(Vinv- V.h)^=-^(-Vdep)^; (1-7)

pd -^pu

*^ dep
Vinv = Vth -— — (l-7a)

Y ^pu/^pd

Here we note that the current through the depletion mode transistor is dependent

only on its geometry and threshold voltage V^ep, since its Vg^ = 0. Note that Vj^^is

dependent on the thresholds of both the enhancement and depletion mode tran-

sistors and also on the square root of the ratio of the Z - L/W of the enhancement

mode transistor to Z = L/W of the depletion mode transistor.

Various possible choices of values for these threshold voltages can be traded

off against the areas and current driving capability of transistors in the system's

inverters. To maximize (Vg^ - V,jJ and increase the pull-downs' current driving

capability for a given area, V,^ should be as low as possible. However, if V,^ is too

low, inverter outputs won't be driveable below Vt^, and inverters won't be able to

turn off transistors used as simple switches. The original choice of V^^ —0.2 VDD
is a reasonable compromise here.

Similarly, to maximize the current driving capability of pull-ups of given area,

we might set the system's Vj^p as far negative as possible. However, Eq. (l-7a)

shows that for chosen V^nv and Vth' decreasing V^^p requires an increase in LpJ
Wpu, typically leading to an increase in pull-up area. The compromise made in this

case is often as follows. The negative threshold of depletion mode transistors is

set during fabrication such that with gate tied to source, they turn on approxi-

mately as strongly as would an enhancement mode transistor with VDD con-

nected to its gate and its source grounded. In other words, depletion mode tran-

sistors and enhancement mode transistors of equal gate dimensions would have

equal drain-to-source currents under those conditions. Applying Eq. (1-7) in

those conditions, we find that

(-Vdep)=^-(VDD- Vth)^
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Therefore, -V^ep = (VDD - Vih), and V^ep ^ -0.8 VDD. Adjustments in the

details of the choice of Va^p are often made in the interest of optimization of

processes for particular products. Perhaps the most common choice is that of V^ep

~ -0.6 VDD (leading to smaller pull-up areas than would V^ep ~ -0.8 VDD).

Substituting this choice of V^^p into Eq. (l-7a), we find that

V.nv - 0.2 VDD +
0.6 VDD

V ^'pJZpd
(1-8)

In general it is desirable that the margins around the inverter threshold be approx-

imately equal, i.e., that the inverter threshold, V'jn,, lie approximately midway
between VDD and ground. We see from Eq. (1-8) that this criterion is met by a

ratio of pull-up Z to pull-down Z of approximately 4: 1

.

1.3 INVERTER DELAY

A minimum requirement for an inverter is that it drive another identical to itself.

Let us analyze the delay through a string of inverters of identical dimensions. This

is the simplest case in which we can estimate performance. Inverters connected in

this way are shown in Fig. 1. 13(a). We define the inverter ratio k as the ratio ofZ
of the pull-ups to Z of the pull-downs. We will sometimes use the alternative

"resistor-with-gate" pull-up symbol, as in Fig. 1.13(a). to clarify its functional

purpose.

Let us assume that prior to / = 0, the voltage at the input of the first inverter is

zero, hence the voltage output of the second inverter will be low. At time / = 0, let

us place a voltage equal to VDD on the input of the first inverter and visualize the

sequence of events that follows. The output of the first inverter, which leads to the

gate of the second inverter, will initially be at VDD. Within approximately one

transit time, the pull-down transistor of the first inverter will remove from this

node an amount of charge equal to VDD times the gate capacitance of the pull-

down of the second inverter. The pull-up transistor of the second inverter is now
faced with the task of supplying a similar charge to the gate of the third inverter, to

h-(l + A)tH

VAi)

VAt)

-^T \^

V^U)

Fig, 1.13 Inverter delay.

(a)

-^ kT I*—

(b)
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i

i

For fan-out of/,

down delay ~/t

up delay ~ /./r Fig. 1.14 Fan-out.

raise it to VDD. Since it can supply at most only \/k of the current that can be

supplied by the pull-down transistor, the delay in the second inverter stage is

approximately k times that of the first.

It is thus convenient to speak of the inverter pair delay that includes the delay

for one 'low-going" transition and one "high-going" transition. Inverter pair

delay is approximately (1 + k) times the transit time, as shown in Fig. 1.13(b). The
fact that the rising transition is slower than the falling transition, by approximately

the geometry ratios of the inverter transistors, is an inherent characteristic of any

ratio-type logic. It is not true of all logic families. For example, in families such as

complementary MOS (CMOS), where there are bothpMOS and^jMOS devices on

the same silicon chip and both types operate strictly as pull-down enhancement

mode devices, any delay asymmetry is a function of the difference in mobilities of

the;?- and«-type charge carriers rather than of the transistor geometrical ratios.

Figure 1.14 shows an inverter driving the inputs of several other inverters. In

this case, for a "fan-out" factor/, it is clear that in either the pull-up or pull-down

direction, the active device must supply/times as much charge as it did in the case

of driving a single input. In this case, the delay in both the "up-going" and

"down-going" directions is increased by approximately the factor/. In the case of

the down-going transition, the delay is approximately/times the transit time of the

pull-down transistor, and in the case of the up-going transition, the delay is ap-

proximately the inverter ratio k times the fan-out factor times the pull-down transit

time.

In the discussions of transit time given earlier, it was assumed that both the

depletion mode pull-up device and the enhancement mode pull-down device were

operating in the resistive region. It was also assumed that all capacitances were

constant, and not a function of voltage. These conditions are not strictly met in the

technology we are discussing. Delay calculations given in this text are based on a

"switching model" where individual stages spend a small fraction of their time in

the midrange of voltages around Vjn^. This assumption introduces a small error of

the order of 1/G. Because of these and other second-order effects, the switching

times actually observed vary somewhat from those derived.

1.4 PARASITIC EFFECTS

In integrated systems, capacitances of circuit nodes are due not only to the capaci-

tance of gates connected to the nodes but also to capacitances to ground of signal
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paths connected to the nodes and to other stray capacitances. These stray capaci-

tances, sometimes called parasitic capacitances, are not negligible. While gate

capacitances are typically an order of magnitude greater per unit area than capaci-

tances of the signal paths, the signal paths are often much larger in area than the

associated gate regions. Therefore, a substantial fraction of the delay encountered

may be accounted for by stray capacitance rather than by the inherent properties

of the active transistors. In the simplest case where the capacitance of a node is

increased by the presence of parasitic area attached to the node, the delays can be

accounted for by simply increasing the transit time by the ratio of the total capaci-

tance to that of the gate of the transistor being driven. Time is required to supply

charge not only to the gate itself but also to the parasitic capacitance.

There is one type of parasitic capacitance, however, which is not accounted

for so simply. All MOS transistors have a parasitic capacitance between the drain

edge of the gate and the drain node. This effect is shown schematically in Fig.

1.15. In an inverter string, this capacitance will be charged in one direction for one

polarity of input and in the opposite direction for the opposite polarity input.

Thus, on a gross scale its effect on the system is twice that of an equivalent parasi-

tic capacitance to ground. Therefore, gate-to-drain capacitances should be ap-

proximately doubled, and added to the gate capacitance Cgand the stray capaci-

tances, to account for the total capacitance of the node and thus for the effective

delay time of the inverter. The effective inverter pair delay then is equal to

t(1 + k) Ctotal/Q-

VDD

A
V.

VDD

-stray

Start:

V2 = 0, y, VDD
= -C'„VDD

Fig. 1.15 The Miller Effect.

Total effective

input capacitance

Finish:

Vj = VDD, K3 =
Q=C\VDD,Q^ =+^.VDD

= cstray
VDD

dV

_ (C?finish
"

Crstarl

)

( ''finish ~ •'start)

Lg "T ZCni ' ^ stray

1.5 DRIVING LARGE CAPACITIVE LOADS

As we have seen, the delay per inverter stage is multiplied by a fan-out factor. The

overall performance of a system may be seriously degraded if it contains any large

fan-outs, where one circuit within the system is required to drive a large capacitive

load. As we shall see, this situation often occurs in the case of control drivers

required to drive a large number of inputs to memory cells or logic function

blocks. A similar and more serious problem is driving wires that go off the silicon

chip to other chips or input/output devices. In such cases the ratio of the capaci-

tance that must be driven to the inherent capacitance of a gate circuit on the chip is

often many orders of magnitude, causing a serious delay and a degradation of

system performance.
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Consider how we may drive a capacitive load Cl in the minimum possible time

given that we are starting with a signal on the gate of an MOS transistor of capaci-

tance Cg.^ Define the ratio of the load capacitance to the gate capacitance, Ci^/C^,

as Y. It seems intuitively clear that the optimum way to drive a large capacitance is

to use our elementary inverter to drive a larger inverter and that larger inverter to

drive a still larger inverter until at some point the larger inverter is able to drive the

load capacitance directly. Using an argument similar to the fan-out argument, it is

clear that for one inverter to drive another inverter, where the second is larger in

size by a factor of/, results in a delay /times the inherent inverter delay, r. If N
such stages are used, each larger than the previous by a factor/, then the total

delay of the inverter chain is A/t, where /^ equals Y. Note that if we use a large

factor/, we can get by with few stages, but each stage will have along delay. If we
use a smaller factor/, we can shorten the delay of each stage, but we are required

to use more stages. What value of N minimizes the overall delay for a given Yl We
compute this value as follows: Since /^= Y, \n{Y) - 7Vln(/), and the delay of one

stage equals/r; thus the total delay is

A/r = ln(y)|//ln(/)]T. (1-9)

Notice that the delay is always proportional to ln(y), a resuh of the exponential

growth in successive stages of the driver. The multiplicative factor, //ln(/), is plot-

ted as a function of/ in Fig. 1.16, normalized to its minimum value (e). Total delay

is minimized when each stage is larger than the previous one by a factor of e, the

/

e ln(/)
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f
Fig. 1.16 Relative time penalty —l—
versus size factor/. ^ ln(/)
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base of natural logarithms. Minimum total delay, t^^^, is the elementary inverter

delay r times e times the natural logarithm of the ratio of the load capacitance to

the elementary inverter capacitance:

tmin^Te\n{ —^ |. (1-10)

Minimum delay through the driver is seldom the only design criterion. The relative

time penalty introduced by the choice of other values of/can be read directly from

Fig. 1.16.

1.6 SPACE VERSUS TIME

From the results of the sections on inverter delay, parasitic effects, and driving

large capacitances, we see that areas and distances on the silicon surface trade off

against delay times. For an inverter to drive another inverter some distance away,

it must charge not only the gate capacitance of the succeeding inverter but also the

capacitance to ground of the signal path connecting the two. Increasing the dis-

tance between the two inverters will therefore increase the inverter pair delay.

This effect can be counterbalanced by increasing the area of the first inverter, so

as to reduce the ratio of the load capacitance to the gate capacitance of the first

inverter. But the delay of some previous driving stage is then increased. There is

no way to get around the fact that transporting a signal from one node to another

some distance away requires either charging or discharging capacitance and there-

fore takes time. Note that this is not a velocity of light limitation, as is often the

case outside the chip. The times are typically several orders of magnitude longer

than those required for light to traverse the distances involved. To minimize both

the time and space required to implement system functions, we will tend to use the

smallest possible circuits and locate them in ways that tend to minimize the inter-

connection distances.

The results of a previous section can be used here to illustrate another in-

teresting space-versus-time effect. Suppose that the minimum-sized transistors of

an integrated system have a transit time r and gate capacitance Cg. A minimum-

sized transistor within the system produces a signal that is then passed through

successively larger inverting logic stages and eventually drives a large capacitance

Cl with minimum total delay equal to t^^^. With the passage of time, fabrication

technology improves. We replace the system with another in which all circuit

dimensions, including those vertical to the surface, are scaled down in size by

dividing by a factor a. and the values of VDD and V,h are also scaled down by

dividing by a. The motivation for this scaling is clear: the new system may contain

c^ as many circuits. As described in a later section, we will find that the transit

times of the smallest circuits will now be r' = r/a, and their gate capacitance will

be Cg = CJa. The new ratio of load to minimum gate capacitance is Y' = aY.
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Referring to Eq. (1-10), we find the new minimum total delay, r'^jn, to drive Cl
scales as follows:

1

' min 'min
| I I

'
i .,

Ina

Therefore, as the inverters scale down and r gets smaller, more inverting logic

stages are required to obtain the minimum "off-chip" delay. Thus the relative

delay to the outside world becomes larger. However, the absolute delay becomes
smaller.

1.7 BASIC NAND AND NOR LOGIC CIRCUITS

NAND and NOR logic circuits may be constructed in integrated systems as simple

expansions of the basic inverter circuit. The analysis of the behavior of these

circuits, including their logic threshold voltages, transistor geometry ratios and

time delays, is also a direct extension of the analysis of the basic inverter.

The circuit layout diagram of a two-input NAND gate is shown in Fig. 1.17.

The layout is that of a basic inverter with an additional enhancement mode tran-

sistor in series with the pull-down transistor. NAND gates with more inputs may
be constructed by simply adding more transistors in series with the pull-down

path. The electrical circuit diagram, truth table, and logic symbol for the two-input

NAND gate are shown in Fig. 1.18. If either of the inputs A or B is a logic-0, the

VDD

Connected
(seeCh. 2,Ch.4) ••

Fig. 1.17 NAND gate,

top view of layout.

Depletion mode
.pull-up

(AB)'

VDD

-^(AB)'

A B {AB)'

1

1 1

1 1

1 1

Fig. 1.18 NAND gate circuit

diagram, logic symbol, and logic

function.
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piill-down path is open and the output will be high and therefore a logic- 1 . For the

output to be driven low, to logic-0, both inputs must be high, at logic- 1. The logic

threshold voltage of this NAND gate is calculated in a manner similar to that of the

basic inverter, except that Eq. (1-8) is rewritten with the length of the pull-downs

replaced with the sum of the lengths of the two pull-downs (assuming their widths

are equal) as follows:

VDD
thNAND

^IHl' " |:

^ '"'a
"*" ^Pdi,^' "l>(l

This equation indicates that as pull-downs are added in series to form NAND gate

inputs, the pull-up length must be enlarged to hold the logic threshold voltage

constant.

The logic threshold voltage of an Ai-input NAND gate, assuming all the pull-

downs have equal geometries, is

MhNAND ~
VDD

L IW^^pu' " pu

^'^pd' "^pd

As inputs are added and pull-up length is increased, the delay time of the NAND
gate is also correspondingly increased, for both rising and falling transitions:

''"nAND ~ " '''inv •

The circuit layout diagram of a two-input NOR gate is shown in Fig. 1.19. The

layout is that of a basic inverter with an additional enhancement mode transistor in

parallel with the pull-down transistor. Additional inputs may be constructed by

simply placing more transistors in parallel with the pull-down path. The circuit

diagram, truth table, and logic symbol for the two-input NOR gate are shown in

Fig. 1.20. If either of the inputs A or B is a logic-!, the pull-down path to ground is

closed and the output will be low and therefore a logic-0. For the output to be

driven high, to logic- 1. both inputs must be low, at logic-0. If one of its inputs is

kept at logic-0. and the other swings between logic-0 and logic-1, the logic

threshold voltage of the NOR gate is the same as that of a basic inverter of equal

pull-up to pull-down ratio. If this ratio were 4:1 to provide equal margins, then

^'th.NOR ~ VDD/2 with only one input active. However, if both pull-downs had

equal geometries, and if both inputs were to move together between logic-0 and

logic-1, V,hNOR would be reduced to ~ VDD/(8)"^ The logic threshold voltage of an
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Connected

(seeCh. 2,Ch. 4)

Depletion mode
pull-up

(poly)

(diff)

(A + B)'

„ I I ^ Lz;

VDD

H^
-^(A +8)'

t t
HI Ih^

T

0-{A + B)'

A B {A +

1

1

1

1 1

GND

Fig. 1.19 NOR gate, top view of layout.

Fig. 1.20 NOR gate circuit diagram,

logic symbol, and logic function.

Aj-input NOR circuit decreases as a function of the number of active inputs (inputs

moving together from Iogic-0 to logic- 1). The delay time of the NOR gate with one

input active is the same as that of an inverter of equal transistor geometries, ex-

cept for added stray capacitance. Its delay time for falling transitions is decreased

as more of its inputs are active.

1.8 SUPER BUFFERS

As we have noted, ratio-type logic suffers from an asymmetry in its ability to drive

capacitive loads. This asymmetry results from the fact that the pull-up transistor

has of necessity less driving capability than the pull-down transistor. There are,

however, methods for avoiding this asymmetry. Shown in Figs. 1.21 and 1.22 are

circuits for both inverting and noninverting drivers that are approximately sym-

metrical in their capability of sourcing (sinking) charge into a capacitive load.

Drivers of this type are called super buffers

.

Both types of super buffer are built using a depletion mode pull-up transistor

and an enhancement mode pull-down transistor, with a ratio of Z's of approxi-

mately 4:1 as in the basic inverter. However, the gate of the pull-up transistor,

rather than being tied to its source, is tied to a signal that is the complement of that

driving the pull-down transistor.
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VDD

\

VDD

€
^ * out

' »

11
Fig. 1.21 Inverting ^ IL

^ super buffer. ^
Fig. 1.22 Noninvert-

ing super buffer.

When the pull-down transistor gate is at a high voltage, the pull-up transistor

gate will be approximately at ground, and the current through the super buffer will

be similar to that through a standard inverter of the same size. However, when the

gate of the pull-down transistor is put to zero, the gate of the pull-up transistor will

go rapidly to VDD since it is the only load on the output of the previous inverter,

and the depletion mode transistor will be turned on at approximately twice the

drive it would experience if its gate were tied to its source. Since the current from

a device in saturation goes approximately as the square of the gate voltage, the

current-sourcing capability of a super buffer is approximately four times that of a

standard inverter. Hence, the current-sourcing capability of its pull-ups is approx-

imately equal to the current-sinking capability of its pull-downs, and waveforms

from super buffers driving capacitive loads are nearly symmetrical.

The effective delay time, t, of super buffers is thus reduced to approximately

the same value for high-going and low-going waveforms. Needless to say, when
large capacitive loads are to be driven, super buffers are universally used. The

arguments used in the last section to determine how many stages are used to drive

a large capacitive load from a small source apply directly to super buffers. For that

reason we have not explicitly indicated an inverter-ratio k in that section.

1.9 A CLOSER LOOK AT THE ELECTRICAL PARAMETERS

Up to this point we have talked in very simple terms about the properties of the

MOS transistors. They have a capacitance associated with their gate input and a

transit time for electrons to move from the source to the drain. We have given

simple expressions for the drain-to-source current. For very low V^^, the MOS
transistor's drain-to-source path acts as a resistor whose conductance is directly

proportional to the gate voltage above threshold, as given in Eq. ( 1-3). For values

of V^s larger than Vg^ - V,j„ the device acts as a current source, with a current

proportional to (V^^ - V,h)-, as given in Eq. (1-6). As V^s passes through the

intermediate range between these two extremes, there is a smooth transition

between the two types of behavior,^ as given in the following equation:

/ds
Q _ A^Q

(V^s- V,h)Vd.s-
ds

(1-11)
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Plot of

Fig. 1,23 Summary of MOS transistor characteristics.

(a) Cut-off region: Vg, < Vth. Ais = 0.

(b) Saturation region: Vg, ^ Vt^. V^s sufficiently high so

^g<i < V',,,, that is, Vri, ^(Vg, - V,„). MOSFET acts as

current source, with /^^ proportional to ( Vg^ - V,h)-.

(c) Resistive region: Vg^ > Vtn. V.is sufficiently low
so Vg,| > V,h, that is, Va, < (Vg, - V,^. MOSFET
acts as resistor, with resistance inversely proportional

to(Vg, - V,,).

Figure 1.23 plots /^s versus V,is , summarizing the various regions of MOS tran-

sistor operation.

There is another electrical characteristic we may occasionally have to take

into account. The threshold voltage of an MOS transistor is not a constant: it

varies slightly as a function of the voltage between the source terminal of the

transistor and the silicon substrate. This is called the body effect and it is illus-

trated in Fig. 1.24. The silicon substrate is usually connected to our system's

circuit ground during packaging. However, a fixed bias voltage is sometimes

applied between circuit ground and substrate as shown in Fig. 1.24, and this bias

must be taken into account in estimating the body effect. If the source-to-bulk

(substrate) voltage, V^^, equals zero, then Vt^ is at its minimum value of approxi-

mately 0.2 VDD. As Vg^is increased, V,h increases slightly.

For enhancement mode transistors fabricated using typical processes, V,f,

reaches a maximum value of about 0.3 VDD when V^^, is increased to ~ VDD. The

..-1

Conductance

.+. (

1

IR

Symbol for

connection to

^/ bulk (substrate)

0.2 VDD 0.3 VDD
(min. r,[, ) (max. t',^ )

Increasing

> I' Fig. 1.24 The body effect.
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value of the depletion mode transistor threshold, V,^.,„ is similarly affected, rang-

ing from about -0.8 VDD to -0.7 VDD as V,,, is raised from zero to VDD volts.

As shown in Fig. 1.24, it is possible to insert a fixed bias voltiige between the

circuit ground and the substrate, rather than just connect them. Such a substrate

bias provides an electrical mechanism for setting the threshold to an appropriate

value.

VDDTV(t)

Fig. 1.25 Depletion

mode MOSFET pulling

up a capacitive load.

VDD

H
y{t)

Fig. 1.26 Enhancement

mode MOSFET pulling

up a capacitive load.

1.10 DEPLETION MODE PULL-UPS VERSUS ENHANCEMENT MODE PULL-UPS

With its gate tied to VDD, an enhancement mode transistor will be on for all V^^ >
V,„, and thus can be used for a pull-up device in inverting logic circuits. Early

MOS processes used pull-up devices of exactly this type.

In this section we will make a comparison of the rising transients of the two

types of pull-up circuits. As noted earlier, rising transients in ratio-type logic are

usually slower than falling transients, and thus rising transients generally have

greater impact on system performance. In the simplest cases, this asymmetry in

the transients results from the current-sourcing capability of the pull-up transistor

being less than that of its pull-down counterpart. The simple intuitive time argu-

ments given earlier are quite adequate for making estimates of system perform-

ance in most cases. However, there are situations in which the transient time may
be much longer than a naive estimate would indicate. The rising transient of the

enhancement mode pull-up is one of these.

A depletion mode pull-up transistor feeding a capacitive load is shown
schematically in Fig. 1.25. Since Vj,, ^ Viu and V^.^ ^ V,„ , the pull-up transistor is

in the resistive region. The final stages of the rising transient are given by the

following exponential:

V(t) = VDD[I - (^-"<«'A']
.

For an inverter-ratio A., pull-down transit time r, and gate capacitance Cg, the

time-constant of the rising transient is given by

C,,

RC^ =kr— .

A somewhat more complicated situation is presented by an enhancement

mode transistor sourcing charge into a capacitive load. This situation is shown

schematically in Fig. 1.26. Note that since V^^^ = 0, the transistor is in saturation

whenever V^^ > V,,,. The problem with sourcing charge from the enhancement

mode transistor is that as the voltage at the output node gets closer and closer to

one threshold below VDD, the amount of current provided by the enhancement

mode transistor decreases rapidly.

The dependence of the enhancement mode pull-up current, /(,«, on output vol-

tage, V, is given in Fq. (1-12):

eWL
Q= [(VDD- V,„)

D
V]:
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2L2
T =

^ds
~

At[(VDD- Vth) - V]

2LD
[(VDD- V,h) - Vf (1-12)

The fact that the pull-up current decreases as the output voltage nears its

maximum value causes the rising transient from such a circuit to be of qualita-

tively different form than that of a depletion mode pull-up. Equating I^s = Ci^dV/dt

with the expression in Eq. (1-12), and then solving for V{t), we find the rising

voltage transient, for large /:

Vit) = VDD - V„ C,
LD

fxeWt
(1-13)

Note that in this configuration, the threshold voltage V,h' of the pull-up is near its

maximum value as V(/) rises towards VDD, due to the body effect.

A comparison of the rising transients of the preceding two circuits, assuming

the same load capacitance and the same pull-up source current at zero output

voltage, is shown in Fig. 1.27. The rising transient for the depletion mode pull-up

transistor is crisp and converges rapidly towards VDD. However, the rising tran-

sient for the enhancement mode pull-up transistor, while starting rapidly, lags far

behind, and within the expected time response of the system it never even comes
close to one threshold below VDD. Even for very large /, V{/) < VDD - V^^'.

Depletion mode; ((/) = VDD[1 - (^-'/«Cl
]

Enhancement mode: V(t) = VDD— K,^ — const//

(for large /)

^ t

Fig. 1.27 Comparisons of rising

transients for the two types

of pull-ups.

The practical effect of this property of enhancement mode transistors is that

circuits designed to work from the output of such a circuit should be designed with

an inverter threshold Vi^^ considerably lower than that of circuits designed to

work with the output of a depletion mode pull-up circuit. In order to obtain equal

inverter margins without sacrificing performance, we will normally use depletion

mode pull-ups.
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1.11 DELAYS IN ANOTHER FORM OF LOGIC CIRCUITRY

Enhancement mode transistors, when used in small numbers and driving small

capacitive loads, may often be used as switches in circuits of simple topology to

provide logic-signal steering functions of much greater complexity than could be

easily achieved in ratio-type inverting logic. These circuits are reminiscent of

relay-switching logic, and transistors used in this way are referred to as "pass

transistors" or "transmission gates." Examples of circuits using this type of de-

sign are given in Chapter 3. A particularly interesting example is the Manchester

carry chain,"'" used for propagating carry signals in parallel adders. In each stage

of the adder, a carry-propagate signal is derived from the two input variables to the

adder, and if it is desired to propagate the carry, this propagate signal is applied to

the gate of an enhancement mode pass transistor. The source of the transistor is

"carry-in" to the present stage, and the drain of the transistor is "carry-out" to

the next stage. In this way, a carry can be propagated from less significant to more

significant stages of the adder without inserting a full inverter delay between

stages. The circuit is shown schematically in Fig. 1 .28.

C"arr\-in|

Carry-in, R y

C X

P.

v..

X

p,

X
R

Carry-out^

V4 Carry-out4

X

Fig. 1.28 Pass transistor chain

propagating a carry signal.

Fig. 1.29 Equivalent circuit.

The delay through such a circuit does not involve inverter delays but is of an

entirely different sort. A voltage along the chain divides into V^^ across each pass

transistor. Thus V'^jjs usually low, and the pass transistors operate primarily in the

resistive region. We can think of each transistor as (1) a series resistance in the

carry path, (2) a capacitance to ground formed by the gate-to-channel capacitance

of each transistor, and (3) the strays associated with the source, drain, and con-

nections with the following stage. An abstraction of the electrical representation is

shown in Fig. 1.29. The minimum value of R is the turned-on resistance of each

enhancement mode pass transistor, while the minimum value of C is the capaci-

tance from gate to channel of the pass transistor. Strays will increase both values,

especially that of C. The response at the node labeled V2 with respect to time is

given in Eq. ( 1-14). In the limit as the number of sections in the network becomes

large, Eq. (1-14) reduces to the differential form shown in Eq. (1-15), where R
and C are now the resistance and capacitance per unit length, respectively.

C dV^/dt = [( V, - V2)- ( V2 - V,)]/R (1-14)

RC dVldt^d-V/dx- d-XS)
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Equation (1-15) is the well-known diffusion equation, and while its solutions are

complex, in general the time required for a transient to propagate a distance .v in

such a system is proportional to .v-. One can see qualitatively that this might be so.

Doubling the number of sections in such a network doubles both the resistance

and the capacitance and therefore causes the time required for the system to re-

spond to increase by a factor of approximately four. The response of a system of n

stages to a step function input is shown in Fig. 1 .30.

ViU)

4 .----

->t

Fig, 1.30 Response to step

function input.

If we add one more pass transistor to such a chain of n pass transistors, the

added delay through the chain is small for small n but very large for large n.

Therefore, it is highly desirable to group the pass transistors used for steering

logic, multiplexing logic, and carry -chain-type logic into short sections and inter-

pose inverting logic between these sections. This approach applied to the carry

chain is shown in Fig. 1.31, where an inverter is inserted after every n pass tran-

sistors. The delay through a section of n pass transistors is proportional to RCri-.

Thus the total delay through one section is approximately RCri- plus the delay

through the inverter t-^^^\

^RCri' + r,,,..

The average delay per pass transistor stage is

^ RCn + r.^Jn. (1-16)

To minimize the delay per stage, we choose n such that the delay through n pass

transistors equals the inverter delay:

RCri' ^ Tinv

Since logic done by steering signals with pass transistors does not require

static power dissipation, a generalization of this result may be formulated. It pays

to put as much logic into steering-type circuits as possible until there are enough

pass transistors to delay the signal by approximately one inverting logic delay. At

this point, the level of the signal can be restored by an inverting logic stage.

Carrv-in Fig. 1.31 Minimizing dela\ by

interposing in\ erters.
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The pass transistor has another important advantage over an inverting logic

stage. When used to control or steer a logic signal, the pass transistor has only one

input, one control, and one output connection. A NAND or NOR logic gate im-

plementing the same function, in addition to containing two more transistors and

thus occupying more area, also requires VDD and GND connections. As a result,

the topology of interconnection of pass transistor circuits is far simpler than that

of inverting-logic circuits. The topological simplicity of pass transistor control

gates is an important factor in the system-design concepts developed in later chap-

ters.

1.12 PULL-UP/PULL-DOWN RATIOS FOR INVERTING LOGIC COUPLED BY PASS
TRANSISTORS

Earlier we found that when an inverting logic stage directly drives another such

stage, a pull-up to pull-down ratio Z^JZ^^ = (L^JW^jliL^^JW^^^) of 4: 1 yields equal

inverter margins and also provides an output sufficiently less than Vj^for an input

equal to VDD. Rather than coupling inverting logic stages directly, we often

couple them with pass transistors for the reasons developed in the preceding sec-

tion, thus affecting the required pull-up to pull-down ratio.

Figure 1.32 shows two inverters connected through a pass transistor. If the

output of the first inverter nears VDD, the input of the second inverter can rise at

most to (VDD - Vjhp), where Vj^pis the threshold of the pass transistor. Why does

this effect occur? Consider the following: The output of the first inverter is at or

above (VDD - V,hp), the pass transistor gate is at zero volts, and the input gate of

the second inverter is also at zero volts. The pass transistor's gate voltage is now
driven quickly to VDD, turning on the pass transistor. As current flows through

the pass transistor, from drain to source, the input-gate voltage of the second

inverter rises and the gate-to-source voltage of the pass transistor falls. When the

gate voltage of the second inverter has risen to (VDD - V,hp), the pass transistor's

gate-to-source voltage has fallen to its threshold value, and the pass transistor will

switch off.

VDD VDD VDD

VDD

^,„ -r77^C

^

VDD - I thp

Fig. 1.32 Inverters coupled by

a pass transistor.

If the second inverter is to have its output driven as low with an input of(VDD
- Vthp) as would a standard inverter with an input of VDD. then the second in-

verter must have a pull-up/pull-down ratio larger than 4: 1 . The larger ratio is calcu-
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lated as follows: With inputs near VDD, the pull-ups of inverters are in saturation,

and the pull-downs are in the resistive region. Figure 1.33 shows equivalent cir-

cuits for two inverters. In part (a), VDD is input to one inverter, and in part (b)

(VDD - Vjhp), is input to the other inverter. For the output voltages of the two

inverters to be equal under these conditions, /,/?, must equal loR,- Referring to

Eqs. (1-4) and (1-6), we find

^pul
(VDD - V.J

-pu2
(VDD- Vth- V,hp).

-pd2

Since V,h of the pull-downs is approximately 0.2 VDD, and Vj^pOf the pass tran-

sistor is approximately 0.3 VDD due to the body effect, thenZpu2/^pd2~2Zpu,/Zpd,

.

Thus a ratio of (Lpu/Wpu)/(Lpti/Wp,|) = 8 is usually used for inverting logic stages

placed as level restorers between sections of pass transistor logic.

1.13 TRANSIT TIMES AND CLOCK PERIODS

In Chapter 3 we will develop a system design methodology in which we will be

able to construct and estimate the performance of arbitrarily complex digital sys-

tems, using only the basic circuit forms presented in the preceding sections. The
basic system building block in the design methodology is a register-to-register

transfer through combinational logic, implemented with pass transistors and in-

verting logic stages. Using the basic ideas already presented, we may anticipate

the results of that chapter in order to estimate the maximum clocking frequency of

such systems.

The design methodology uses a two-phase nonoverlapping clock scheme.

During the first clock phase, data passes from one register through combinational

logic stages and pass transistors to a second register. During the second clock

phase, data passes from the second register through still more logic and pass tran-

sistors to a third (or possibly back to the first) register. The data storage registers

are implemented by using charge stored on the input gates of inverting logic

stages, the charge being isolated by pass transistors controlled by clock signals (as

described in Chapter 3).

Since pass transistors are used to connect inverting logic stages, inverter

ratios of ^ = 8 are required. If the combinational logic between registers is im-

plemented using only pass transistors, and if the delays through the pass tran-

sistors have been carefully matched to those of the inverting logic stages, the total

delay will be twice that of the simple A' = 8 inverter. In the absence of strays, the k

= 8 inverters have a maximum delay (in the case of the output rising toward VDD)
of 8r, and hence a minimum of 16 r must be allowed for the inverter plus logic

delay. However, in most designs the stray capacitance is at least equal to that

inherent in the circuit. Thus the minimum time required for one such operation is

~ 30 T. Control lines to the combinational logic and pass transistors each typically

VDD

VDD - V,

Fig.

•^PU2'^pd2 ~
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drive the gates of 10 to 30 transistors. Even when using a super buffer driver, the

delay introduced by this fanout is at least the minimum driving time for a capaci-

tive load. With Y = 30, this time is ~ 9t. To this we must add an 8t inverter delay

for operation of the drivers.

Thus the total time for one clock phase is ~ 50 t. Since two clock phases are

required per cycle, a minimum clocking period of ~ 100 r is required for a system
designed in this way. In 1978, r ~ 0.3 nanoseconds (ns), and clocking periods of 30

ns to 50 ns are achievable in carefully structured integrated systems where succes-

sive stages are in close physical proximity. If it is necessary to communicate data

over long distances, longer periods are required.

1.14 PROPERTIES OF CROSS-COUPLED CIRCUITS

In many applications of control sequencing and data storage, memory cells and

registers are built using two inverters driving each other, as shown in Fig. 1.34.

This circuit can be set either in the state where V, is high and V2 is low or in the

state where Vj is low and V2 is high. In either case, the condition is stable and will

not change to the other condition unless it is forced there through some external

means. The detailed methods of setting such cross-coupled circuits into one state

or another will be discussed later. However, it is important at the present time to

understand the time evolution of signals impressed on cross-coupled circuits,

since they exhibit properties different from circuits not having a feedback path

from their output to an input.

VDD

Node,! \ / [Node2
Fig. 1.34 Cross-coupled inverters.

We have seen that there exists a voltage at which the output of an inverter is

approximately equal to its input voltage. If a cross-coupled circuit is inadvertently

placed in a situation where its input voltage is equal to this value, then an unstable

equilibrium condition is created where voltages Vi and V2 are equal. Since the net

current flowing onto either gate is now zero, there is no forcing function driving

the system to any voltage other than this equilibrium one, and the circuit can stay

in this condition for an indefinite period. However, if either voltage changes, even

very slightly, the circuit will leave this unstable equilibrium. For example, if the

voltage V, is increased from its unstable equilibrium value Vinv by a slight amount.
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this will in time cause a lowering of voltage V,, as net current flows from gate 1.

This lowering of V2 will at some later time cause V, to increase further. As time

goes on, the circuit will feed back on itself until it rests in a stable equilibrium

state.

The possibility of such unstable equilibria in cross-coupled circuits has impor-

tant system implications/ as we will later see. For this reason, we will make a

fairly detailed analysis of this circuit's behavior near the metastable state. While it

is not essential that the reader follow all the details of the analysis, the final result

should be studied carefully. The time constant of the final result depends in detail

on the regions of operation of the transistors near the metastable state, as given in

the following analysis. However, the exponential form of the result follows simply

from the fact that the forcing function pushing the voltage away from the metasta-

ble point is proportional to the voltage's distance away from that point. This gen-

eral behavior is characteristic of bistable storage elements in any technology.

However, more complex waveforms are observed in logic families having more

than one time constant per stage

.

The time evolution of this process can be traced as follows. At the unstable

equilibrium, the current in the pull-ups equals that in the pull-downs, and is some

constant, k
, , times ( Vinv - V^th )"• If ^1 is then changed by some small AV, to Vinit

,

/pu2 remains constant but /p,i2 changes immediately, producing a nonzero /g,

:

4, - /pu2 - /,.,i2
= k, [( Vi„, - V,,,)--^ - ( Vi„, + AV, - VuJ-] .

For small AV,, /g, = -2A,(Vinv - V„i)AV,. More precisely, since /g, is a func-

tion of (V,,V2), then near Vin,,

dI,JdV,= -2A:,(Vin, - V,J.

Note that the pull-ups are not quite in saturation but are in the resistive region,

and

r)/g,/c^V, = -l//?,H,.

where ^pu = effective resistance of the pull-up near Vjnv Noting that /g,
=

CgdV^^ldt, we find that

dl^Jdt = -2A-,(Vi„, -V,^){dVJdt) - {\/R,J idVJdt) = CM-y-z/dt-).

Evaluating the constants in this equation yields -A^^i( Vinv-V„, ) = Cg/ro, where r,, is

the saturation transit time of the pull-downs for / near zero. Assume a pull-up/

pull-down Z ratio of 4: 1 , and consider the operating conditions near / = 0. Evaluat-

ing the effective resistance of the pull-ups in terms of the parameters of the pull-

downs yields \IR^^ ~ Cg/ro. Therefore,

2 / dVA 1 I dVA d^V^

To \ dt To \ dt dt
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Similarly,

dV2

dt To dt

d'V,

dt-

Near time / = 0, dVJdt approximately equals -dV.Jdt, and therefore,

d-VJdt- = -(1/to) dVJdt = (I/Tor-^V, + constant. (1-17)

The solution to Eq. (1-17) is an exponential diverging from the equilibrium

voltage Vinv, with a time constant rjl equal to one half the pull-down delay time.

Note that the solution given in Eq. (1-18) satisfies the conditions that V(0) = Vjnit

and that V(/) is constant, if Vinn = V.n^:

Vi(/)= Vi„, + (Vi„u- Vinv)^"^0 (1-18)

The above analysis applies to cross-coupled circuits in the absence of noise.

Noise unavoidably present in the circuit spreads the input voltage into a band from

which such an unstable equilibrium can statistically be initiated. The width of the

band is equal to the noise amplitude. Any timing condition that causes the input

voltage to settle in the band has some probability of causing a balanced condition,

from which the circuit may require an arbitrarily long time to recover. The time

evolution of such a system is shown in Fig. 1.35, for several initial voltages near

Vjn,. The time for the cross-coupled system to reach one of its equilibria is thus

logarithmic in the displacement from Vi^,, and is given approximately by Eq. (1-19):

t - Toln[Vi„,/(Vi„,- Vi„,)]. (1-19)

Vit) A

K„,. -> Fig. 1.35 V(t) for cross-

coupled inverters.

-> t
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1.15 A FLUID MODEL FOR VISUALIZING MOS TRANSISTOR BEHAVIOR*

When designing circuits and systems, it is often useful to have some method for

visualizing the physical behavior of the devices used as basic building blocks. This

section develops such a method for the MOS transistor. Some readers of this text

may be unfamiliar with the physics of semiconductor devices and would have

difficulty visualizing what is going on inside an active semiconductor device, if

device behavior were described in purely analytical terms. However, it is possible

to construct a simple but very effective model of the behavior of certain charge-

controlled devices, such as MOS transistors, charge-coupled devices (CCD's), and

bucket-brigade devices (BBD's),*^ without referring to the details of device physics.

This model will be developed using two basic ideas: We think of electrical

charge as though it were a fluid, and we mentally map the relevant electrical po-

tentials into the geometry of a ''container" in which the charge is free to move
around. One can then apply one's intuitive understanding of, say, water in buckets

of various shapes toward a visualization of what is going on inside the devices.

Often a design guided by a good intuitive understanding of how a fluid would

behave in the designed structure may show superior performance over designs

based on complicated, but possibly inadequate, two-dimensional analytical model-

ing.

1.15.1 The MOS Capacitor

The basic element of MOS transistors or charge-transfer devices is the MOS
capacitor. The notions of a fluid model will first be introduced using this elemen-

tary building block.

In physical space an MOS capacitor is a "sandwich" structure of a metal or

polysilicon electrode on a thin insulator on the surface of a silicon crystal (Fig.

1.36a.) A suitable voltage applied to the electrode, i.e., positive for a p-type silicon

substrate as used in ajMOS, will repel the majority carriers in the substrate under

the electrode, generating a depletion region that is at first free of any mobile

charge carriers. Minority carriers, in this case electrons, can be either injected

electrically into this area or generated by incident light and subsequently stored

underneath the MOS electrode. Applying the notions of a fluid model, the same

situation can be described as follows:

The positive voltage applied to the MOS electrode generates a pocket in the

surface potential of the silicon substrate. This can be visualized as a con-

tainer, where the shape of the container is defined by the potential along the

silicon surface, as plotted by the dashed line in Fig. 1.36(b). Note that in Fig.

1 .36(b) increasing positive potential is plotted in the downward direction . The

presence of minority charge carriers in an inversion layer changes the surface

potential: an increase in this charge decreases the positive surface potential

*This section is contributed by Carlo H. Sequin, University of California, Berkeley.
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under the MOS electrode. The potential profile in the presence of inversion

charge is indicated by the solid line in Fig. 1.36(b). The area between the

dashed and solid lines is hatched to indicate the presence of this charge. This

representation shows charge sitting at the bottom of the container, just as a

fluid would reside in a bucket. Of course the surface of the fluid (solid line)

must be level in an equilibrium condition; if it were not, electrons would move
under the influence of the potential difference until a constant surface poten-

tial is established.

+ r

MOS capacitor

(ai

/)-t\ pc Si

lioctrons

Depleted

region

(b)

interface

potential

\:

-> A Hg. 1.36 MOS capacitor.

Y 'Tluid" representing

amount of charge

This model allows one to easily visualize the amount of charge present

(hatched area), the fact that the charge tends to sit in the deepest part of the

potential well, and the fact that the capacity of the bucket is finite and dependent

on the applied electrode voltage. The higher this voltage, the deeper the bottom of

the bucket and the more charge that can be stored. It should be kept in mind that

this fluid model differs from physical reality insofar as the minority carriers in the

inversion layer actually reside directly at the silicon surface.

1 .1 5.2 The MOS Transistor

The same kind of model can be used to describe MOS transistor behavior. Figure

1.37(a) shows the physical cross section through an MOS transistor. Source and

drain diffusions have been added to the simple MOS capacitor. For the moment
we consider these two diffusions to be connected to two identical voltage sources,

Kb = Kh^ which thus define the potential of the source and drain regions.

In the potential plot these diffusions are represented by exceedingly deep

buckets, filled with charge carriers up to the levels of the potentials of the source
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Fig, 1.37 MOS transistor.

and drain regions. Whether the MOS transistor is conducting, or is isolating the

two diffused regions from one another, now depends on the potential underneath

the MOS gate electrode. If the applied gate potential is chosen so that the potential

underneath is less than V^,,, then there exists a potential barrier between source

and drain regions (cases 1 and 2 in Fig. 1.37b). However, if the potential of an

"empty bucket" under the gate electrode would be higher than V^^, then the tran-

sistor is turned on (cases 4 and 5). Of course, in cases 4 and 5, carriers from the

source and drain regions will spill underneath the gate electrode so that a uniform

surface potential exists throughout the whole transistor. The conductivity of the

channel area depends on the thickness of the inversion layer, which can readily be

visualized in Fig. 1.37(b). Channel conductivity goes to zero at the turn-on

threshold of the transistor (case 3), when the "empty bucket" potential under the

gate electrode is equal to both the source and drain potential. Thus, the region

under the gate can be viewed as a movable barrier of variable height that controls

the flow of charge between the source and drain areas.

The same model enables us to visualize what happens when source and drain

regions are biased to different potentials, as is usually the case in normal operation
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of MOS transistors. Figure 1 .38(a) shows again a physical cross section through an

MOS transistor, as a reference for the following figures. Part (b) reviews the case

of equal source and drain potentials with the channel turned on fairly strongly,

thus readily allowing charge to move between source and drain. Part (c) shows the

situation when a small voltage difference, AV, has been applied between source

and drain. Since the potential difference is maintained by external voltage

sources, electrons will be forced to move from source to drain under the influence

of the potential gradient, just as a liquid would flow from the higher to the lower

level.

As the potential difference between source and drain is made larger, the varia-

tion in the "depth" of the fluid along the channel becomes significant (Fig. 1.38d).

Continuity in the fluid requires that the charge move faster in the areas where the

layer is thinner. This implies that the potential increases more rapidly closer to the

drain region. With increasing drain potential the amount of charge flowing from

source to drain per unit time increases, since the product of charge-layer depth

and local gradient increases. However, there is a limit; once the drain potential

exceeds the empty channel potential, the rate-of-charge flow will be limited by the

drain-side edge of the barrier under the gate electrode. The MOS transistor has

now reached saturation (Fig. 1.38e). The drain current density now is determined

by the potential difference between the source and the empty channel and by the

length of the channel (or the width of the barrier over which the charge has to

flow); it is to first order independent of the drain voltage V^,^.

Even in simple transistor circuits, the above fluid model helps one quickly

develop a feeling for device and circuit operation. However, the real power of this

intuitive model emerges when it is applied to complex structures where closed-

form solutions describing charge motion can no longer be found. The empty po-

tential under the various electrodes can first be plotted as in the above examples

and the flow of charge then visualized using the analogy to the behavior of a fluid.

1.16 EFFECTS OF SCALING DOWN THE DIMENSIONS OF MOS CIRCUITS

AND SYSTEMS

This section examines the effects on major system parameters resulting from scal-

ing down all dimensions of an integrated system, including those vertical to the

surface, by dividing them by a constant factor a. The voltage is likewise scaled

down by dividing by the same constant factor a. Using this convention, all electric

fields in the circuit will remain constant. Thus many nonlinear factors affecting

performance will not change as they would if a moie complex scaling were used.

Figure 1 .39(a) shows a MOSFET of dimensions L,W,D, with ( Vg, - V,,,) = V.

Figure 1.39(b) shows a MOSFET similar to that in part (a), but of dimensions L' =

LI a, W = Wla, D' = D/a, and V = V/a. Refer now to Eqs. (1-1), (1-2), and

(1-3). From these equations we will find that as the scale down factor a is in-

creased, the transit time, the gate capacitance, and drain-to-source current of
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every individual transistor in the system scale down proportionally, as follows:

T ^ L^/V, t'It = [{L/aY/{V/a)]/[L'/V], therefore, t' = r/a;

C X LW/D, C'/C - [(L/a)( W/a)/(D/a)]/[LW/D], and C = Cla\

I oc WV2/LD, 77/ = [{ WV2/a^)/(LD/a^)]/[WV2/LD], and /' = lla.

Switchin^i power, P^^,, is the energy stored on the capacitance of a given device

divided by the clock period (time between successive charging and discharging of

the capacitance). A system's clock period is proportional to the rof its smallest

devices. As devices are made smaller and faster, the clock period is proportionally

shortened . Also, the d .c . power, P^^., dissipated by any static circuit equals / times

V. Therefore, P^^and P^^^.sca.\Q as follows:

P,^ ^CVIry- WVIDL and P',^. = P,Ja^\

P,i, = IV and PW. = PJa\

Both the switching power and static power per device scale down as Mo?. The

average d.c. power for most systems can be approximated by adding the total /'sw

to one half of the d.c. power that would result if all level-restoring logic pull-downs

were turned on. The contribution of pass-transistor logic to the average d.c. power

drawn by the system is due to the switching power consumed by the driving cir-

cuits that charge and discharge the pass-transistor control gates.

+
f

, It .- -K

(Diffusion) Channel (Diffusion)

(a)

W = Wla
L' =Lla
D' = D/a

pantnn
1 t

(b)

Fig. 1.39 (a) MOSFET,
1978. (b) MOSFET scaled

down by Alpha, 19XX.

The switching energy per device, E^^., is an important metric of device per-

formance. It is equal to the power consumed by the device at maximum clock

frequency multiplied by the device delay, and it scales down as follows:

£sw ^ CV2 and C i^u iZn:\i/ ex.
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Table 1.1 summarizes values of the important system parameters for current

technology and for a future technology near the limits imposed by physical law:

Table 1.1

1978 19XX

Minimum feature size 6/ii,m 0.3 /xm

T 0.3 to Ins -0.02 ns

£sw =10 '2 joule =2 X 10 '« joule

System clock period ~30to50ns ==2 to 4 ns

A more detailed plot of the channel conductance of an MOS transistor near

the threshold voltage is shown in Fig. 1.40. Below the nominal threshold, the

conductance (l/R) is not in reality zero but depends on gate voltage and tempera-

ture as follows:

where T is the absolute temperature, q is the charge on the electron, and k is

Boltzmann's constant. At room temperature, kT/q ~ 0.025 volts. At present

threshold voltages, as in the rightmost curve in Fig. 1.40, an off device is below

threshold by perhaps 20 kT/q, that is, by about 0.5 volts, and its conductance is

decreased by a factor of the order of ten million. Said another way, if the device is

used as a pass transistor, a quantity of charge that takes a time r to pass through

the on device, will take a time on the order of lOV to "leak" through the off

device.

The use of pass-transistor switches to isolate and "dynamically store" charge

on circuit nodes is common in many memory applications using 1978 transistor

dimensions. However, if the threshold voltage is scaled down by a factor of

perhaps 5, as shown in the leftmost curve in Fig. 1 .40, then an off transistor is only

4 kT/q below threshold. Therefore, its conductance when off is only a factor of 100

Conductance

A
i\IR)

Fig. 1.40 Conductance as a

function of threshold voltage.

>y,.
0.2 V 1.0 V
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or so less than when it is on. For such relatively large values of subthreshold

conductance, charge stored dynamically on a circuit node by the transistor when
on w ill safely remain on that node for only a few system clock periods. The charge

will not remain on the node for a very large number of periods as it does in present

memory devices using this technique. One way of possibly coping with this prob-

lem, as device dimensions and threshold voltages are scaled down, is to reduce the

temperature of device operation. **

Suppose we scale down an entire integrated system by a scale-down factor of

a - 10. The resulting system will have one hundred times the number of circuits

per unit area. The total power per unit area remains constant. All voltages in the

system are reduced by the factor of 10. The current supplied per unit surface area

is increased by a factor of 10. The time delay per stage is decreased by a factor of

10. Therefore, the power-delay product decreases by a factor of 1000.

This is a rather attractive scaling in all ways except for the current density.

The delivery of the required average d.c. current presents an important obstacle to

scaling. This current must be carried to the various circuits in the system on metal

conductors, in order that the voltage drop from the off-chip source to the on-chip

subsystems will not be excessive. Metal paths have an upper current density limit

imposed by a phenomenon called metal migration (discussed further in Chapter 2).

Many metal paths in today's integrated circuits are already operated near their

current density limit. As the above type of scaling is applied to a system, the

conductors get narrower but still deliver the same current on the average to the

circuits supplied by them.

Therefore, it will be necessary to find ways of decreasing system current re-

quirements to approximately a constant current per unit area relative to present

current densities. In ^-channel silicon gate technology, this objective can be par-

tially achieved by using pass-transistor logic in as many places as possible and

avoiding restoring logic except where it is absolutely necessary. Numerous exam-

ples of this sort of design are given later in this text. This design approach also has

the advantages of tending to minimize delay per unit function and to maximize

logic functions per unit area. However, when scaled down to submicron size, the

pass transistors will suffer from the subthreshold current problem. It is possible

that when the fabrication technologies have been developed to enable scaling

down to submicron devices, a technology such as complementary MOS, which

does not draw any d.c. current, may be preferable to the /?MOS technology used

to illustrate this text. However, even if this occurs, the methodology developed in

the text can still be applied in the design of integrated systems in that technology.

The limit to the kind of scaling described above occurs when the devices

created are no longer able to perform the switching function. To perform the

switching function, the ratio of transistor on-to-off conductance must be >> 1,

and therefore the voltage operating the circuit must be many times kT/q. For this

reason, even those circuits optimized for operation at the lowest possible supply

voltages still require a VDD of ~ 0.5 volts. Devices in 1978 operate with a VDD of
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approximately five volts and minimum channel lengths of approximately six mic-

rons. Therefore, the kind of scaling we have envisioned here will take us to de-

vices with approximately one-half micron channel lengths and current densities

approximately ten times what they are today. Power per unit area will remain

constant over that range. Smaller devices might be built but must be used without

lowering the voltage any further. Consequently the power per unit area will in-

crease. Finally, there appears to be a fundamental limit'" of approximately one-

quarter micron channel length, where certain physical effects such as the tunnel-

ing through the gate oxide and fluctuations in the positions of impurities in the

depletion layers begin to make the devices of smaller dimension unworkable.
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INTEGRATED
SYSTEM

FABRICATION

The series of steps by which a geometric pattern or set of geometric patterns is

transformed into an operating integrated system is called a wafer fahrication pro-

cess, or simply a process. An integrated system in MOS technology consists of a

number of superimposed layers of conducting, insulating, and transistor-forming

materials. By arranging predetermined geometric shapes in each of these layers, a

system of the required function may be constructed. The task of designers of

integrated systems is to devise the geometric shapes and their locations in each of

the various layers of the system. The task of the process itself is to create the

layers and transfer into each of them the geometric shapes determined by the

system design.

Modern wafer fabrication is probably the most exacting production process

ever developed. Since the 1950s, enormous human resources have been expended

by the industry to perfect the myriad of details involved. The impurities in mate-

rials and chemical reagents are measured in parts per billion. Dimensions are con-

trolled to a few parts per million. Each step has been carefully devised to produce

some circuit feature with the minimum possible deviation from the ideal behavior.

The results have been little short of spectacular: chips with many tens of

thousands of transistors are being produced for under ten dollars each. In addi-

tion, wafer fabrication has reached a level of maturity where the system designer

need not be concerned with the fine details of its execution. The following sec-

tions present a broad overview sufficient to convey the ideas involved and in

particular those relevant for system design. Our formulation of the basic concepts

anticipates the evolution of the technology toward ever finer dimensions.

In this chapter we describe the patterning sequence and how it is applied in a

simple, specific integrated system process: /?MOS. A number of other topics are

covered that are related to the processing technology or are closely tied to the

properties of the underlying materials.
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2.1 PATTERNING

The overall fabrication process consists of the patterning of a parXicu\ar sequence
of successive layers . The patterning steps by which geometrical shapes are trans-

ferred into a layer of the final system are very similar for each of the layers. The
overall process is more easily visualized if we first describe the details of pattern-

ing one layer. We can then describe the particular sequence of layers used in the

process to build up an integrated system, without repeating the details of pattern-

ing for each of the layers.

A common step in many processes is the creation of a silicon dioxide insulat-

ing layer on the surface of a silicon wafer and the selective removal of sections of

the insulating layer exposing the underlying silicon. We will use this step for our

patterning example. The step begins with a bare polished silicon wafer, shown in

cross section in Fig. 2.1. The wafer is exposed to oxygen in a high-temperature

furnace to grow a uniform layer of silicon dioxide on its surface (Fig. 2.2). After

the wafer is cooled, it is coated with a thin film of organic "resist"' material (Fig.

2.3). The resist is thoroughly dried and baked to ensure its integrity. The wafer is

now ready to begin the patterning.

At the time of wafer fabrication the pattern to be transferred to the wafer

surface exists as a mask. A mask is merely a transparent support material coated

with a thin layer of opaque material. Certain portions of the opaque material are

removed, leaving opaque material on the mask in the precise pattern required on

the silicon surface. Such a mask, with the desired pattern engraved upon it, is

brought face down into close proximity with the wafer surface, as shown in Fig.

2.4. The dark areas of opaque material on the surface of the mask are located

where it is desired to leave silicon dioxide on the surface of the silicon. Openings

in the mask correspond to areas where it is desired to remove silicon dioxide from

the silicon surface. When the mask has been brought firmly into proximity with

the wafer itself, its back surface is flooded with an intense source of ionizing

radiation, such as ultraviolet light or low-energy x-rays. The radiation is stopped

in areas where the mask has opaque material on its surface. Where there is no

opaque material on the mask surface, the ionizing radiation passes through into

the resist, the silicon dioxide, and silicon. While the ionizing radiation has little

effect on the silicon dioxide and silicon, it breaks down the molecular structure of

the resist into considerably smaller molecules.

We have chosen to illustrate this text using positive resist-in which case the

resist material remaining after exposure and development corresponds to the

opaque mask areas. Negative resists are also in common use. Positive resists are

typically workable to finer feature sizes and are likely to become dominant as the

technology progresses.

After exposure to the ionizing radiation, the wafer has the characteristics

shown in Fig. 2.5. In areas exposed to the radiation, the resist molecules have

been broken down to much lighter molecular weight than that of unexposed resist



40 Integrated System Fabrication
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molecules. The solubility of organic molecules in various organic solvents is a

very steep function of the molecular weight of the molecules. It is possible to

dissolve exposed resist material in solvents that will not dissolve the unexposed

resist material. The resist can be "developed" (Fig. 2.6) by merely immersing the

silicon wafer in a suitable solvent.

Thus far, the pattern originally existing as a set of opaque geometries on the

mask surface has been transferred as a corresponding pattern into the resist mate-

rial on the surface of the silicon dioxide. The same pattern can now be transferred
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to the silicon dioxide itself by exposing the wafer to a material that will etch silicon

dioxide but will not attack either the organic resist material or the silicon wafer

surface. The etching step is usually done with hydrofluoric acid, which easily

dissolves silicon dioxide. However, organic materials are very resistant to hydro-

fluoric acid, and it is incapable of etching the surface of silicon. The result of the

etching step is shown in Fig. 2.7.

The final step in patterning is removal of the remaining organic resist material.

There are three techniques to remove resist materials: (1) using strong organic

solvents that dissolve even unexposed resist material; (2) using strong acids, such

as chromic acid, that actively attack organics; (3) exposing the wafer to atomic

oxygen, which will oxidize away any organic materials present on its surface.

Once the resist material is removed, the finished pattern on the wafer surface is as

shown in Fig. 2.8. Notice that we have transferred the geometric pattern that

originally existed on the surface of the mask directly into the silicon dioxide on the
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wafer surface. While a foreign material was present on the wafer surface during

the patterning process, it has now disappeared and the only materials present are

those that will be pail of the finished wafer.

A similar sequence of steps is used to selectively pattern each of the layers of

the integrated system. The steps differ primarily in the types of etchants used.

Thus as we study the processing of the various layers, the reader need not

visualize all the details of the patterning sequence for each layer but only recog-

nize that a mask pattern for a layer can be transferred into a pattern in the material

of that layer.

2.2 SCALING OF PATTERNING TECHNOLOGY

As discussed in Chapter 1, semiconductor devices could be at least an order of

magnitude smaller in linear dimension than those typically manufactured in 1978

and still function correctly. The fundamental dimensional limitation is approxi-

mately a one-quarter micron channel length, corresponding to a length unit \ (to

be discussed under design rules) of approximately 0.1 micron. This limitation ap-

pears to apply to both bipolar and MOS technologies. It has been possible for

several years to create submicron lines using electron beam and x-ray techniques,

and there is considerable research and development under way to bring these

patterning technologies into general manufacturing use. It appears that there are

no fundamental barriers preventing creation of patterns for ultimately small de-

vices. (A detailed discussion of the techniques involved is given in Chapter 4.)

2.3 THE SILICON GATE w-CHANNEL MOS PROCESS

We now describe the particular sequence of patterned layers used to build up

/;MOS integrated circuits and systems. In color Plate 1, parts (a) through (f) illus-

trate a simple but complete sequence of patterning and processing steps that are

sufficient to fabricate a complete integrated system. The example follows the fab-

rication of one simple circuit within a system, but all other circuits are simultane-

ously implemented by the same process. The example used is the basic inverter

circuit. The top illustration in parts (a) through (f) shows the top view of the layers

of the circuit layout. The lower illustration in each of those figures shows the cross

section through the cut indicated by the downward arrows. (The vertical scale in

these cross sections has been greatly exaggerated for illustrative purposes.)

The opening in the opaque material of the first mask is shown by the green

outline in the top portion of Plate 1(a). This opening exposes all areas that will

eventually be the diffusion level. It includes the sources and drains of all tran-

sistors in the circuit, together with the transistor gate areas, and any diffusion

level circuit interconnection paths. This mask is used for the first step in the pro-

cess, the patterning of silicon dioxide on silicon as described in the previous sec-

tion. The resulting cross section is shown in the lower portion of Plate 1(a).

The second step in the process is to differentiate transistors that are normally

on (depletion mode) from those that are normally off (enhancement mode). This is
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done by overcoating the wafer with resist material, exposing the resist material

through openings in a second mask, and developing it in the manner shown in

Plate 1(b). The patterning step leaves an opening in the resist material over the

area to be selectively turned into depletion mode transistors. The actual conver-

sion of the underlying silicon is then done by implanting ions of arsenic or anti-

mony into the silicon surface. The resist material, where present, acts to prevent

the ions from reaching the silicon surface. Therefore, ions are only implanted in

the silicon area free of resist. The implanted layer, which causes a slight n-type

conductivity in the underlying silicon, is shown by the yellow box in Plate Kb).

Once the depletion areas are defined, the resist material is removed from the sur-

face of the wafer.

The wafer is then heated while exposed to oxygen, to grow a very thin layer of

silicon dioxide over its entire surface. It is then entirely coated with a thin layer of

polycrystalline silicon, usually called polysilicon {or poly for short). Note that the

polysilicon layer is insulated everywhere from the underlying materials by the

layer of thin oxide and additionally by thicker oxide in some areas. The polysilicon

will form the gates of all the transistors in the circuit and will also serve as a

second layer for circuit interconnections. A third mask is used to pattern the

polysilicon by steps similar to those previously described, with the result shown in

red in Plate 1(c). The leftmost polysilicon area will function as the gate of the

pull-down transistor of the inverter we are constructing, while the square to the

right will function as the gate of the depletion mode pull-up transistor.

Once the polysilicon areas have been defined, n-type regions can be diffused

into thep-type silicon substrate, forming the sources and drains of the transistors

and the first level of interconnections. This step is done by first removing the thin

gate oxide in all areas not covered by the (red) polysilicon. The wafer is then

exposed to A?-type impurities such as arsenic, antimony, or phosphorus at high

temperature for a sufficient period of time to allow these impurities to convert the

exposed underlying silicon to/?-type material. The areas of resulting «-type mate-

rial are shown in green. Notice in the cross section of Plate 1(d) that the red

polysilicon area and the thin oxide under it act to prevent impurities from diffusing

into the underlying silicon. Therefore the impurities reach the silicon substrate

only in areas not covered by the polysilicon and not overlain by the thick original

oxide. In this way the active transistor area is formed in all places where the

patterned polysilicon overlies the thin oxide area defined in the previous step. The
diffusion level sources and drains of the transistors are automatically filled in be-

tween the polysilicon areas and extend up to the edges of the thick oxide areas.

The major advantage of the silicon-gate process is that it does not require a critical

alignment between a mask that defines the green source and drain areas and a

separate mask that defines the gate areas. Rather, the transistors are formed by

the intersection of the two masks, and the conducting /? -type diffused regions are

formed in all areas where the green mask is not covered by the red mask.

All the transistors of the basic inverter circuit are now defined. Connections

must now be made to the input gate, between the gate and source of the pull-up,

and to VDD and GND. These interconnections will be made with a metal layer
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that can make contact with both the diffused areas and the polycrystalline areas.

However, in order to ensure that the metal does not make contact with underlying

areas except where intended, another layer of insulating oxide is coated over the

entire circuit. At the places where the overlying metal is to make contact with

either the polysilicon or the diffused areas, the overlying oxide is selectively re-

moved by the patterning process as previously described. The result of coating the

wafer with the overlying oxide and then removing the oxide in places where con-

tacts are desired is shown in Plate 1(e). In the top view, the black areas are those

defined by openings in the contact mask, the fourth in the process's sequence of

mask patterns. In the cross section, notice that in the contact areas all oxide has

been removed down to either the polycrystalline silicon or the diffused area.

Once the overlying oxide has been patterned in this way, the entire wafer is

coated with metal, usually aluminum, and the metal is patterned with a fifth mask
to form the conducting areas required by the circuit. The top view in Plate 1(f)

shows three metal lines running vertically, the leftmost connecting to the input

gate of the inverter, the center one being ground, and the rightmost forming the

VDD connection to the inverter. The peculiar structure formed by the metal

square slightly to the right of center connects the polysilicon gate of the depletion

mode pull-up transistor to its source and to the drain of the pull-down transistor.

Rather than making two separate contacts from the metal line to the pull-up's

polysilicon gate region and to the adjacent diffusion region, area can be conserved

by coalescing the contacts into the compact arrangement shown. This geometrical

arrangement is known as a butting contact and will be used extensively through-

out the text.

In general, it is good practice to avoid placing contacts over active transistor

area whenever possible. However, butting contacts in the location shown here

(Plate 1(f)) reduce the area and simplify the geometry of the basic inverter and of

many other circuits. (The authors have used this form of contact successfully in

many systems implemented by a number of different commercial wafer fabrication

lines.) A more conservative approach would be to place the butting contact adja-

cent to, rather than over, the active pull-up area. (See also Section 2.6.)

The inherent properties of the silicon-gate process allow the blue metal layer

to cross over either the red polysilicon layer or the green diffused areas, without

making contact unless one is specifically provided. The red polysilicon areas,

however, cannot cross the green diffused areas without forming a transistor. The

transistors formed by the intersection of these two masks can be either enhance-

ment mode, if no yellow implantation is provided, or depletion mode, if such an

implantation is provided. Hence, the enhancement mode transistors are defined

by the intersection of the green and red masks; the depletion mode transistors are

defined by the intersection of the green, red, and yellow masks.

If we wish to fabricate only a small number of prototype system chips and to

have access to the metal level for the probing of test points, the wafer-fabrication

sequence can be terminated at this step. However, when fabricating large numbers



2.4 Yield Statistics 45

of chips of a debugged design, the wafer surface is usually coated with another

layer of oxide. This step, called overglassing , provides physical protection for the

devices in the system. A sixth mask is then used to pattern contact cuts in the

overglassing at the locations of relatively large metal wire-bonding pads.

Each wafer contains many individual chips. The chips are separated by first

scribing the wafer surface with a diamond scribe and then fracturing the wafer

along the scribe lines. Each individual chip is then cemented in place in a package,

and fine metal wire leads are bonded to the metal contact pads on the chip and to

pads in the package that connect with its external pins. A cover is then cemented

over the recess in the package that contains the silicon chip, and the completed

system is ready for testing and use.

2.4 YIELD STATISTICS

Of the large number of individual integrated system chips fabricated on a single

silicon wafer, only a fraction will be completely functional. Flaws in the masks,

dust particles on the wafer surface, defects in the underlying silicon, etc., all cause

certain devices to be less than perfect. With present design techniques, any single

flaw of sufficient size will kill an entire chip.

The simplest model for the yield, or the fraction of the chips fabricated that do

not contain fatal flaws, assumes (naively) that the flaws are randomly distributed

over the wafer and that one or more flaws anywhere on a chip will cause it to be

nonoperative. If there are N fatal flaws per unit area, and the area of an individual

chip is A , the probability that a chip has n flaws is in the simplest case given by the

Poisson distribution, Pn{NA). The probability of a good chip is

PoiNA) = e-''\ (2-1)

While this equation does not accurately represent the detailed behavior of real

fabrication processes, it is a good approximate model for estimating the yield of

alternative designs. The exponential is such a steep function that a very simple

rule is possible: chips with areas many times l/N will simply never be found with-

out flaws. Areas must be kept less than a few times \/N if one flaw will kill a

system. Design forms may be developed in the future that will permit systems to

work even in the presence of flaws. If such forms are developed, the entire notion

of yield will be completely changed and much larger chips will be possible.

Once a wafer has been fabricated, each chip must be tested to determine if it is

functional. Functional testing of simple combinatorial logic networks is

straightforward and may be done completely. Complete functional testing of com-
plex systems with internal sequencing is not possible in general, and most inte-

grated system chips manufactured, even at 1978 levels of complexity, are not eco-

nomically testable for even a small fraction of their possible internal states.

As time passes and the number of devices per chip increases, it will become
important to consider including special functions in the design of integrated sys-

tems to improve their testability. The basic problem is to linearize an otherwise
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combinatorial problem. One approach to this is as follows:

1

.

Define the entire system as a set of register-to-register transfer blocks, that is,

successive stages of storage registers with combinational logic between them.

2. Provide for reading and writing from the external world to/from each of the

storage registers.

The storage locations are first tested independently for their ability to store data or

control information. If all storage locations pass this test, each combinational logic

block can be tested separately, by use of its input and output storage locations.

Such a test becomes essentially linear in the number of components and may be

accomplished in an acceptable time period, even for extremely complex systems.

However, without access to the individual storage locations, testing rapidly be-

comes hopeless. For this reason even present day microprocessors are very in-

completely tested. When one is used for a while, an apparently new and sudden

malfunction may simply be the first occurrence of a particular state of control and

data in the system and thus may represent the first time the device has been

"tested" under those conditions.

From experience gained in testing memory parts, it is known that the behavior

of one circuit can be influenced by the state of a nearby circuit. For example, a

memory cell may be able to remember both a logic- 1 and a logic-0 if its neighbor is

at a logic-0, but may be able to retain only a logic-0 if its neighbor is at a logic-1.

Failures of this type are dependent upon the data patterns present in the system

and are known a.s pattern-sensitive failures. In a reasonable (or even an unreason-

able) time, it is not possible to exercise even a minute fraction of all the combina-

tions of bit patterns of many integrated systems. What we do instead is apply our

knowledge of the physics of such failures and construct a model for possible fail-

ure modes. In the memory example, we may conclude that any flaw not visible

optically will be unable to reach beyond the immediate locality of the cell in-

volved. Hence, pattern sensitivity in the behavior of a particular cell may be in-

troduced by other cells in the same row or column of an array of memory cells, or

by diagonal nearest neighbors. A test for pattern sensitivity under this model is

quite fast, being only slightly worse than a linear function of the number of devices

on the chip.

In order to test for pattern-sensitive failures, we must construct a physical

model for the possible failure mechanisms. The model will inevitably include the

physical proximity of other signals. For this reason, any practical test for pattern-

sensitive failures must be based on a knowledge of the physical location of the

various elements of the subsystem being tested. The task of preparing such tests is

thus greatly eased by regularity in the design and physical layout of a system.

2.5 SCALING OF THE PROCESSING TECHNOLOGY

In order to have a complete process for forming submicron transistors, it is neces-

sary not only to make patterns in the resist material but to transfer these patterns
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to the underlying layers in the silicon and silicon dioxide. Traditionally, wet-

etching processes have been used. However, wet-etching processes do not scale

well into the submicron range.

Alternatives are now being developed which should prove workable. Etching

with plasmas (i.e., glow discharges of gaseous materials resulting in free ions of

great chemical activity) is already used in a number of advanced processing

facilities. Very well controlled etching can be achieved in this way. It seems likely

that no wet processing will be used in the construction of submicron devices. Ion

implantation, an ideal method for achieving controlled doses of impurity ions in

the silicon surface, is already a common production technique in essentially all

MOS processing facilities.

Metal layers for submicron processes must be thicker in relationship to their

width than that produced using today's commercial processing technology. A pos-

sible solution to this problem may be the use of a process known as ion milling for

metal patterning. In this process, ions of modest energy sputter away any metal

not covered with resist material, yielding much steeper sides on the patterned

metal than could be produced using wet-etching processes.

It appears that the basic technological pieces exist to enable development of a

complete patterning and wafer fabrication process at submicron dimensions. In

reality, the ultimate submicron process will not emerge full-blown, but dimensions

will gradually be reduced, as one after another of the myriad of technological

difficulties are surmounted. The sketch we have given, and will cover in more
detail in Chapter 4, is rather an artist's conception of the possibility of such an

ultimate process. We do believe, however, that the evolution of this process is of

fundamental importance to the entire electronics industry.

2.6 DESIGN RULES

Perhaps the most powerful attribute of modem wafer fabrication processes is that

they are pattern independent. That is, there is a clean separation between the

processing done during wafer fabrication and the design effort that creates the

patterns to be implemented. This separation requires a precise definition to the

designer of the capabilities of the processing line. The specification usually takes

the form of a set of permissible geometries that may be used by the designer with

the knowledge that they are within the resolution of the process itself and that they

do not violate the device physics required for proper operation of transistors and

interconnections formed by the process. When reduced to their simplest form,

such geometrical constraints are called design rides. The constraints are of the

form of minimum allowable values for certain widths, separations, extensions,

and overlaps of geometrical objects patterned in the various levels of a system.

As processes have improved over the years, the absolute values of the per-

missible sizes and spacings of various layers have become progressively smaller.

There is no evidence that this trend is abating. In fact, there is every reason to
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believe that at least another order of magnitude of shrinkage in linear dimensions

is possible. For this reason we present a set of design rules in dimensionless form,

as constraints on the allowable ratios of certain distances to a basic length unit.

The basic unit of length measurement used is equal to the fundamental resolution

of the process itself. This is the distance by which a geometrical feature on any

one layer may stray from another geometrical feature on the same layer or on

another layer, all processing factors considered and an appropriate safety factor

added. It is set by phenomena such as over-etching, misalignment between mask
levels, distortion of the silicon wafer ('"runout") due to high temperature process-

ing, and overexposure or underexposure of resist. All dimensions are given in

terms of this elementary distance unit, which we call Ihe Icni^rh unit, X. In 1978 the

length-unit X is approximately 3 microns for typical commercial processes. One
micron (/xm)= lO"*^ meters.

The rules given below have been abstracted from a number of processes over

a range of values of X. corresponding to different points in time at different fabrica-

tion areas. They represent somewhat of a "least common denominator " likely to

be representative of /jMOS design rules for a reasonable period of time, as the

value of X decreases in the future.

A typical minimum for the line width of the diffused regions, W^, is 2X, as

shown in Plate 2(a). The spacing required between two electrically separate dif-

fused regions is a parameter that depends not merely upon the geometric resolu-

tion of the process but also upon the physics of the devices formed. If two diffused

regions pass too closely, the depletion layers associated with the ju- :tions formed

by these regions may overlap and result in a current flowing between the two

regions when none was intended. In typical processes a safe rule of thumb is to

allow 3X of separation, 5,i(i, between any two diffused regions that are uncon-

nected, as shown in Plate 2(b). The width of a depletion layer associated with any

diffused region depends upon the voltage on the region. If one of the regions is at

ground potential, its depletion layer will of necessity be quite thin. In addition,

some processes provide a heavier doping level at the surface of the wafer between

the diffused areas in order to alleviate the problem of overlap of depletion layers.

In cases where either very low voltage exists on both diffused regions or a heavily

doped region has been implanted in the surface between the diffused areas, it is

often possible to space diffused areas 2 X apart. However, this should not be done

without carefully checking the actual process by which the design is to be fabri-

cated.

The minimum for the width of polysilicon lines, Wp, is similarly 2X. No deple-

tion layers are associated with polysilicon lines, and therefore the separation of

two such lines, 5pp, may be as little as 2X. These rules are illustrated in Plate 2,

parts (c) and (d).

We have so far considered the diffused and polysilicon layers separately.

Another type of design rule concerns how the two layers interact with each other.

Plate 2(e) shows a situation where a diffused line is running parallel to an indepen-
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dent polysilicon line, to which it is not anywhere connected. The only requirement

here is that the two unconnected lines not overlap. If they did they would form an

unwanted capacitor. Avoidance of this overlap requires a separation 5 pj of only \

between the two regions, as shown in Plate 2(e). A slightly more complex situation

is shown in Plate 2(f), where a polysilicon gate area intentionally crosses a dif-

fused area, thereby forming a transistor. In order to make absolutely sure that the

diffused region does not reach around the end of the gate and short-circuit the

drain-to-source path of the transistor with a thin diffused area, it is necessary for

the polysilicon gate to extend a distance Ep^ of at least 2X beyond the nominal

boundary of the diffused area, as shown in Plate 2(f).

A composite of several of these design rules is shown in Plate 2(g). Note that

the minimum width for a diffused region applies to diffused regions formed be-

tween a normal boundary of the diffused region and an edge of a transistor, as well

as to a diffused line formed by two normal boundaries. This situation is illustrated

in the lower left corner of Plate 2(g).

As we have seen in Plate 1(d), ion implantation in the region that becomes the

gate of a transistor will convert the resulting transistor into the depletion mode
type. It is important that the implanted region extend outward beyond all four

boundaries of the gate region, as shown in Plate 2(h). To avoid any possibility that

some small fraction of the transistor might remain in enhancement mode, the yel-

low ion implantation region should extend a distance £^igOf at least Wik beyond

each edge of the gate region. The separation 5 jg between an ion implantation re-

gion and an adjacent enhancement mode transistor gate region should also be at

least V/iX. Both situations and their design rules are illustrated in Plate 2(h).

A contact may be formed between the metal layer and either the diffused level

or the polysilicon level by means of the contact mask. A set of rules apply to the

amount by which each layer must provide an area surrounding any contact to it, so

that the contact opening will not find its way around the layer to something unin-

tended below it. Since no physical factors apply here other than the relative regis-

tration of two levels, a very simple set of design rules results. Each level involved

in a given contact must extend beyond the outer boundary of the contact cut by k

at all points, as illustrated by extension distances Eac, Ep^, and E^c, in Plate 3,

parts (a), (b), and (f ). The contacts themselves, like the minimum width lines in the

other levels, must be at least 2X long and 2A. wide {W(.). This situation is illustrated

for the diffusion and polysilicon levels in Plates 3(a) and (b). When making contact

between a large metal region and a large diffused region, many small contacts

spaced 2A. apart should be used, as shown in Plate 3(c). Contact cuts to diffusion

should be at least 2\ from the nearest gate region, as shown in Plate 3(c).

Note that a cut down to the polysilicon level does not penetrate the polysili-

con. Thus one can in principle make a contact cut to poly over a gate region, and

such contacts are permitted in these design rules. However, since such a cut must

be 2\ wide and surrounded on all sides by IX of poly, it is not possible to make
such a contact above a minimum-sized transistor's gate region. Also, as device
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dimensions scale down and the poly and thin oxide become ever thinner, such cuts

might penetrate too far. and thus they may not be allowed in the design rules in the

future.

When a direct connection is required between a polysilicon region and a dif-

fused region, we normally use a construct known as the butting contact. The de-

tailed geometric layout of the butting contact is shown in Plate 3(d). In its

minimum-sized configuration, it is composed of a square region of diffusion 4X on

a side, overlapped by a 3\ by 4X rectangle of polysilicon. A rectangular contact

cut. 2\ by 4\ in size, is made in the center of this structure. The structure is then

overlaid with metal, thus connecting the polysilicon to the diffusion. The rules

involved in Plate 3(d) are identical to those given so far. with the addition of a

minimum of one \overlap, Op^, of the diffused and polysilicon layers in the center

area of the contact.

In considering the design rules for the metal layer, notice that this layer in

general runs over much more rugged terrain than any other level, as can be seen

by referring to the cross section of Plate 1(f). For this reason it is generally ac-

cepted practice to allow somewhat wider minimum lines and spaces for the metal

layer than for the other layers. As a good working rule 3\ widths (Wj^) and 3X

separations (5nini) between independent metal lines should be provided, as shown
in Plate 3(e).

The metal layer must surround the contact layer in much the same way that

the diffused and polysilicon layers did. Since the resist material used for pattern-

ing the metal generally accumulates in the low areas of the wafer, it tends to be

thicker in the neighborhood of a contact than elsewhere. For this reason, metal

tends to be slightly larger after patterning in the vicinity of a contact than

elsewhere. It is generally sufficient to allow only one \ of space around the con-

tact region for the metal, as for the other two layers. The rule for metal surround-

ing contacts is shown in Plate 3(f). (Additional layout artifacts, such as alignment

marks, that are associated with conveying a chip's layout through the processes of

maskmaking and wafer fabrication, are given in Chapter 4. Included there are

guidelines for sizing such macroscopic layout artifacts as scribe lines and wire-

bonding pads. However, the design rules given here are sufficient for the layout of

the functional circuitry within an^^MOS integrated system.)

The above design rules are likely to remain valid as the length-unit X scales

down in size with the passage of time. Occasionally, for specific commercial fabri-

cation processes, some one or more of these rules may be relaxed or replaced by

more complex rules, enabling slight reductions in the area of a system. While

these details may be important for certain competitive products such as memory
systems, they have the disadvantage of making the system design a captive of the

specific design rules of the process. Extensive redesign and checking is required

to scale down such a design as the length-unit scales down. For this reason, we
recommend use of the dimensionless rules given, especially for prototype sys-
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terns. Designs implemented according to these rules are easily scaled and may
have reasonable longevity.

2.7 ELECTRICAL PARAMETERS

By satisfying the constraints imposed by the design rules, designers may create

circuit layout patterns with the knowledge that the appropriate transistors, lines,

etc., produced by the wafer-fabiication process will be as originally specified in

their layout patterns. To complete a design it is necessary to also know the electri-

cal parameters of the transistors, diffused layers, polysilicon layers, etc., so that

the performance of circuits can be evaluated. The resistances per square of the

various layers and the capacitance per square micron with respect to underlying

substrate are shown in Table 2.1. Note that the resistance of a square of material

contacted along two opposite sides is independent of the size of the square and

equals the resistivity of the material divided by its thickness. The tabulated values

are typical of processes running in 1978. As the circuit dimensions are scaleddown

by dividing by a factor a, the parameters scale approximately as described in

the table.

The relative resistance values of metal, diffusion, poly, and drain-to-source

paths of transistors are quite different. Diffused layers and good polysilicon layers

have more than one hundred times the resistance per square area of the metal

layer. A fully turned-on transistor has approximately one thousand times the resis-

tance of the diffused and polysilicon layers. The capacitances are not as wildly

different as the resistances of the various layers. Compare the capacitances in

Table 2.1 to the gate-to-channel capacitance, as a reference. The diffused areas

typically have one fourth the capacitance per square micron. Polysilicon on thick

oxide has approximately one tenth, and the metal layer slightly less than one

tenth, of the gate-channel capacitance per square micron.

The relative values of the resistances and capacitances are not expected to

vary dramatically as the processes evolve toward smaller dimensions, with the

exception of the transistor resistance per square, which is independent of a.

Table 2.1 Typicail MOS electrical param(;ters(1978).

Resistances

Metal = 0.03 ohms/n (Resistances/square scale up by a.

Diffusion = lOohms/D as dimensions scale down by a,

Poly - 15-100 ohms/D except that the transistor /?/
Transistor = 10* ohms/n is independent of a.)

Capacitances

Gate-channel = 4 X 10 *pf/yLim- (Capacitances/micron^ scale

Diffusion = 1 X IQ-'pf/fim- up by a, as dimensions

Poly == 0.4 X 10 * pf/fjcm- scale down by a.)

Metal - 0.3 X 10 ' pfZ/Ltm^



52 Integrated System Fabrication

One note of warning: There is a wide range of possible values of polysilicon

resistance for different commercial processes. Polycrystalline silicon suffers from

inordinately high resistances at the crystal grain boundaries if the doping level in

the polysilicon itself is not held quite high. This disease does not affect the dif-

fused layers. For this reason, any processing that tends to degrade the doping

levels in the diffused and polysilicon layers affects the polysilicon resistance much
more dramatically than it affects the resistance of the diffused area. In general it is

ditTicult to design circuits that are optimum over the entire range of polysilicon

resistivity. If a circuit is to be run on a variety of fabrication lines, it is desirable for

the circuit to be designed in such a way that no appreciable current is drawn

through a long, thin line of polysilicon. In an important example in Chapter 5,

polysilicon lines are used as buses along which information flows. The timing of

these buses can be dramatically affected by the resistance of the polysilicon.

However, the protocol used on the buses has the polysilicon lines precharged

during one period of a clock and then pulled low by the appropriate bus source

during a following clock period. In this way the circuit is guaranteed to work

independently of the resistance of the poly. However, it may be considerably

slower in processes of high poly resistivity.

2.8 CURRENT LIMITATIONS IN CONDUCTORS

One limit that is not covered in Sections 2.6 and 2.7 is that associated with the

maximum currents through metal conductors. There is a physical process called

metol migration whereby a current flux through a metal conductor, exceeding a

certain limit, causes the metal atoms to move slowly in the direction of the cur-

rent. If there is a small constriction in the metal, the current density will be higher

and therefore more metal atoms will be carried forward from that point, narrowing

the point still more. Hence, metal migration is a destructive mechanism causing

open circuits in the metal layer carrying heavy currents.

For metals like aluminum, this limit is a few times 10^ amperes per square

centimeter, that is. a few milliamperes per square micron of cross section. The

limit does not interfere too drastically with the design of integrated systems in

current MOS technologies. However, many metal conductors in present inte-

grated systems are operated near their current limit, and currents do not scale well

as the individual elements are made smaller. Applying the scaling rules developed

earlier, we found that the power per unit area is independent of the scale-down

ratio. However, the supply voltage decreases and therefore the current per unit

area increases as the devices are scaled down. For this reason it will not be possi-

ble to use processes for very large-scale integrated systems where the metal thick-

ness scales in the same way as do other dimensions in the circuit. Much work will

likely be done to develop processes enabling fabrication of metal lines of greater

aspect ratio than is now possible. (Metal lines in 1978 are -1 ,am thick.)

Short pulses of current are known to contribute much less to metal migration

than steady direct current. Nanosecond pulses of currents two orders of mag-
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nitude higher than the d.c. limit given above may be carried in metal conductors

without apparent damage. Therefore, switching current may not be as damaging to

metal conductors as a steady current.

These effects strongly favor processes like CMOS that do not require static

d.c. current and favor design methodologies that maximize system function per

unit d.c. current.

2.9 A CLOSER LOOK AT SOME DETAILS

Thus far our discussion of fabrication has been a general one, adequate for readers

whose primary interest is in the systems aspects of VLSI. The following sections

involve a more detailed examination of the capacitance of several important struc-

tures and a discussion of the relative merits and scaling behavior of several com-

mon processes. We suggest that the reader just skim through these sections during

the first reading of this text.

In Table 2.1 we gave typical capacitances for the various layers to the sub-

strate. These capacitances are those that would be measured if the voltage on the

particular layer were zero (relative to the substrate). The dependence upon vol-

tage of the capacitances of the different layers may sometimes be important and

we will now discuss how this dependence arises. For those wishing more back-

ground information on the concepts of device physics used in this text see Grove

(1967), Cobbold (1970), Muller and Kamins (1977), and Richman (1973).

When a negative voltage is applied to an a? -type diffused region relative to the

p-type bulk silicon, the negative electrons are pushed out of the n-type layer into

the bulk and a current flows (Fig. 2.9(a)). In integrated systems we are careful to

never allow the voltage on the n-iype diffused regions to be more negative than the

p-type bulk. Diffused regions are biased positively with respect to the p-type bulk,

resulting in a reversed biased p/n junction. With the exception of a small leakage

current, the reverse biased p/n junction acts merely to isolate one diffused region

from another. The p-type bulk of our integrated system has a small number (typi-

cally 10'^ to 10'^ per cubic centimeter) of impurity atoms. When a voltage is

applied to an n-type diffused region, its influence is felt well out into the p-type

bulk. Positive charge carriers in the p-type bulk are repelled from the positively

charged Aj-type layer, thereby exposing negatively charged impurity ions. The re-

gion surrounding the a? -type diffused layer that has been depleted of positive

charge carriers is referred to as a depletion layer and is shown schematically in

Fig. 2.9(b). As the voltage on the n-iype layer is increased, charge carriers are

pushed farther back from the junction between the n-type layer into the p-type

bulk, widening the depletion layer and exposing more charged impurity ions. The
charge thus induced in the depletion layer as the voltage on the n-type diffused

'

y n ~y ~\
^[^^ Ti v7 ^ ^'8- ^'^ (^) "-type diffusion in

/; ''v^ _ pepleUonJay_er_ ''^.^ P-type bulk silicon, (b) Depletion

(a) (b)
layer.
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region is increased is responsible for the capacitance of the n-type diffused region

relative to the substrate.

We will now consider a unit area of the junction. The total charge in the deple-

tion layer per unit area is proportional to the number per unit volume of impurity

ions in the bulk (/V), and the width, .Vo, of the depletion layer:

Total charge

Area

The electric field in the region is proportional to the charge per unit area:

charge
Electric field ^ ^ Ns^^.

area

The voltage between the //-type diffused layer and the /?-type bulk on the far side

of the depletion layer is proportional to the electric field times thickness of the

depletion layer and therefore to the density of negatively charged ions in the de-

pletion layer times the square of the width of the depletion layer:

Voltage 3c electric field x so ^ Nsl

.

The capacitance per unit area is just the charge per unit area divided by the voltage

across the depletion layer. From the above equations, we find that the capacitance

is proportional to the square root of the density of impurity atoms in the p-type

bulk divided by the voltage:

Capacitance Q 1 ( N 1/2

Area V ^o \ V'

This relationship is plotted in Fig. 2.10. Notice that the capacitance tends toward

infinity as the voltage across the junction tends to zero. It would seem that this

large capacitance would be disastrous for the performance of our integrated sys-

tems. However, this proves not to be the case. When the p/n junction was formed,

the //-type region had an excess of negative charge carriers while the/7-type bulk

had an excess of positive charge carriers. When the two were brought together to

form the junction, there was no voltage to prevent charge carriers of either type

from flowing over into the opposite region. The initial flow caused the n-type layer

to become more positive than thep-type layer. The flow ceased when just enough

voltage built up to stop it. In silicon the voltage required to prevent the flow of

charge carriers in such a situation is approximately 0.7 volts. Thus the true voltage

across the junction is the initial "built-in" voltage plus the voltage we apply in our

circuit. The variation of the capacitance per unit area with applied voltage is

shown in Fig. 2.11. An approximate equation that can be used to calculate the

junction capacitance, Cj, per unit area of diffused layers as a function of the
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CIA -* C/A a

t:
->v

Built-in" voltage

Fig. 2.10 CM as a function of V.

\.

-> I applied

Fig. 2.11 C/A as a function of Vapp„,

applied voltage is given by

Cj - 3 X 10->2
N

V + 0.7
pf/^tm^.

In this equation, N (the density of impurity ions in the p-type bulk) should be given

in number per cm^. The voltage is in volts and the capacitance per unit area is

evaluated in picofarads per square micron. This equation is adequate for most

design purposes.

Aside from the diffused regions, there are two other situations where the

capacitance is of interest. The first is poly or metal over thick oxide and the sec-

ond is the gate of an MOS transistor. We will discuss poly or metal over oxide

first. Figure 2.12 illustrates once more the capacitance per unit area of a junction

over thep-type bulk. If the poly or metal layer was laid on an oxide much thinner

than the depletion layer, its capacitance would be nearly the same as that of the

corresponding p/« junction. However, if an oxide is interposed whose thickness is

of the order of the depletion layer thickness, the capacitance of the poly or metal

line will be decreased. The formula which applies in this case is given by

1 1 1— +—
'-'total ^ j ^ o\

A typical dependence is shown in Fig. 2.12. For an oxide thickness d, Cox - 3.5 x

10"V(/, where d is given in angstrom units (10"^ microns) and the result is in

picofarads per square micron as before.

The most spectacular voltage dependence of a capacitance in the technology

we will be using is that of the gate of an MOS transistor. When the gate voltage,

Vgs, is less than the threshold voltage, V,h, the capacitance of the gate to the bulk is

just that given above for metal or poly over oxide, since the voltage on the gate

merely depletes positive charge carriers back from the channel area. However,
when the voltage on the gate reaches the threshold voltage of the transistor, nega-
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Capacitance

aA ' '

> V » V

Fig. 2.12 Capacitance of poly or

metal over thick oxide.

Fig. 2.13 MOS gate capacitance

as a function of V.

tive charge is brought in under the gate oxide from the source of the transistor, and

the capacitance changes abruptly from the small value associated with depleting

charges in the bulk to the much larger oxide capacitance between the gate and the

channel region. Further increase in voltage on the gate merely increases the

amount of mobile charge under the gate oxide with no change in the width of the

depletion layer underneath the channel. Hence, the character of the gate capaci-

tance changes abruptly as the gate voltage passes through the threshold voltage.

The dependence of the total gate capacitance on gate voltage is shown in Fig.

2.13. The capacitance from channel to bulk is completely separate from the gate-

to-channel capacitance. It is associated with the depletion layer underneath the

channel region, and is almost identical to that of a diffused region of the same area.

When the gate voltage is below threshold, the gate-to-channel capacitance disap-

pears altogether leaving only the small parasitic overlap capacitances between the

gate and the source and drain regions.

2.10 CHOICE OF TECHNOLOGY

Before proceeding to the chapters on system design, let us briefly examine some
alternative technologies. Using the knowledge developed in these first two chap-

ters, we will discuss the reasons for selecting ajMOS as the single technology used

to illustrate integrated systems in this text. Some of the factors that must be con-

sidered in choosing a technology include circuit density, richness of available cir-

cuit functions, performance per unit power, the topological properties of circuit

interconnection paths, suitability for total system implementation, and general

availability of processing facilities.

As the technology advances, more system modules can be placed on the

same-sized chip. An ultimate goal is the fabrication of large scale systems on

single chips of silicon. For this goal to be attained, any signal that is required in the

system other than inputs, outputs, VDD, and GND must be generated in the

technology on the chip. In other words, no subsystem can require a different

technology for the generation of its internal signals. Thus such fully integrated
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systems cannot be implemented solely in a technology such as magnetic bubbles,

since it cannot create the signals required for all operations in the on-chip medium.

We believe that for any silicon technology to implement practical large scale

systems, it must provide two kinds of transistor. The rationale for this observation

is as follows. In order to provide some kind of nonlinear threshold phenomenon
there must be a transistor that is normally off when its control input is at the

lowest voltage used in the system. Bipolar technologies use NPN transistors for

this purpose. The a?MOS technology uses /7 -channel enhancement mode devices.

In addition to this transistor, a separate type of transistor must be supplied to

allow the output of a driver device to reach the highest voltage in the circuit

(VDD). In the bipolar technologies, PNP lateral devices are used to supply this

function; in the ^-channel technology, a depletion mode device is used: and in

complementary MOS technology, ap-channel enhancement mode device is used.

All three choices allow output voltages of drivers to reach VDD and thus meet the

above criterion.

To date three technologies have emerged that are reasonably high in density

and scale to submicron dimensions without an explosion in the power per unit area

required for their operation. These are the a? -channel MOS silicon gate process,

the complementary MOS silicon gate process, and the integrated injection logic

(PL) process.' Although present forms of PL technology lack the additional level

of interconnect available in the silicon gate technologies, there is no inherent rea-

son that such a level could not be provided. It is important to note that increasing

the flexibility of interconnect enriches the types of functions that can be easily

created. PL has the advantage over a? MOS that the power per unit area (and hence

the effective r of its elementary logic functions) can be controlled by an off-chip

voltage. The decision concerning at what point on the speed versus power curve

to operate may thus be postponed until the time of application (or even changed

dynamically) when using P'L.

The A? MOS scaling has been described previously. Any technology in which a

capacitive layer on the surface induces a charge in transit under it to form the

current control "transistor" will scale in the same way. Examples include

Schottky Barrier Gate FET's (MESFET's), Junction FET's, and CMOS. Refer

to Mead ( 1966) and Cobbold (1970) for descriptions of these alternative devices.

There are certain MOS processes (VMOS, DMOS) of an intermediate form in

which the channel length is determined by diffusion profiles. While competitive at

present feature sizes, these are likely to be interim technologies that will present

no particular advantage at submicron feature sizes.

Scaling of the bipolar technology'^ is quite different from that of MOS
technologies. For completeness, we include here a discussion of the scaling of

bipolar devices, which may be of interest to those familiar with those

technologies.

Traditionally, bipolar circuits have been "fast" because their transit time was

determined by the narrow base width of the bipolar devices. In the 1950s,



58 Integrated System Fabrication

technologists learned how to form bipolar transistor base regions as the difference

between two impurity diflfusion profiles. This technique allowed very precise con-

trol of the distance perpendicular to the silicon surface and therefore permitted the

construction of very thin base regions with correspondingly short transit times.

Since current in a bipolar device flows perpendicular to the surface, both the

current and the capacitance of such devices are decreased by the same factor as

the device's surface dimensions are scaled down, resulting in no change in time

performance. The base widths of high performance bipolar devices are already

nearly as thin as device physics allows. For this reason, the delay times of bipolar

circuits is expected to remain approximately constant as their surface dimensions

are scaled down.

The properties of bipolar devices may be analyzed as follows. The collector

current is due to the diffusion of electrons from emitter to collector. For a minority

carrier density yV(.v) varying linearly with distance .v, fromNoat the emitter to zero

at the collector (at j: = d), the current/ per unit area A is

A \dx
I d d

where the diffusion constant D = fxkT/q. The factor of two multiplies the diffusion

constant in Eq. (2-2) because high-performance bipolar devices operate at high

injection level (that is. where the injected minority carrier density is much greater

than the equilibrium majority carrier density). The inherent stored charge in the

base region is

Q Nod

A 2

Therefore, the transit time is

Q

I AfxkTIq

(2-3)

(2-4)

The form of Eq. (2-4) is exactly the same as that for MOS devices (Eq. (1-1), with

the voltage in the bipolar case being equal to 4 kTlq (at room temperature kTlq =

0.025 volts). A direct comparison of the transit times is shown in Table 2.2. At the

smallest dimensions to which devices can be scaled, the base width of bipolar

devices and the channel length of FET devices are limited by the same basic set of

physical constraints and are therefore similar in dimension. The voltage on the

FET devices must be many times AT/^ to achieve the required nonlinearity. Hence

at ultimately limiting small dimensions the two types of device have roughly

equivalent transit times. At these limiting dimensions, choices between competing

technologies will be made primarily on the grounds of the topological properties of

their interconnects, the functional richness of their basic circuits, simplicity of
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Table 2.2 Transit time : T = (distance)7(mobility

MOSFET

X voltage)

MESFET, JFET Bipolar

Distance channel length channel length base width

Voltage =«VDD/2

(many kTlq)

-VDD/2
(many kTlq)

AkTlq

Mobility,

of cm-/v-

in

sec

units

(Si)

-800

(surface mobility)

==1300

(bulk mobility)

-1300

(bulk mobility)

process, and ability to control d.c. current per unit area. As supply voltages are

scaled down to the 1-volt range, MOS devices become similar in most respects to

other FET-type devices, and it is possible that mixed forms (MOS-JFET, MOS-
MESFET, Bipolar-MESFET, etc.) may emerge as the ultimate integrated system

technologies.

We have chosen to illustrate this text with examples drawn from the Aj-channel

silicon gate depletion mode load technology. The reasons for this choice in 1978

are quite clear. In addition to meeting the required technical criteria we have de-

scribed, this technology provides some important practical advantages to the stu-

dent and to the teacher. It is the only high-density technology that has achieved

universal acceptance across company and product boundaries. Readers wishing to

implement integrated system designs may have wafers fabricated by essentially

any wafer-fabrication firm, without fear that slight changes in the process or the

vagaries of relationships with a particular firm will cut off their source of supply. It

is also presently the highest density process available. This certainty of access to

fabrication lines, the widespread knowledge of /jMOS technology among members
of the technical community, its density, and its performance similarity with bipolar

technology in its ultimate scaling, are all important factors supporting its choice

for this text on VLSI systems. However, the principles and techniques developed

in this text can be applied to essentially any technology.
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DATA AND
CONTROL FLOW
IN SYSTEMATIC
STRUCTURES

3.1 INTRODUCTION

The process of designing a large-scale integrated system is sufficiently complex

that only by adopting some type of regular, structured design methodology can

one have hope that the resulting system will function correctly and not require a

large number of redesign iterations. However, the methodology used should allow

the designer to take full advantage of the architectural possibilities offered by the

underlying technology.

In this chapter we present a number of examples of data and control flow in

regularized structures. We discuss the way in which these structures can be as-

sembled first into larger groups to form subsystems and then these subsystems

assembled to form the overall system. The design methodology suggested in this

chapter is but one of many ways in which integrated system design may be struc-

tured. The particular circuit form presented does tend to produce systems of very

simple and regular interconnection topology and thus tends to minimize the areas

required to implement system functions. Arrays of pass-transistor logic in

register-to-register transfer paths are used wherever possible to implement system

functions. This approach tends to minimize power dissipated per unit area and,

with level restoration at appropriate intervals, tends to minimize the time delay

per function. The methodology developed is applied in later chapters to the ar-

chitecture and design of a data processing path and its controller, which together

form a microprogrammed digital computer.

Computer architects, who usually design systems in a rather structured way
using commercially available MSI and LSI circuit modules, are often surprised to

discover how unstructured is the design within those modules. In principle one

can use the basic NAND and NOR logic gates described in Chapter 1 to imple-

ment combinational logic, to build latches from these gates to implement data-

storage registers, and then proceed to design integrated systems using traditional

60



3.1 Introduction 61

logic design methodology as applied to discrete devices. Integrated systems are

often designed this way at the present time. However, it is unlikely that such

unstructured approaches to system design can survive as the technology scales

down towards maximum density VLSI.

There are historical reasons for the extensive use of random logic within inte-

grated systems. The first microprocessors produced by the semiconductor indus-

try were fairly direct mappings of early generation central processor architectures

into LSI. A block diagram of the Intel 4004, the earliest microprocessor to see

widespread commercial application, is illustrated in Fig. 3.1. The actual chip lay-
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Fig. 3.1 Block diagram of the Intel 4004 Microprocessor, an early LSI system.

(Reprinted with permission of Intel Corporation.)
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out of the 4004 shown in Fig. 3.2 indicates the complexity of the LSI implementa-

tion of this simple central processing unit. Such LSI systems, using data paths and

control functions appropriate in earlier component technologies, of necessity con-

tained a great deal of random logic. However, the extensive use of random logic

results in chip designs of very great geometrical and topological complexity, rela-

tive to their logical processing power.

To deal with such complexity, system design groups have often stratified the

design problem into architecture, logic design, circuit design, and finally circuit

layout, with specialists performing each of these levels of the design. Such

stratification often precludes important simplifications in the realization of system

functions.

Switching theory provides formal methods for minimizing the number of gates

required to implement logic functions. Unfortunately, such methods are of little

value in VLSI systems, since the area occupied on the silicon surface by circuitry

is far more a function of the topological properties of the circuit interconnections

than it is of the number of logic gates implemented. The minimum gate implemen-

tation of a function often requires much more surface area for its layout than does

an alternative design using more transistors but having simpler interconnection

topology.

There are known ways of structuring integrated circuit designs implemented

using traditional logic design methods. A notable example is the polycell tech-

nique. In this technique, a group of standard cells corresponding to typical SSI or

MSI functions are gathered into a library of functions. The logic diagram for the

system to be implemented is used to specify which cells in the library are required.

The cells are then placed into a chip layout and interconnections laid out between

them by an automatic interconnection routing system. The polycell technique

provides the logic designer who has limited knowledge of integrated systems with

a means of implementing modest integrated circuit designs directly from logic

equations. However, a heavy penalty is paid in area, power, and delay time. Such

techniques, while valuable expedients, do not take advantage of the true architec-

tural potential of the technology and do not provide insight into directions for

further progress.

Switching theory not only yields the minimum number of gates to implement a

logic function, but it also directly synthesizes the logic circuit design. Unfortu-

nately, at the present time there is no general theory that provides us with a lower

bound on area, power, and delay time for the implementation of logic functions in

integrated systems. (Theoretical lower bounds for certain special structures and

algorithms of interest are given in Chapter 8.)

In the absence of a formal theory, we can at best develop and illustrate alter-

native design methodologies that tend to minimize these physical parameters.

Proposed design methodologies should, in addition, provide means of structuring

system designs so as to constrain complexity as circuit density increases. We hope

that the examples and techniques presented in this text will serve to clarify these

issues and stimulate others to join in the search for more definitive results.'
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3.2 NOTATION

There are a number of different levels of symbolic representation for MOS circuits

and subsystems used in this text. Plates 4(a), (b), (c), and (d) illustrate a NAND
gate at several such levels. At times it may be necessary to show all the details of a

circuit's layout f^comctry in order to make some particular point. For example, a

clever variation in some detail of a circuit's layout geometry may lead to a sig-

nificant compaction of the circuit's area without violating the design rules.

Often, however, a diagram of just the topology of the circuit conveys almost

as much information as a detailed layout. Such stick diagrams may be annotated

with important circuit parameters if needed, such as the length-to-width ratios

shown in Plate 4(b). Many of the important architectural parameters of circuits

and subsystems are a reflection of their interconnection topologies.

Alternative topologies often lead to very different layout areas after compac-

tion. The discovery of a clever starting topology for a design usually provides far

better results than does the application of brute force to the compression of final

layout geometries. For this reason, many of the important structural concepts in

this chapter and throughout the text will be represented for clarity by use of col-

ored stick diagrams. The color coding in the stick diagrams is the same as in layout

geometries: green symbolizes diffusion and transistor channel region; yellow

symbolizes ion implantation for depletion mode transistors; red symbolizes

polysilicon: blue symbolizes metal; black symbolizes a contact cat.

Later, through a number of examples in Chapter 4, we will present the details

of procedures by which the stick diagrams are transformed into circuit layouts and

then digitized for maskmaking. Note that if this topological form of representation

were formalized, one might consider "compiling " such descriptions by imple-

menting algorithms that "flesh out and compress" the stick diagrams into the final

layout geometries,- according to the constraints imposed by the design rules.

When the details of neither geometry nor topology are needed in the repre-

sentation, we may revert to the familiar circuit diagrams and logic symbols. At

times we may find it convenient to mix several levels in one diagram, as shown in

Plate 4(e). A commonly used mixture is (1) stick diagrams in portions where to-

pological properties are to be illustrated, (2) circuit symbols for pull-ups, and (3)

logic symbols, or defined higher level symbols, for the remaining portions of the

circuit or system.

We will define logic variables in such a way that a high voltage on a signal

path representing a variable corresponds to that variable being ?r//^^ (logic- 1). Con-

versely, alow voltage on a signal path representing a logic variable corresponds to

the variable hting false (logic-0). Here high voltage and low voltage mean well

above and well below the logic threshold of any logic gates into which the signal is

an input. This convention simplifies certain discussions of logic variables and the

voltages on the signal paths representing them. Thus when we refer to the logic

variable ^ being high, we indicate simultaneously that ^ is true (logic- 1) and is

represented on the signal path named ^by a high voltage , one well above the logic
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threshold. In Boolean equations and logic truth tables, we use the common nota-

tions of 1 and to represent true Sind false , respectively, and by implication high

and low voltages on corresponding signal paths.

3.3 TWO-PHASE CLOCKS

We will often make use of a particular form of "clocking" scheme to control the

movement of data through MOS circuit and subsystem structures. By clocking

scheme we mean a strategy for defining the times during which data is allowed to

move into and through successive processing stages in a system, and for defining

the intervening times during which the stages are isolated from one another.

Many alternative clocking schemes are possible, and a variety are in current

use in different integrated systems.^ The clocking scheme used in an integrated

system is closely coupled with the basic circuit and subsystem structuring and has

major architectural implications. For clarity and simplicity we have selected one

clocking scheme, namely two-phase, nonoverlapping clock signals. This scheme

is used consistently throughout the text and is well matched to the type of basic

structures possible in MOS technology.

The two clock signals i^, and ip2 are plotted as a function of time in Fig. 3.3.

Both signals switch between zero volts (logic-0) and a voltage near VDD (logic-1),

and both have the same period, 7. Note that both signals are nonsymmetric and

have nonoverlapping high times. The high times are somewhat shorter than the

low times. Thus if-, is low all during each of those time intervals from when (^,

rises, nears VDD, and then falls back to zero.

Phase Kn
^r-H

t Fig. 3.3 Two-phase nonoverlapping clock signals.

Similarly, (p\ = Q all during each time interval when (^2 is high. Therefore, at

all times the logic AND of the two signals equals zero:

[<^i(0] • [<^2(/)] = 0, for all/.

For convenience, we will often use the following equivalence in our descriptions:

during <pi is equivalent to during the time period when ^pi is high.

In the next section we will illustrate the use of these two clocking signals to move
data through some simple MOS circuit structures. (A more detailed discussion of

clocking requirements is given in Chapter 7.)
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3.4 THE SHIFT REGISTER

Perhaps the simplest structure for enabling the movement of a sequence of data

bits is the serial shift rci^isicr, shown in the form of a circuit diagram in Fig. 3.4(a).

The shift register is composed of level-restoring inverters coupled by pass tran-

sistors, with the movement of data controlled by applying clock signals t^, and (^2

to the gates of alternate pass transistors in the sequence.

Data is shifted from left to right as follows. Suppose a logic signal X is present

on the leftmost input to the shift register when clock signal (^, rises. Then, during

the lime when t^i ishiiih . signal A' will propagate through the pass transistor and be

stored as charge on the input capacitance of the first inverter stage. For example,

if signal A' is Un\\ then the inverter input gate capacitance will be discharged

toward zero volts during the time when s? , is high. On the other hand, if A' is high,

the inverter input capacitance will charge up toward VDD - V,/, during (/:,.

When the clock signal s^, falls, the pass transistor becomes an open circuit,

isolating the charge on the input of the inverter. The second clock phase is now
initiated by the rise of s^j- During the time interval when (/?j is high, the logic signal

A", now inverted, will flow through the second pass transistor onto the gate of the

second inverter. This pattern can be repeated an arbitrary number of times to

produce a shift register of any length.

Note that since the clock signals do not overlap, the successive pairs of stages

of the shift register are effectively isolated from one another during the transfer of

data between inverter pairs. For example, when s^, is low and if-, is high, all adja-

cent inverters connected by the (^2-controlled pass transistors are in the process of

transferring data from the left members to the right members of the pairs. All these

pairs of inverters are isolated from each other by the intervening (^, -controlled

pass transistors that are all open circuits when v?, is low.

It is also important to note that the shortest period. 7. we can use for clocks

controlling such data transfers is determined by the time required to adequately

charge or discharge the inverter input gate capacitance through the pass transistor

and the preceding stage pull-up or pull-down. To this time must then be added an

increment of time sufficient to ensure that the clocks do not overlap. For more

complex systems, the minimum clock period may be estimated as a function of

basic circuit parameters (as discussed in Chapter 1).

Figure 3.4(b) and Plate 5(a) illustrate the serial shift register using mixed nota-

tions. In Fig. 3.4(b), each inverter circuit diagram has been replaced by its logic

symbol. In Plate 5(a). the pass transistor circuit symbols have been replaced by

their stick diagrams. When visualizing the inverter as represented by its logic

symbol in a circuit structure containing mainly stick diagrams, two points should

be kept in mind:

1. The input to the inverter leads directly to the gate, and thus the gate capaci-

tance, of the inverters pull-down transistor. This input may be used to store a

data bit by isolating the charge representing the bit with a pass transistor.
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Fig. 3.4 (a) Shift register circuit diagram,

(b) Shift register in mixed notation.

(a)

Phase 1 Phase 2 Phase 1

(b)

Note that the input path will end up on the poly level within the inverter. A
contact cut may thus be required to connect the poly gate to the path, if it is

metal or diffusion, on which the signal enters the inverter.

2. Since the connection between the source and gate of the inverter pull-up tran-

sistor requires a connection of all three conducting levels, the inverter output

signal may easily be routed out on any one of the three levels.

Identical serial shift registers can be stacked next to each other and used to

move a sequence of data words, as shown in Plate 5(b). The simple structure

illustrated anticipates the elegant topological simplicity of many important MOS
integrated subsystems. By connecting the successive inverter stages with diffu-

sion paths, the pass transistors controlled by the clock signals are formed by sim-

ply running vertical clock lines in poly. The structure also anticipates another

important point: topological simplification often results when control signals flow

on lines that are at right angles to the direction of data flow. In this way, as many
bits as necessary can be processed in parallel with the same control signals.

The example represented in Plate 5(b) is so rudimentary it is perhaps difficult

to visualize the two clock signals as actually containing control information. Let

us consider a slightly more complex example, the shift-up register array shown in

Plate 5(c). In this structure, each data bit moving from left to right during <p2 has

two alternative pass transistor paths through which it can proceed to the next

stage: a straight-through path and a path that shifts it up to the next higher row. If

the control signal SH is low, then [(p., • SH'] is high, and the straight-through pass

transistor paths are used during ip.,. At the same time, [ip2 ' SH] is low, thus prevent-

ing data flow through the shift-up pass transistor paths. On the other hand, if SH is

high, the straight-through pass transistors are off and the shift-up pass transistor

paths are used during ip.^, resulting in the entire data word being shifted vertically

as well as horizontally. Here the vertical control lines are run in metal, and the

pass transistors are selectively formed by crossing the appropriate diffusion paths

with short poly lines.
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3.5 RELATING DIFFERENT LEVELS OF ABSTRACTION

In the discussions in this chapter, we will not have to make extensive calculations

of the detailed electrical behavior of the devices and circuits involved in order to

analyze the general behavior of digital logic constructed with these devices and

circuits. Most of the examples presented in this chapter, and throughout the text,

build upon the use of pass transistors to couple inverting logic stages as a means of

structuring designs. The general results of Chapter 1 provide the solutions to most

device and circuit problems encountered, such as ratio and delay calculations. In

most cases, design concepts can be worked out using stick diagrams, and only at

the stage of transforming the circuit topology into the detailed circuit layout

geometry will any calculations need to be worked out, either by hand or with

circuit simulation programs.

It is important to simplify our mental model of integrated circuitry, so as to

more quickly and easily analyze or explain the function of a given circuit, and

more easily visualize and invent new circuit structures without drifting too far

away from physically realizable and workable solutions. Of course, it is a danger-

ous practice to oversimplify our abstractions of electronic circuit behavior, and

there are some /iMOS circuits of deceptively simple appearance that have exceed-

ingly complex behavior. However, throughout large portions of digital integrated

systems that have circuit and subsystem designs structured as suggested in this

text, an extremely simple mental model of device and circuit behavior will prove

adequate to predict circuit and subsystem behavior.

Figure 3.5 illustrates a simple way of visualizing the operation of successive

inverting logic stages coupled by pass transistors. Assume for the moment that

any pass transistors in the paths between stages are on. To visualize the time

behavior of an inverter, and the effect of the pull-up LIW to pull-down LIW ratio,

imagine the flow of current from VDD to GND as the flow of a fluid and the

inverter* s two transistors as valves. The basis for thinking of the transistors in this

VDD VDD

Logic-

1

Logic-0

S
Logic-0

Pass

transistor

; Logic-

1

Inverter A Inverter B

GND
'

GND

Fig. 3.5 A way of visualizing the operation of successive inverter stages.
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manner is the fluid model of their internal behavior (as given in Chapter 1).

Whether a transistor is on or off depends on the voltage, and thus on the charge,

on its control gate and also on its threshold voltage. The upper "valve" is always

open, since the pull-up transistor is always on. However, the valve corresponding

to the pull-down transistor may be either open or closed, depending on the amount
of charge on its gate.

In Fig. 3.5, the input to inverter A is a logic-0, so the pull-down of inverter A is

off, and the lower valve is closed. Current is thus diverted to the large charge

storage site corresponding to the gate of the pull-down of inverter B. At this level

of diagram we have reverted to the common convention of positive charge flow

from VDD to ground, rather than electron flow from ground to VDD. If sufficient

positive charge has flowed onto this gate, corresponding to a high level of fluid in

the tank representing the gate capacitance, then the pull-down of inverter B is

turned on, and thus the lower valve of inverter B is open. If the lower valve in

inverter B is much larger than the upper one, corresponding to a practical pull-up

to pull-down ratio of size, then the pull-down of inverter B can sink all the source

current provided by the pull-up. Also, if given sufficient time and if the connecting

pass transistor is on, the pull-down can drain off any charge stored on the succeed-

ing inverter's input gate. Thus we can visualize the sequence of inversions of a

logic signal propagating through successive inverter stages as an alternation be-

tween high and low levels of fluid in the storage tanks. We can also visualize some

of the time behavior of the signal propagation: the larger the gate capacitance, the

longer it takes to build up enough charge to open the next stage, and the longer it

takes to drain charge from the next stage to turn it off.

Figure 3.6 represents the same physical circuit modeled in Fig. 3.5, but on

successively higher levels of abstraction. When analyzing circuit or logic diagrams

VDD 1 I VDD

Fig. 3.6 Successive inverter stages,

circuit diagram and logic diagram.
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p = illustrating the effect of the pass

~^ U"* '
"
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showing successive inverting logic stages, as in Fig. 3.6, one should keep the

model of Fig. 3.5 in mind. Whether one is a novice or an expert in integrated

system design, it is very helpful to compress the details of any given lower level of

abstraction, so as to reduce the complexity of the problems presented at the next

higher level and enable the mind to span problems of larger scope.

We are now able to visualize a very simple model for the pass transistor: it is

in fact like a valve, or "switch," in the path between an inverter and the next

charge storage site, i.e., the input gate of the next inverter. Figure 3.7 shows two

inverters coupled by a pass transistor, with the pass transistor informally sym-

bolized as a "switch." In the upper diagram, the pass transistor input is a logic-1,

and so the "switch" is in the on position, resulting in the output / being equal to

the input A', after a suitable delay time A/. Thus during the time the pass transistor

gate input P is high, the output Z(t) equals X(t - A/). Here A/ is some multiple of

the transit time, t, of the inverter pull-down transistor (as discussed in Chapter 1 ).

In the lower diagram, the pass transistor "switch" is moved to the off position

since /* is a logic-0. Therefore, according to our model, the valve in the path

between the inverters is shut, and the charge, or lack of charge, is isolated in the

storage site. Thus, once the pass transistor "valve" is shut, Z remains at a con-

stant value, independent of changes in X. In other words, if P-^ at f = /o< then

/(t) = /(to)iovt>t„.

These simple visualizations of the inverter and the pass transistor will carry us

fairly far into LSI subsystem design. Several logic circuits in this chapter are

drawn first in stick-diagram form and then informally sketched with pass tran-

sistors replaced with "switches": this is both to clarify the behavior of the circuits

involved and to further demonstrate the applicability of the model.

3.6 IMPLEMENTING DYNAMIC REGISTERS

Registers for the storage of data play a key role in digital system design. It is

interesting to note that a group of adjacent inverters, with their gates isolatable by

pass transistors, can be considered a form of temporary storage register. The ar-

rangement, illustrated in Fig. 3.8, shows two levels of symbolism for a dynamic
rej>istcr. Such a register is very simple in structure. It consists of only three tran-

sistors per bit position: the pass transistor and the two transistors of the inverter.

However, this dynamic form of register will preserve data only as long as charge

Fig. 3.8 A dynamic register.
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can be retained on the inverter input gates. Typically, dynamic registers are used

in situations where the updating control signals from the input gate are applied

frequently. Dynamic registers are ideal in a clocked system in which they are

reloaded every clock cycle, as in the shift register.

Suppose we wish to construct a simple register that can be loaded during the

appropriate clock phase under the control of a load signal and will retain its infor-

mation through an indefinite number of successive clock periods until it is re-

loaded using the load signal. A one-bit cell for such a register may be constructed

using cross-coupled inverters in the configuration shown in Fig. 3.9. This register

cell is still dynamic in form, since it uses charge storage on the gate of the first

inverter to preserve its state. However, it need not be loaded on every successive

ifi, as was the simple register shown in Fig. 3.8. The pass transistor leading to it

from the preceding stage is switched on only when both <^, and LD are high. On
any following (p, when LD is low, the cell updates itself by the feedback path

through the second pass transistor. Figure 3.10 illustrates a selectively loadable

register composed of such cells. One important feature of this type of register is

that it provides as output both the true and complemented forms of the stored

data. This feature is often useful when the data are to be processed by a following

network of combinational logic.

Pliase 1 LD Phase 1 LD'
Phase

Phase ILD
AIPhase 1 LD'

r

LD Phase LD'

-^

<u

C/1

Ofl

<u

->

ai

Fig. 3.9 A selectively loadable

dynamic register cell.

Fig. 3.10 A selectively loadable dynamic register.

While there are more elaborate forms of dynamic and static registers, the

above two forms are sufficient for many of the required data storage applications

within integrated systems.

3.7 DESIGNING A SUBSYSTEM

The ideas used to construct simple dynamic registers in the preceding section may
be applied to the construction of more sophisticated and interesting subsystems.
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In this section we will describe the design of a stack. The methodology we use for

this specific example we will find appropriate for a wide variety of functional

subsystems. We first invent a "cell" that implements the most primitive function

of the subsystem. This cell dictates a set of "timing ' criteria necessary for its

proper operation. The cell geometry together with the timing requirements dic-

tates the design of control "circuits" that will surround an array of the basic cells.

Once these control circuits are attached to the cell array, and the necessary

"interconnections" are made, the entire assemblage constitutes a functional

"module" with a well-defined "interface" to the next higher level of design. The
interface consists of a functional specification, a geometrical specification, and a

set of timing requirements for the control inputs, data inputs, and data outputs.

The stack subsystem is commonly called a last-in, first-out (LIFO) stack. It is

also known as a push-down stack, although we will diagram it horizontally rather

than vertically. It is a shift-register array with three basic operations: during each

full clock period (1) we can push in a new data word at one end of the array,

pushing all previously entered words one word position further into the array; or

(2) we can leave all words in their current position; or (3) we can pop out a word
from the end of the array, pulling all previously entered words back out by one

word position.

Plate 6(a) shows the structure of one horizontal row of the stack. Here we
have implemented a shift register that can perform the following three operations:

shift data left to right, hold data in place, shift data right to left. There are four

control signals used; two are active during (/?, and two are active during ip-,. (The

signals (^, and if., are our familiar two-phase, nonoverlapping clock signals.)

In order for data to be shifted from left to right, the shift right control line

(SHR) is driven high during </?, , followed by driving the transfer right control line

(TRR) high during if.,. The bit of data appearing at the left is thus transferred by

this operation onto the gate of the first inverter during ip, , and thence to the gate of

the second inverter during ^p2. In order for data to be held in place, the signal

transfer left (TRL) is driven high during (^, and transfer right (TRR) is driven high

during ip2, causing the data to recirculate upon itself without shifting. Note that the

data can be obtained at any time from the output of the first inverter. However,

since new data may come to the gate of the first inverter during (/?,, the only safe

time to take data out to the left is during c/?,,- The transfer of data from right to left is

caused by driving the shift left control (SHL) line high during (f-,, followed by

driving transfer left (TRL) high during (/j,.

Plate 6(b) illustrates a possible topological structure of one horizontal row of

the stack. There are two horizontal pathways on the diffusion level for shifting bits

right or left. The two inverters for one stage of the row are nested between these

paths. VDD, GND, and the four control lines run vertically in metal. The four pass

transistors required for controlling the movement of data are conveniently im-

plemented by short poly lines that cross the horizontal diffusion tracks at appro-

priate positions. Note that the entire row is composed of 180° rotations and repeti-

tions of a basic cell containing one inverter.
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In a typical implementation of the complete LIFO stack, a number of such

rows run parallel to each other in the horizontal direction. The number of rows is

equal to the width in bits of the data words involved. The control lines run

vertically across the entire stack, perpendicular to the direction of data flow. For

data words of any substantial width, the capacitive loading on the control signals

would be sufficient to warrant use of super buffer drivers.

The stack as a whole may be controlled with only two logic signals: one signal-

ing p//^/? and the other signaling pop . If neither of these two signals is activated,

the data bits recirculate in place, awaiting the next active instruction.

Let us consider how to derive, from push and pop, the control signals for

driving the four control lines SHR, TRR, SHL, TRL. A possible scheme is shown
in Fig. 3.11. We use random logic for this purpose since only a few gates are

required to control the large, regular array of circuit cells in the stack. The opera-

tion that determines what the stack will do during the subsequent clock phase is

brought in on the path labeled OP. It is important to note in the following that only

one signal path (OP) is required to bring in hoih push and pop logic signals, since

these are active on mutually exclusive clock phases.

Phase 2

Phase

OP

^
X Noninverting

super buffers

,I^C^^^> > TRR

>SF1L Fig. 3.11 Generating the stack control signals.

^TRL

-^SHR

The control sctieme is summarized in the timing diagrams in Fig. 3.12. Here

we see that holding OP high during (p2, followed by low during v'l, implements

push. Holding OP low during both (/?, and tp-i causes the data to recirculate in place.

Holding OP high during (/?, , followed by low during cp-,, implements /?op. Thus, the

single signal path, OP, is sufficient to carry both stack control signals into the

stack.

During <p^, the OP signal is fed through the upper pass transistor into the in-

puts of the two NOR gates g, and g2. The outputs for these NOR gates are low

during this period, since ip2 is high. If the incoming OP signal is high while c/?, is

high, then the lower input to NOR gate g2 will be low. Thus when (p2 falls low, the

output of g2 wiW go high, thereby driving SHL high. If the OP signal is instead kept

low while </?, is high, then the output of the NOR gate g, will go high on the fall of

(f-z, thereby driving TRR high during ipz-



74 Data and Control Flow in Systematic Structures

....... ,_n n n n n npiij

Phase

:

n n n n n n_

nSUL

iRL-n

—

n
OP-

IRR-

SIIR-

m
n n

n

nH__
r^___n -PL. Fig. 3.12 Stack control signal timing diagrams.

PUSH

OP high in phase 2.

and then low in phase 1

;

causes SHR. not (TRL)

POP

OP high in phase 1

,

and then low in phase 2;

causes SHL. not (TRR)

During the period when<p2 is high and either the shift left (SHL) or the transfer

right (TRR) operation is being executed, the signal on the OP line is being stored

on the corresponding input gates of the lower two NOR gates, g,-, and g4. Thus, if

OP is high while (^2 is high, a logic-0 is stored on the input of the NOR gate g4, and

during the subsequent <^i high period, SHR will be driven///^/?. Conversely, if OP
is low while ip-, is high, TRL will be driven high during the following (/?, high

period.

This kind of control scheme recognizes that there must be a lull period be-

tween any operation and its next occurrence. Control information is taken in dur-

ing this period and set up for the subsequent operation. The scheme takes advan-

tage of these lull periods, when possible, to perform other operations that can be

done without conflict. It is an example of a fundamental design technique that can

be extended to larger system structures.

When planning the overall architecture of a larger system, it is often useful to

represent subsystems, such as the stack, using a higher level of symbolism. To be

truly useful, such representations should, in addition to a functional definition,

include the topological factors associated with the interconnection points of the

subsystem and the geometrical factors of its shape and relative physical dimen-

sions.

A system-level sketch of one particular implementation of the stack is shown
in Fig. 3.13. Identical driver circuitry is placed along the top and bottom edges of

the shift register array. The transfer-right and shift-left drivers that are set up

during (p, (and active during (^2) are placed along the top of the shift-register array.

The transfer-left and shift-right drivers that are set up during ^p.^ (and active during
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Fig. 3.13 Stack geometry and interconnect topology.

<^,) are placed along the bottom of the array. The OP bit and the clock signals are

required on both the top and the bottom of the shift-register array.

The integration of this subsystem into a larger integrated system design will

require that the data-in and data-out paths be matched to those of subsystems to

which the array is connected, and that the v?,, if-,, and OP signals be available at

either the left or right side of the array. By using system-level representations that

reflect as closely as possible the dimensions and locations of critical signals in all

major subsystems, the interactions between topologies and dimensions of the sub-

systems can be assessed. The feasibility of an overall system architecture can thus

be ensured prior to detailed design and layout.

3.8 REGISTER-TO-REGISTER TRANSFER

From an implementation point of view it is often desirable to combine logic-

steering functions with the clocking of data into registers, since both require pass

transistors as their elementary functional unit. An example is the shift-up register

array; illustrated in Plate 5(c). From the next higher level system view-

point, however, it is desirable to separate the two functions conceptually. In

Fig. 3.14 we have shown some combination of inputs, A'o through A'„ going through

some combination of pass transistors, which may or may not have logic functions

attached, into the input gates of some inverting logic elements. This combination

of pass transistors and logic elements is then abstracted into a register clocked on

the phase during which the input pass transistors are turned on. Any logic function

associated with the input pass transistors is considered part of the preceding com-
binational logic module. This viewpoint is an extension of the concept of dynamic

register previously developed in Fig. 3.8.
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Fig. 3.14 A register.
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Fig. 3.15 A section ot'dala path. Fig. 3.16 General form for a data path.

Using this notation, any processing function can be built up using blocks of

the form shown in Fig. 3.15. Here we have a clocked input register, a block of

strictly combinational logic with no timing attached, and an output register

clocked on the opposite phase. In this case the inputs are stored in the input

register during (^,. They then propagate into and through the combinational logic

(C/L). with the resulting outputs stored in the output register during (p2- Any single

data processing step can be viewed as a transfer from one such register to a second

through a combinational logic block.

A sequence of such operations can be performed on a data stream by a series

of such combinational blocks separated by registers, as shown in Fig. 3.16. Since

different sets of data words in the stream may be operated on at the same time, but

at different locations, this data path is a type of pipelined processing structure.

Such pipelined processing structures offer the opportunity for improved process-

ing bandwidth by performing many different operations concurrently. Notice that

the throughput rate of such a pipeline system of register-to-register transfer opera-

tions is limited by the delay time through the slowest of the combinational logic

blocks. If no registers had been interposed between the function blocks, and each

operand set had been run separately through the entire sequence of combinational

logic modules, the throughput rate would be much lower.

In line with the ideas developed earlier in this chapter, the detailed functions

performed by the combinational logic modules may often be implemented in cir-

cuit structures of very simple and regular topology. Control signals will in general

cross the data path at right angles to the direction of data flow. Figure 3.16 illus-

trates sets of such control inputs as n^ lines carrying the control function OPi into

the first C/L module, n^ lines carrying OP2 into the second, etc.

The idea of data being processed while passing through combinational logic

interspersed between register stages in a sequence of register-to-register transfers

is a basic and important concept in the hierarchy of digital system architecture.

We have already described the implementation of registers. The next sections will

describe some ways to implement combinational logic functions.

3.9 COMBINATIONAL LOGIC

Combinational logic modules contain no data storage elements. The outputs of a

combinational logic module are functions only of the inputs to that module, pro-
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vided that sufficient time has been allowed for those inputs to propagate through

the module's circuitry.

In integrated systems, combinational logic design problems will typically fall

within one of three general classes. The first is when a small amount of simple

logic is required, for example, to derive control signals at the periphery of a sys-

tem module (as in the stack control signal generation) or to implement a simple

function within a single circuit cell (which may then be replicated in a regular

array). In these cases, traditional logic design procedures using static NAND and

NOR gates can be applied. Such designs involving a few gates are usually rather

simple and can be produced by inspection rather than by use of formal minimiza-

tion and synthesis procedures. Even in these simple cases, the minimum static

logic gate implementation does not necessarily result in the most regular form, the

minimum area, the minimum delay, or the minimum power. In fact, we often

find alternative techniques to the use of static logic gates, which in specific in-

stances lead to "better" designs by one of these measures than would minimum
gate implementations. For example, Plate 7(a) shows a selector logic circuit in

which one of the inputs5o,5', ,52,53 is selectedforoutputby the control variablesA
and B according to the function

Z = SoA'B' + S.A'B + S.AB' + S^^AB.

The selector circuit is composed simply of poly paths crossing diffusion paths.

Where depletion mode transistors are placed, the diffusion level path is always

connected, thus placing control in the selectively located enhancement mode pass

transistors, which function as simple switches. Figure 3.17 shows the circuit's

paths from inputs to outputs using the "switch" abstraction for each of the pass

transistors. For each possible combination of values of A and B, there is a path

through the selector to Z from only one of the inputs 5,. For the specific inputs

shown in the example in Fig. 3.17, the signal 52 propagates through to Z since both

A and B are high. Note that no static power is consumed by the circuit, and the

area occupied by the circuit is small since no contact cuts are required within it.

(In Chapter 5 we describe a very general and powerful arithmetic logic unit (ALU)

A = \ A' =

S.

Yo

-<fo (TO

-/o

A = 1, fi = 0: Fig. 3.17 An example of the operation
thus. Z = Si Qf a selector circuit.
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that Lises an array of such selector blocks to control a pass transistor carry net-

work.)

The second general class of combinational logic design problems are those

rather complex functions for which clever ways of structuring topologically regu-

lar implementations have been discovered. As an example, consider the im-

plementation of a tally function with n inputs and n + 1 outputs. The kth output is

to be hii>li and all other outputs low if k of the inputs are hifili. The Boolean

equations representing this function for the simple case of three inputs are

Zq — A| A 2^3 ',

Z3 = AiA2-^3'

If this function were designed with random logic consisting of active pull-up static

logic gates, it would result in a topological kludge. Plate 7(b) shows a topologically

regular implementation of the tally function. A major portion of the function is

implemented using a regular array of identical cells each containing only two pass

transistors. The design is based on the idea of the shift-up register presented ear-

lier. A high signal propagates through the array from the pull-up at the lower left.

Whenever one of the variables A', is high , the propagating high signal moves up to

the next higher horizontal diffusion-level path. Thus the number of paths it moves

up equals the number of inputs Xj that are high . Logic-0 signals propagate through

the array from the ground points to all other outputs.

Figure 3.18 shows the paths from inputs to outputs for the tally circuit, using

the "switch" abstraction for the pass transistors. The figure shows a specific

example of a set of inputs controlling the pass transistors of the circuit. Since two

of the inputs are high , the logic- 1 signal is shifted up two rows and emerges at Z2.

The tally function design can be easily expanded to handle more than three

inputs by simply extending the array structure upward and to the right. However,

remember that the delay through n pass transistors is proportional to n^. Thus it

may be necessary to insert level restoration prior to such extension. Similar com-

ments apply to the extension of the selector circuit previously shown or to other

pass-transistor logic arrays one might invent.

The electronic gates traditionally used in digital design are unilateral ele-

ments: they allow a logic signal to propagate in one direction only. It should be

noted that the pass transistor is a bilateral circuit element. It permits the flow of

current, and thus the passage of a logic signal, in either direction when its gate is

high. While this property of the pass transistor is not necessarily of fundamental

importance in integrated systems, it is an interesting and occasionally useful one.
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VDD
Fig. 3.18 An example of the operation of

Z| = a tally circuit, visualizing the location of

the switches.

Early relay-switching logic used switching contacts that were bilateral ele-

ments. Interesting discussions of relay-switching logic are contained in Kohavi

(1970) and Caldwell (1958). The tally array example just given is a basic symmetric

network mapped directly into ajMOS from relay-switching logic (Caldwell (1958),

p. 241). The mathematics of switching universally used in digital systems today

was proposed by Claude Shannon (1938). Shannon demonstrated that the calculus

of propositions, based on the algebra of logic developed by Boole (1854), was

directly applicable to relay-switching circuits.

A third combinational logic design situation occurs when a complex function

must be implemented for which no direct mapping into a regular structure is

known. Methods for handling this situation are the subject of the next section.

In the design methodology developed in this text, the combinational logic be-

tween stages in the register-to-register transfer paths is often done by operations

on the charge moving between stages, using pass transistors to perform these

operations. Many researchers at the present time are searching for alternative

structures and techniques for performing elementary logic functions, including the

use of charge-transfer devices.^

3.10 THE PROGRAMMABLE LOGIC ARRAY

On many occasions it is convenient to implement the combinational logic in-

terspersed between register stages with regular structures of pass transistors.
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However, we will often encounter important combinational logic functions that do

not map well into such regular structures. In particular, combinational logic used

in the feedback paths of finite-state machines is often highly complex and inher-

ently irregular. Also, we may wish to delay binding the details of the logic

functions used in sequencing a finite-state machine until most of the design is

complete. If the combinational logic were implemented in an irregular structure,

such changes could require a major redesign.

Fortunately, there is a way to map irregular combinational functions onto reg-

ular structures, using the programmahle logic array (PLA) as described in this

section. This technique of implementing combinational functions has a great ad-

vantage: functions may be significantly changed without requiring major changes

of either the design or layout of the PLA structure.

One very general and regular way to implement a combinational logic function

of //-inputs and m-outputs is to use a memory of 2" words of m-bits each. The
n-inputs form an address into the memory, and the m-outputs are the data con-

tained in that address. Such a memory implements the full truth table for the

output functions. Many systems are in fact built using memories as combinational

logic elements. A common form of memory for this purpose is the read-only mem-
ory (ROM) where the data bits are permanently placed in the memory either by a

mask pattern or by electrically altering the individual bit positions. There is one

major difficulty with this approach: it is often the case that most of the possible

input combinations cannot occur, due to the nature of the specific problem. Stated

another way, many combinational logic functions require only a small fraction of

all 2" product minterms for a canonical sum of products implementation. In such

cases, a ROM is very wasteful of area.

The programmable logic array (PLA) is a structure that has all the generality

of a memory for implementing combinational logic functions. However, any spe-

cific PLA structure need contain a row of circuit elements only for each of those

product terms that are actually required to implement a given logic function (see

Kohavi (1970)). Since it does not contain entries for all possible minterms, it is

usually far more compact than a ROM implementation of the same function. To

achieve full compaction, the various output functions must be jointly minimized

before the PLA layout pattern can be defined. However, such minimization is not

essential. Less than full compaction increases the independence of the different

entries, so that changes in function may require only local changes in the PLA.
Figure 3.19 illustrates the overall structure of a PLA. The diagram includes

the input and output registers, in order to show how easily these are integrated

into the PLA design. The inputs, stored during (/?, in the input register, are run

vertically through a matrix of circuit elements called the AND plane. The AND
plane generates specific logic combinations of the inputs and their complements.

The outputs of the AND plane leave at right angles to its inputs and run horizon-

tally through another matrix called the OR plane. The outputs of the OR plane

then run vertically and are stored in the output register during <p2-
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AND plane OR plane Fig. 3.19 Overall structure of the PLA.

Phase 1
— Register Register Phase

Inputs Outputs

AND plane OR plane

VDl)

VDD &™

Phase

b

[j- Ph;

z z z z
1 2 3 4

Fig, 3.20 Circuit diagram

of a PLA example.

The circuit diagram of a specific programmable logic array (Fig. 3.20) will help

to clarify the structure and function of the AND/OR planes of the PLA. The input

register bit for each input path is formed by a pass transistor clocked on </?! leading

to both inverting and noninverting super buffers. The buffers drive two lines run-

ning vertically through the AND plane, one for the input term and one for its

complement. The outputs of the AND plane are formed by horizontal lines with

pull-up transistors at their leftmost end. The function of the PLA's AND plane is

then determined by the locations and gate connections of pull-down transistors

connecting the horizontal lines to ground.

Each output running horizontally from the AND plane carries the NOR com-
bination of all input signals that lead to the gates of transistors attached to it. For
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example, the hori/ontal row labeled /?., has three transistors attached to it in the

AND plane, one controlled by A, one by B, and one by C . If any of these inputs is

liii^h , then /?,, will be pulled down toward ground and will be /on-. Thus,

R:i = (A + B + Cy = ABC.
Similarly,

/?, = (A + B' + O' = ABC.

The OR plane matrix of circuit elements is identical in form to the AND
plane matrix, but rotated 90 degrees. Once again, each of its outputs is the NOR of

the signals leading to the gates of all transistors attached to it. in Fig. 3.20, for

example, both /?,, and /?, lead to the gates of transistors leading from the output

line Z', to ground. If either R ^ or R
,

is ///),'//, Z', will be low. Thus, Z', =

NO R( /?;,./?,) = (ABC + ABC)'. Up to this point the PLA implements the

NOR-NORcanonicalform of Boolean function of its inputs.

The output lines of the OR plane matrix are run into an output register formed

by pass transistors (clocked on if-,) leading into inverting drivers. Note that the

output Z
I
at this point isZ ,

= A B'C + ABC . This expression illustrates why the

two PLA planes, each implementing the NOR function, are usually referred to as

the AND plane and the OR plane. Following the output register, the outputs ap-

pear directly as the sum of products canonical form of Boolean functions of the

PLA inputs, that is. as the OR of AND terms. Each horizontal line of the PLA
carries one product term.

Plate 7(c) shows one possible layout topology for implementing the PLA in

«MOS circuitry. The example is the same circuit illustrated in Fig. 3.20. The input

lines crossing each plane are run in poly. The output lines from each plane are run

in metal. Paths running to ground are placed between alternate poly lines, on the

diffusion level. It is then a simple matter to form the pull-down transistors con-

necting the metal output lines to ground. They are selectively located diffusion

lines under the appropriate input poly lines.

Although the PLA may implement a very irregular combinational function,

the irregularity is confined to the irregular locations of pull-down transistors that

'program" the function. The overall structure and topology of the PLA are very

regular. Note that its overall shape and size is a function of the parameters: ( 1) the

number of inputs. (2) the number of product terms, (3) the number of outputs, and

(4) the length unit X.

3.11 FINITE-STATE MACHINES

In many cases in the processing of data, it is necessary to know the outcome of the

current processing step before proceeding with the next. Results of the current

step may be used as inputs in the next step. The configuration shown in Fig. 3.21

can be used to implement a processing stage having this requirement. A typical
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Outputs Z Fig. 3.21 Feedback in register transfer path,

implementing a finite-state machine.

Feedback paths Y'

register-to-register transfer stage has been modified by simply feeding back some
of its outputs to some of its inputs. This structure implements a form of sequential

machine known as a finite-state machine.

The feedback signals form a binary number that may be regarded as identify-

ing the state of the machine. The value of this number is stored, along with the

external inputs, in the first register during v?,. The combined inputs then propagate

through the combinational logic. The resulting outputs are stored in the second

register during ip.2. The falling edge of v?^ must occur a sufficient time later to

ensure that all signals have propagated through the combinational logic. Each

complete machine cycle, consisting of v^i followed by (p.,, results in two new sets of

outputs: ( 1) the external outputs that are typically used for controlling other units

of the system, and (2) a new feedback number, which defines the ne.xt state of the

machine. This process repeats during each clock period. The number of possible

states is determined by the number of bits in the feedback path and is finite.

There are a number of ways of abstractly representing the states, the required

state transitions, and the outputs of sequential machines under given input se-

quences. Possible representations include state diagrams, transition tables. Bool-

ean or numerical difference equations, etc. A large body of theory has been de-

veloped concerning sequential machines. The serious reader will benefit from a

further study of the results of switching theory on this subject (Dietmeyer (1971)

and Kohavi( 1970)).

Implementations of simple finite-state machines are used to produce the very

lowest level of system control sequencing, since they can autonomously generate

control sequences. The sequential machine having a finite number of states is a

very important element in the hierarchy of fundamental concepts used in inte-

grated system architecture.

The configuration shown in Fig. 3.21 implements a synchronous machine,

since the feedback loop is activated only at times determined by the clock signals.

In any clock period A', the output terms Zj and the next state terms Yf are valid

during (^,(A). They are functions of the external inputs Xj and feedback terms Yf

that were valid during (pjA-l).
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If a sequential machine contains a feedback loop that is continuously active,

then it may begin a response to a change in inputs or state at any time, rather than

just at fixed clock times. Such a sequential machine is referred to as an asyn-

chronous sequential machine. The analysis of asynchronous machines and their

implementation is far more complex than that of synchronous ones. Great care

must be exercised to avoid any difference in state sequencing and outputs under

arbitrary differential delays of signals through the circuit paths of such machines

(Dietmeyer ( 1971 ), Ch. 5). There will be only a few special cases where we use the

asynchronous form of machine (Chapter 7), and these will be subject to detailed

analysis.

Where finite-state machines are required within integrated systems, we will

generally implement them in synchronous form. Synchronous machines are rather

easy to implement correctly, and they fit naturally into the two-phase clocking

scheme used for moving data around within our systems. However, the reader

should carefully note that an implementation of a synchronous finite-state machine

functions correctly only if the delays in the circuit paths are sufficiently short

compared to the clock period. If we were to implement many copies of a particular

machine, the probability of correct function for any given copy would be a func-

tion of both the clock period used and the distribution of differential delays in that

copy's signal paths. Our estimate that a particular copy will function correctly is

thus based in part on assumptions about the ratio of likely deviations in circuit

delays to the clock period. (A discussion of delays in MOS circuits is given in

Chapter 1.)

There is a very straightforward way to implement simple finite-state machines

in integrated systems: we use the PLA form of combinational logic and feed back

some of the outputs to the inputs, as illustrated in Fig. 3.22. The circuit's structure

is topologically regular, has a reasonable topological interface as a subsystem, and

is of a shape and size that are functions of the appropriate parameters. The func-

tion of this circuit is determined by the "programming" of its PLA logic. If, for

example, early in a design cycle there is some uncertainty in the details of the

desired sequencing of such a circuit, it is easy to provide layout space for extra

unused inputs, product terms, or outputs as contingencies.

AND plane OR plane

t
- --

I
1

- - - 1
Phase 1

Register Register
" Phase :

\ f t 1 Outputs
1
lllpul^^

1

Statt
>

Fig. 3.22 PLA implementation of a

finite-state machine.
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Fig. 3.23 A highway intersection.

Farmroad

3.11.1 An Example

The following simple example will help illustrate the basic concepts of finite-state

machines and their implementation in /7MOS circuitry. A busy highway is inter-

sected by a little-used farmroad, as shown in Fig. 3.23. Detectors are installed that

cause the signal C to go high in the presence of a car or cars on the farmroad at the

positions labeled C. We wish to control traffic lights at the intersection, so that in

the absence of any cars waiting to cross or turn left on the highway from the

farmroad, the highway lights will remain green. If any cars are detected at either

position C, we wish the highway lights to cycle through caution to red and the

farmroad lights then to turn green. The farmroad lights are to remain green only

while the detectors signal the presence of a car or cars, but never longer than some

fraction of a minute. The farmroad lights are then to cycle through caution to red

and the highway lights then to turn green. The highway lights are not to be inter-

ruptible again by the farmroad traffic until some fraction of a minute has passed.

A state diagram model of a finite-state machine to control the lights is

sketched in Fig. 3.24. The diagram identifies four possible states of the machine

(C) and (TL)

(C) and (TL) = 1

TS =

^£l
TS = 1

TS = 1

tb^" Fig. 3.24 Light controller state diagram.
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Fig. 3.25 Controller block diagram.
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and indicates the input conditions that cause all possible state transitions. A block

diagram of the PLA circuit implementing the machine is shown in Fig. 3.25. The
circuit uses the signal C as an input and provides outputs HL and FL that encode

the colors of the highway and farmroad lights it controls. (The input C can't nor-

mally be brought directly from a switch in the external world, but must be "con-

ditioned" in some way. The issues surrounding the handling of such asynchronous
inputs are considered in Chapter 7). Note that a timer is used to provide, as con-

troller inputs, the short and long time-out signals (TS and TL) at appropriate times

following a start timer (ST) signal output from the controller. This timer could be

implemented as a synchronous digital counter in the same «MOS circuitry.

Another abstract model describing the desired function of the controller is given in

the state transition table (Table 3.1). which contains information similar to that in

the state diagram.

Table 3.1 Transition table for the light controller.

In present state If inputs" are Next state v\ ill he and outputs are

HL FL ST

Highway Green (Cars)and(TimeoutL) = Highway Green Green Red No
(Cars)and(TimeoutL) = 1 Highway Yellow Green Red Yes

Highwa\ \ello\v Timeouts = Highway Yellow Yellow Red No
Timeouts = I Farmroad Green Yellow Red Yes

Farmroad Green (Cars)'or(TimeoutL) = Farmroad Green Red Green No
(Cars)'or(TimeoutL) = 1 Farmroad Yellow Red Green Yes

Farmroad '^'ellov\ Timeouts = Farmroad Yellou Red Yellow No
Timeouts = 1 Highway Green Red Yellow Yes

'Inputs not listed = dont cares

The detailed sequencing of the machine under various input sequences is de-

scribed by both the state diagram and transition table models of the controller.

Consider starting in the state HG. where the highway lights are green. The
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Table 3.2 Encoded state transition table for the light conltroller.

Stored dur ng^i in In-register Stored during 1/3.2 in Out -register

Inputs Present

state

Next

state

Outputs

C TL TS y^o ' y,. 1 ' «0' ' «1 ST HL, HL, FL„ FL,

X X 0,0(HG) O.O(HG)

X X 0,0(HG) O.O(HG)

1 1 X 0,0(HG) 0, 1 (HY) 1

X X 0, KHY) 0, 1 (HY) 1

X X 1 0. KHY) 1, KFG) I 1

1 X 1, KFG) 1. KFG) 1

X X 1, KFG) 1,0(FY) 1 1

X 1 X 1, KFG) I,0(FY) 1 1

X X 1,0 (FY) l.O(FY) 1 1

X X 1 1,0(FY) 0,0(HG) 1 1 1

Product

terms

/?,

R,

R,

R.

R,

Re

R7

R.

R9

R\()

machine remains in state HG as long as either no cars are detected or the long

time-out has not occurred, in other words as long as (C)AND(TL) = 0. After the

long time-out occurs, if any cars are detected, the machine restarts the timer and

changes state to HY, where the highway lights are yellow. It remains in state HY
only until the short time-out occurs, and then restarts the timer and changes to

state FG, where the farmroad lights are green. It remains in state FG until either

no cars are detected or the long time-out occurs, that is until (C)'OR(TL) = 1.

Then it restarts the timer and changes to state FY, where the farmroad lights are

yellow. It remains in state FY only until the short time-out occurs. It then restarts

the timer and changes to state HG, the starting state.

The locations of transistors in the PLA light controller circuit can be deter-

mined by "hand assembling'' the "program" specified in the "symbolic" transi-

tion table in Table 3.1, resulting in the encoded state transition of Table 3.2. First

we assign codes to the states: state HG is encoded as (Yo,Yi) = (0,0), HY as (0,1),

FG as (1,1), and FY as (1,0). Next we assign codes to the output light control

signals: green is encoded as (0,0), yellow as (0,1), and red as (1,0). We now form
the encoded state transition table by constructing one row for each product term

implied in Table 3.1 . A row in Table 3.1 specifying a state transition as a function

of a single input variable or single product term of input variables produces a

single row in Table 3.2. A row in Table 3.1 specifying a state transition as a func-

tion of a sum or sum of products of input variables leads to a corresponding

number of rows in Table 3.2.
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Placement of the transistors within the PLA matrices follows directly from the

encoded state transition table according to the three rules that follow. (Note that if

all lines that control the transistors connecting a given product term line to ground

are Unw then that product term line will be///^'/;. Otherwise it will below.):

1. For each logic- 1 in the next state and output columns in the table, we run a

diffusion path from the corresponding next state or output line in the PLA OR
plane, under the corresponding product term line, to ground. This creates a tran-

sistor controlled by the product term line. Then, if that controlling product term

line is everhii>h, the path to the output inverter will below, and the output will be

high. The output line will be low unless some product term line controlling it is

hii^h

.

2. For each logic- 1 in the input and present state columns in the table, we run a

diffusion path/row the corresponding product term line, under the corresponding

inverted input or state line in the PLA AND plane, to ground. The transistor thus

created is controlled by the inverted input or state line. Whenever that controlling

line crossing the AND plane is high , the product term line will be low

.

3. For each logic-0 in the input and present state columns in the table, we run a

diffusion path from the corresponding product term line, under the corresponding

noninverted input or state line in the PLA AND plane, to ground. The transistor

thus created is controlled by the noninverted input or state line. Whenever that

controlling line crossing the AND plane is high , the product term line will be low

.

The PLA finite-state machine in Plate 8 is programmed from the transition

table in Table 3.2, according to the rules above, and it implements the traffic light

controller. Note that this LSI implementation does not exactly strain itself to meet

the time response requirements of the control problem: it can run at a clock rate at

least 10^ times as fast as required. Also, note that the PLA controller is roughly

(150X)^ in area. Using the 1978 value of \ = 3/xm, this controller is (450/>tm)^ ~
0.002 cm^ in area. A PLA controller this size may contain over 150 transistors but

occupies only 1/125 of the area of a typical 0.25 cm^ silicon chip in 1978. By the

late 1980s, as \ scales down toward its ultimate limits, such a controller will re-

quire only = 1/25,000 of the area of such a chip.

As we will see in later chapters, a data processing machine of any desired

complexity can be created by interconnecting register-to-register data processing

paths constructed along the lines of that shown in Fig. 3.16, such paths being

controlled by finite-state machines implemented as shown in Fig. 3.22. The data

paths form the " "highways" for the movement of data under control of the finite-

state machine "traffic controllers."

3.12 TOWARD A STRUCTURED DESIGN METHODOLOGY

The task of designing very complex systems involves managing, in some highly

structured way, the space and time relationships between the various levels of
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system building blocks so that the entire system will function as intended when it

is finished. The beginnings of a structured design methodology for VLSI systems

can be produced by merging together in a hierarchy the concepts presented in this

chapter. Designs are then done in a "top down" manner but with a full under-

standing by the architect of the successive lower levels of the hierarchy.

To begin, we plan our digital processing systems as combinations of register-

to-register data transfer paths, controlled by finite-state machines. Then the

geometric shapes, relative sizes, and interconnection topologies of all subsystem

modules are collectively planned so all modules will merge together snugly, with a

minimum of space and time wasted by random interconnect wiring. Storage regis-

ters are typically constructed by using charge stored on input gates of inverting

logic. The combinational logic in the data paths is typically implemented using

steering logic composed of regular structures of pass transistors. Most of the com-
binational logic in the finite-state machines is typically implemented using PLA's.

All functioning is sequenced using a two-phase, nonoverlapping clock scheme.

When viewed in its entirety, a system designed in this manner is seen as a

hierarchy of building blocks, from the very lowest level device and circuit con-

structs, up to and including the high-level system software and application pro-

grams in which the intended functions of the system are finally expressed. Indi-

viduals who understand the key concepts of each level in this hierarchy will rec-

ognize that the boundaries between levels are rather elastic ones. Each level of

activity might best be optimized not on its own as a specialty but as it fits into an

overall systems picture. For example, the activity "logic design" in integrated

systems might best be conceptualized as the search for techniques and inventions

that best couple the physical, topological, and geometric properties of integrated

devices and circuits with the desired properties of digital VLSI systems. The
search for alternative components for any given design hierarchy, and the search

for alternative hierarchies, will be done best by those who span more than one

specialty.

A particularly uniform view of such a system of nested modules emerges if we
view every module at every level as a finite state machine or data path controlled

by a finite-state machine. At the lowest level, elements such as the stack and

register cells may be viewed as state machines with one feedback term (the out-

put), two external inputs (the control signals), and a 1-bit state register. These

rudimentary state machines are grouped in a structured manner to form portions

of a state machine, or data path controlled by a state machine, at the next level of

the hierarchy. Structured arrays of identical state machines often provide a

mechanism for distributing processing among memory cells (linger, 1958), thus

enabling vast increases in processing bandwidth. Although in some cases the

feedback paths are used in rather specialized ways, the state-machine metaphor

still provides a precise description of module behavior. The entire system may
thus be viewed as a giant hierarchy of nested machines, each level containing and

controlling those below it. (A detailed quantitative treatment of certain hierarchi-

cally organized machines is given in Chapter 8.)
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(In Chapters 5 and 6 we will apply the design methodology developed in this

chapter to the design of a digital computer system. A 1-chip implementation of the

data path portion of this computer system is illustrated in the frontispiece. Consis-

tent use of the described design methodology resulted in a design of great regu-

larity, short delay times, low power consumption, and high logical processing

capability. As we will see in Chapter 4, regular designs, with small numbers of

basic circuit cell types replicated in two dimensions to form subsystems, also have

significant implementation advantages over less structured designs.)
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pJ IMPLEMENTING
I I INTEGRATED

SYSTEM DESIGNS:
FROM CIRCUIT TOPOLOGY

TO PATTERNING GEOMETRY
TO WAFER FABRICATION

This chapter presents the basic concepts involved in implementing integrated sys-

tem designs, from the system designer's point of view. Tools are described that

help the designer produce the geometrical layout patterns for each layer of an

integrated system, given the logic, circuit, or topological level design of the sys-

tem. Procedures are described for encoding the layout patterns and then using the

encoded layouts in the patterning and fabrication processes to implement the inte-

grated system. In addition, we discuss how design tools and implementation pro-

cedures are likely to evolve, under the influence of increased complexity of design

and predictable changes in the technologies of implementation.

To enable groups of readers to actually design moderate-sized LSI systems,

we include descriptions of easily constructed design tools and procedures for or-

ganizing and implementing LSI multiproject chips. In each case, the tools are

described as part of a complete system of design and implementation procedures,

some of which are performed manually while others are machine assisted. Those

experienced in software system design will recognize that construction of the

machine-assisted portions of the systems is fairly straightforward. Contrary to

what many think, designing your own LSI projects, merging them onto collabora-

tive multiproject chips, and having these implemented by commercial maskmak-
ing and wafer-fabrication firms is now well within the computational and financial

reach of most industrial R&D groups and university EE/CS departments.

We are firm believers in learning by doing and hope that the information pro-

vided in this chapter will both help and encourage many groups of readers to try

their hand at building design tools and designing integrated systems. Such
firsthand experience will lead to a deeper understanding of the remaining material

in this text.
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4.1 INTRODUCTION

An overview of the stages of integrated system design, layout, and implementa-

tion is given in Fig. 4.1. The designer first transforms the circuit and topological

level designs into a geometrical layout of the system, using procedures described

later in this chapter. In order to optimize the layout, perform various design

checks, and discover errors, the designer usually "iterates" several times be-

tween design and layout. The result is a set of design files that describe the layout.

The files are in a particular representation called an intermediate form, which

efficiently and unambiguously describes the layout geometry.

The design files are then converted to files for driving the chosen patterning

mechanism. At present, design files are commonly converted to pattern generator

r
[Revisions)

System

Definition

l)f SIC.N e
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Fig. 4.1 Overview of implemen-

tation of an integrated system.
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(PG) files , for use by a maskmaking firm for driving an optical pattern generator,

the first step of maskmaking. By a sequence of photolithographic steps, the mask
house produces a set of masks, which a commercial wafer fabrication firm then

uses to pattern silicon wafers. Each finished wafer contains an array of system

chips. The wafers are then diced into separate chips, which are packaged and

tested to yield working systems.

From the system designer's point of view, maskmaking and fabrication can be

visualized as a film-processing service: the designer produces the "artwork " (de-

sign files), from which the mask house makes "negatives" (masks), which are

then run on a fab line to produce "prints" (wafers). The maskmaking-fabrication

sequence is function, design, and layout independent: the mask and fab firms do

not require detailed information about the integrated systems they fabricate. If the

original layouts satisfy the design rules, and satisfy a few constraints imposed by

patterning and fabrication, then these processes will yield correctly patterned

wafers.

One need not closely bind a system's design to the detailed processing speci-

fications of particular mask and fab firms. Various firms will differ somewhat in

the minimum value of the length unit k they can successfully process. The transit

time of the transistors fabricated will vary from one fab line to another, as will the

resistance per square and capacitance per unit area of fabricated features. How-
ever, well-structured and relatively process-independent /7MOS designs will func-

tion correctly if scaled to a value of X appropriate for the chosen fabrication

facilities and operated using an appropriate system clock period.

We next examine some of the present implementation procedures a bit more
closely, to set the stage for sections on design and layout. Those later sections will

be clearer if one can visualize how the design files are to be used during patterning

and fabrication.

4.2 PATTERNING AND FABRICATION

On completion of design and layout, the system design is contained in system

layout files in intermediate form. Prior to fabrication, a final check plot of the

layout is usually generated by converting the design files to files for driving a

graphics plotter. Check plots are used for visually checking for violations of design

rules and other design errors. Once the designers have done as much visual check-

ing as they are going to do, the system layout files are converted to pattern

generator (PG) files, to be sent to the maskmaking facility. Figure 4.2 summarizes

the sequence of patterning and fabrication procedures that follows and also iden-

tifies the artifacts passed on at each step in the sequence.

Maskmaking begins with pattern generation to produce reticles. Present pat-

tern generators are projector-like systems containing (1) a precisely movable

stage, (2) an aperture of precisely variable rectangular size and angular orienta-

tion, and (3) a light source, all program controllable by a computer system. To
produce a reticle, a photographic plate is mounted on the stage, and then the PG
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PG files
Light source and

variable aperture

Stage motion in y

^X

Fig. 4.3 The function of a pattern generator. Fig. 4.4 Parameters of one flash of a pattern

generator.

file for a particular system layer is used to direct the "flashing" of a sequence of

rectangular exposures, of particular sizes and orientations, onto a sequence of

coordinate locations on the plate, as illustrated in Fig. 4.3.

The PG file contains a sequence of entries, each of which describes a rect-

angle.' A typical representation uses five numbers for each rectangle: the x,y

coordinates of its center, and its height, width, and angular orientation, as shown
in Fig. 4.4. One can now visualize the nature of the conversion from intermediate

form to PG files: the layout of each layer must be decomposed into its equivalent

as a set of rectangles, each having {x,y,h,w,a) values "flashable" by the particular

pattern generator, and these rectangles must be sorted into an efficient flashing

sequence for that pattern generator.

When the flashing sequence is completed, the plate is developed, yielding the

reticle (Fig. 4.5). Each reticle is a photographic master copy (much like a photo

Fiducial mark —

I OX reticle

— — Fiducial mark

Layout pattern for layer

at lOX chip dimensions

Fig. 4.5 Sketch of a lOX reticle.
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negative) of the layout of one system layer, usually at a scale ten times (lOX) the

final system chip size. Photo enlargements of reticles, called hlowhacks , may be

obtained from the mask house, to provide a further level of checking of the design

layout, PG file conversion, and pattern generation. At the current value of X = 3

microns, blowbacks at approximately 100 to 150 times actual chip dimensions

have sufficient detail to enable visual checking of the smallest features. Blow-

backs of reticles may also be obtained in the form of color transparencies, to

enable inspection of superposed overlays of various layers.

Once the lOX reticles have been generated, a IX master mask is made from

each reticle using a photorepeater, often called a "step and repeat" camera. The

photorepeater exposes a photographic plate held on a movable stage, as in the

pattern generator. In this case, however, each plate exposure is a 10:1 photo re-

duction of the reticle pattern. Between exposures the stage is moved by a precise

x,y stepping distance. This process is repeated until a complete array of IX chip

patterns for one layer of the system has been exposed. The plate is then developed

to produce a IX master mask. Figure 4.6 sketches such a mask made from the

reticle shown in Fig. 4.5. Note that as each reticle is inserted in the photorepeat-

er, the position and angular orientation of the reticle pattern is carefully adjusted

by microscopic examination of twofiducial marks on the reticle. These marks are

placed as part of the pattern generation process and have the same precise posi-

tion relative to the chip pattern origin on each of the system's reticles, thus assur-

ing that all mask levels produced with the photorepeater will accurately register

with each other.

^

IX mask

Array of IX chip layout

patterns for layer

produced by step-

and -repeat reduction

of layout pattern

in above reticle

Fig. 4.6 Sketch of a mask made from the

reticle shown in Fig. 4.5.

A succession of contact prints is made from each master mask to yield a

number of working masks, sometimes called working plates, for each system

layer. These are the actual masks used in wafer fabrication. During the contact-

printing step of the typical wafer fabrication procedure, the working plates some-

times become worn or damaged, so several are usually made for each layer.
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The wafer fabrication facility uses the working plates, in the sequence of pat-

terning and process steps described in Chapter 2, to produce finished wafers. The
fab line requires no detailed information about the design or mask patterns of the

integrated system being fabricated. However, several auxiliary patterns are nor-

mally included in the mask patterns, some of which are replicated on each chip

and are examined during wafer fabrication: ( 1 ) alignment marks , which are used to

accurately overlay successive masks with previous patterning steps, (2) line-width

testers, sometimes called critical dimensions (C/D's), which are lines in each mask
layer of stated width that may be examined during maskmaking and fabrication to

control dimensional tolerances, and (3) a few simple test transistors and their as-

sociated probe pads, which may be electrically tested prior to packaging to verify

that the wafer fabrication process was successful.

The finished wafers are divided into chips and packaged by the sequence of

steps sketched in Fig. 4.7. The surface of the wafer is marked along the scribe

lines (the boundary lines between chips) with either a diamond-tipped scribe or a

diamond-edged saw blade. The wafer is then fractured along these lines into single

chips. Each individual chip is then cemented into the cavity of a package. Fine

wires are bonded between the contact pads on the chip and the leads of the pack-

age, and a cover is cemented over the cavity; the system is then ready for

functional testing.

From the preceding we see that once a system's design files have been pro-

duced, all the remaining implementation procedures are design and layout inde-

pendent, and largely automatic. However, the many extraneous parameters, pat-

i"

WAFER

ice into chips

^^ CHIP Fig. 4.7 The packaging sequence.

i

Mount chip in package and

then wire bond pads to leads
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terns, and constraints involved in maskmaking and fabrication must be carefully

thought through and defined in order to guarantee successful implementation

within a reasonable turnaround time. The PG files must be correctly sorted and

formatted for the chosen pattern generator. The lOX pattern of the chip must fit

within the largest reticle that the pattern generator can produce. The photore-

pealer used will determine the shape, size, and location of the fiduciiil marks on the

reticle. The size, surface material, and photographic polarity, either positive (clear

background field with opaque features) or negative (dark field with transparent

features), of the working plates will be a function of the fabrication facility to be

used. Each fab line also typically prescribes its own patterns for the alignment

marks and test transistors to be included along with the system in the mask

patterns.

While many designs may be scalable and have some longevity, the parame-

ters, patterns, and constraints of maskmaking and fabrication are changing rapidly

as the technologies evolve. This constant change complicates interactions with

mask and fab firms. Later we describe procedures for implementating moderate-

sized LSI systems as part of multiproject chips. Such chips are collaborative ef-

forts of many designers, facilitating the merger of many projects into one

maskmaking and wafer fabrication run. In this way the procedural overhead in-

volved may be shared.

4.3 HAND LAYOUT AND DIGITIZATION USING A SYMBOLIC LAYOUT LANGUAGE

A simple and common method of producing system layouts is to draw them by

hand. This is typically done on a one lambda grid using the familiar color codes to

identify various system layers. Once the layout has been hand drawn it can then

be iJii^'itizecL or translated into machine-readable form, by encoding it into a sym-

bolic layout language. This method, hand layout and digitization using a symbolic

layout language, is quite practical for generating design files for highly structured

system designs. Be warned, however, that implementing irregular structures using

these primitive procedures is a difficult and tedious task.

If a system has only a few cell types that are replicated over and over, and

otherwise has little
"

'random wiring," one need draw only a single copy of each

cell type, and then make reproductions or equivalent-sized outlines of these cell

draw ings. All these cell reproductions may then be patched together to plan and

build up the overall layout. Similarly, only one symbolic digitization need be made
for each cell type. The replication of cells in various orientations and locations in

the system layout can then be easily described using the symbolic layout language.

In a sense, the ease with which a system's layout can be described using a primi-

tive layout language provides a measure of the regularity of its design. The 0M2
Data Chip pictured in the frontispiece was laid out and digitized in this way, using

only the simplest machine aids.

The function of a symbolic layout language, in its simplest form, is similar to

that of a macroassembler. The user defines symbols (macros) that describe the



4.3 Hand Layout and Digitization Using a Symbolic Layout Language 99

layout of basic system cells. The locations and orientations of instances of these

symbols are described in the language, as a function of appropriate parameters.

These symbolic descriptions may then be mechanically processed in a manner

similar to the expansion of a macro assembly language program, to yield the in-

termediate form description of the system layout, which is analogous to machine

code for generating output files. (An example intermediate form is described in

Sec. 4.5.) The intermediate form files may be processed to yield the PG files, each

layer being a machine-encoded collection of rectangles encoded as [x,y,h,w,a]

values. The generation of PG files is analogous to the loading and execution of

machine code to produce output files: it is a process of "unrolling" and fully

instantiating all symbol descriptions into a sequence and format suitable for a

particular output device. Definition of simple layout languages and the construc-

tion of their assemblers is fairly straightforward. The reader may define and im-

plement layout languages by using the macro assembler or higher level language

facilities of any commonly available computer system (Donovan, 1972; Freeman,

1975).

The following example will clarify the concepts and procedures of hand layout

and symbolic layout description: We wish to create an array of shift registers

consisting of parallel horizontal rows of inverters coupled by clocked pass tran-

sistors, as in color Plate 5(b). Plate 9(a) sketches the stick diagram of one row of

the array. The entire array can be constructed from one basic cell containing an

inverter, the pass transistor following it, VDD and GND buses crossing through

on metal, and a clock line passing through on poly. Plate 9(b) shows a hand sketch

of the layout of the basic shift register cell, SRCELL, on a 1 \ grid, subject to the

design rules given in Section 2.6. Since the inverters are coupled by pass tran-

sistors, the inverter pull-up/pull-down ratio is = 8: 1 (see Sec. 1.12). Also, while the

4X wide metal lines could be 1 \ narrower in between the contact regions, the cell

size would not decrease. As an exercise, the reader might check for design rule

violations and also for ways of further shrinking the cell size.

The SRCELL layout shown in Plate 9(b) is composed using only rectangles

placed at orientations that are integer multiples of 90°. The illustrations and de-

scriptions in this section are considerably simplified by the use of such con-

strained layout constructions and yet they still illustrate the general principles

involved. Were completely arbitrary shapes used, the SRCELL could be made
somewhat smaller and still satisfy the design rules. Interestingly, experience has

shown that the simple extension of including rectangles at orientations that are

integer multiples of 45° enables most cell layouts to reach within a few percent of

the minimum area achievable using arbitrary shapes. There is a clear trade-off

here: the inclusion of increasingly complex geometrical objects in a layout will

tend to reduce the minimum achievable layout area but will also increase the com-

putational complexity of the associated machine aids.

We can informally characterize a simple layout language by examining Fig.

4.8, which contains a description of the layout of an array of SRCELL's using such
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SCALE LAMBDA = 3.0M1CRON;

SYMBOL START, S

BOX DIFF.X =

BOX DIFF.X =

BOX D1FF.X =

BOX DIFF,X =

BOX D1FF,X =

BOX DIFF.X =

BOX DIFF.X =

BOX 1MPL.X =

BOX POLY.X =

BOX POLY.X =

BOX POLY.X =

BOX POLY,X =

BOX POLY.X =

BOX CUTS.X =

BOX CUTS.X =

BOX CUTS.X =

BOX METL.X =

BOX METL.X =

BOX METL.X =

SYMBOL END:

RCELL:
3.Y =0XX =4XY = 4.NY = 2,IY = 19:

2.Y = 3.LX=6,LY = 9;

8,Y = 8.LX = 3.LY = 2;

9,Y=10.LX =2,LY=L
9,Y = 11,LX = 7.LY = 2:

16,Y = 9,LX = 4,LY = 4;

4.Y = 12.LX = 2.LY = 7-.

2.5.Y = 9.5,LX = 5,LY=10;
= 0.Y = 5.LX=10,LY = 2:

= 12.Y = 0.LX = 2XY=26:
:16,Y = 5.LX =5XY = 2:

= 16.Y=7,LX=4XY = 3;

=2.Y-1LLX=6XY = 7:

= 4.Y=LLX = 2.LY = 2,NY = 2.IY = 19:

= 17.Y = 8,LX = 2.LY = 4:

=4.Y = 9.LX = 2.LY=4:
= 0.Y=0,LX-2LLY=4.NY = 2.IY=19:
= 3.Y = 8.LX = 4.LY = 6:

= 16.Y = 7,LX = 4,LY = 6;

INVERTER OUTPUT

PULLUP IMPLANT
CELL INPUT
CLOCKLINE
CELL OUTPUT

VDD&GND

DRAW SRCELL.NX = 4.NY = 2.IX = 21.IY = 38.X=0.Y = 0:

DRAW SRCELL.M1RRORX.NX = 4.IX = 21.X = O.Y = 42:

END:

Fig. 4.8 Symbolic description of a shift register array.

a language. The language describes layouts as collections of BOXes on various

layers. BOX statements describe each of these boxes by specifying their layer, the

X.Y coordinates of their lower left corner, and then their lengths, LX in the

jc-direction, and LY in the y-direction. The use of a box corner to encode its loca-

tion simplifies the encoding task. BOX statements may describe arrays of identi-

cal boxes, with the array's lower left corner origin at X,Y, by including optional

parameters that specify the number NX and replication interval IX in the

AT-direction, and NY and lY in the y-direction. Dimensions are given in the length

unit, k. A SCALE statement defines the value of \for this particular layout as \ =

3.0 microns.

In Fig. 4.8, the SRCELL is first described as a macro, or SYMBOL. The

reader can verify that the collection of BOXes in the definition of the SYMBOL
SRCELL. when ORed together, produces the layout shown in Plate 9(b). This
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SRCELL is then replicated a number of times in various layout locations accord-

ing to parameters in several DRAW statements.

Each DRAW statement describes the placement of an array of cells as fol-

lows: The cell described by the named SYMBOL definition is considered to be

drawn at the origin. It is then mirrored (about the x- and/or j-axis), and/or rotated

(by 0°, 90°, 180°, or 270°) about the origin, as specified by MIRROR or ANGLE
transformations. The cell thus positioned may then be replicated NX times at

distance intervals IX in the jr-direction, and that row of cells may then be rep-

licated NY times at intervals lY in the y-direction. The resulting array of cells is

then translated adistance A",)^ from the origin and placed into the layout.

The "program" in Fig. 4.8 describes an array of 3 rows by 4 columns of

SRCELL's. After machine assembly of this program, the resulting design file can

be used to generate check plots, which may be inspected to detect errors made in

encoding the layout. A check plot of one SRCELL is given in Fig. 4.9(a), and we
see that the cell has been correctly digitized. A set of stipple patterns is used in

this check plot to encode the different system layers (see Fig. 4.9(b)). If available,

color check plots are much better: color check plots can be made denser and still

be readable, and association of colors with layers and functions is more easily

Fig. 4.9 (a) Check plot of the SRCELL.
(Dimensions in lambda. Implant layer not shown.)

(b) Check plot of stipple codes.

0,

(a)

^iSi
-

Implant Diffusioi 1 Poly

(b)

Cuts Metal
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Fig. 4.10 Check plot of a 3-by-4

array of SRCELL's. (Dimensions

in lambda, with the cell outlines

indicating relative cell placements

according to the program in Fig. 4.8.)

0.0

made and subject to fewer eirors in practice. Note: the implant layer hasn't been

plotted in Fig. 4.9(a) so that the other layers may be more easily seen.

A check plot of the complete 3 by 4 array of cells is given in Fig. 4.10 (again

the implant layer is not plotted). Although Fig. 4. 10 is of insufficient scale to check

details within the cells, it enables us to check for correct relative placement of the

SRCELLs. The individual cell outlines are included to indicate the nature of the

placement of the central row of the array. By mirroring the central row prior to its

placement, that row is able to share VDD and GND with the other two rows, thus

reducing the overall array size. There is one column of cells per 21 lambda in the

jc-direction and one row of cells per 19 lambda in the y-direction. It is very impor-

tant to note that the outcome ofeach DRA W statement is determined hy the order

in which any mirror, rotate, replicate, and translate operations occur (see Sec. 4.5

on the Caltech Intermediate Form, and also Newman and Sproull (1979)). Any

permutation in the order of these operations may lead to a completely different

result.

In Chapter 3 we found that the PLA is a useful subsystem structure, often

used to implement finite-state machines and combinational logic. We now present

a worked-out example of a PLA's layout, to further clarify symbolic layout de-

scripaon. An examination of the PLA stick diagrams shown in Plate 7(c) and Plate

8 reveals that a PLA can be constructed using six basic cell types and a slight

amount of "random wiring." Once these six basic cells have been laid out by hand
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and symbolically digitized, it is easy to construct symbolic descriptions of

different-sized PLA's having various numbers of inputs, product terms, and out-

puts.

The digitized layouts of four of these basic cells are check-plotted in Fig. 4.11.

The AND and OR planes of the PLA are constructed as arrays of the 14X by 14X

PLAcellpair cell plotted in Fig. 4.11(a), which contains two poly and two metal'

signal lines, and one ground line on the diffusion layer. Diffusion paths may be

added in any of four locations in such cells to form transistors and thus program

the PLA. The connection between the AND and OR planes is made using the

PLAconnect cell plotted in Fig. 4.11(b): these cells change the signal paths from

the metal to the poly layer. The pull-up transistors to be placed at the edges of the

AND and OR planes are implemented by the Pulluppair cell shown in Fig. 4. 1 1(c).

The ground return paths, to be connected to the diffusion lines crossing the

planes, are implemented by the PLAground cell shown in part (d). The PLA-
(cDiit. p. 106)

0.0

^»

^
(a) PLAcellpair

14

14

0.0

«M^

nWXnX'-^XNN'^^nn \\^\\ ^

(b) PLAconnect

14

0,
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iiii
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(c) PullupPair

0,0

.^V-JvvX

(d) PLAground

14

Fig. 4.11 Check plots

of digitized layouts of

four basic cells. (All

dimensions in lambda.)
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SCALE LAMBDA = 3.0MICRON;

; PLA CELL DEFINITIONS:

SYMBOL START,PLACELLPAIR;
BOX DIFF,X =0,Y=1,LX = 4,LY =4,NY = 2,IY = 7;

BOX DIFF,X = 8,Y =0,LX = 2,LY=14;
BOX POLY.X = 5,Y = 0,LX-2,LY= 14,NX = 2.IX = 6;

BOX CUTS.X=1,Y = 2,LX=2,LY-2,NY-2.IY = 7;

BOX METL,X = 0,Y = 1,LX=14,LY = 4,NY = 2,IY = 7;

SYMBOL END;

SYMBOL START,PLACONNECT;
BOX DIFF,X = 0,Y=1,LX = 4,LY=4,NY-2,IY=7:
BOX DIFF,X = 9,Y-4,LX = 4,LY = 4:

BOX DIFF,X = 13,Y =4,LX = 3,LY = 2;

BOX POLY,X = 6,Y = 1,LX = 10,LY = 2,NY = 2,IY = 8;

BOX POLY,X = 3,Y = l,LX = 3,LY = 4,NY = 2,IY = 7:

BOX POLY,X=14,Y=7,LX = 2,LY-2;
BOX CUTS,X=1,Y = 2,LX=4,LY = 2,NY = 2,IY = 7;

BOX CUTS,X=10,Y-5,LX=2,LY-2:
BOX METL,X = 9,Y = 0,LX = 4,LY=14;
BOX METL,X =0,Y=1,LX-6,LY =4,NY = 2,IY = 7;

SYMBOL END:

SYMBOL START,PULLUPPAIR;
BOX IMPL,X=8.5,Y=0.5,LX=13XY = 5;

BOX IMPL,X=0.5,Y=4.5,LX=5,LY=8;
BOX IMPL,X=0.5,Y=7.5,LX=n,LY=5;
BOX DIFF,X =0,Y=LLX =4XY = 4:

BOX DIFF,X=4,Y = 2,LX=16,LY = 2;

BOX DIFF,X = 2,Y=5,LX=2,LY=4;
BOX DIFF,X = 2,Y =9,LX=18,LY = 2;

BOX DIFF,X = 9,Y-8,LX = 4,LY = 4:

BOX POLY,X=10,Y-0,LX = 8,LY = 6;

BOX POLY,X=18,Y=l,LX = 2,LY= 4;

BOX POLY,X = 8,Y = 8,LX = 2,LY=4;
BOX POLY,X=0,Y = 7.LX-8,LY-6:
BOX POLY,X = 0,Y = 6,LX = 6,LY=1:
BOX CUTS,X-1,Y=2,LX=2,LY=2,NX = 2JX=17:
BOX CUTS,X = 8,Y=9,LX=4,LY=2;
BOX METL,X = 0,Y =0,LX=4,LY=14;
BOX METL,X-7,Y = 8,LX=6,LY=4:
BOX METL,X=17,Y=LLX=3.LY=4;

[SEEFIGURE4.11A.)

DIFF TO GND

METLTOPULLUPS

(SEEFIGURE4.11B.1

GND

[SEE FIGURE 4.1 IC.

VDD

{cont.)

Fig. 4.12 Symbolic description of a 5-input, 10-pterm, 8-output PLA.
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fSEEFIGURE4.11D.l

GND

SYMBOL END;

SYMBOL START.PLAGROUND:
BOX DIFF,X = 8.Y = LLX-2XY=9;
BOX DIFF,X = 6,Y = 3,LX = 4,LY = 4;

BOX POLY,X=3,Y=0,LX=2,LY=10:
BOX POLY,X = 5,Y=0,LX=2,LY = 2,NY = 2,1Y = 8:

BOX POLY,X=n,Y=LLX=2,LY=9:
BOX CUTS,X = 7,Y =4XX = 2,LY = 2;

BOX METL,X = 0.Y = 3,LX=14.LY = 4;

SYMBOL END:

SYMBOL START,PLAINPUT:

[
insert symbol definition; size: 14 wide by =35 high

|

SYMBOL END;

SYMBOL START.PLAOUTPUT;

[
insert symbol definition; size: 14 wide by =41 high

]

SYMBOL END;

LAYOUT 5-INPUT. 10-PTERM,8-0UTPUTPLA:
[SEE FIGURE 4.131

DRAW PLACELLPAIR,NX = 5,NY = 5,1X=14,IY=14,X = 0,Y = 0;

DRAW PLACONNECT,NY = 5,IY=14,X = 70,Y = 0;

DRAW PULLUPPAIR,NY = 5,IY=14,X=-19,Y = 0;

DRAW PLAGROUND,NX = 5,NY = 2JX=14,IY = 79,X =0,Y=-10;
DRAW PLACELLPAIR.ANGLE = 270.NX-4,NY =5,IX-14,IY=14,X-86,Y=14;
DRAW PULLUPPAIR,ANGLE = 270,NX = 4,1X = 14,X = 86,Y = 89;

DRAW PLAGROUND,ANGLE = 270,NY = 5,1Y=14,X-141,Y=14;
DRAW PLAINPUT,NX = 5,IX=14,X=0,Y=-44;
DRAW PLAOUTPUT,NX = 5,IX=14.X = 86,Y = -41:

BOX DIFF,X = 70,Y=-15,LX = 4,LY = 4;

BOX CUTS,X = 71,Y=-14,LX = 2,LY = 2;

BOX METL,X = 70,Y= -15,LX = 4,LY=4;
BOX METL,X = -19,Y = 70,LX = 4,LY = 9; VDD
BOX METL,X=-19,Y = 79,LX=105,LY = 4; VDD
BOX METL,X = 82,Y = 83,LX=4,LY = 6; VDD
BOX METL,X=142,Y-85XX = 9,LY = 4; VDD
BOX METL,X=151,Y=-40,LX = 4XY=129; VDD

(cant.)
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BOX METL.X == 142.Y = -40.LX = 9.LY = 4; VDD
BOX METL.X == -19,

Y

= -15.LX=19,LY = 4: VDD
BOX METL.X^= -I9.Y --11,LX = 4.LY=11: VDD
BOX METL.X == 70.Y =

-

71,LX=9,LY=4; GND
BOX METL,X == 70,Y = -7,LX-9,LY=4: GND
BOX METL.X == 70,Y = -24,LX = 9,LY = 4: GND
BOX METL,X == 79,Y = -45,LX = 4,LY = 45; GND
BOX METL.X == 83,Y- -21,LX = 3,LY=4; GND
BOX METL,X == 142,Y = -21,LX = 2,LY=4; GND
BOX METL.X-= 144,Y = -21,LX=4,LY = 21; GND
BOX POLY.X = -4.Y = -43,LX=4,LY = 2: PHI
BOX POLY,X = 142,Y = -7,LX=15,LY = 2; PH2

[
insert the PLA 'program", using BOXes on the diffusion

layer to form transistors in the PLAcellpair cells
1

[
insert the PLAs input, output, clock, and power connections

END:

Fig. 4.12 Continued.

ground cell is stnjctured so that rows of the cell may be inseiled at intervals within

AND planes and so that columns of the cell may be inseiled at intervals within OR
planes, to provide proper ground returns in large PLA's.The two other cell types

required are the input drivers and output inverters: these cell layouts are left as

exercises for the reader. The cells shown in Fig. 4.11 have been collectively

planned so as to fit on a 14\ pitch surrounding the PLAs planes. Figure 4.12

contains a symbolic description of each of these cell types and a description of a

moderate-sized PLA constructed from these cells.

A check plot of the PLA described in Fig. 4.12 is given in Fig. 4.13. This check

plot has been simplified to include only the outlines of the basic cells, plus the

additional wiring necessary to complete the PLA. The dimensions and orienta-

tions of the cells may be found by comparing these outlines with the cell details

shown in Fig. 4.11. Note that in Fig. 4.11 some of the connection points, where

paths leave or enter at cell edges or where internal connections may be later in-

serted, are tagged with tick marks. Cell placements and orientations in the check

plot may be visualized by locating and identifying the appropriate connection

point marks. A comparison of the check plot with the symbolic description above

will clarify the function of the various DRAW statements. To assist in this com-

parison, the origin cell of the array of cells produced by each DRAW statement

has been marked in Fig. 4.13 with its cell name. Note that this PLA layout could

contain the PLA example presented in Plate 8.

Symbolic layout languages are easy to define and may be primitive or sophis-

ticated, according to the requirements of the user. The function of the assembler
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Fig. 4.13 Check plot, using only cell outlines, of the 5-input, 10-pterm, 8-output PLA.

(Dimensions in lambda. Symbol labels on origin cells of the DRAW statements

shown in Fig. 4. 12.)

for such a language is simply to scan and decode the statements and translate them

into design files in intermediate form. Conversion of design files into check plot or

pattern generator output files is straightforward for the above simple language,

since we have used only boxes with a severe constraint on angular orientations.

MIRROR and ANGLE transformations are easily handled: .v- and y-coordinates of

symbols and boxes are simply replaced by ±x or ±>', according to the specific

parameters, during the instantiation of symbols and drawing of boxes prior to their

replication and translation into the layout output file.

The effectiveness of the above language could be further increased by con-

structing an assembler capable of handling nested symbols. Through the use of

nested symbols, system layouts may be described in a hierarchical manner, lead-

ing to very compact descriptions of structured designs. At the lowest level, one

might define symbols for such small but commonly encountered structures as the

various forms of contacts. Boxes and these simple symbols could then be used to

construct cells such as those in the PLA example (Fig. 4.12). The PLA could be
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constructed with these cells and then defined as a symbol to be used in a larger

design. An example of the sort of function one might add to create a much more
sophisticated language, and language processor, would be the capability of

generating the layout description of a PLA from the collection of basic cells, as a

function of its input, product term, and output size parameters and logic function

parameters.

Figure 4.14 summarizes the procedures and artifacts of hand layout, and lay-

out description and digitization using a layout language. By studying Fig. 4.14 and

thinking back over the material and examples of this section, one can visualize a

r

I-

Begin ilcsign

Plan overall topology and geometry of ciiip,

stick diagram cells, subsystems, ami interconnects
n

Intbrmal design sketches and notes

llaiui la\out of all system ceIN ^
Iterate as cell dimensions

are determined

Detailed cell layout drawings on grid

r
Hand digiti/e all cell layouts in symbolic form

and encode complete layout using layout language

System layout description in

layout language source code

Manual check for

system and circuit design

errors, layout errors, and

design rule violations

\ssemble lavcnit dcscniition

System layout files m intermediate form

Convert/sort into

plotter format

and plot

^
T

JL

Convert/sort into

pattern generator

format

Clieck plot Pattern eeiierator files

To pattern

generation

Iterate as overall

design progresses

Fig. 4.14 Design, hand layout,

design file generation, and

design checking using a

symbolic layout language

and simple machine aids.
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complete, though primitive, sequence of steps sufficient to prepare a design for

implementation. These procedures are entirely adequate for preparing small LSI

projects for implementation. The procedures may also be used for those larger

integrated systems which have highly structured designs.

The primary obstacle that these primitive procedures place in the path of the

system designer is the sheer time and effort it takes to get through the loop to a

new check plot each time a small design change is made. The enthusiasm aroused

by a sudden insight, such as the conception of a completely new topological possi-

bility for an important system cell, can be dampened by the tedious tasks of hand

layout and box digitization required before one can really see the full effect of the

idea on the overall system layout.

Though often supported by large batch mode CAD systems for containing,

modifying, check plotting, and simulating designs, the majority of LSI layout now
done in industry begins with hand layout. Digitization is usually simplified by the

use of digitizing tables, which are much like graphics plotters in reverse: a new
section of a design, laid out by hand, is placed on the table and digitized by tapping

switches while manually following the outlines of the cell's boxes with a pointer.

Although this is less tedious than digitization using a layout language, it is still

time-consuming and hardly interactive.

The next section describes an interactive graphics layout system that enables

the system designer to quickly sketch new layout ideas and see their effect im-

mediately.

4.4 AN INTERACTIVE LAYOUT SYSTEM*

Computing hardware of sufficient power to support highly interactive graphics has

in the past been quite expensive, and this has inhibited the widespread application

of interactive computing techniques. However, because of expected advances in

VLSI technology, we are rapidly approaching the day when many will have access

to personal computers with computing power rivaling today's medium to large-

scale systems. It will be more difficult to provide effective software for these

systems than it will be to build the computers themselves.^ In this section we
describe a highly interactive layout system that runs on a modest personal com-
puter, rather than on an expensive, limited access, centralized system. This sys-

tem was developed anticipating the work environment of the future, in which most
"knowledge" workers will have personal computers as part of their normal office

equipment.

ICARUS^ (Integrated Circuit ARtwork Utility System) is a software system

that enables the user to create and modify an integrated system layout directly on
a CRT display screen. ICARUS was conceived with the idea that the designer

*This section is contributed by Douglas Fairbairn. Xerox PARC, Palo Alto, California, and James
Rowson, California Institute of Technology.
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Fig. 4.15 Design, layout, design file

generation, and design checking using an

interactive graphics layout system.

would create and edit a layout at the display, without doing any more than a rough

sketch or ''stick diagram"" before beginning work. Creating and moving items is

fast and easy enough so that the designer can truly sketch on the screen. Once the

layout is basically correct, the items can be moved or modified to arrive at the

most compact layout.

The user is required to remember very little about the available commands or

their use because the commands themselves are displayed on the screen and the

system prompts the user for additional information as it is needed. The system can

format and output check plots to matrix-type printers or raster-scan laser printers.

ICARUS design files can be used to create standard pattern generation files from

which masks can be made. An overview of design and layout procedures using the

system is given in Fig. 4.15. It is instructive to compare this with Fig. 4.14, which

presents equivalent steps for hand layout.

All the software to accomplish these various steps runs on a small experimen-

tal minicomputer known as the Alto. This machine was designed by researchers at

Xerox PARC as a general purpose personal computer suitable for both text and

graphics applications. No additional, special hardware is used by ICARUS. The
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ICARUS system is programmed in BCPL, an ALGOL-like high-level language.

There are about 30K words of compiled code in the system, of which half is in

memory at any given time. At minimum, the Alto memory has 64K 16-bit words.

A 2.5 Mbyte cartridge disk drive is an integral part of the system. The user inter-

acts with the system through an unencoded keyboard (software definable keys)

and with a pointing device called a mouse (Newman and Sproull, 1979). A cursor

is controlled on the screen by moving the mouse around on a small area of the

user's desk. A bit map display with a resolution of 600 x 800 dots is used for

output, and printers for doing check plots are available through an in-house com-

puter network.

The ICARUS display features two windows that provide a flexible working

view of the layout, as shown in Fig. 4.16. The upper window is normally used for

viewing a large piece of the layout at small magnification, and the lower window is

used for looking at a smaller section in more detail. The magnifications of the

windows may be set independently.

In addition to the two windows, there are various menus and status lines pre-

sented in the display. The menu on the left is the command menu . The menu under

the upper window is ihQ parameter menu . Under the parameter menu is the stipple

menu, containing the mask level codes. Rectangles at a given level are stippled

with the pattern for that level. The patterns were chosen so that, where necessary,

one pattern could be seen through the other to verify that appropriate layers are

overlapping properly. Current drawing coordinates and the status of system mem-
ory space are displayed to the right of the stipple menu.

The user interface is implemented principally through the display, the mouse,
and five conveniently located keys on the keyboard. Frequently used commands
are given using only one or two simple hand operations and can be done without

glancing away from the display. These characteristics, coupled with rapid display

redrawing, enhance the system's interactiveness.

The internal data representation in ICARUS is based on three types of items:

rectangles, symbols, and text strings. The organization of these items into mem-
ory data structures and the typical run-time memory space allocation are illus-

trated in Fig. 4.17.

Rectangles are created with the aid of the mouse. They may have angular

orientations that are integer multiples of 45°. They can be moved, copied, or de-

leted using the mouse and one key. As items are created, they are added to an item

list in main memory. Each rectangle is stored as six words in memory: the first

word is the pointer to the next item, the second specifies what layer it is on, what
type of item it is, etc. The third through sixth words specify the minimum and

maximum x- and y-coordinates. The items are kept in order of increasing values of

minimum ,v-coordinate, so that the display may be quickly redrawn.

When a symbol is defined by the user, the items that are contained within it

are stored on the disk, while a pointer, the name, and the bounding box for the

symbol are placed in main memory. Symbols can be nested to any level. Once a
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4.4 An Interactive Layout System 113

64K

48 K

43K

OPERATING
SYSTEM

Symbol .

descriptors

15K

IK

ITEM
STORAGE

DISPLAY
BITMAP

CODE

Rectangle

item

Symbol
item

Text

string

item

FILE ADDRESS
NAME POINTER
XMINOF BOUNDING BOX
XMAX OF BOUNDING BOX
YMIN OF BOUNDING BOX
YMAX OF BOUNDING BOX
VISIBLE
# OF CONNECTION POINTS
CONNECTION POINTS
CONNECTION POINTS

POINTER
ITEM DESCRIPTION

XMIN
YMIN
XMAX
YMAX
POINTER

ITEM DESCRIPTION
XMIN
YMIN
XMAX
YMAX

NUMBER IN X DIRICTION
NUMBER IN Y DIRECHON
SPACING IN X DIRECTION
SPACING IN Y DIRECTION
X COORD. OF ORIGIN
Y COORD. OF ORIGIN
MIRRORED ROTATED
LINK TO DEFINITION

POINTER
ITEM DESCRIPTION

XMIN
YMIN
XMAX
YMAX

string length

2nd char

4th char

St char

3rd char

5th char

2.5M byte disk

Symbol
definitions

stored here.
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MAIN MEMORY ALLOCATION DETAILED VIEW OF DATA

symbol definition has been created, one is free to define symbol instances , which

are references to that definition. The symbol instance may be a command to draw

one copy of the symbol at a certain location, or a whole array. The size of the

symbol instance, which resides in main memory, is the same in both cases. The
use of symbols wherever possible tends to preserve main memory space. Rather

large systems can be designed using ICARUS, if the systems are well structured
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and make extensive use of symbols. This is true even when using a minimum-sized

64K memory, which leaves little space for layout data.

Text is used for identifying data and control lines and is merely a memory aid

to the user. There is no attempt to make use of the text or other information in the

drawing for connectivity or other types of checking.

Operations more complex than those such as Draw and Move are im-

plemented through the use of menus as shown in Fig. 4.16. The desired command
is chosen by pointing at it with the cursor and clicking a mouse button. The
selected command is then inverted to white-on-black video to identify its selec-

tion, which the user then confirms with a key on the keyboard. At this point, the

system prompts the user with instructions presented in the display area that nor-

mally holds the stipple menu. The instructions lead the user through the individual

steps required, for example, to Mirror or Rotate a group of items.

Operations on symbols are defined in a secondary menu that can be reached

by selecting the command "symbols " on the primary menu. The secondary menu
offers commands such as Define symbol. Draw symbol. List the names of the

symbols in the symbol library, or Expand symbol. This last command is used to

modify a symbol that is already defined, the modified symbol definition im-

mediately updating all symbol instances that point to it.

Various system parameters are displayed in the parameter line directly below

the top window. Values such as the default line-width for the currently selected

layer, the magnification of the top and bottom windows, and the spacing of the

tick marks are all displayed. The parameter values can be changed at any time by

selecting the desired one and typing the new parameter value on the keyboard.

The A', y layout coordinates of the point last clicked with the mouse are displayed

at the right of the screen. The DX,DY distances between the last two clicks are

also displayed. This feature provides a convenient "ruler" for measuring dis-

tances on the layout.

By the way, the design in progress shown in Fig. 4. 16 has a number of bugs in

it. Can you find them all?

The construction of an interactive layout system such as ICARUS is a rela-

tively straightforward task for one who is experienced in interactive computer

graphics (Newman and Sproull, 1979), given a display-oriented, minicomputer

system and effective, systems-building software. A first version of ICARUS was

constructed in three man-months, and a mature version was produced in an

additional five man-months.

ICARUS has been used internally in Xerox to lay out many integrated system

projects and to organize a number of multiproject chips. Among the users were a

number of individuals previously unfamiliar with integrated circuit layout, who
nevertheless successfully completed LSI projects with up to 10,000 transistors.

We find that the interactive nature of such a system not only aids the experienced

designer but also enhances the learning process for the novice. We believe that

such interactive, personal design systems greatly enhance the creative ability of

the designer by enabling easy generation and examination of many more design
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alternatives per unit time than would be the case with centralized, noninteractive

design systems.

However, there is more to integrated system design than circuit layout. De-

sign rules must be checked, logic transfer functions tested, and, in certain cases,

circuit transfer functions computed to determine delays and predict system per-

formance. We believe that the direction in which to search for further improve-

ments in design tools is in the replacement of the primitive ICARUS-type of data

structure with one that allows design functions other than just layout to also in-

teractively operate upon the same data base.

4.5 THE CALTECH INTERMEDIATE FORM FOR LSI LAYOUT DESCRIPTION*

The Caltech Intermediate Form (CIF Version 2.0) is a means of describing graphic

items (mask features) of interest to LSI circuit and system designers. Its purpose

is to serve as a standard machine-readable representation from which other forms

can be constructed for specific output devices such as plotters, video displays,

and pattern-generation machines. The intermediate form is not intended as a sym-

bolic layout language: CIF files will usually be created by computer programs

from other representations, such as a symbolic layout language or an interactive

design program. Nevertheless, the form is a fairly readable text file, in order to

simplify combining files and tracing difficulties.

The basic idea of the form is to specify literally every geometric object in the

design using ample precision. Use of this form provides participating design

groups easy access to output devices other than their own, enables sharing designs

with others, allows combining several designs to form a larger chip, and the like. It

is not necessary for all participating groups to implement the entire set of features

of CIF, as long as their programs and documents contain warnings about unim-

plemented functions; nevertheless, the syntax must be correctly interpreted by all

programs that read CIF, to assure a reasonable result.

CIF thus serves as the common denominator in the descriptions of various

integrated system projects. No matter what the original input methods are (hand

layout and coding, or a design system), the designs will be translated to CIF as an

intermediate, before being translated again to a variety of formats for output de-

vices or other design aids.

This section is divided into four parts: a description of the syntax of the form,

a description of the semantics, an explanation of the transformations used, and a

discussion of the conversion of wires to boxes.

4.5.1 Syntax

A CIF file is composed of a sequence of characters in a limited character set. The
file contains a list of commands, followed by an end marker; the commands are

separated with semicolons. Commands and their forms are as follows.

" This section is contributed by Robert F. Sprouii. Carnegie-Mellon University, and Richard F.

Lyon, Xerox PARC. Palo Alto, California.
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Command Form

PoKgon u ith a path

Box with length, width, center, and direction

(direction defaults to ( 1 .0) if omitted)

Round flash with diameter and center

Wire with u idth and path

Layer specification

Start symbol definition w ith index, a, b

{a and h both default to 1 if omitted)

Finish symbol definition

Delete symbol definitions

Call symbol

User extension

Comments with arbitrary text

End marker

Ppath

B integer integer point point

R integer point

W integer path

L shortname

DS integer integer integer

DF
DD integer

C integer transformation

digit userText

(commentText)

E

A more formal definition of the syntax is given below. The standard notation

proposed by Niklaus Wirth^ is used: production rules use equals = to relate iden-

tifiers to expressions, vertical bar
|

for or, and double quotes '' "' around terminal

characters: curly brackets
j

}
indicate repetition any number of times including

zero: square brackets
[

]
indicate optional factors (i.e., zero or one repetition):

parentheses ( ) are used for grouping: rules are terminated by a period. Note that

the syntax allows blanks before and after commands, and blanks or other kinds of

separators (almost any character) before integers, etc. The syntax reflects the fact

that symbol definitions may not nest.

cifFile

command

primCommand

polygonCommand
boxCommand
round FlashCommand
wireCommand
layerCommand
defStartCommand

defFinishCommand

defDeleteCommand

callCommand

userExtensionCommand

commentCommand
endCommand

=
j I

blank
|

[

command
]
semi

(

endCommand , blank |.

= primCommand
|

defDeleteCommand
|

defStart Command semi
j

|
blank

j [

primCommand
j
semi

j
defFinishCommand.

= polygonCommand
|

boxCommand
|

roundFlashCommand
|

wireCommand
|

layerCommand
|

callCommand
|

userExtensionCommand
|

commentCommand.

= ••? path.

= "B' integer sep integer sep point
[
sep point

].

- "R" integer sep point.

= "W integer sep path.

- "L""
j
blank

}
shortname.

= "D"'
j
blank

[

'S'" integer
[
sep integer sep integer

].

= 'D'"
j
blank i'F".

= "D"' { blank r"D"" integer.

= "C" integer transformation.

= digit userText.

= "'(""comment Text"")"" .

= "E".
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transformation

path

point

sinteger

integer

integerD

shortname

c

userText

commentText

semi

sep

digit

upperChar

blank

userChar

commentChar

{

I blank
|

( "T" point
|

"'M"
j
blank

|
"X""

|

"M"'
j
blank

|

'Y"
|

"R"" point)|.

point
j
sep point |.

sinteger sep sinteger.

j

sep )["-"'] integerD.

j
sep

I

integerD.

digit
I

digit }.

c[c](c][c].

digit
I

upperChar.

I

userChar
|.

j

commentChar
j

|

commentText ("commentTexf' )" commentText.

j
blank

j

";"'
|
blank |.

upperChar
|

blank.
..Q.. |-'i-'|"2"|"3"" |"4'" |"5'" |"6'"|"7" |"8'" |'-9".

"A" |"B"' |"C"'
I

. . . \"Z".

any ASCII character except digit, upperChar, "-'",
"C", ")", or ";".

any ASCII character except ";"".

any ASCII character except '('or'")".

4.5.2 Semantics

The fundamental idea of the intermediate form is to describe unambiguously the

geometry of patterns for LSI circuits and systems. Consequently, it is important

that all readers and writers of files in this form have exactly the same understand-

ing of how the file is to be interpreted. Many of the decisions in designing the file

format were made to avoid ambiguity or small but troublesome errors: floating

point numbers are avoided; there are no iterative constructs, though there may be

in future additions to CIF.

A simple file format might include only primitive geometric constructs, such

as polygons, boxes, flashes, and wires. Unfortunately, the geometric description

of a chip with hundreds of thousands of rectangles on it would require an immense
file of this sort. Consequently, we have made provision for defining and calling

symbols; this should reduce the size of the file substantially.

It is important that programs processing CIF files operate cautiously, main-

taining a constant vigilance for mistakes or entries that will not be processed prop-

erly. The description below mentions implementation suggestions or cause for

caution displayed inside brackets[ ].

Measurements

The intermediate form uses a right-handed coordinate system shown in Fig. 4.18,

with X increasing to the right and y increasing upward. (Directions and distances
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iicr Fig. 4.18 Box representation in

intermediate form.

are always interpreted in terms of the front surface of the finished chip, not in

terms of the various sizes and mirrorings of the intermediate artifacts.) The units

of distance measurement are hundredths of a micron ()u,m); there is no hmit on the

size of a number. [Programs reading numbers from CIF files should check care-

fully to be sure that the number does not overflow the number of bits in the inter-

nal representation used, and should specify their own limits, if any.]

Directions

Rather than measure rotation by angles, CIF uses a pair of integers to specify a

"direction vector.'' This eliminates the need for trigonometric functions in many
applications and avoids the problem of choosing units of angular measure. The

first integer is the component of the direction vector along the .v-axis; the second

integer along the y-axis. Thus a direction vector pointing to the right (the +x-axis)

could be represented as direction (1 0), or equivalently as direction (17 0); in fact,

the first number can be any positive integer as long as the second is zero. A
direction vector pointing northeast (i.e., rotated 45 degrees counterclockwise

from the.v-axis) would have direction (11), or equivalently (3 3), and so on. [A (0

0) direction vector may be defaulted to mean the +jr-axis; a warning should be

generated.]

Geometric primitives

The various primitives that specify geometric objects are not intended to be mutu-

ally exclusive or exhaustive. CIF may be extended occasionally to accommodate

more exotic geometries. At the same time, it is not necessary to use a primitive

just because it is provided. Notice in the examples below that lower case com-

ments and other characters within a command are treated as blanks, and that

blanks and uppercase characters are acceptable separators.
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Boxes. Box Length 25 Width 60 Center 80,40 Direction -20,20; (or B25 60

80 40 -20 20;)

The fields that define a box are shown graphically in Fig. 4.18. Center and direc-

tion (optional, defaults to +j:-axis) specify the position and orientation of the box,

respectively. Length is the dimension of the box parallel to the direction, and

Width is the dimension perpendicular to the direction.

Polygons. Polygon A 0,0 B 10,20 C -30,40; (or PO 10 20 -30 40;)

A polygon is an enclosed region determined by the vertices given in the path, in

order. For a polygon with n sides, n vertices are specified in the path (the edge

connecting the last vertex with the first is implied; see Fig. 4.19). [Programs that

try to interpret polygons may place various restrictions on their paths; no set of

constraints has been generally accepted, and no program currently exists for con-

verting completely general polygons to pattern generator output.]

^""^
RoundFlash

[^
,

") width ' i-
^'8- '*-^^ Other items in the

J .
/ .i.. ( Diameter intermediate form.

Flashes. RoundFlash Diam 200 Center -500,800; (or R200 -500 800;)

The diameter of a flash is sufficient to specify its shape, and the center specifies

its position (see Fig. 4.19). [Some programs may substitute octagons, or other

approximations, for round flashes.]

Wires. Wire Width 50 A 0,0 B 10,20 C -30,40; (or W50 10 20

-30 40;)

It is sometimes convenient to describe a long, uniform-width run by the path along

its centerline. We call this construct a wire (see Fig. 4.19). An ideal wire is the

locus of points within one half-width of the given path. Each segment of the ideal

wire therefore includes semicircular caps on both ends. Connecting segments of

the wire is a transparent operation, as is connecting new wires to an existing one:

the semicircular overlap ensures a smooth connection between segments in a wire

and between touching wires. [For output devices that have a hard time construct-

ing circles, we approximate the ideal wire with squared-off ends. Notice that

squared-off ends work nicely for segments meeting at right angles, but cause prob-

lems if wires or wire segments are connected at arbitrary angles. A way to cir-

cumvent this problem is to convert, prior to output, any wires in a file into con-

nected sets of boxes of appropriate length, width, angle, and center position.
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The width of each box is the same as the width of the wire. The length of the boxes

must be adjusted to minimize unfilled 'wedges'' and overlapping "ears." An al-

gorithm for constructing boxes from a wire description is given in Section 4.5.4.

If the wire is specified within a symbol definition, the approximation need be

computed only once and can then be used each time the symbol is instantiated.]

Layer specification. Layer ND nmos diffusion; (or LND;)

Each primitive geometry element (polygon, box, flash, or wire) must be labeled

with the exact name of a fabrication mask on which it belongs. Rather than cite the

name of the layer for each primitive separately, the layer is specified as a "mode"
that applies to all subsequent primitives, until the layer is set again (layer mode is

preserved across symbol calls, which are discussed later).

The argument to the layer specification is a short name of the layer. Names
are used to improve the legibility of the file, and to avoid interfering with the

various biases of designers and fabricators about numbers (one person's "first

layer" is another's "last"). [The intention of the layer specification command is to

label locally the layer for a particular geometry. It is therefore senseless to specify

a box, wire, polygon, or flash if no layer has been specified. In order to detect this

error, the command LZZZZ is implicitly inserted at the beginning of the file, and

as the first command of a symbol definition (DS; see below). Any attempt to

generate geometric output on layer ZZZZ will result in an error.]

It is important that layer names be unique, so that combining several files in

intermediate form will not generate conflicts. The general idea is that the first

character of the name denotes the technology, and the remainder is mnemonic for

the layer. At present, the following layers are defined:

ND «MOS Diffusion

NP /jMOS Polysilicon

NC /jMOS Contact cut

NM nMOS Metal

NI nMOS depletion mode Implant

NB /;MOS Buried contact

NG nMOS overGlass openings

New layer names will be defined as needed.

[Programs that read CIF will want to check to be sure that layer names used

do in fact correspond to fabrication masks being constructed. However, the file

may cite layer names not used in a particular pass over the CIF file. It would be

helpful for the program to provide a list of the layer names that it ignored.]

Symbols

Because many LSI layouts include items that are often repeated, it is helpful to

define often-used items as "symbols." This facility, together with the ability to
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"call" for an instance of the symbol to be generated at a specific position, greatly

reduces the bulk of the intermediate form.

The symbol facilities are deliberately limited, in order to avoid mushrooming
difficulties of implementing programs that process CIF files. For example, sym-

bols have no parameters; calling a symbol does not allow the symbol geometry to

be scaled up or down; there are no direct facilities for iteration. The main reason

for symbol facilities is to limit the file size; if the symbol mechanism is not

adequate for some application, the desired geometry can still be achieved with less

use of symbols and more use of explicit geometrical primitives. [Symbols need not

be used at all; this eliminates the need for intermediate storage for symbol defi-

nitions, but results in larger design files. Machines that must process a fully in-

stantiated representation of a layer (such as pattern generators) might accept only

CIF files without symbol definitions, to reduce the cost of implementation. There-

fore, it would be useful to have a program that would convert general CIF files to

fully instantiated CIF files, and then maybe sort them by layer, location, or what-

ever.]

The ability to call for iterations (arrays) of symbols is not provided in CIF
Version 2.0. This is primarily due to the difficulty of defining a standard method of

specifying iterations, without introducing machine-dependent computation prob-

lems. It is still possible to achieve a great deal of file compaction by defining

several layers of symbols (e.g., cell, row, double-row, array). However, the ability

to iterate symbol calls is a likely prospect for a future addition to CIF.

Defining symbols. Definition Start #57 A/B = 100/1; . . . ; Definition

Finish; (orDS57 100 1; . . . ;DF;)

A symbol is defined by preceding the symbol geometry with the DS command,
and following it with the DF command. The first argument of the DS command is

an identifying symbol number (unrelated to the order of listing of symbol defi-

nitions in the file).

The mechanism for symbol definition includes a convenient way to scale dis-

tance measurements. The second and third arguments to the DS command are

called a and b, respectively. As the intermediate form is read, each distance (posi-

tion or size) measurement cited in the various commands (polygons, boxes,

flashes, wires, and calls) in the symbol definition is scaled to (fl*distance)/^. For

example, if the designer uses a grid of 1 micron, the symbol definition might cite

all distances in microns and specify a = 100, b = \. Or the designer might choose

lambda (characteristic fabrication dimension) as a convenient unit. This

mechanism reduces the number of characters in the file by shrinking the integers

that specify dimensions and may improve the legibility of the file (it provides

neither scaling nor the ability to change the size of a symbol called within the

definition).

Definitions may not nest. That is, after a DS command is specified, the ter-

minating DF must come before the next DS. The definition may, however, contain

calls to other symbols, which may in turn call other symbols.
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There is only one restriction on the placement of symbol definitions in the file:

a symbol must be defined before its instantiation becomes necessary. This con-

straint can be satisfied by placing all symbol definitions first in the file, followed

by calls on the symbols. In fact, it is often convenient to have the file consist

exclusively of symbol definitions and only one call on a symbol. This call will be

the last command in the file before the end command. [If a file redefines a

symbol that already exists, the previous definition is discarded: a warning mes-
sage should be generated. When several people contribute to a design, some sym-
bol management is therefore necessary; see Deleting symbol definitions below.]

Calling symbols. Call Symbol #57 Mirrored in X Rotated to -1,1 then

Translated to 10,20: (or C57 MX R-l 1 T 10 20;)

The C command is used to call a specified symbol and to specify a transformation

that should be applied to all the geometry contained in the symbol definition. The

call command identifies the symbol to be called with its "symbol index," estab-

lished when the symbol was defined.

The transformation to be applied to the symbol is specified by a list of primi-

tive transformations given in the call command. The primitive transformations are

T point Translate the current symbol origin to this point.

M X Mirror in.V. that is multiply a -coordinate by -1.

M Y Mirror in y, that is. multiply y-coordinate by - I.

R point Rotate symbol's .v-axis to this direction

Intuitively, each coordinate given in the symbol is transformed according to the

first primitive transformation in the call command, then according to the second,

etc. Thus "CI T500 MX' will first add 500 to each jc-coordinate from symbol 1,

then multiply the .v-coordinate by -
1 . However, "CI MX T500 0" will first multi-

ply the .v-coordinate by -
1 , and then add 500 to it: the order of application of the

transformations is therefore important. In order to implement the transformations,

it is not necessary to perform each primitive operation separately; the several

operations can be combined into one matrix multiplication (see Sec. 4.5.3 on

transformations).

Symbol calls may nest: that is, a symbol definition may contain a call to

another symbol. When calls nest, it is necessary to "concatenate" the effects of

the transformations specified in the various calls (see Sec. 4.5.3). [There is no

sensible way in which a symbol may be invoked recursively (i.e., call itself, either

directly or indirectly). Programs that read the intermediate form should check that

no recursion occurs. This can be achieved by retaining a single flag with each

symbol to indicate whether the symbol is currently being instantiated; the flags are

initialized to "false." When a symbol is about to be instantiated, we check the

flag; if it is "true," we have detected recursion, so we print an error message and

do not perform the call. Otherwise, we mark the flag "true," instantiate the sym-

bol as specified, and mark the flag "false" when the instantiation is complete.]
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Layer settings are preserved across symbol calls and definitions. Thus, in the

sequence

LNM;
R6 20 0;

C 57 T45 13;

DS 114;

DF;

LNM;
R3 0;

the second LNM is not necessary, regardless of the specification of symbols 57

and 114.

Deleting symbol definitions. Delete Definitions greater than or equal to 100;

(orDDlOO;)

The DD command signals the program reading the file that all symbols with indi-

ces greater than or equal to the argument to DD can be "forgotten" -they will not

be instantiated again. This feature is included so that several intermediate form

files can be appended and processed as one. In such a case, it is essential to delete

symbol definitions used in the first part of the file, both because the definitions

may conflict with definitions made later and because a great deal of storage can

usually be saved by discarding the old definitions.

The argument to DD that allows some definitions to be kept and some deleted

is intended to be used in conjunction with a standard "library" of definitions that

a group may develop. For example, suppose we use symbol indices in the range

to 99 for standard symbols (pull-up transistors, contacts, etc. ) and want to design a

chip that has two student projects on it. Each project defines symbols with indices

100 or greater. The CIF file will look like this:

(Definitions of library symbols);

DS 100 1;

(. . .definition of symbol in library);

DF;
DS 1 100 1;

(. . .definition of symbol 1);

DF;

(. . .remainder of library);

(Begin project 1);

DSlOOlOOl;

( . . .first student" s first symbol definition);

DF;
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DS109 100 1:

( . . .first student's main symbol definition);

DF:
C109T403 - 110: (call on first student's main symbol);

DD 100; (Preserve only symbols 1 to 99)

;

(Begin project 2);

DSlOOlOO 1:

(. . .second student's first symbol definition);

DF;

DS113 100 1;

( . . .second student's main symbol definition);

C 1 T- 3 45 ; (Call on library symbol, still available);

DF;
CI 13 T401 0; (call on second student's main symbol);

User expansion. 3'SYMBOL. LIBRARY': 5:N0NSTANDARD DESIGN
RULES: LAMBDA = 4.0;

Several command formats (any command starting with a digit) are reserved for

expansion by individual users; the authors of the intermediate form agree never to

use these formats in future expansions of the standard format. For example, pri-

vate expansions might provide for (1) requesting that another file be "inserted" at

this point in the processing, thus simplifying the use of symbol libraries; (2) insert-

ing instructions to a preprocessor that will be ignored by any program reading only

standard intermediate form constructs; or (3) recording ancillary information or

data structures (e.g., circuit diagrams, design-rule check results) that are to be

maintained in parallel with the geometry specified in the style of the intermediate

form.

Comments. (HISTORY OF THIS DESIGN:);

The comment facility is provided simply to make the file easier to read. [It is

possible to deactivate any number of commands by simply enclosing them within

apair of parentheses, even if they already include balanced parentheses.]

End Command. End of file.

The final E signals the end of the CIF file. [Programs that read CIF should give

either an error message if the file ends without an End command or a warning if

more text other than blanks follows the E.l
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4.5.3 Transformations*

When we are expanding a symbol, we need to apply a transformation to the speci-

fication of an item in the symbol definition to get the specification into the coordi-

nate system of the chip. There are three sorts of measurements that must be trans-

formed: distances (for widths, lengths), absolute coordinates (for "points" in all

primitives), and directions (for boxes).

Distances are never changed by a symbol call, because we allow no scaling in

the call. Thus a distance requires no transformation.

A point {x,y) given in the symbol is transformed to a point {x',y') in the chip

coordinate system by a 3 x 3 transformation matrix T:

[x'y 1] = [x y 1]7

The matrix T is itself the product of primitive transformations specified in the

call: T = Ty 7-2 7^3, where 7, is a primitive transformation matrix obtained from the

first transformation primitive given in the call, Ti from the second, and T^ from the

third (of course, there may be fewer or more than three primitive transformations

specified in the call). These matrices are obtained using the following templates

for each kind of primitive transformation:

Tab T„ =

MX Tr. =

MY

Rab Tn ^ a/c b/c

-b/c ale where c = V«^ + b"^

1

Transformation of direction vectors {x y) is slightly different from the transforma-

tion of coordinates. We form the vector [x y 0], and transform it by T into the new
vector [x'y'O]. The transformed direction vector is simply {x'y'). [Note that some
output devices may require rotations to be specified by angles, rather than by

= 1

1

a b 1

= -1

1

1

= 1

-1

I

'=Forfurther information on this subject, see Newman and Sproull (1979).
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direction vectors. Conversion into this form may be delayed until necessary to

generate the output file. Then we calculate the angle as arctan( y/.x ), applying care

when .v = 0.]

Nested calls require that we combine the transformations already in effect

with those specified in the new call. Suppose we are expanding a symbol a, as

described above, transforming each coordinate in the symbol to a coordinate on
the chip by applying matrix Tac. Now we encounter, in «'s definition, a call to h.

What is to happen to coordinates specified in b? Clearly, the transformations

specified in the call will yield a matrix Tha that will transform coordinates

specified in symbol b to the coordinate system used in symbol a. Now these must
be transformed by Tac to convert from the system of symbol a to that of the chip.

Thus, the full transformation becomes

[x' y'\] = [x y \]TbaTac.

The two matrices may be multiplied together to form one transformation Tbc =

{Tba Tac) that can be applied to convert directly from the coordinates in symbol b

to the chip. This procedure can be carried to an arbitrary depth of nesting.

To implement transformations, we proceed as follows: we maintain a "current

transformation matrix" T, which is initialized to the identity matrix. We use this

matrix to transform all coordinates. When we encounter a symbol call, we

1. "Push" the current transformation and layer name on a stack.

2

.

Set layer name to ZZZZ.

3. Collect the individual primitive transformations specified in the call into the

matrices 7,, T2, T^^, etc.

4. Replace the current transformation T with 7, T, T^ . . . T (i.e., premultiply

the existing transformation by the new primitive transformations, in order).

5. Now process the symbol, using the new T matrix.

6. When we have completed the symbol expansion, "pop" the saved matrix and

layer name from the stack. This restores the transformation to its state im-

mediately before the call.

4.5.4 Decomposing Wires Into Boxes

The following algorithm for decomposing wires into boxes was developed by

Carver Mead and first implemented at Caltech by Ron Ayres; it was further

modified to be consistent with the use of direction vectors, to allow more general

path lengths, and to avoid use of trigonometric functions (see Fig. 4.20). [Note

that this decomposition covers more area than the locus of points within h'/2 of the

path for small angles of bend, but less area for sufficiently sharp bends; in particu-

lar, if a path bends by 180 degrees (reverses), it will have no extension past the

point of reversal (it is missing a full semicircle). Other decompositions are possible

and may better approximate the correct shape .]
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Let the wire consist of a path of n points pi,

Let w represent the width of the wire.

' Pn-

IFn= ITHEN
{MAKEFLASH[Diameter ^ w, Center «- pj; "single-point gets a flash";

DONE;);
i^l;
OldExtension-*— w/2; "initial end of wire"

Segment <— p2 - Pi; "Segment is a vector (a point)"
'

' LoopConditions:

FOR Pi, Pi+, in path UNTIL pi+i is last DO
"calculate the box for the segment from pi to Pi+i:"

IF Pi+i is last THEN { Extension ^w/Z; "final end of wire"}

ELSE
{"compute Extension for intermediate point:"

Next Segment <—pi+2 - Pi+i; "next vector in path"

T<-MATRIX[ X[Segment], -Y[Segment],

Y[Segment], X[Segment]];

"T transforms Segment to +x axis."

Bend <— MULTIPLY[ NextSegment, T ]; "relative direction vector"

"if Bend is (0 0), delete Pi+i, reduce n, and start over"

Extension^w/2*( ABS[Y[Bend]]/( LENGTH[Bend] + ABS[X[Bend]]) );

MAKEBOX [{ Length ^LENGTH[Segment] + Extension + OldExtension;},

Width^w;},
Center^(Pi + Pi+,)/2 + ( Segment / LENGTH[Segment] )*

(Extension - 01dExtension)/2; ),

{
Direction <— Segment; "careful, may be zero vector"

} ];

i^i+ 1;

OldExtension <— Extension;

Segment <— NextSegment; "next vector in path"

ENDLOOP;
DONE;

T transforms Segment to the +A'-axis

AB = Segment * T
BC = NextSegment * T y'
Bend = Vector BC ./
Extension = BG = BH y'

y\

-tc

—^ > »
P V B

\

./
y^

Fig. 4.20 Converting

wires to boxes.

Similar triangles BCD. EFG, BFH
BC-.CD.DB ..EF:FG:GE::BF:FH:HB

FG = FB + BG
= BH * (BC/DB) + BG
= (I + BC/DB) *BG

BG = FGK\ + BC/DB)
= GE* (CD/DB) / ( 1 + BC/DB)
= GE* CD / (DB + BO

or Extension = w/2 * r(Bend] /(A'[Bend] + LENGTH[Bend]

)
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4.6 THE MULTIPROJECT CHIP

Insight into integrated system design is most quickly gained by actually carrying

through to completion several LSI design projects, each of increasing scope. A
large, complex VLSI system could be quickly and successfully developed by de-

signers able to easily implement and test prototypes of its subsystems. The sepa-

rate subsystems can be implemented, tested, debugged, and then merged together

to produce the overall system layout. However, such activities are practical only if

a scheme exists for carrying out implementation with minimum turnaround time

and low procedural overhead per project.

In this section we describe procedures for organizing and implementing

many small projects by merging their layouts onto one multiproject chip, so that

each designer of a small project or subsystem need not carry the entire procedural

burden involved in maskmaking and fabrication. We also include a collection of

practical tips and hints that may prove useful to those undertaking their first proj-

ects or organizing their first multiproject chips. While the details in this section are

specific to present maskmaking and fabrication technology, they nevertheless

give a feeling for the sort of things that must be done to implement projects in

general. In a later section we discuss how multiple project implementation might

be done in the future.

Figure 4.21 contains a photomicrograph of a Caltech class project chip con-

taining 15 separate student projects. The individual projects were simply merged

together onto one moderate sized chip layout, approximately 3 mm by 4 mm, and

implemented simultaneously as one chip type. Most of these projects are pro-

totypes of digital subsystems designed using the methodology of this text. By
implementing a small "slice" of a prototype subsystem array, one can verify that

its design, layout, and implementation are correct, and measure its power and

delay characteristics as yielded by the particular fabrication process, thus gaining

almost as much information as would be obtained by implementing the full array.

Following fabrication, the wafers containing such multiproject chips are

scribed, diced, and then divided up among the participants. The typical minimum
fabrication run yields about 10 to 20 wafers, each —7.5 to 10 cm in diameter. Thus

even a minimum run provides a few thousand chips, and each participant ends up

with many chips. Participants may then each package their chips, bonding the

package leads to the contact pads of their individual project. Since most such

projects are relatively small in area, yields are unusually high: if a project's design

and layout have been done correctly, most of the corresponding chips will work.

Organizing a multiproject chip involves (1) creating the layout of a starting

frame , into which the various projects are to be merged, (2) gathering, relocating,

and merging the project layouts into the starting frame to create one design file

and generating from this the PG files for the overall project chip, and (3) docu-

menting various parameters and specs to be used during maskmaking and fabrication.

The starting frame contains all the auxiliary portions of the chip layout: scribe

lines, alignment marks, line width testers (critical dimension marks), and test pat-

terns. The starting frame may contain fiducial marks on each mask level if these

ir<
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are not to be placed by the mask house, and in some cases it may contain a parity

mark on each level to mark the appropriate reticle side and orientation during

step-and-repeat reduction. [A tip: placing a mask level name somewhere within

the chip's scribe line boundary on each level helps prevent the fatal error of level

interchange during project merging, maskmaking, or fabrication.]

The contents of the starting frame must be carefully worked out to meet the

requirements and constraints of the chosen mask house and fab line. The impor-

tant factor of turnaround time for the entire mask and fab sequence may be re-

duced to some extent by repeatedly using a relatively standard starting frame,

which then becomes familiar to all those involved. Some typical 1978 values for

the time involved: 3 to 5 weeks for maskmaking, and then 3 to 4 weeks for fabrica-

tion; longer if large work queues exist at the mask or fab firms. It is interesting to

Fig. 4.21 Photomicro-

graph of a Caltech class

project chip.
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note that almost all of the implementation time involves waiting in various queues

within commercial facilities that are usually optimized for high thruput. The actual

physical processing times required for maskmaking, fabrication, and packaging

add up to only a few days. Were an implementation facility to optimize its struc-

ture and procedures for fast turnaround, implementation times of less than one

week should be easily achievable.

When a multiproject chip is scheduled, a tentative chip partition for each proj-

ect can be negotiated among the participants. Project design and layout can then

proceed, with iterations on the space allocation being done right up till the final

merging. The gathering and merging of project layout files into one design file is

simplified if they are in d common intermediate form. Projects may then be relo-

cated to their respective partitions of the chip, displayed, plotted, or otherwise

checked, using minimum and consistent software operating upon manageably

sized files. When the project chip appears to be correctly organized, pattern

generator (PG) files are produced and written on a mag tape to be sent to the mask
house.

An alternative to the merging of projects at the intermediate form level is the

relocation and merging of their PG files. However, the PG files for major designs,

containing fully instantiated artwork, become unwieldy in size even at today's

complexity. The PG file merging scheme is workable for projects of small to

moderate size and does provide a contingency plan for including projects having

alien intermediate forms. If designs are relocated and merged at the PG level,

additional software should be provided for displaying or plotting the chip at that

level, so that merging errors may be spotted. [A tip: it is a good idea in any case to

have some bounds checking to prevent stray items of one project from clobbering

another.]

A thought: the interface between design groups and mask houses would be

cleaner if design files in a common intermediate form (such as GIF) rather than

PG files were used to transmit designs to the patterning process. Files would be

much smaller. The use of data links would be eased. The process, involving pat-

terning mechanism dependent optimization, to convert and sort design files into

PG files, would be appropriately located: in association with the particular pat-

terning mechanism.

4.6.1 Examples of Multiproject Chips

The above concepts and some further possibilities may be clarified by examining

the details of some specific examples. Figure 4.22 illustrates a collaborative Xerox

PARC/Caltech multiproject chip set (organized by D. Fairbairn, D. Johannsen, R.

Lyon, J. Rowson, S. Trimberger). The figure was produced as a software blow-

back from the PG file of the metal level of this chip set. Projects in the set ranged

in scope from the test of a few cells of an experimental, low-power shift register

(by C. Sequin, U. C. Berkeley, and R. Lyon, Xerox PARC) up to a complete

content addressable cache memory system (by D. Fairbairn).
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Fig. 4.22 Collaborative

Xerox PARC/Caltech
multiproject chip.

(Software blowback from

the PG file of the metal

layer.)

Although several of the projects in the set are fairly large, all were individually

designed to yield chip sizes packagable in standard 40-pin packages, which can

hold chips up to ~7 mm square. The pattern generator at the intended mask house

was a GCA/D.W.Mann 3600, and the photorepeater was a Mann 3696. Together,

this equipment can produce lOX reticles having field sizes as large as 10 cm square

and can reduce, step, and repeat these at a maximum of 10 mm (jc.y^intervals onto

masks. Therefore, the 3600/3696 can provide masks for square chips up to 10 mm
( 10,000 /Lt) on a side. A 10 mm square chip can hold the patterns of several normal-

sized chips. By including interior scribe lines in the starting frame, as indicated in

Fig. 4.22, one reticle set can be patterned on the Mann 3600 to contain a number of

different chips, each of which may contain more than one project. When masks
are made, each reticle is photorepeated at intervals inx andy corresponding to its

outer dimensions minus some scribe-line overlap. In the example in Fig. 4.22, the

X and y stepping distances were both ~ 9700 microns. Fabricated wafers are

scribed and diced on all scribe lines, including the interior ones, to yield chips of
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typical sizes. One of the projects, on the lower left chip in Fig. 4.22, is an experi-

mental charge coupled device array (by R. Davies). The CCD's rode along on this

chip set to obtain working masks for use in a completely different process

technology (triple-poly) from the standard /7MOS the other projects used.

Figure 4.23 provides a higher magnification PG file software blowback of the

region near the center of the left scribe line of the chip set. Alignment marks and

line width testers (C/D's) were placed in this region, as noted in the figure.

Software blowbacks of individual mask levels, more closely resembling the reti-

cles and masks than would a composite design checkplot of all levels, are useful in

conveying such location information to the mask and fab houses. Parity marks

were not needed on the reticles for this project chip set. Fiducial marks were

placed on the reticles by the mask house. Since the software converting the design

files to PG files had just been constructed prior to organizing this chip set, reticle

blowbacks were requested before proceeding further with maskmaking to verify

that everything through pattern generation had worked correctly.
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containing mask and fab

information.
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Some other practical details: Participants in the chip set shared some of the

commonly used layout items normally required in any project. Examples were

input contact pads with attached "lightning arrestor" circuits to protect the input

MOSFET gates, and output drivers snaked around and attached to output pads.

Even at 1978 device sizes, pads occupy a large fraction of the chip area for large

collections of projects, and participants tend to make the pads as small as their

bonding skill allows. A square pad —75 /u.m on a side is a rather small bonding

target; 125 ^tm on a side is easier for the novice to hit. Perhaps ~ 100 /u,m square

pads separated by ~ 75 /xm is a good compromise, and these should be at least

25^im from any other metal lines to avoid cutting or shorting the lines when bond-

ing. Metal paths (1978) are ~ 1 /u.m thick and can carry = 1 ma per /xm width.

Before submitting final design files for merging into such project chips, partic-

ipants should be sure to check their projects for problems that might arise at the

subsystem level. Metal conductors must be wide enough so that the current den-

sity limit is not exceeded (be sure to check major VDD and GND paths). Power
densities should be low enough so that thermal problems do not develop. Rough
guidelines for power densities can be developed as follows: Even in large systems

composed of closely spaced boards fully populated with packaged chips, a power
dissipation of ~ 0.05 watts per cm- of board area is easily handled with air cooling.

Conventional packaging techniques require about 20 cm^ of board area for each 1

cm^ of silicon chip area. Therefore, chips dissipating less than 1 watt per cm^ of

total chip area require no special cooling considerations. The limits of air cooling

are reached at about one order of magnitude greater power dissipation. Individual

projects can usually ignore these power density considerations, since they cover

only a small fraction of the total chip area. It is important however to consider the

consequences of enlarging a project to full chip proportions: For example, a 1 cm^
array of the shift register cells shown in Plate 9(b) would dissipate ~ 4 to 6 watts. If a

large array of such cells were required in an integrated system, we might lengthen

the pullups to achieve an acceptable total power dissipation.

The scribe lines on this chip set were laid out as 140 fim wide cuts down to

160 /xm wide paths on the diffusion level, to provide lanes free of oxide for scribing

or sawing. Metal paths 30 fxm wide were then laid out straddling the boundaries of

these scribe lines, to provide electrical contact from the substrate to the metal

during the etching of the metal layer. Since all the projects on this chip set were

prototype designs, and were not intended to be placed in extended use, the chips

were not overglassed. Eliminating the overglassing meant that a mask level for

defining cuts through overglassing over the contact pads and scribe lines was not

needed, reducing maskmaking costs. On the other hand, the chip set included a

mask level to pattern the thin gate oxide, to provide buried contacts between

diffusion and poly that do not require metal coverage as does the butting contact.

Such buried contacts enable more compact layouts, but are subject to a rather

complex set of design rules, require an extra mask level, and sometimes reduce

yield and reliability.
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Deleting the overglassing process step also made it possible to electrically

probe interior points on the chips during testing, probing small metal test pads

included in the layouts. Such pads must be placed with care, however, because

they hang relatively large capacitances onto circuitry and slow it down. Note that

test-pad probing requires special jigs and a stereo microscope, and that it is possi-

ble to directly probe only the metal layer. Testing uncovered chips may also re-

quire reduced light levels. The operation of dynamic circuits (i.e., those which use

a pass transistor input into a gate having no other electrical connection) can be

severely affected by light. Light induces leakage currents in the pin junction be-

tween source and drain regions and the substrate. At room temperature, charge

stored on dynamic nodes can be retained for many milliseconds in the absence of

light. However, in normal room light the retention time is reduced to tens of

microseconds. Thus care should be taken to avoid high light levels when long

clocking periods are used. Dynamic memory chips are packaged in opaque black

packages because of this effect.

A software blow back of the metal mask PG file of another project set, or-

ganized at Caltech, is shown in Fig. 4.24. The total area of this multiproject chip

set is = 1 cm^ It is subdivided into four major sections: The lower right quadrant

contains the 0M2 Data Path Chip described in Chapter 5, laid out using \ =

2.5 /Lt m. The upper right quadrant contains a 16 by 16 bit multiplier with on-board

accumulator (by Rod Masumoto, Caltech), also using X = 2.5 />tm. The lower left

quadrant contains a subsystem, laid out using \ = 2.9 /x m. w hich converts output

from one port of a computer memory into the red, green, and blue analog signals

for driving a color TV monitor. The upper left quadrant contains 28 projects,

mostly from students in an LSI Systems course at Caltech. Other small projects

are located along the left edge of the multiplier, and in the unused area within the

TV subsystem project. The source material for this project chip set was generated

on three different computer systems, in two different languages. Check plotting

and viewing were done on three other systems. In addition to the Caltech projects,

this chip set contains projects from Carnegie-Mellon University, Washington Uni-

versity (St. Louis), University of California. Irvine, and the Jet Propulsion Labo-

ratory. Approximately 500,000 pattern generator rectangles were required to pat-

tern the reticles for the five mask levels used in this project set. Conversion from

intermediate form to PG files required —10 CPU hours on the Caltech DECsystem
20.

The masks for the multiproject chip sets shown in Figs. 4.22 and 4.24 were

produced by Silicon Valley mask houses from PG tapes, accompanied by PG file

software blowbacks showing the locations of auxiliary layout items used during

implementation, and by spec sheets containing a list of specs and parameters for

mask and fab. These spec sheets contain two types of information:

1. Information the mask house will need for reading the PG tape, generating the

reticles, and stepping the master masks. This includes whether dimensions are in

metric or English units, whether fiducials and parity marks have been laid out or

are to be placed by the mask house, desired reticle magnification (usually lOX,
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Fig. 4.24 Multiproject chip

set organized at Caltech.

om;

sometimes 5X), the (.v,v) step-and-repeat distances, the type and magnification of

reticle blowbacks desired, and whether maskmaking beyond reticle generation is

to be contingent upon blowback inspection. This information is independent of the

chosen fab line.

2. Information that is specific to the fab line, or lines, on which the wafers will be

fabricated. Examples here are the number, size, and type of working plates de-

sired, and the photographic polarity of the working plates, i.e., whether they are a

positive or negative image of the PG pattern. The polarity of the working plates

depends on the process step and on whether positive or negative resist is used. In

addition, it is customary to specify how much, if any, the lines in the image will be

expanded or contracted to compensate for growth or shrinkage of regions due to

the process. This "pulling" of line widths in maskmaking may begin as far back as

at pattern generation. Thus, while the patterning and fabrication processes are

design and layout independent, they are usually coupled, and masks made for a

run on one fab line are not necessarily usable elsewhere.
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fabrication. Two alternatives.
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Maskmaking and patterning technology will remain in a state of transition for

years to come. The present shift is from contact printing with working plates to

projection alignment using original master masks. These two alternatives are illus-

trated in Fig. 4.25. From the system designer's point of view, at the interface to

the mask and fab firms, the alternatives present no essential differences, requiring

perhaps slightly different specs and yielding different intermediate artifacts. In the

next section we discuss the future evolution of these technologies, presenting sev-

eral implementation schemes likely to become commonplace over the next de-

cade. These schemes will enable fabrication of systems much denser and faster

than present ones. However, the basic concepts of the design methodology will

still apply. Remembering our film processing analogy, we will have "finer grain""

and "faster"" film available as time passes. However, the basic art of photography

remains.

4.7 PATTERNING AND FABRICATION IN THE FUTURE

As \is scaled down toward its minimum value, ultimately limited by the physics

of semiconductors to about 0.1 /um, it will become feasible to implement single

chip, maximum density VLSI systems of enormous functional power. Patterning

and fabrication at such small values of k require that certain fundamental prob-

lems be overcome."' " In this section we will discuss alternative solutions to two of

the major problems: At values of A of ~ 2 /xm, a problem ofrunout is encountered,

causing successive patterning steps to misalign over large regions of the wafers.

This problem is solved by using less than full wafer exposure. At values of A under

0.5 /Ltm, the wavelength of light used in photolithography is too long to allow suffi-

cient patterning resolution. This problem is solved by using nonoptical lithog-

raphy, exposing the resist with electron beams or x-rays.

Historically, silicon wafers have been patterned using full wafer exposure,

i.e., using masks that covered the entire surface of the wafer. The pattern for one

layer of one chip is stepped and repeated during the fabrication of the mask itself,

so that the mask contains the patterns for a large array of chips. During the fabri-

cation of each successive layer on the wafer, that layer" s mask is aligned at two

points with the pattern already on the wafer, and the entire wafer is then exposed

through the mask. In the future, as feature sizes are scaled down, full wafer expo-

sure will not likely be possible for reasons developed in this section.

The earliest integrated circuits, circa 1960, were fabricated using wafers of 2.5

cm in diameter, and typical chips were 1 to 2 mm on a side, with a minimum
feature size of ~ 25 ^tm. In 1978, production wafers are 7.5 to 10 cm, typical com-
mercially manufactured LSI chips are 5 mm, and minimum feature size is ~ 5 ix.

The concurrent development of ever finer feature sizes and larger wafer sizes has

placed an increasingly severe strain on the process of full wafer exposure. The
reasons lie in the physics of wafer distortion.
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When a wafer is heated to a high temperature, it expands by an amount de-

termined by the thermal coefficient of expansion of silicon. A bare wafer will

contract exactly the same amount upon cooling, and will therefore remain exactly

the same size. Suppose, however, that a layer of SiO^ is grown on the wafer when
it is at the high temperature. The thermal coefficient of expansion of Si02 is ap-

proximately 1/5 that of silicon. As the wafer is cooled, the silicon will shrink at a

rate much greater than that of the Si02. Normally the resulting wafer will not be

flat, but convex on the Si02 side. If the wafer is cooled slowly enough, it is possi-

ble to "relieve" the stress induced by the difference in thermal contraction. Wa-
fers in which such stress relief has been achieved are nearly flat but are, of neces-

sity, a different size than they were originally.^"

It might seem that subsequent masks could be scaled to just match the wafer

distortion introduced up to the appropriate point in the process. Unfortunately no

such correction can be introduced without a knowledge of the pattern of Si02 on

the wafer. At high temperature, impurities are incorporated into the silicon sur-

face, making it mechanically, as well as electrically, different from the substrate.

During cooling, dislocations are induced in the underlying silicon crystal at the

edges of openings in the oxide pattern. Hence, the magnitude and direction of

wafer distortion is dependent in complex ways upon the thickness and distribution

of Si02 on the surface, the amount and type of dopant, and the details of the

thermal cycle. While it is in principle possible to compute a geometric correction

for each pattern to be produced, it is clearly not possible to apply one correction

for all possible patterns. Misalignment between subsequent layers due to distor-

tion of this type is often referred to as runout . Runout due to wafer distortion is a

major contributor to misalignment between masking steps. Attempts to use finer

feature sizes, which require more precise alignment, on larger wafer sizes, which

induce larger distortions, seem doomed to failure unless full wafer exposure is

abandoned.

Two attractive alternatives to full wafer exposure are now being explored: (1)

electron beam exposure, and (2) exposure using "step and repeat" of the chip

pattern directly on the wafer.

A scanning electron beam system that can be used to expose resist material is

also capable of sensing a previous pattern on the surface of a wafer. The beam can

initially scan an area covering the alignment marks of a particular chip. Informa-

tion gained from this sensing operation can be used to compute the local distor-

tion, and the chip can be exposed in nearly perfect alignment using these com-

puted values. The process can be repeated for each chip on the wafer, until all

have been exposed.

This technique has several virtues. No masks are required. A digital descrip-

tion of the chip can be exposed directly onto a silicon wafer. A different chip can

be placed at each chip location, and this opens up the possibility of greatly extend-

ing the multiproject-chip concept. However, there are also limitations. Data bits

are transferred serially. Even at the highest data rates that can be conveniently

generated, a long time is required to expose each chip. More fundamentally, the
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Fig. 4.26 Cross section of a resist-

coated Si wafer after exposure with

= 1 /x electron beam and subsequent

development. Note widening of

opening near the silicon surface due to

electron backscattering.

physics of electron beam interactions places severe restrictions on the minimum
practical feature size attainable. When a beam of electrons enters a resist-coated

wafer, scattering occurs both in the resist and in the wafer. This backscattering

contributes a partial exposure at points up to a few microns away from the original

point of beam impingement and has a number of implications:

1. The exposure, or spatial distribution of energy dissipation, varies with depth

in the resist. Thus resist cross section is not readily controllable. This effect is

shown in the resist profile of Fig. 4.26. The resist has been most heavily ex-

posed near the silicon surface. During development, heavily exposed resist is

removed faster than lightly exposed resist. Hence the opening is wider at the

bottom than at the top.

2. Exposure at any particular point depends on all patterns exposed within a few

microns. This is known as the "cooperative exposure" or "proximity" effect

and necessitates pattern-dependent exposure corrections.'*

3. Exposure latitude becomes narrower as the spatial period of a pattern is re-

duced. This is illustrated in Fig. 4.27, which shows the rise in background

level exposure (energy dissipation per unit volume per unit line -charge den-

sity) as a function of lateral distance for four different spatial periods: (a) 2 /xm,

(b) 1 ixm, (c) 0.5 /am, (d)0.3 /xm. The beam diameter is 250 angstrom units, the

energy 10 keV, the resist thickness 0.4 fxm. The consequences of this back-

ground rise are particularly troublesome for high-speed, low-contrast resists.

Experimental results show somewhat greater line broadening than predicted

by the model.'"
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For the above reasons, the writing time and the difficulty of exposing desired

geometries increase rapidly as linewidths are reduced below about 0.5 micron.'"

An immediate prospect for achieving feature sizes of 1 )u,m-2 /am with large

wafers is offered by stepping the chip pattern directly on the wafer rather than on a

mask. This technique avoids the serial nature of the electron beam writing by

exposing an entire chip at once. The use of good optical systems has made it

possible for many years to produce patterns with feature sizes in the range 1 /am to

2 /am. Recent progress in the design of optical projection systems may lead to the

practical use of Vi to % micron line width patterns over areas several millimeters

in diameter. " Techniques are known for using light to achieve alignments to a

small fraction of a wavelength. Recently, an interferometric optical alignment

technique has demonstrated an alignment precision of 0.02 micron and should be

capable of a reregistration uncertainty less than 0.01 micron. '^'^
It would seem

that devices of ultimately small dimensions (0.25 /am) could be fabricated using

Fig. 4.27 Electron beam exposure of

resist on silicon. Monte Carlo

calculation of exposure level of a

silicon-resist interface, as a function of

lateral distance, for four spatial

periods. (Contributed by H. I. Smith,

Lincoln Laboratory, M.I.T.)

10.000 20.000 30.000 40.000
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optical alignment. It must be stressed that a realignment to the underlying pattern

must be done at each chip location to achieve the real potential of the technique.

The step-and-align technique can be extended to ultimately small dimensions

by substituting an x-ray source for the optical one, while retaining the automatic

optical alignment system. X-rays require a very thin mask support (e.g.,

polyimide, mylar, silicon, or silicon carbide), upon which a heavy material such as

gold or tungsten is used as the opaque pattern. Interactions of x-rays with matter

tend to be isolated, local events. Essentially no backscattering of the x-rays oc-

curs, and electrons produced when an x-ray is absorbed are sufficiently low in

energy so that their range is limited to a small fraction of a micron. For this reason,

patterns formed by x-rays in resist materials on silicon wafers are much cleaner

and better defined than those attainable by any other known technique (see Fig.

4.28). Collimated x-ray fluxes of very high intensity can be efficiently obtained

from the synchrotron radiation of an electron storage ring. The time required for

exposing a chip with such a source is no more than that required at present using

optical exposures (a few seconds). Both optical and x-ray exposures (using non-

collimated sources) have the property that the total exposure time per wafer can

be made nearly independent of how much of the wafer is exposed at a step (i.e.,

the radiation source-to-substrate distance can be adjusted). Therefore, the only

Fig. 4.28 Scanning electron micrograph of the cross

section of a 1600-A linewidth grating pattern exposed in an

8500-A-thick PMMA film on a Si02 /Si substrate

using Cu x-radiation at 13.3 A. The slight curvature of the

grating lines was probably caused by overheating during

preparation for electron microscopy. (Contributed by
H. I. Smith and D. C. Flanders, Lincoln Laboratory, M.I.T.)
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and fabrication alternatives.

Packaged chips

T To testing

penalty in a step-and-align process is the time required for mechanical motion and

alignment.

It appears that we have in hand all of the techniques for ultrafine line lithog-

raphy, even on larger silicon wafers. Electron beam, optical, and x-ray stepping
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work must, however, focus on local alignment as the crucial element in achieving

high-density, high-performance VLSI.

We now describe a production lithography system for ultimately small dimen-

sions. A major component of the system is a 500 to 700 MeV electron storage ring,

approximately 5 meters in diameter, shaped in the form of a many-sided polygon,

with an exposure station at each vertex. The electron beam within this storage ring

is deflected at each vertex by a superconducting magnet. The deflection results in

a centripetal acceleration of the electrons, and hence in an intense tangential emis-

sion of synchrotron radiation. The most important component of such radiation is

soft x-rays in the 280 to 1000 eV quantum energy range (wavelengths of 4.4 to

1.2 nm). Such x-rays are ideal for exposing resist materials with line widths in the

0.1 /xm range. '^'•^

Each exposure station has an automatic optical alignment system for indi-

vidual alignment of each chip. Coarse alignment is controlled by a laser inter-

ferometer and the wafer is brought into position by ordinary lead screws moving a

conventional stepping stage such as those in current photorepeaters. Automatic

alignment to about 0.01 ^m is achieved by superposing matching alignment marks

on masks and chips using a generalized Moire technique.'*'^ Piezoelectric trans-

ducers driven by the computer system bring the wafer into final alignment under

the mask. Each exposure station in such a system is capable of aligning and expos-

ing one layer of one chip every few seconds. Each chip may contain on the order of

10^ devices, which is the equivalent of several H'a/i?/-5 at today's scale.

An overview of the possible routes from design files to finished chips with

submicron layout geometries is shown in Fig. 4.29. In the immediate future,

alignments much better than those achievable today will be possible with the opti-

cal step-and-align technique (leftmost path in Fig. 4.29). In addition, this scheme

eliminates the step-and-repeat process in maskmaking, enabling considerably

shorter turnaround time. The rightmost path, direct electron beam writing on the

wafer, promises the ultimate in short turnaround time. It can be viewed as using

the fab area as a computer output device. For high-volume manufacturing, at

ultimately small dimensions, the center path as described above will most likely

become the workhorse of the industry.
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OVERVIEW
OF AN LSI

COMPUTER SYSTEM,
AND THE DESIGN

OF THE 0M2
DATA PATH CHIP*

5.1 INTRODUCTION

Up to this point, we have used simple examples to illustrate the fundamental

properties of integrated systems, and to illustrate a design methodology for creat-

ing hierarchically organized, complex systems. To more fully clarify these con-

cepts, we now present examples drawn from the design of an LSI computer sys-

tem. In this chapter, we provide a brief overview of this computer system and then

describe in detail one of its major components, the data path chip. Much of the

detail in this chapter is intended to provide the reader with a source of examples of

the implementation of digital logic subsystems into LSI circuit layout structures,

under the constraints imposed both by the design methodology and by the ar-

chitectural requirements of a real computer system. Chapter 6 similarly describes

the controller chip of this computer system, and provides additional information

on the sequencing of the overall system.

In this chapter we assume that the reader is familiar with the structure and

function of the classical stored-program digital computer, and with the concept,

and computer design implications, of microprogrammed control. An informal re-

view of these basic concepts is given in the introductory portions of Chapter 6, so

that the mapping of the required controller subsystems into silicon can be exam-

ined. The less-experienced reader may benefit from a study of that material in

parallel with reading this chapter.

It is important to note that the computer system discussed in Chapters 5 and 6,

while composed of structured LSI subsystems, is nevertheless of classical von

Neumann form. The architectural possibilities of VLSI are just now beginning to

be explored. Future lower cost, higher density, higher speed devices, combined
with major reductions in integrated system implementation time, will make com-

pletely new forms of computing machines, and new notions of programming, not

only feasible but practical. (Some of these issues will be discussed in Chapter 8.)

*Much of the material in this chapter was contributed by Dave Johannsen, Caltech, who played a

leading role in the architecture and design of the OM system.
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5.2 THE OM PROJECT AT CALTECH

The design of this computer system was undertaken as a university project in

experimental computer architecture. The "Our Machine" (OM) project, as it has

come to be known, was started by Carver Mead in 1976, as part of the LSI Sys-

tems course at Cahech. The project involved the design of a number of LSI chips,

as described in Section 5.3.

The initial focus of the project was the architecture and design of the system's

primary data processing module, the data path chip. Early contributions to this

effort were made by Mike Tolle (Litton Industries) while attending the LSI sys-

tems course. Other participants were Caltech students Dave Johannsen and Chris

Carroll, who received much inspiration from Ivan Sutherland. By December 1976,

the first design (OMO) of the data path chip was nearly completed. The partici-

pants decided at that time that the design had become "baroque" and "ugly," and

it was scrapped. A new data path design (OMl) was completed by March 1977 by

Dave Johannsen, Chris Carroll, and Rod Masumoto. Fabricated chips were re-

ceived in June 1977. It was this chip that appeared in the article by Sutherland and

Mead in Scientific American (September 1977). The chip was fully functional ex-

cept for a timing bug in the dynamic register array, which had been designed in

departure from the structured design methodology developed in this text.

A complete redesign of the data path chip was undertaken in June 1977, by

Dave Johannsen. By September 1977, a complete set of new cells had been con-

structed. The design was completed by December, and chips were fabricated by

April 1978. The redesign included improvements in the encoding of the microcode

control word and rigorously applied the structured design methodology. (Certain

cells from the 0M2 data path chip, and from its companion controller chip, were

used as examples in Chapter 3.)

During 1977, the controller chip was designed as one of four class projects in

the Caltech LSI Systems course. It was finished in the summer of 1977, and fabri-

cated chips were received in early 1978.

During 1978, the architecture of an overall system was planned. Design has

begun of the three remaining chips in the OM computer system: the system bus

interface chip, the memory manager chip, and the clock chip.

All of the detailed LSI design on the OM project has been done by students.

Throughout most of the project's history only rather limited design aids were

available, notably a simple symbolic layout language and graphic plotters for

checkplotting. The efforts of students to quickly create large integrated systems,

using only primitive designs aids, helped to motivate the development and refine-

ment of the structured design techniques described in this text.

The OM project has also required the implementation of many prototype de-

signs and complete chip designs. Since early in the project, the Caltech group

collaborated with researchers in industry, who were similarly completing many
prototype LSI system designs, on the development of practical methods for sim-

plifying and speeding up prototype project implementation. This led to the formu-
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lation and debugging of the standard starting frame for conveying multiproject

chips through maskmaking and wafer fabrication, as described in Chapter 4.

5.3 SYSTEM OVERVIEW

An informal block diagram of one OM system is shown in Fig. 5.1. Such a system

IS a complete stored-program, general-purpose computer. Input/output devices

are usually interfaced via the external data bus and control lines, located to the left

in Fig. 5.1. Several such systems may be interconnected via the system bus to

augment one user's overall system. Tasks may then be distributed among the OM
systems, for example, using different ones to independently control different

input/output devices, thereby improving overall system performance. Groups of

different user systems may also share the system bus.

Each OM system is composed of five LSI chips, along with some standard

memory chips and a few MSI chips. A brief description follows of the five LSI

chips being designed as part of this project.

External flags

External

^ data ^

External

enable

Microcode

Flag

Datachip

External hold

Microcode

Data Ini''

Microcode

address

Microcode

Controller

Clock

I'lags and
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Clock

Clock

Hold

Microcode

enables

Data bus

Fig. 5.1 Block diagram of an

OM system.
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The ihiici path chip performs most of the data manipulation functions for the

system. The operations are performed as directed by sequences of control micro-

instructions, which are fetched from a microcode memory using addresses gener-

ated by the controller chip. The main subsystems of the data path chip are a regis-

ter array, a shifter, and an arithmetic logic unit (ALU). Two buses connect

these subsystems. This chip's internal structure is described in detail later in this

chapter.

The controller chip contains the microprogram counter (//-PC) that stores the

microcode memory address, and a counter for the control of microprogram loops.

The chip also contains stacks for both the microprogram counter and loop control

counter values. The concepts of controller structure and function are fundamental

in computer architecture. (Chapter 6 provides an introduction to these ideas and

then describes the organization and layout of the controller chip.

)

The memory manager chip provides addresses for the data memory and di-

rects the communication between chips on the data bus. It also implements some
simple data structures in the data memory. The manager can divide the memory
into separate partitions and implement a different data structure in each partition.

Four basic data structures are implemented: stacks, queues, linked lists, and ar-

rays. When accessing a stack partition, for example, the microcode need only ask

the manager to push or pop data on or off the stack. The manager maintains the

stack pointers, performs bounds checking to see if the stack is full or empty, and

transfers the data.

The system bus interface chip provides asynchronous communication with

other OM systems via the system bus. There are a whole host of subtleties

associated with interfacing asynchronous buses. These issues are among those

discussed in Chapter 7.

The clock chip generates the two-phase clock signals needed by the system.

The clock can be stopped to allow for the synchronization of asynchronous sig-

nals. Some chips in the system have only a single clock input; those chips generate

the two clock phases on-chip.

A few words about timing may be helpful: In general, during <p^ data bits are

transferred from one subsystem to another on the same chip, while during ^p-, data

bits are transferred from one chip to another. The data chip's ALU, and other data

modification units, operate during ^^2 • Microcode is available on both phases and is

pipelined by one phase. Thus, the opcodes that control the ALU enter the data

chip during v?, . The microprogram address is generated by the controller chip dur-

ing (p2, gets driven off-chip into the data chip's microcode memory's latches

during i^, , and is used to look up the next opcode on the following v?o. Because of

these timing requirements, all jumps in the microcode are pipelined by one clock

cycle.

The remainder of this chapter describes the data path chip and is presented in

two distinct parts. The first part outlines the architectural requirements for the

data path chip and then illustrates, via the detailed design and layout of the chip's

subsystems and cells, how the design methodology was applied to satisfy these
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requirements. The second part is an external functional description of the data

path chip, intended as a user manual for those who microprogram the computer

system, and for reference while studying the 0M2 controller chip in Chapter 6.

5.4 THE OVERALL STRUCTURE OF THE DATA PATH

The basic requirements initially established for the data path chip were (1) that it

be gracefully interconnectable into multiprocessor configurations, (2) that it effec-

tively support a microprogrammed control structure, thus enabling machine in-

struction sets to be configured to the application at hand, (3) that it be able to do
variable field operations for emulation instruction-decoding, assembly of bit-maps

for graphics, etc., and (4) that its performance be as fast as possible.

In order to satisfy the first requirement, the data path chip was designed with

two ports: one port to be used for a system interconnection, and the other for

connection to local memory, input/output devices, etc. The requirement for grace-

fully handling variable-length words required a shifter at least sixteen bits long.

The performance requirement dictated an arithmetic logic unit having consider-

able flexibility without sacrificing speed. In many systems time is lost in assem-

bling the two operands required for most operations. Therefore, the data path has

two internal buses, and all registers on the chip are two-port registers. In order to

avoid extensive random wiring for connecting the major subsystems on the chip,

the following strategy was adopted at the outset: two internal buses would run

through the entire processing array, from one end of the chip to the other. One
port was to be located at the left end of the chip, and the other port at the right

end.

The three main functional blocks on the chip are the arithmetic logic unit, the

shifter, and the register array. These blocks are placed next to each other in the

center of the chip, between the two ports. The arrangement of the major subsys-

tems is shown in Fig. 5.2. The system buses run horizontally, on the polysilicon

level, through these functional blocks. The major control lines run vertically

across these blocks, on the metal level. The power, ground, and clock lines are run

parallel to the control signal lines. The details of these functional blocks will be

Left

port

Right

port
Registers Slut'ter

Arithmetic

logic

unit

Fig. 5.2 General floor plan of the

data path chip.
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described in subsequent sections of this chapter. Included are descriptions of

peripheral circuits needed to interface subsystems with each other and to the out-

side world. Detailed layouts of certain cells in the system are also included. The
overall layout of the data chip is shown in the frontispiece.

5.5 THE ARITHIVIETIC LOGIC UNIT

The carry chain of the ALU, and its associated logic, was the first functional block

to be designed in detail, since it was believed that the carry chain would limit the

performance of the system. Simulations of several look-ahead carry circuits indi-

cated that they would add a great deal of complexity to the system without much
gain in performance. For this reason a decision was made early in the project to

implement the fastest possible Manchester-type carry chain, '*^'^"" '• "'•*'' having a

carry propagation circuit similar to that shown in Fig. 1 .28. The carry chain and its

associated logic were allowed to dictate the repeat distance of the cells in the

vertical direction. In /?MOS technology, a Manchester carry chain is particularly

limited in its ability to propagate a high carry signal. However, it can quite rapidly

propagate alow carry signal.

In the arithmetic logic unit there will be a null period when the OP code for the

next operation is being brought in. Advantage can be taken of this null period to

precharge the carry chain and other sections of the data path where timing is

particularly crucial. In this way, it is not necessary to propagate high signals

through pass transistors where the rise transient would be particularly slow. This

strategy was applied in OM's ALU: the resulting carry chain is shown in Fig. 5.3.

Fig. 5,3 Carry-chain circuit for the

arithmetic logic unit.

Carry-in

*This represents how the carry

chain is buffered. In most of the

stages, the vertical connection

IS made, while in the stages with

the amphfication the diagonal

connection is made.
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The main carry chain runs through a pass transistor from carry-in to carry-

out. The carry-in signal is detected by the gate of an inverter that feeds the signal

into the subsequent logic of the ALU. Three transistors are used to control the

state of the carry-out of each stage. The first one merely precharges the node

associated with carry-out during the null period of the ALU. The second is the

carry-kill signal that is derived from the inputs to the ALU, and it simply grounds

the carry-out through a single transistor. The third is the pass transistor that

causes carry-out to be equal to carry-in. These last two signals associated with the

carry chain in each stage, carry-kill and carry-propagate, are generated by two

NOR gates that have kill-bar and propagate-bar as one input and precharge as the

second input. Hence, it is assured that the kill signal and propagate signal are

disabled during the null period when the precharging takes place.

After some analysis, we found that nearly all interesting combinations of

carry-in and the input signals could be generated using propagate and carry-in

from each stage. Thus, as in Fig. 5.4, the carry chain may be seen as a logic block

with two inputs, carry-kill and carry-propagate; the outputs, propagate and carry-

in; vertical signals, carry-in and carry-out: and one control wire, precharge.

Precharge Curry-out

Fig. 5.4 Abstraction of the carry-chain circuit.

Carry-in

The task of designing the balance of the ALU is now reduced to that of design-

ing functional blocks to (a) combine the two input variables to form a propagate-

bar and kill-bar, and (b) combine carry-in and propagate to form the output sig-

nal, and then designing drivers for controlling the logic function blocks and deriv-

ing a timing for precharge.

A number of random logic implementations of function blocks for deriving

kill, propagate, and the output were attempted. All seemed to be at variance with

the horizontally microprogrammed architecture of the data path and required a

large amount of area and power. For this reason it was decided to use the general

logic function block illustrated in color Plate 7(a). Recall that the depletion mode
transistors, i.e., those covered by ion implanted regions represented by yellow,

are always on. Such logic function blocks are used to generate kill-bar and

propagate-bar, and for combining carry-in and propagate to form the output.
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Fig. 5.5 Circuit diagram for a general logic
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Fig. 5.6 Functional abstraction of the

general logic function block.

The circuit, shown in Fig. 5.5, implements the sixteen logic functions of two input

variables. It consists of a set of transistors that fully decode the input combination

of A and B. The set connects one and only one of the veilical control lines to the

output, depending on this input combination. For example, when A and B inputs

are both low, the vertical control wire labeled Gq is connected to the output. The
truth table entries for the desired logic function are placed on the G vertical con-

trol wires, and the output is then the desired logic function of the two input var-

iables. For example, if the Exclusive-OR of A and B is desired, a logic-0 will be

applied to the control wires Go and G3, and logic- 1 will be applied to control wires

Gi and G^. Since it is desired to implement the same logic function on all bits of the

word, the control variables Go through G3 need not be generated in every bit slice,

but may be generated once at either the top or bottom of the airay. The functional

abstraction of the circuit of Fig. 5.5 is shown in Fig. 5.6. For a color-coded stick

diagram of the function block, see Plate 10(a). Plate 10(b) shows a color-coded

actual layout of the function block.

The block diagram for a complete arithmetic logic unit is shown in Fig. 5.7.

The functional dependence of the output on the two inputs and the state of the

carry is determined by a 12-bit number: Pq through P^, Kq through K^, and Ro

through /?,i. together with the carry-in to the least significant bit of the ALU. The

ALU is quite general, and its detailed operation set may be left unbound until the

control structure of the computer system is designed.
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Fig. 5.7 Block diagram of a 4-bit ALU.

Out 1
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There are two general principles illustrated by this design. (1) It is often less

expensive in area, time, and power to implement a general function than to im-

plement a specific one. (2) If a general function can be implemented, the details of

its operation can be left unbound until later, and hence provide a much cleaner

interface to the next level of design. The detailed selection of which functional

entities to leave unbound and which to bind early requires a considerable amount
ofjudgment.

Two details must be dealt with before the arithmetic logic unit subsystem is

complete. Drivers are needed for the Po . . . P3, f'^o ^3, and Ro . . . R3 control

lines that will generate signals with the appropriate timing. In addition, inverters

must be interposed in the carry chain occasionally to minimize the propagation

delay through the entire carry chain. The way we have chosen to implement the

interposition of inverters is to recognize that each carry chain function block con-

tains two inverters that produce at their output the carry-in, having been twice

inverted from the actual carry-in signal. If we merely substitute this signal for the

carry-in signal to the pass transistor, we have doubly inverted our carry-in and
buffered it to minimize the propagation delay. This approach avoids putting spaces
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for inverters between the carry function blocks. It is illustrated by the dotted

connection lines in Fig. 5.3. In the actual implementation, the connection through
the inverters was made in every fourth stage (see Section l.ll).

Drivers for the P, K, and R control lines have the following function: At some
time during the null period of the ALU (which occurs during </?,), an OP code
specifying the state of each control line arrives at the drivers. It must be latched

while the ALU itself is being precharged, and then it must be applied to the P, K,
and R control lines as soon as the ALU is activated. The P, K, and R function

blocks are themselves composed of pass transistors, and their outputs are more
effectively driven low than high. For this reason, we will precharge the outputs of

the P, K, and R function blocks as well as the carry chain itself. This is most
conveniently done by requiring that all of the P, K, and R control signals be high

during the null period of the ALU. Then, independent of the states of A and B
inputs, the outputs will be charged high by the time the ALU active period com-
mences. The control driver implementing this function is shown in Fig. 5.8.

OP code

Fig. 5.8 ALU control driver. All outputs

high during ip.,: selected terms low during (p2:

OP code valid during ^p^.

The OP code is latched through a pass transistor whose gate is connected to

(|C>,, and the OP code runs into a NOR gate, the other input of which is (^2- Thus, the

output of the NOR gate is guaranteed to be low during the (p, period. The NOR
gate output is then run through an inverting super buffer, so that during <pi the

output is guaranteed to be high. During (p2, the OP code is driven onto the P, K,

and R control lines. The only interface specification for the ALU that must be

passed to the next level of system design is that the inputs to the P, K, and R
control drivers be valid before the end of tpi, and that the A and B inputs likewise

be valid by the end of <pi and be stable throughout (p2, the active period of the

ALU. We are then guaranteed that after enough time has passed to allow the carry

to propagate, the output of the R function block will accurately reflect the

specified function of the ALU and may be latched at the end of (/?2-

A color-coded plot of the layout of a 1-bit slice through this ALU is shown in

color Plate 1 1 . This ALU went through another design iteration before inclusion in

the 0M2. A plot of the ALU control driver is shown in color Plate 12.
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5.6 ALU REGISTERS

In order for the arithmetic logic unit described in the last section to be useful, it

must be equipped with a set of registers both for its input variables and for its

output. Let us consider the input registers first. Inputs to the ALU may be derived

from either the shifter, the buses, or other sources. They may be latched and left

unchanged during any (/?!-</?:> machine cycle or set of machine cycles. This is one of

the situations in which combining the multiplexing function with the latching func-

tion simplifies the design and achieves better performance. A register operating in

this manner is shown in Fig. 5.9.

Input 1

Input 2

Input 3

Select 1 Select 2 Select 3

1~L

0-*— Output Fig. 5.9 ALU input register

and multiplexer.

Output

The input to the first inverter can be derived from four sources: three external

sources such as shifter output, bus. etc., and a fourth, the output of the second

inverter. When it is desired to latch a new signal into the register, one of the source

pass transistors is driven on during v?,. The feedback transistor around the two in-

verters is always activated during ip-2. Thus, with three vertical control wires plus

the (/?2 timing signal, it is possible to select one of three sources into the register, or

none of the three sources, thereby leaving the previous value of the register stored

on the gate of the first inverter during the </?, period. Since it is necessary to have

two inverters to form the stable pair when the feedback transistor is on, both the

input and its complement are available as required by the F and K function blocks

of the arithmetic logic unit. The OP code signal that selects the source that will be

applied to the ALU input register during ip, must enter the chip during the previ-

ous if-,- Each of the select signals must be low during (/^a, and at most one of them

may come high during the following ipi. A driver appropriate for these control

signals is shown in Fig. 5.10, with the corresponding layout shown in color Plate

12. The control OP code is latched during ip-,^ during which time the NOR gate

shown disables the output driver. Since the output driver in this case is noninvert-

ing, the output select line is held low during all of ip,- At the end of v72- the OP
code signal is latched and at the beginning of (/?, the particular select line to be

enabled that cycle is allowed to go high.

Note that this timing allows two incoming OP code bits per external wire per

machine cycle. In particular, if it were desirable to share a microcode bit between

the ALU function and the ALU selector inputs, this could be done by bringing the

ALU OP code in during ^p^ and the ALU input selection code in during ip-,. This

technique was suggested by Ivan Sutherland.



156 Overview of an LSI Computer System; Design of the 0M2 Data Path Chip

OP coilc

Fig. 5.10 Select control driver. All outputs

low during (^,; selected terms high

during (^,; OP code valid during ip-i-

^^ * latcli

1
Input >C»-* Output Fig. 5.11 Output register.

The ALU output register is similar to the ALU input register, except that the

timing is reversed. The resuh of the ALU operation is available at the end of (f2-

An OP code bit will, if desired, enable the latch signal to go high during (p2. The
feedback transistor is always enabled during (/?,, and thus the latch is effectively

static even though in the absence of a latching signal the data is stored dynamically

on the gate of the first inverter through the (p-z period. Once again, both the output

and its complement are available if desired.

5.7 BUSES

An early design decision was made to have data flow through the data path chip on

two buses that communicate with all of the major blocks of the system. We have

already seen that the ALU performs its operation during the tp-, period and does

not have valid data to place into its output register until the end of (f ., . If data are to

be transferred from the output register of the ALU to its input register, this must

be done during the (^, period. If we adopt a standard timing scheme in which all

transfers on the buses occur during (/?, , we can make use of the </?2 period when the

ALU is performing its operation to precharge the buses in the same manner that

the carry chain was precharged during the (/?, period. In this way we solve one of

the knotty problems associated with a technology designed for ratio logic. If we
had insisted that the tri-state drivers associated with various sources of data for a

bus be able to drive up as well as down, we would have required both a sourcing

and sinking transistor, together with a method for disabling both transistors. While

it is perfectly possible to build such a driver (we shall undertake the exercise as

part of the design of the output ports), it is a space-consuming matter to use such a

driver at every point where we wish to source data onto an internal bus.
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By using the bus precharge scheme, our ''tri-state drivers" become simply

two series transistors as shown in Fig. 5.12. Here the data from one source, for

example, the ALU output register, is placed on the gate of one of the series tran-

sistors. An enable signal, which may come high during (/;,, is placed on the other

series transistor. If one and only one of the enable signals is allowed to come high

during any one (/?, period, the bus can be driven from as many sources as neces-

sary. The performance of such a bus is limited by the pull-down capability of the

two series transistors. We attach such a driver to each of the output registers for

the ALU.

^1 H
Enable 1

So

!i Bus line

^1 H
Enable 3

urce HL Source 2Hr Source SHf

Fig. 5.12 Precharged bus circuit.

5.8 BARREL SHIFTER

Since shifting is basically a simple multiplexing function, one might think that a

shifter could be combined with the input multiplexer to the ALU. A simple 1-bit,

right-left shifter implemented in this manner is shown in Fig. 5.13. It is identical

with the three-input ALU register, with the three inputs used to select among the

bus, the bus shifted left by one, and the bus shifted right by one. To support the

Lch * i^jj

Shu * ip. Shd * i/jj

1-

C^ Fig. 5.13 A simple 1-bit, right-left shifter.

/ + 1
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Fig. 5.14 A 4-by-4 crossbar switcii.

multibit shifts necessary for field extraction and building up odd bit arrays, some-

thing more is required. One is tempted initially to build up a multibit shift out of a

number of single shifts. However, for word lengths of practical interest, the n^

delay problem (see Section 1.11) makes such an approach unworkable.

The basic topology of a multibit shift dictates that any bus bit be available at

any output position. Therefore, data paths must run vertically at right angles to the

normal bus data flow. Once this simple fact is squarely faced, a multibit shifter is

seen as no more difficult than a single bit shifter. A circuit enabling any bit to be

connected to any output position is shown in Fig. 5.14. It is basically a crossbar

switch with individual MOS transistors acting as the crossbar points, the basic

idea being that each switch SC^ connects bus / to output^'. In principle this struc-

ture can be set to interchange bits as well as to shift them, and it is completely

general in the way in which it can scramble output bits from any input position. In

order to maintain this generality, the control of the crossbar switch requires n"^

control bits. In some applications, the n'^ bits may not be excessive, but for most

applications a simple shift would be adequate. The gate connections necessary to

perform a simple barrel shift are shown in Fig. 5.15. The shift constant is pre-

sented on // wires, one and only one of which is high during the period the shift is

occurring. If the shifter's output lines are precharged in the same manner as the

bus, the pass transistors forming the shift array are required to pull down the

shifter's outputs only when the appropriate bus is pulled low. Thus, the delay

through the entire shift network is minimized and effective use is made of the

technology.

A second topological observation is that in every computing machine, it is

necessary to introduce literals from the control path into the data path. However,
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Fig. 5.15 A 4-by-4 barrel shifter.

our data path has been designed in such a way that the data bits flow horizontally

while the control bits from the program store flow vertically. In order to introduce

literals, some connection between the horizontal and vertical flow must occur. It

is immediately obvious in Fig. 5.15 that the bus is available running vertically

through the shift array. That is then the obvious place to introduce literals into the

data path or to return values from the data path to the controller.

At the next higher level of system architecture, the shift array bit slice may be

viewed as a system element with horizontal paths consisting of the bus, the shifter

output, and if necessary, the shift constant since it appears at both edges of the

array. The literal port is available intoorout of the top edge of the bit slice, and the

shift constant is available at the bottom of the bit slice. These slices, of course, are

stacked to form a shift array as wide as the word of the machine being built.

One more observation concerning the multibit shifter is in order. We stated

earlier that our data path was to have two buses. Therefore, in our data path, any

bit slice of a shifter such as the one shown in Fig. 5.15 will of necessity have two

buses running through it rather than one. We chose to show only one for the sake

of simplicity. There remains the question of how the two buses are to be integrated

with the shifter. Since we are constructing a two-bus data path, we have two full

words available, and a good field extraction shifter would allow us to gracefully

extract a word that crosses the boundary between two data path words. The
arrangement shown in Fig. 5.15 performs a barrel shift on the word formed by one

bus. Using the same number of control lines and pass transistors, and adding only

the bus lines that are required for the balance of the data path anyway, we may
construct a shifter that places the words formed by the two buses end to end and
extracts a full-width word that is continuous across the word boundary between
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Lit 2 Lit 3

Bus B

Fig. 5.16 A 4-by-4 shifter with split

vertical wires and two data buses.

Shift 3 Shift Shift 1 Shift

the A and B buses. This function is accomplished, in as compact a form as just

described, with a circuit shown in Fig. 5.16. Notice that the vertical wires have a

split in them. The portion of the wire above the corresponding shift output is

connected to bus A, and that below the corresponding shift output to bus B. The

layout of the barrel shifter is shown in color Plate 13.

It can be seen by inspection that this circuit performs the function shown in

Fig. 5.17. which is just what is required for doing field extractions and variable

word length manipulations. The literal port is connected directly to bus A and may

be run backward in order to discharge the bus when a literal is brought in from the

control port. A block diagram representing the shifter at the next level of abstrac-

tion is shown in Fig. 5.18.

In order to complete the shifter functional block, it is necessary to define the

drivers on the top and bottom that interface with the system at the next higher

level. Let us assume that the literal bus from outside the chip will contain data

valid on the opposite phase of the clock from that of the internal buses. For that

case, a very simple interface between the two buses that will operate in either

direction is shown in Fig. 5.19.

The internal shifter output is precharged during ip2. and active during <^i. It

may be sourced from the shifted combination of either the A and B buses or the

literal bus and B bus, as shown in Fig. 5.16. The external literal bus itself may be
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Fig. 5.17 Conceptual picture of the

shifters operation.

Shift constant in

Fig. 5.18 Block diagram of the shifter.

sourced either from the opposite end (the external paths from the program source)

or from the end attached to bus A in the shift array shown.

The bus to the external literal path is precharged during (/?, , and data bits from

the literal port of the shifter are enabled onto it by a signal active during <p2, as

shown in Fig. 5.19. The two signals, (/?, * In, and ip-, * Out, are derived from buffers

identical to those shown earlier. The shift constant itself is represented by one line

out of A2, which is high, the others remaining low. Buffers for these lines are identi-

cal to those shown in Fig. 5.10.

There is one more observation concerning the n-bit shift constant. It is repre-

sented most compactly by a log n bit binary number. However, in order to gener-

ate from such a form a signal that can be used in the actual data path, a decoder is

required for converting the binary number into a 1-of-/; signal suitable for feeding

the buffers. There are a number of ways of making decoders inA?MOS technology.

The most common form is the NOR form, which is the fully decoded equivalent of

the AND-plane in the programmable logic array (Chapter 3). It is shown in Fig.

5.20. Notice that the output is a high-going 1-of-n pattern.

Shifter literal
>

^, * In<
>

t
lixternal literal bus Fig. 5.19 Literal interface.

"Jl

—

^2 * O'Jf

t
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Fig. 5.20 A NOR form 1-of-// decoder. Fig. 5.21 A NAND form 1-of-// decoder.

Decoders can also be made in other forms. For small values of n, the NAND
form shown in Fig. 5.21 is often convenient. We used a variant of this form for the

ALU function block described earlier. Notice that the output of this form, when
used as a decoder, is a low-going \-of-n pattern. There is also a complementary

form of decoder that can be built with this technology, as suggested by Ivan

Sutherland. It takes advantage of the fact that in any decoder both the input term

and its complement must be present. In this case, the input term can be used to

activate pull-up transistors in series, while the complement can be used to activate

pull-down transistors in parallel. This logic form is similar in principle to that used

with complementary technologies and has similar benefits. It can generate either a

high-going or a low-going \-of-n number and dissipates no static power. A decoder

of this sort is shown in Fig. 5.22. Once we have added the appropriate buffers and

decoders to our shift array, we have a fully synchronized subsystem ready to be

integrated with the system at the next level up. The block diagram of this subsys-

tem is shown in Fig. 5.23.

Fig. 5.22 A complementary form

1-of-// decoder.
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Fig. 5.23 A fully synchronized shifter.

5.9 REGISTER ARRAY

In any microprogrammed processor designed for emulating a higher level instruc-

tion set, it is convenient to have a number of miscellaneous registers available,

both for working storage during computations and for storing pointers (stack point-

ers, base registers, program counters, etc.) of specific significance in the machine

being emulated. Since the data path has two buses and the ALU is a two-operand

subsystem, it is convenient if the registers in the data path are two-port registers.

The circuit design of a typical two-port register cell is shown in Fig. 5.24. The
layout of a pair of these cells is shown in color Plate 14. This register is a simple

combination of the input multiplexer described earlier, the (P2 feedback transistor,

and two output drivers, one for each bus. The registers can be combined into an

array m bits long and n bits wide. Each cell of the array can be viewed at the next

level up as shown in Fig. 5.25. Drivers for the load inputs and the read outputs are

LdA * i^iH

LdB*^,Hr
c

Bus A

hRdA *^,

JhRdB*^,

Bus B >

P'ig. 5.24 A two-port register cell.

LdA * i^, yf^

Bus A

Bus B^^

RdA *

Bus A

Bus B

Fig. 5.25 Block diagram definition of the

two-port register cell.
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identical to those shown in Fig. 5.10. While we could immediately encode the load

and read inputs to the registers into log /; bits, we shall delay doing so until the

next level of system design. There are a number of sources for each bus besides the

registers, and we will conserve microcode bits by encoding them together.

Before we proceed, there is one important matter that must be taken care of in

the overall topological strategy. Routing of VDD and ground paths must generally

be done in metal, except for the very last runs within the cells themselves. Often

the metal must be quite wide, since metal migration tends to shorten the life of

conductors if they operate at current densities much in excess of 1 milliampere per

square micron cross section. Thus, it is important to have a strategy for routing

ground and VDD to all the cells in the chip before doing the detailed layout of any

of the major subsystems. Otherwise, one is apt to be faced with topological impos-

sibilities because certain conductors placed for other reasons interfere with the

routing of VDD and ground. A possible strategy for the overall routing of VDD
and ground paths is shown in Fig. 5.26. Notice that the VDD and ground paths

form a set of interdigitated combs, so that both conductors can be run to any cell

in the chip. Any such strategy will do, but it must be consistent, thoroughly

thought through at the beginning, and rigidly adhered to during the execution of

the design.

5.10 COMMUNICATION WITH THE OUTSIDE WORLD

Although in particular applications the interface from a port of the data path to the

outside world may be a point-to-point communication, the ports will often connect

III 1 1 1 1

1 1 1

VDI)^^|(;m) y

Fig. 5.26 VDD and GND net for the

data path chip.
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to a bus. Thus it is desirable to use port drivers that may be set in a high imped-

ance state. Drivers that can either drive the output high, drive the output low, or

appear as a high impedance to the output are known as tri-state drivers. Such

drivers allow as many potential senders on the bus as necessary. Figure 5.27

shows the circuit for a tri-state interface to a bonding pad. Here, either bus A or

bus B can be latched into the input of a tri-state driver during (/?, . Likewise the pad

may be latched into an incoming register at any time independent of the clocking

of the chip. Standard bus drivers are enabled on bus A and bus B. The only re-

maining chore is the design of the tri-state driver that drives the pad directly.

Details of the tri-state driver are shown in Fig. 5.28. The layout of an output pad

and its associated driver circuitry is shown in color Plate 15.

The terms out and outbar are fed to a series of buffer stages that provide both

true and complement signals as their outputs and are disabled by a disable signal.

Note that this Disable signal does not cause all current to cease flowing in the

drivers, since the pull-up transistors are depletion type. In general there will be a

number of super buffer stages of this sort. The very last stage of the driver is

shown in Fig. 5.28(b). It is not a super buffer but employs enhancement mode
transistors for both pull-up and pull-down. These transistors are very large in

order to drive the large external capacitance associated with the wiring attached to

the pad. They are disabled in the same manner as the super buffers, except that

when the gates of both transistors are low, the output pad is truly tri-stated. The

Disable

(asynchronous)

Bus B <

DrvB *
v?i

Latcli pad

(asynchronous)

Disable

Tri-state

buffer stage

A

Pad

driver stage

(a) (b)

Fig. 5.27 Data port tri-state pad circuit. Fig. 5.28 The tri-state driver consists of

any number of tri-state buffer stages followed

by a pad driver stage. The current design

used two tri-state buffer stages.



166 Overview of an LSI Computer System; Design of the 0M2 Data Path Chip

two output transistors are a factor of approximately e larger than the hist super

buffer in the buffer string.

As we have seen, a rather large inverter string is required to transform the

impedance from that of the internal circuits on-chip to that sufficient for driving a

pad attached to wiring in the outside world; the large size imposes a delay, of some
factor times a logarithm of this impedance ratio, upon communications between

the chip and the outside world. Any help that can be obtained in making this

transformation is of great value. For example, the latch and buffers associated

with the input bus circuit to the pad drivers can themselves be graded in imped-

ance level, so that by the time the out and outbar signals are derived, they are at a

considerably higher current drive capability than the buses. Note that the buses

are of a considerably larger capacitance than minimum nodes on the chip, and thus

the initial latch buffers can be larger than typical inverters on the chip. All such

tricks help to minimize the number of stages between the bus and the outside pad

and consequently the total delay in going off-chip.

5.11 ENCODING THE CONTROL OPERATION OF THE DATA PATH

By now we have defined a complete functional data path with ports on each end

and functional blocks through the center, as shown in Fig. 5.29. The data path

operation code bits required to control the data path are shown, as is the phase of

the clock on which they are latched. There are forty-nine such bits together with
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the four asynchronous bits for latching and driving the pad to the external world.

In addition, there are the carry-out wire and the sixteen literal wires. These sixty-

six wires together with the thirty-two from the left and right ports must go to and

come from somewhere. (Schemes for encoding internal data path operations into

microinstructions of various lengths are discussed in Chapter 6.) At one extreme

all the data path control wires can be brought out to a microcode memory driven

by a microprogram counter and controller, in which case all operations imple-

mentable by the data path may be done in parallel. The opposite extreme is to

tightly encode the operations of the data path into a predefined microinstruction

set. In the present system, this encoding would be most conveniently done by

placing a programmable logic array or set of programmable logic arrays along the

top and the bottom of the data path. A condensed microinstruction could then be

fed to the programmable logic arrays that would then decode the compact mic-

roinstruction into the data path operation code bits.

An important point of the design strategy used here is that we can or-

thogonalize the design of the data path and the design of the microinstruction set

in such a way that the interface between the two designs is not only very well

defined and very clean, but it can be described precisely, in a way that system

designers at the next higher level can understand and work with comfortably. The
data path can then be viewed as a component in the next level system design.

Using the approximate capacitance values given in Table 2. 1 , we can estimate

the minimum clock period for sequencing the data path. We would expect a <^,

time for the data path of = 50 r (same as the general estimate given in Section 1.13

on transit times and clock periods). However, the ^po time of the data path is lim-

ited by the carry chain, as discussed earlier in this chapter. The relative areas of

metal, diffusion, and gate can be estimated from the ALU layout shown in Plate

11. The metal and diffusion occupy = 15 and ~ 8 times the area of the propagate

pass transistor gate, respectively. Metal is ~ 0. 1 and diffusion is typically 0.25 times

the gate capacitance per unit area. Thus the total capacitance of each stage of the

carry chain is ~ 4.5 times that of the pass transistor gate. The effective delay time

is correspondingly longer than the transit time r of the transistor itself. The effec-

tive delay through n stages of such pass transistor logic is ~ tai^. In the 0M2, n = A

and the effective delay for 4 bits of carry chain is ~ 4.5* 16r = 72r. To this must be

added the delay of the doubly inverting buffers at the end of every 4 bits of straight

Manchester logic. This delay is (1 + k) times the transit time of the inverter pull-

down, properly corrected for stray capacitance in the inverter. Here the inverter

ratio A. is = 8, since its input is driven through the pass transistors. Conservatively,

strays in such a circuit are always several times greater than the basic gate capaci-

tance, and we may estimate the inverter delays at =30 r. Our estimate for the total

carry time is thus =100 times the transit time for each block of 4 ALU stages. The
total ip2 time should then be = 400 t. In 1978, the fastest commercial // MOS pro-

cesses yield a transit time r of = 0.3 ns, and we would expect a minimum total

clock period of ~ 450 r, or = 135 ns.
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5.12 FUNCTIONAL SPECIFICATION OF THE 0M2 DATA PATH CHIP

5.12.1 Introduction

This specification describes a 16-bit data path chip referred to as OM2 [#986]. The

0M2 contains 16 registers, an ALU, and a 16-bit shifter, and is designed as part of

a microprogrammed writable-control-store digital computer. The companion chip

is the controller chip, which contains the program counter, stacks, and so on. The

controller is described in Chapter 6. The entire system is designed to run on a

single 5-volt supply.

The 0M2 data chip has two data ports for communication with the external

system and a communication path to the controller chip. The data ports are tri-

state with either internal or external control. Communication with the controller

consists of a 16-bit literal port and a single flag bit. Seven control bits come di-

rectly from the microcode memory.

The system runs on a single clock, generating <^, and (/?2 internally. When the

clock is high, the internal buses transfer data: when the clock is low, the ALU is

performing its operation. Microcode bits enter the data chip the phase before that

code is to be executed. Therefore, the bus transfer code enters the data chip when
the clock is low, and the ALU code enters when the clock is high. Figure 5.30

sketches a possible OM system.

Microcode

memory

I/O

bus

OM: datachip

Mam
memory

Fig. 5.30 One possible

0M2 system configuration.

Memory
bus

*Section 5.12 contains a functional specification of the 0M2 data path chip, contributed by Dave

Johannsen of California Institute of Technology. This specification was originally documented in

Display File #1111, by Dave Johannsen and Carver Mead of the Caltech Computer Science

Department, and copyrighted by Caltech. The specification is reprinted here with the permission of

the California Institute of Technology. See also the later document, "Our Machine: A Microcoded

LSI Processor," Display File #1826, by Dave Johannsen, Caltech Computer Science Department,

for a general description of the OM System.
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Throughout this section a positive logic convention is used. A "1" refers to a

high voltage level, while a "0" refers to a low voltage level.

5.12.2 Datapaths

A block diagram of 0M2 is shown in Fig. 5.31 . There are two buses that connect

the various elements of the chip. The buses transfer data while the clock is high,

the period referred to as c^,. During ^p-i, when the clock is low, the buses are pre-

charged. Each bus can get data from only one source and give data to only one

destination during any one cycle.

Literal port Flags

/\ ^\

Lett

port

J:!.
Bus A

Shifter ALU

Out

Out

Right

port

Fig. 5.31 Block diagram

of the 0M2.

BusB

The left and right ports communicate between the data chip and the outside

world. The right port has been traditionally known as the memory bus port while

the left port has been the system bus port, but since the two ports are identical,

this is an arbitrary convention. Each port has both an input latch and an output

latch to provide facilities for synchronizing the data chip to the outside buses.

Under program control either of the two buses can load the output latch during </?,

.

There are three modes of driving data from the output latch to the pins, two of

which are under program control and one of which is under hardware control. The
first method is to output the data as soon as it comes from the bus, during the same

(^,. The second method is to latch the data from the bus during ip^ and drive it out

during the following 1^2 • The final method is to latch the data from the bus during

(/?, , but output the data when an enable pin is pulled low. The enable pin would be

controlled by a bus manager, and can be asynchronous with respect to the data

chip. Inputting from the port is similar. By pulling down on another enable pin,

data bits from the external bus are loaded into the input latch, which can be read

later under program control. Alternatively, the microcode can force the data cur-

rently on the external bus into the internal bus during the current ^p^. With this

scheme, many types of synchronous and asynchronous buses may be interfaced to

0M2's. For internal control only, the external enable pins can be left floating.
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5.12.3 Registers

The registers are static and dual port. Any one of the 16 registers may source

either or both of the buses, while any one of the 16 may be the destination for

either bus. but not both. There are only two restrictions on the use of the registers:

1

.

One register may not be the destination for both buses on the same cycle.

2. One register may not be both the source for one bus and the destination for the

other bus on the same cycle.

5.12.4 Shifter

The shifter concatenates the two buses, resulting in a 32-bit word, with bus A
being the more significant half. The shift constant then selects the bit position

where the 16-bit output window starts. The shift constant specifies the number of

bits from bus B present in the output; i.e., a shift constant of returns bus A,

while a shift constant of 15 returns the LSB of bus A in the MSB of the output,

followed by all but the LSB of bus B in the rest of the word. A conceptual picture

of the shifter is shown in Fig. 5.32. The ALU can select as inputs either the bus,

the shift output, or shift control. If shift control is selected, the entire word is

except where the LSB of bus A appears in the shift output. The shifter operates on

(f^; it may be viewed as an extension of the buses.

Shift constant

I) ^ 4 5 ( ,<
I
' 10 11 1 : 1 ^ 14 1.

MSB .

Bus \

LSB
-

'.

'-

-

II

•
~

-

qr-

r-
r-

"^
~-ir-

r-

MSB -

Bus B -

LSB -

•

- --
--

'-'-

--
- '-'-

_

- - - -

.

MSB

Output F"ig. 5.32 Shifter operation.

LSB

5.12.5 ALU

A block diagram of a single bit of the ALU is shown in Fig. 5.33. The ALU oper-

ates on the data that is contained in its two input latches. Input latch A may be
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Fig. 5.33 Block diagram

of one bit of the ALU.

Cin

loaded from bus A, the shifter output, or the shift control, while the input latch B
may be loaded from bus B, the shifter output, or the shift control.

The outputs of the two latches become the inputs to two function blocks that

determine what will happen on the carry chain. Function block P determines

whether the carry chain propagates, while K decides if it is to kill the carry. If

neither is true, the carry chain generates a carry. Each function block has four

control inputs, which, for the propagate function block, are referred to as PFF,
Pfj pjf and pjj If pff is enabled, the P block output is high if both input

latches are false (contain 0). Enabling PFT activates the output if input A is false

and input B is true, and so on. If, for example, both PFF and PFT are enabled, the

output is active if input A is false, regardless of the state of input B. To further

illustrate the operation of the function blocks, consider addition. If both inputs

contain a 1, the carry is to be generated, while if both inputs are 0, the carry is

killed. If the two inputs are different, the carry is to be propagated (carry-

out*-carry-in). To do this operation, the kill output should be active if both inputs

are false, so KFF is enabled. Both PFJ and PTF should be enabled to propagate

properly. Therefore, K = {KFF, KFT, KTF, KTT) = (1,0,0,0), and P = {PFF,

PFT, PTF, PTT) = (0,1,1,0).

The result of the ALU is produced by the R function block, which has as

inputs f-block out and carry-in. For the addition example above, the output

should be the exclusive-OR of P and Cin, so R = (0,1,1,0). P. K, and R values for

common ALU operations are listed in Table 5.2.

Two ALU output latches (A and B) can be loaded from the R block output;

either one may later be used to source either bus.

5.12.6 Flags

The carry input to the LSB of the ALU is a logical combination of a flag bit and

two control inputs. The two control inputs can force the carry-in to be either 1 or

0, or they can select either flag or flag bar as the input.

There is also a method for doing conditional ALU operations under the con-

trol of a 2-bit conditional OP field. A conditional operation performed by the ALU
is not only a function of the control inputs but also of the flag bit. The conditional

operation control forces some of the control inputs low, regardless of what the P,

K, and R microcode says. The coding for conditional operations allows the use of

operations like multiply step and divide step without the necessity for branching in

the microcode.
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There is a 16-bit flag register that can also be a source or destination of bus A.

This register can also be loaded with the ALU flags during (^j. The ALU flags

include carry-out, overflow, carry-in to the MSB, zero, MSB, LSB, less than, less

than or equal to. and hii^her (in unsigned value). The last three flags are compari-

son flags used after a subtraction. For example, after subtracting ALU input latch

B from latch A, the "less than" flag is true if the value in ALU input latch B is

larger than the value in ALU input latch A. The MSB of the flag register is called

the flag bit, and this bit may be modified every c^, by loading it with the value of

one of the other bits of the flag register. The flag bit is used in the calculation of

carry-in and modification of conditional ALU OPs. This bit is also sent to the

controller chip to be used for conditional branching, etc.

5.12.7 Literal

The one remaining data path is the literal port. It is used to send data from the data

chip to the controller, and vice versa. It is a source or destination for bus A. When
the literal port is being used, standard bus operations are suspended for that cycle.

5.12.8 Programming

The data chip requires 23 bits of microcode on each phase of the clock. This

section of the memo specifies the encoding of the fields within that microcode.

Figure 5.34 shows the arrangement of the microcode word.

R Flag select Latching fields

Conditional Carry-in

OP field

(a)

select

Figure 5.34

(a) Phase 2 OP code (in on tp^).

Literal

control

Literal

(b)

Bus A destination

(b) Phase I literal transfer OP code

(in on if.^)-

ou
1 1 1 1 1 1 1 1 1

1 1 1 1

1 1 1 1
(c) Phase 1 normal OP code (in on if-,)-

Literal Bus B source Bus B destination Bus A source Bus A destination

control
(c)

Bus Transfer

The bus transfer control bits enter the data chip during <^2 and are used during the

following v?, . There are two buses, bus A and bus B, that interconnect the modules
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Table 5.1

Bus A Source Bus A Destination

Onnnn Register n Onnnn Register n

10000 Right port pins 10000 Left port, drive now
10001 Right port latch 10001 Left port, drive if 2

10010 Left port pins lOOl.v Left port, no drive

10011 Left port latch 10100 Right port, drive now
10100 ALU output latch A 10101 Right port, drive 1/^2

10101 ALU output latch B 101 l.v Right port, no drive

10110 Flag register 11000 ALU input latch A
11001 ALU input latch A gets shift out

11010 ALU input latch A gets shift control

11011 Flag register

Bus B Source Bus B Destination

Onnnn Register n

10000 Right port pins

10001 Right port latch

10010 Left port pins

10011 Left port latch

10100 ALU output latch A
10101 ALU output latch 5

OOnnnn Register n

1 0000 Left port , dri ve no

w

010001 Left port, drive vTa

OlOOl.v Left port, no drive

010 100 Right port, drive now
010101 Right port, drive v:2

0101 l.v Right port, no drive

OllO.v.v ALU input latch 5
lOnnnn ALU input latch fi gets shift

output, shift constant = n

Wnnnn ALU input latch fi gets shift

control, shift constant = n

of the data chip. These two buses are similar in many respects; however, there are

a few asymmetries as to sources and destinations. Also, when a literal is being

transferred, the only bus transfer field that is active is the bus A destination,

which stores the literal entered on bus A. A listing of bus sources and destinations

appears in Table 5.1.

ALU Input Selection

The two ALU input latches are destinations for the two buses, as shown above. In

addition to being loaded directly from the buses, these two latches can be loaded

from the outputs of the shift array. The shift constant always comes from the four

least significant bits of the bus B destination field, even though the destination of

bus B is not the ALU input latch B. For example, bus B may be transferring the

contents of register 3 into register 5 while bus A is transferring the contents of

register 4 to the ALU input latch A through the shifter. In this case, the shift

constant would be "5" because the four least significant bits of the bus B destina-

tion field contain '0101".
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Table 5.2

Cm Cond

A - B 1 6 6

A - B - Cin 1 6 6 1

A - B 2 9 6 2

B - A 4 9 6 2

A- B-Cin 2 9 6 1

B- A- Cin 4 9 6 1

- A i: 3 6 1

- B 10 5 6 2

A ' 1 3 12 6
">

B - 1 5 10 6 2

A -
1 12 3 9 2

B -
1 10 5 9 2

AAB 8 12

A\/B 14 12

AeB 6 12

-^A 3 12

-^B 5 12

A 12 12

B 10 12

Mul 1 14 14

Div 3 15 15

.4 14 12

Mask 10 5 8
-)

^

SHLA 3 10

Zero

Add
Add with carry

Subtract

Subtract reverse

Subtract with borrow

Subtract reverse with borrow

Negative A
Negative B
Increment A
Increment B
Decrement A
Decrement B
Logical AND
Logical OR
Logical EXOR
Not A
Not B
A
B

1 Multiply step

2 Di\ ide step

3 Conditional AND OR
Generate mask

Shift A left

Zero

ALL' Operations

Table 5.2 shows coding for ALU operations that are commonly found useful. The

user is encouraged to encode other operations if these are not suitable. The num-

bers gi\ en are the decimal representation of the 4-bit control v^ord. For P and K.

A B = l.AB = 2.AB = 4. .45 = 8. For R. P C = 1. PC = 2. PC = 4. PC = 8.

Cin is the carry-in select, and Cond is the conditional OP select.

Cany-In Select

The carry-in select field determines what the carr\ into the LSB of the ALU will

be. according to the following table:

00

01 Flag bit

10 1

11 Flag bit complemented

I
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Conditional OP Select

The conditional OP select field is used to generate three basic conditional type

operations: multiply, divide, AND/OR step. In a great many cases, the conditional

OP allows functions dependent on a flag to be performed in one cycle, rather than

sending the flag to the controller and branching to two separate instructions de-

pending upon that flag. When a conditional OP is selected, certain ALU control

bits are forced to zero. Which bits are zeroed depends on the conditional OP select

and the flag bit, as follows:

Select Flag bit K P R

X Unconditional

1 —0 -0- -0- Multiply step

1 — 0— 0—
2 0--0 -00- -00- Divide step

1 -00- 0--0 0-0

3 — — — AND/OR
1 — -00- —

For example, consider multiplication: If the flag bit is high, Ps and R3 are

grounded, so the ALU OP (1,14,14) becomes (1,6,6), which is the code for

"ADD". If the flag bit is low, A^o, ^1, and ^1 are pulled low, transforming (1,14,14)

into (0,12,12), i.e., thecodefor "input A",

Flags

The flag select field determines which of the ALU flags becomes the new flag bit.

The following table lists the selection options.

Select New flag bit

Old nag bit

1 Carry-out

2 MSB
3 Zero

4 Less than

5 Less than or equal

6 Higher (in absolute value)

7 Overflow

The ALU flags are loaded into the flag register under the control of the latching

field, bit 3. They are loaded into the following positions.
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Bit Flag

Not changed

1 Not changed

2 Not changed

3 Not changed

4 Not changed

5 Previous value of flag bit

6 —1 Carry into MSB stage

7 Less than or equal

8 —
1 Higher (in absolute value)

9 —
1 Less than

10 LSB
11 —

. Zero

12 MSB
13 Overflow

14 —
1 Carry-out

15 Current flag bit

Latching Field

The latching field specifies which of four registers should be loaded, as shown in

the following table:

Latching field Register loaded

l.v.rjif Flag register loaded w ith current ALU tlag^

jtIjcjc ALU output latch .4 loaded with the ALU output

xxlx ALU output latch B loaded with the ALU output

xxxl The literal field duimg iIk iie\> >. ;. is loaded with

the contents of bus A during the last ^f-,

0000 None of these registers are affected

Literals

The 2-bit literal field specifies when a literal is to be used and which direction it

goes. If both bits are 0. no literal transaction will occur. If the first bit is 1 . a literal

will be transferred. If the second bit is L the literal goes off-chip, while if the bit is

0. the literal comes on-chip.

5.12.9 Programming Examples

Here we present three programming examples that should provide a better under-

standing of the various datapaths within 0M2.
The first example is 16-bit integer multiplication. The two inputs, X and Y, are

multiplied to produce the result, Z. In the multiply loop, the number X is shifted

left and the MSB is stripped off. Z is shifted left, then Y is added to the new Z if the

MSB of -Y was a 1. The sequence of instructions is repeated 16 times, using the

counter in the controller to signal when the 16 iterations have been performed.
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T T I

X'

Shift left

3: .1
(a) Shift X in the ALU, putting the Cout flag into flagbit. (^.)

Shift "^-Tj
Const. -H .

(b) Put Z on bus A, and shift 1 left in shifter.

(c) Conditionally add Z and Y

t i

I t

xn

r ^
(d) Bring A' back around to the ALU input.

^i^

u:
(</5,

(V5,)

Figure 5.35

Assume contents of R[0] = 0. Figure 5.35 illustrates each step of the loop listed

here:

<P2- ALU.Out.A^ALU(Shift A left)^ALU.In.A;

Latch Flags;

<^,: ALU.In.A^Shift.out, Bus.A^ALU.Out.B;
R[l]^ Bus.B^ R[0]; This gives a shift constant of 1

.

ip-z- ALU.Out. B^ALU(Multiply Step); conditionally add.

Flag*—Cout;

<Pi- ALU.In.A^Bus.A^ALU.Out.A
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The second example will be to generate a parity flag, which is not directly

available from the ALU. Parity is generated by exclusive-oring all of the bits of the

data together. If the data are loaded into both ALU inputs, with input B rotated by
one, performing an exclusive-or operation will give an output that is the

exclusive-or of adjacent bits; bit/' of the output will be bit/ of the input © bit/- 1 of

the same input. If this same operation is performed, this time rotating input B by
two. bit /becomes /©/- 1 ®/-20/-3. By doing this two more times, rotating fi first

by four and then by eight, every bit of the output is equal to the parity, that is, the

EXOR of all of the bits. The MSB flag is the parity odd flag, while the zero flag is

the parity even flag. The program is listed below and illustrated in Fig. 5.36.

<p,: ALU.In.A*—Bus.A<—R[0]: generate the parity of register 0.

ALU.In.B^Shift.out(l):Bus.B^R[0]:

^v. ALU.Out.A^ALU(Exor):
<^,: ALU.In.A^Bus.A^ALU.Out.A:

ALU.In.B^Shift.out(2):Bus.B^ALU.Out.A:

ifo-. ALU.Out.A^ALU(Exor):

V?,: ALU.In.A^Bus.A^ALU.Out.A:
ALU.In.B^Shift.out(4);Bus.B^ALU.Out.A;

ifo-. ALU.Out.A^ALU(Exor);
,p,: ALU.In.A^Bus.A^ALU.Out.A:

ALU.In.B^Shift.out(8):Bus.B^ALU.Out.A;

^2- ALU(Exor):

The third example illustrates how the data path can compute its own instruc-

tion. When driving a literal off-chip, the literal values appear in 16 of the microcode

bits. If we have the literal port drive the data off chip, but don't set the disable bits in

the instruction decoder, the data path will "execute" the literal. In the code below

we sum all the registers (as further illustrated in Fig. 5.37). The basic literal transfers

R[l] to the ALU to be added to R[0]; if we increment and execute the literal, then

R[2] is transferred: etc.

«^,: ALU.In.A^Literal •Bus.A^R[l]: ALU.In.B^Bus.B^ALU.Out.B'

^,: ALU.Out.B^ALU(A):
<p,: ALU.In.A^Bus.A^R[0]:
ip.,: ALU.Out.A*—ALU (0): This is just setup, now the loop!

if,: Bus.A^ALU.Out.B:
ALU.In.B^Bus.B^ALU.Out.A:

if.,: ALU.Out.A^ALU(add):
Execute Literal:

V? ,: ALU.In. A<—Bus. A; The rest of this instruction is the literal!

if.,: ALU.Out.B-^ALUCincrement B)<—ALU.In.B: point to next register.
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Fig. 5.36 (a) Shifting by 1: Result
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(b) Shifting by 2: Resuh is

exclusive-OR of four adjacent
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has all bits equal to the parity.

;; L

I XOR '-'

i:>

(c)

^: I
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1
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t

[Continued)

Figure 5.37
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T
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(c) Fetch register 0.
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Sum
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Lit H

(d) Clear sum.

X T

Sumhi

^
(e) Bring around sum and put control literal on bus A.

Literal to 1 Lit
1

control decoders J I
^

t t i
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I
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t
t T , I4- ^ ,
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(h) Point to next register, loop to Fig. 5.37(e).

Figure 5.37 {com.
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APPENDIX

This appendix contains additional detailed specifications for the 0M2 Data Chip:

A description of the format and function of 0M2 microinstructions is given,

using ISP notation. The ISP (Instruction-set Processor) notation is defined, and

examples of its use given, in Chapter 2 of C. G. Bell and A. Newell, Computer

Structures: Readings and Examples, New York: McGraw-Hill, 1971.

A concise microinstruction command summary is included for reference.

A microcode "coding form" template is included, which can be used to plan

the flow of data movement during microinstruction execution, as shown in the

earlier examples (Fig. 5.37 a-h).

Finally, the pinout (identity of the 64 individual pins) of the packaged 0M2
chip is illustrated.
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ISP DESCRIPTION OF THE 0M2 DATA CHIP

Pin States

lp<0:17>
rp<0:17>
new.code<0:22>
flag. pin < >

power < 0:3 >

Pin Formats
left.port.data<0:15>

left. out. async < >

left.m.async < >

rigfit.port.data<0:15>

right. out.async < >

rigfit. in. async < >

literal<0:15>

clock <0>
Mp State

reg(0:15]<0:15>
a.bus<0:15>
a.bus.old<0:15>
b.bus<0:15>
left.out<0:15>
left.in<0:15>

right.out<0:15>
right.in<0:15>
left.out.later<0>

right. out. later < 0>
alu.in.a<0:15>
alu.in.b<0:15>
alu.out.a<0:15>
alu.out.b<0:15>
old.code<0:22>
flags < 0:15 >

Instruction format

a.source < 0:4 >

b.source < 0:4 >

a.destination < 0:4 >

b.destination < 0:5 >

literal. in <0>
old. literaK 0:15 >

alu.p.op<0:3>
alu.k.op<0:3>
alu.r.op<0:3>
alu. conditional < 0:1 >

flag.select<0:2>
carry. in. select < 0:1 >

latch.flags<0>
latch. alu. out.a < >

latch.alu.out.b<0 >

literal. control < >

reg. select. 1 < 0:3 >

left port

right port

microcode
flag to controller

power, ground, clock, substrate

lp<0:15>
lp< 16>
lp< 17>
rp<0:15>
rp<16>
rp < 1 7 >

new.code < 5:20 >

power < 3 >

registers

bus a

bus a latched for a literal

bus b

left pad output latch

left pad input latch

right pad output latch

right pad input latch

for output during qi2 operations
for output during q)2 for right port

alu input latch a

alu input latch b
alu output latch a

alu output latch b
microcode that came in last phase
flag register

old.code<5:9>
old.code< 16:20 >

old.code<0:4>
old.code < 10:15 >

old.code<22>
old.code< 5:20>
old.code < 19:22 >

old.code < 15:18 >

old.code < 11:14>
old.code<9:10>
new.code < 6:8 >

old.code < 4:5 >

old.code<3>
old.code < 2>
old.code < 1 >

old.code<0>
a.source < 0:3 >
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reg.select.2<0:3>
reg.sel6ct.3<0:3>

reg.select.4<0:3>
select. 1 <0>
select.2 < >

select.3 < >

select.4<0:1 >

shift.constant<0:3>
sharay < 0:31 >

Temporary State

kill.controK 0:3 >

propagate.control < 0:3 >

result. control < 0:3 >

kill<0:15>

propagate < 0:15 >

carry < 0:16 >

alu.out<0:15>

a.destination < 0:3 >

b.source < 0:3 >

b.destination < 0:3 >

a.source<4 >

a.destination < 4>
b.source < 4>
b.destination < 4:5 >

b.destination < 0:3 >

b.bus < 0:15 > Da.bus < 0:15 >

Instruction Execution
Instruction.execution: =

(

left. out.async = 0=* (left. port.data*- left. out);next

left.in.async = 0=>(left.in -left. port.data);next

right.out.async = 0=> (right. port.data*- right. out);next

right. in.async = 0=*(right. in*- right. port.data);next

phi1(: = clock = 1)=*(

Ieft.out.later*-O;next

right.out. later-0;next
literal. in = 1 =>(a.bus*-old.literal);next

literal. in = 0=>(
select. 1 = 0=» (a.bus*- reg[reg .select. 1 ]);

select. 1 = 1=*(
reg.select.1 =0=*»(a.bus*-right.in*- right.port.data);

reg.select.1 = l=*(a.bus*-right.in);

reg.select.1 = 2=>(a.bus*-left.in*-left.port.data);

reg.select.1 =3=«>(a.bus*-left.in);

reg.select.1 = 4=*(a.bus*-alu.out.a);

reg.select.1 = 5=>(a.bus*-alu.out.b);

reg.select.1 = 6=>(a.bus*-flags);next);next

select.3 = 0=5>(b.bus«-reg[reg.select.3]);

select.3= 1=*(

reg.select.3 = 0=*(b. bus*- right. in*- right. port.data);

reg.select.3 = 1 =*(b.bus*-right.in);

reg .select.3 = 2=5> (b.bus*- left.in*- left.port.data);

reg.select.3 = 3=*(b.bus*-left.in);

reg.select.3 = 4=5>(b.bus*-alu.out.a);

reg.select.3 = 5=>(b.bus*-alu.out.b);next);next

select.4 = 0=^(reg[reg.select. 4]*-b. bus);
select.4= 1=*(

reg.select.4 = 0=*(left.port.data*- left. out*-b. bus);

reg.select.4= 1=>(

.jog (Continued)



left.out«-b.bus:next

left. out. later*- l;next);

reg.select. 4 = 2=>(left.out«-b.bus);

reg. select. 4 = 3=>(left.out«-b.bus):

reg.select. 4 = 4=^(right. port. data*- right. out*-b. bus);

reg.select.4 = 5=*(
rig ht. out *-b. bus; next

right. out. later*- 1 ;next);

reg.select.4 = 6=>(right.out*-b.bus);

reg.select.4 = 7=f (right. out*-b. bus);

reg.select.4€{8, 9. 10,1 1}==>(alu.in.b*-b.bus);next);

select.4 = 2=>(alu.in.b < 0:15 > -sharay < 16-shift.constant:31 -shift.constant > );

select. 4 = 3=>(alu.in.b*-2Tshift.constant);next);next

select. 2 = 0=5>(reg[reg.select. 2]*-a. bus);

select.2= 1=>(

reg select. 2 = 0=>(left. port.data*- left. out*-a. bus);

reg.select.2 = 1=>(

left.out*-a.bus;next

left.out.later*-l;next);

reg.select.2 = 2=>(left.out*-a.bus);

reg.select.2 = 3=>(left.out«-a.bus);

reg.select.2 = 4=>(right.port.data«-right.out^a.bus);

reg.select.2 = 5=>(
right.out*-a.bus;next

right. out. later*- 1 ;next);

reg.select.2 = 6=^(right.out*-a.bus);

reg.select.2 = 7=>(right.out«-a.bus);

reg.select.2 = 8=5>(alu.in.a*-a.bus);

reg.select.2 = 9=>(alu. in.a < 0:15 > -sharay < 16-shift.constant:31-shift.constant >);

reg.select.2 = 10=>(alu.in.a*-2tshift.constant);

reg.select.2 = 1 1 =>(flags*-a.bus);next);next

f lag.select = 1=> (flags < 15 > "^flags< 14>);
flag.select = 2=> (flags < 15 > *- flags < 12>);
flag.select = 3==*(flags < 15 > •^ flags < 1 1 > );

flag.select = 4=> (flags < 15 > -flags<9>);
flag.select = 5=> (flags < 15 > *-flags<7>);
flag.select = 6=>(flags< 15 > *-flags<8>):

flag.select = 7=> (flags < 15 > -flags < 13>);next

phi2(: = clock = 0)=>(
left. out. later = l =>(left.port.data<-left.out);next

right. out. later = 1 =*(right. port.data*- right. out);next
kill.control*-alu.k.op;next

propagate. control *-alu. p.op;next
result.control*-alu.r.op;next
alu. conditional = 1 =>{

flags < 15 > =1=>(
propagate.control < > -0;next
result. control < > -0;next);

flags < 15 > =0=>(
kill.control<3 > *-0;next

propagate. control < 2 > -0;next
result. control < 2 > -0;next);next);
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alu.conditional = 2=>(
flags < 15 > = 1=>(

kill. control < 2 > -0;next
kill. control < 1 > <-0;next

propagate. control < 3 > *-0;next

propagate. control < > -Oinext
result. control < 3 > *-0;next

result. control < > -0;next);

flags < 15 > =0=*(
kill. control < 3 > -0;next
kill. control < > -0;next
propagate.control < 2 > <-0;next

propagate.control < 1 > -Oinext
result.control < 2 > -0;next
result. control < 1 > -0;next);next);

alu. conditional = 3=>(
flags < 15 > =1=>(

propagate.control < 2 > ^0;next
propagate.control < 1 > -0;next);next);next

kill<0:15>'^(
kill. control < 3 > A(-ialu.in.a < 0:15 > )A(-ialu.in.b < 0:15 > )V
kill. control < 2 > A(->alu.in.a < 0:15 > )Aalu.in.b < 0:15 > V
kill. control < 1 > Aalu.in.a < 0:15 > A(->alu.in.b < 0:15 > )V
kill. control < > Aalu.in.a < 0:15 > Aalu.in.b < 0:15 > );next

propagate < 0:15 > *-{

propagate.control < 3 > AC-^alu.in.a < 0:15 > )A(-'alu.in.b < 0:15 > )V
propagate.control < 2 > AJ-^alu.in.a < 0:15 > JAalu.in.b < 0:15 > V
propagate.control < 1 > Aalu.in.a < 0:15 > A(-ialu.in.b < 0:15 > )V
propagate.control < > Aalu.in.a < 0:15 > Aalu.in.b < 0:15 > );next

carry < > -carry. in. select < 1 > ©(carry. in. select < > Aflags < 15 > );next

for k = 1 step 1 until 16 do:
(carry <k > ^-^(kill <k-1 > + propagate < k-1 > '-^carry <k-1 >) + kill<k-1 >*

propagate < k-1 > *x);next in 0M2. x is undefined
If litll(i) and propagated) are botfi fiigti, ttie carry cfiain does funny tfiings.

We represent ttiat tiere by use of the "x" in tfie carry function.

alu.out<0:15> -(

result. control < 3 > A(-'propagate < 0:15 > )A(-<carry < 0:15 > )V
result. control < 2 > AJ-ipropagate < 0:15 > JAcarry < 0:15 > V
result. control < 1 > Apropagate < 0:15 > A(-'carry < 0:15 > )V
result. control < > Apropagate < 0:15 > Acarry < 0:15 > );next

latch. alu. out.a = 1 =^(alu.out.a^alu.out);next
latch. alu. out.b = 1 =='(alu.out.b^alu.out);next
literal. control = 1 =>(literal*-bus.a.old);next

latch. flags = 1=>(
flags < 5 > aflags < 15 > ;next

flags < 6 > -carry < 15 > ;next

flags < 10 > -alu. out < > ;next
flags < 11 > -0;next
alu.out = 0=>(flags< 11 > -1);next
flags < 12 > -alu.out< 15 > ;next

flags < 14 > -carry < 16 > ;next

flags < 13 > aflags < 14 > ©flags < 6 > ;next

flags < 9 > ^ flags < 1 2 > ©flags < 1 3 > ;next

flags < 7 > -flags < 1 1 > Vflags < 9 > ;next

flags < 8 > - -'(flags < 14 > Vflags < 1 1 > );next);next);next

) end of instruction execution
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SUMMARY OF COMMANDS FOR THE 0M2

Transfer phase. \p^

Bus A Source

Litci.ll

coiitri)!

Hus H s()ui\i Bus B ilostinatit)!! Bus A source Bus A destination

Onnnn Register n

10000 Right Pott Pins

10001 Right Poft Latch

10010 Lett Port Pins

1001 1 Lett Poit Latch

10100 ALU Output Latch A
10101 ALU Output Latch B
10110 Flag Register

Literal (see Literal Control)

other No Source

Literal Control

LSB of the Latching Field

during last PHI 2.

Bus B Source

000 Microcode In Onnnn
001 Illegal 10000
010 Literal In 10001
01 1 Illegal 10010
100 Execute old A Bus 1001 1

101 Illegal 10100
110 A Bus gets old A Bus 10101
111 Literal Out other

Register n
Right Port Pins

Right Port Latch
Left Port Pins

Left Port Latch

ALU Output Latch A
ALU Output Latch B
No Source

Bus A Destination

Onnnn Register n

10000 Left Port, drive now
10001 Left Pott, drive PHI 2

lOOIx Left Port, no drive

10100 Right Port, drive now
10101 Right Port, drive PHI 2

101 1x Right Port, no drive

1 1000 ALU Input Latch A
1 1001 ALU Input Lalch A gets Shift Out
11010 ALU Input Latch A gets Shift Control

11011 Flag Register

other No Destination

Operation phase. ^^

ALU Operation

Bus B Destination

OOnnnn Register n

010000 Left Port, drive now
010001 Left Port, drive PHI 2

OlOOIx Left Port, no drive

010100 Right Port, drive now
010101 Right Port, drive PHI 2

0101 1x Right Port, no drive

OIIOxx ALU Input Latch B
Olllxx No Destination

1 0nnnn ALU Input Latch B gets shift

output, shift constant-n

llnnnn ALU Input Latch B gets shift

control, shift constanl=n

ALU operation F-lag select Curry-in Latching

select field

1000 01 10 01 10 00 00 Add
1000 01 10 01 10 00 01 Add with Carry

0100 1001 01 10 00 10 Subtract

0010 1001 01 10 00 10 Subtract Reversed
0100 1001 0110 00 01 Subtract with Borrow
0010 1001 01 10 00 01 Subtract Reversed with Borrow
001 1 1 100 0110 00 10 Negative A
0101 1010 0110 00 10 Negative B
1100 001 1 01 10 00 10 Increment A
1010 0101 01 10 00 10 Increment B
0011 1100 1001 00 10 Decrement A
0101 1010 1001 00 10 Decrement B
0000 0001 001 1 00 00 Logical AND
0000 01 1 1 001 1 00 00 Logical OR
0000 01 10 001 1 00 00 Logical Exclusive Or

0000 1100 001 1 00 00 Not A
0000 1010 001 1 00 00 Not B
0000 001 1 001 1 00 00 A
0000 0101 001 1 00 00 B
1000 01 1 1 01 1 1 01 00 Multiply Step
1100 1111 1111 10 00 Divide Step

0000 01 1 1 001 1 1

1

00 Conditional AND/OR
0101 1010 0001 00 10 Generate Mask
uuuu uuuu uuuu uu uu User Defined Op

L
Carry In Select Field

Carry In Select

00
01 Flagbil

10 1

1 1 Flagbit Complemented

Flag Select

000 Old Flagbit

001 Carry Out
010 MSB
oil Zero
100 Less than flag

101 Less than or equal flag

110 Higher flag

111 Overflow

Latching Field

Ixxx Latch Flags

xlxx Load ALU Output Latch A
XX 1x Load ALU Output Latch B
XXX

1

Lilcial bits get old A Bus next PHI 1

0000 Nop
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SAMPLE CODING FORM FOR THE 0M2

J T r 4

.t.
.

.

t r =^

I ^ T 4

n: XTT

^ r ]_^

m
r ^ r ^

187



188 Overview of an LSI Computer System; Design of the 0M2 Data Path Chip

PINOUT OF THE 0M2 DATA CHIP
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ARCHITECTURE
AND DESIGN
OF SYSTEM

CONTROLLERS, AND THE
DESIGN OF THE 0M2
CONTROLLER CHIP

6.1 INTRODUCTION

In this chapter we present alternative structures for controUing a data path of the

type described in Chapter 5. We review the basic concepts of the stored-program

computer and how such computers are constructed from a combination of (1) a

data processing path, (2) a controller, and (3) a memory to hold programs and data.

We describe some of the ideas behind the architecture of a specific controller chip,

designed at Caltech for use with the OM2 data chip, and we provide several exam-
ples of controller operations.

We have previously used the 0M2 data path chip as a source of illustrative

examples, primarily at the circuit layout level, to help the reader span the range of

concepts from devices, to circuit layout, to LSI subsystems. In this chapter, the

controller chip is used as a source of examples one level higher, at the subsystem

level, to help the reader span the range from digital logic circuits, to LSI subsys-

tems, to arrangements of subsystems for constructing LSI computer systems. The

computer system one can construct using the 0M2 data chip, the 0M2 controller

chip, and some memory chips, contains rather simple, regular layout structures.

Yet the system is functionally quite powerful, comparing well with other classical,

general-purpose, stored-program computers.

All present general-purpose computers are designed starting with the stored-

program, sequential-instruction, fetch-execute concepts described in this chapter.

These concepts are important not only for understanding present machines, but

also for understanding their limitations.

As we look into the future and anticipate the dimensional scaling of the

technology, we must recognize that it will ultimately be possible to place large

numbers of simple machines on a single chip. When mapped onto silicon, classical

stored-program machines make heavy use of a scarce resource: communication

bandwidth. They make little use of the most plentiful resource; multiple, concur-
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190 Architecture and Design of System Controliers

rent, local processing elements. What might be the alternatives? We will reflect on
some of these issues at the end of this chapter and examine them in detail in

Chapters.

6.2 ALTERNATIVE CONTROL STRUCTURES

In this section we will clarify the distinction between the data processing functions

and control functions in a digital computer system; then we will examine several

alternative forms of control structures.

The data processing path described in Chapter 5 is capable of performing a

rich set of operations on a stream of data supplied from its internal registers or

from its input/output ports. How is it that a structure having such a static and

regular appearance as the OM data path can mechanize such a rich set of opera-

tions? An analogy may help in visualizing the data path in operation. Imagine the

data path as being like a piano, with the interior regions of the chip visualized as

the array of piano wires, and the control inputs along the edge of the chip as the

keys. Under the external control of the controller chip, now visualized as the

piano player, a sequence of keys is struck. During some cycles, many keys are

struck simultaneously, forming a chord. A complex function may thus be per-

formed over a period of time by the data path, just as the static-appearing array of

piano wires may produce a complex and abstract piece of music when a series of

notes and chords are struck in a particular order.

We see from this analogy, however, that the data path in itself is not a com-

plete system. A mechanism is required to supply, during each machine cycle, the

control bits that determine the function of the path during that cycle. The overall

operations performed on data within the data path are determined by sequences of

control bit patterns supplied by the system controller.

Mechanisms for supplying these sequences of control inputs to a data path can

be either very simple or highly complex. There are many alternative sorts of con-

trol structures. The detailed nature of the controller has many important effects on

the structure, programming, and performance of the computer system. Let us

begin with the description of the simplest form of finite-state machine controller.

Then, through a sequence of augmentations of this controller, we will build up to

the concepts of the stored-program computer and microprogramming.

Simple block diagrams, such as Figs. 6.1, 6.2, and 6.3, are used here to con-

vey the essential distinctions between various classes of controllers, without re-

quiring the diagramming of the internal details of any particular controller. Al-

though the detailed internal logic of any particular controller may be rather com-

plex, there is only a small set of key ideas involved in the hierarchy of controller

structures presented by the sequence of block diagrams.

If you closely examine the controllers of typical computers, you will find that

every one either is, or contains within it, a finite-state machine such as those

described in Chapter 3. The very simplest form of controller for the data path is a
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OR plane
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Control inputs
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Fig. 6.1 Finite-state machine

controlling the data path. In this
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through a fixed sequence of states.
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Fig. 6.3 Finite-state machine

controlling the data path. In this

case a data path operation

result may control machine

sequencing for a number of

later cycles.
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finite-State machine having no inputs other than state feedback lines, as shown in

Fig. 6.1. The operations performed by the data path are determined by the

sequencing of the state machine. During each clock cycle, the output of the OR
plane is fed back into the AND plane and determines the next state of the state

machine, which periodically cycles through a fixed sequence of states. The data

path is clocked in synchronism with the controller, although for simplicity we
haven't shown clock inputs to the data path in the figures. Thus a fixed algorithm

implemented in the code of the state machine operates on the data in the data path.

Such a control structure could be used with the data path to implement a

function such as a digital filter, in which data bits are taken in from the left port of

the data path, a fixed set of operations is performed on the data, and a result is

output at the right port of the data path. However, this elementary control struc-

ture provides no way to perform operations that depend on the outcome of a

previous operation or upon the data itself.

A simple augmentation, shown in Fig. 6.2, enables the control sequencing to

be a function of the outcome of the previous operation. Figure 6.2 shows that

some of the data, or some logical functions of the data, called //«^.s, are fed into

the AND plane inputs of the state machine along with the next state information.

Some typical flags are ( 1) ALU output = 0: (2) ALU output > 0; (3) ALU input A =

ALU input B. The next state can thus be a function of flags generated during the

preceding operation. To simplify Fig. 6.2, we have not shown the clock inputs to

the PLA. However, assume that all subsystem structures shown in the figure, and

throughout this chapter, are appropriately operated in a synchronous manner

using our normal two-phase clock scheme and proper design methodology.

While in principle the structure pictured is quite general, improvements are

possible that allow greater flexibility and compactness of representation of the

algorithm in the state machine. One of these improvements is shown in Fig. 6.3.

Here an additional output from the OR plane of the state machine is used to con-

trol the loading of the flag outputs of the data path into a flag register. The flag

register is used as an input into the AND plane of the state machine. This enables

flags generated by a particular operation to be used as control inputs for the state

machine for a number of later operations. The stored flag values are replaced by a

new set only when the flag load signal is raised. One difficulty inherent in this

structure is the limited amount of information provided by the few flags generated

by the data path's ALU.

6.3 THE STORED-PROGRAM MACHINE

A very general and powerful arrangement is shown in Fig. 6.4. This structure is

similar to the one discussed in the previous section. In this case the state machine

sequencing is controlled not only by the last state and flags, but also by the data

coming from some memory attached to the machine. The memory contains the

data upon which the data path is operating, in addition to encoded information for

influencing the sequencing of the state machine.
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^—
OR plane <—

<—
AND plane

^ _jr t t
Flags 1

( \ 1 \

Load flags

Flag registerp 1
;>

Control inputs

HATA PATH >^ To /fromV ^ V. -
memory

Fig. 6.4 A simple stored-program

machine, where data read from
a memory can affect machine

sequencing.

This scheme gets around the limitation of the structure shown in Fig. 6.3 and

also provides a complete new dimension of possibilities. The gist of the idea is to

design the state machine controller so that it may perform any ofa set of different

predefined operations, called the machine instruction set, rather than perform just

one dedicated, predefined operation. The machine instruction set is carefully de-

fined so as to enable the system composed of the data path, controller, and mem-
ory to mechanize any of a number of different algorithms of interest to a number of

different users. These algorithms are implemented as programs composed as se-

quences ofmachine instructions loaded into the memory. These programs operate

upon data also contained in the memory.
It is possible to show that this arrangement is perfectly general and can im-

plement any digital data processing function. John von Neumann' is generally

credited with originating this idea of a stored-program machine, and such

machines are often called von Neumann machines. The abstract notion of the

most basic form of stored-program machine was proposed by Turing^ in 1936 for

application in the development of the theory of algorithms. The abstract Turing

Machine is important not only for historical reasons, but also because of its pre-

sent use in the development of the theory of computational complexity of sequen-

tial algorithms.

The way in which the stored-program machine operates is as follows. One of

the internal registers of the data path is selected to hold a pointer into the program

stored in the memory. This register is commonly called the program counter (PC),

or alternatively, the instruction address register. In one particular state of the

controlling state machine, which we will call thefetch next instruction (FNI) state,

the program counter is caused by the state machine to output its data as an address

to the memory, and the state machine initiates a memory read from this address.

The data bits from this memory read operation are taken into the AND plane of

the state machine, placing the state machine into a state that is the first of the
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sequence of states that mechanize the machine instruction corresponding to the

code just read from the memory. The state machine then sequences the data path

through a number of specific operations sufficient to perform the function defined

by that instruction. At some point during instruction execution the next PC value

is calculated, usually by simply incrementing the current PC value.

When the state machine has completed the interpretation, or execution, of the

machine instruction, it returns to the FNI state. The instruction fetch is then re-

peated, sending a new program counter value to the memory as an address, read-

ing the next instruction from the memory, and beginning its interpretation. The

system can thus perform any set of required operations on data stored in memory,
as specified by encoded instructions stored in memory.

There is a problem with the organization of the controller shown in Fig. 6.4.

Most of the steps of an instruction execution sequence need as input the encoding

of the instruction that initiated the sequence. In the machine outlined in Fig. 6.4,

this information must be duplicated each cycle by the next state information. The
number of bits in the feedback path for this information can be reduced by the

arrangement shown in Fig. 6.5. Here the incoming instruction is stored in a regis-

ter, called the instruction register (IR), which is loaded under the control of an

output from the state machine. It stays in the instruction register and is available

for state machine input during the entire period that particular instruction is being

interpreted by the machine. This new arrangement is not fundamentally different

from the preceding one, but it is more efficient in its use of the PLA's.

OR plane

W M/ W

<-

•e

-e

AND plane

NIL J /\

Load instrLiclion

Load flags

/K

flags

^llnst. reg.l

^ Flag register

Control inputs

Data <- ^ DATA PATH

/\

<r

Fig. 6.5 A simple stored-program

machine, in this case, augmented by

an instruction register.

-> To/t'rom

memory

The separation and naming of the instruction register also enables us to take

another step in the structuring of the state machine controller's operations: the

conception and naming of stages of the interpretation of instructions fetched and

held in the IR.
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Suppose we have defined a machine instruction set that, for example, in-

cludes arithmetic-logic instructions, memory instructions, and branch instruc-

tions. Suppose we also have a data path such as the OM data chip, or any other

typical data path, containing registers, an ALU, buses for moving data around,

and inputs for control signals to control the movement of data and the ALU opera-

tions. What functions must a control unit, such as that shown in Fig. 6.5, perform

in order to fetch and execute machine instructions? We find that in most stored

program machines the execution or interpretation of each machine instruction is

typically broken down into the following six basic stages . Note that some instruc-

tion types may skip one or more of the stages, and that each of the stages may
require sequencing through several controller states:

1. Fetch next instruction. This is the starting point of the fetch-execute se-

quence. The machine instruction at the address contained in the PC is fetched

from the memory into the IR.

2. Decode Instruction. As a function of the fetched machine instruction's type,

encoded in its OP code field, the controller must "branch" to the proper next

control state to begin execution of the operations specific to that particular

instruction type.

3. Fetch instruction operands. Instructions may specify operands such as the

contents of registers or of memory locations. During this execution stage, the

controller cycles through a sequence of states outputting control sequences to

fetch the specified operands into specified locations; for example, into the

input registers of the ALU.

4. Perform Operation. The operation specified by the OP code is performed

upon the operands.

5. Store Result(s). The results of the operation are stored in destinations, such as

in registers; memory locations, flags.

6. Set up next address, and return to FNL Most instructions increment the PC
by one and return to the FNI state (1). Branch instructions may modify the

PC, perhaps as a function of flags, by replacing its contents with a literal

value, fetched value, or computed value.

Now, how would we go about designing such a controller? We can construct

the state diagram for the controller just as we did for the traffic light controller

example in Chapter 3. Then we proceed to build up the detailed state transition

table and finally derive the AND and OR plane codes for the PLA. However, in

this case the state diagram will be rather more complex than that in our earlier

example. One hundred or more states may be required to implement the controller

for a simple machine instruction set. How do we even begin to construct the state

diagram? The above list of stages of instruction execution provides a simple

means of structuring the diagram. Figure 6.6 contains part of the controller state
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Compute
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Instruction
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Fig, 6.6 A portion of the state diagram for the controller of a stored-program machine,

illustrating some typical instruction interpretation state sequences and their associated control

outputs.
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diagram for a typical stored-program machine. The diagram is structured as a

matrix of regions, where the instruction execution stages proceed from top to

bottom, and the columns contain specific state sequences for each instruction

type. The FNI state is placed at the top of the diagram, followed by the states

leading to the decode. The decode results in a many-way branch, each path lead-

ing to a sequence for executing a particular instruction type. The figure contains

some (informal) details indicating the sorts of specific control operations per-

formed at each stage of the instruction execution or interpretation. One will en-

counter many variations on the simple state diagram structure shown, usually

easily understood elaborations. For example, groups of machine instructions may
share common sub-sequences of control operations. To reduce the number of

states, we might have another level of decoding, first decoding to groups of in-

structions and performing operations common to a particular group, then decod-

ing to individual instruction types. In any event, the generation of the state dia-

gram and eventually the PLA code is just a matter of grinding out the details. The
generation of these details is another activity that is made more tractable by fol-

lowing a structured approach.

Some examples follow that will clarify how a machine instruction's execution

can be divided into parts, and how the parts interact with each other. Instead of

using the graphical notation of Fig. 6.6, an informal tabular form is used, contain-

ing a list of statements that are normally performed sequentially, as encountered.

In these examples, the unbracketed statements under "control [& state] se-

quence" indicate control actions. However, the bracketed statements, [ ],

explicitly set the next state Y'; they indicate a more complex state transition than

simple state-to-state progression (shown in Fig. 6.6 by a single arrow between

circles).

ALU Example

Suppose that an arithmetic-logic instruction in our machine instruction set has

the general form
j
ALUOP, REGA, REGB, REGC }, specifying that ALUOP be

performed on operands REGA and REGB, and the result stored in REGC. Then
the instruction

{
ADD, R7, R2, R5

)
might be executed by the following control

sequence. Note that certain of the individual control steps may occur in the same
machine cycle (for example, A^ R7, B«— R2) as a function of the capabilities of

the data path; the more the data path can do in parallel, the fewer machine cycles it

will require to complete an instruction.

The example assumes there is some sort of shared access to the memory, and

thus the time for completion of memory accesses is not predictable. That is why
we wait, testing for the presence of a completion signal before proceeding. In

some computer systems, such memory accesses might proceed in lockstep with

the controller sequencing, and then the data might be taken from, or placed on, the

memory bus at some fixed number of cycles following initiation of the memory
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liiiKtii>n ol' siib-scqiicncc Control \<Sc State] sequence Comments

Fetch Next Inst:

Decode Instruction:

Fetch Operands:

Perform Operation:

Store Result:

Ri'ORT *- PC Place next instr. address in right port,

read memory Raise control line to initiate memory read.

PC «— PC + 1 Increment PC. overlapping incr. with fetch.

[V - fcn(memop complete)] Loop here till memory read completes.

IR *— mem data Load IR with inst, when read completed.

lY' = fcn(IR)] Set machine state as fen of instruction.

A «— R7 Load ALU input registers with operands.

B*-R2

ALUoutreg «— A + B Add A and B. store in output register.

R5 — ALUoutreg Send result address to R5

[V = FNI] Inst, not a branch, so simply return to FNl state.

operation. Normally, most machine instructions are not branches, so we usually

just have to increment the PC sometime during instruction execution. This incre-

menting can often be overlapped with other operations. In the example, the incre-

menting of the PC is done during the FNI stage, while waiting for the completion of

the instruction-fetch memory operation.

Memory Example

A memory instruction in our set might have the general form
j
JVIEMOP, REGA,

ADDRESS }, specifying the loading or storing, according to MEMOP, of the con-

tents of register REGA to or from the memory address ADDRESS. The instruc-

tion
j

STORE, R3, ADDRESS
[
might then be executed by the following control

sequence:

Function of sub-sequence Control [& State] sequence Comments

Fetch Next Inst:

Decode Instruction:

Perform Operation:

Store Result:

RPORT^PC
read memory
PC ^PC+1
[V = fcn{memop complete)]

IR «— mem data

|Y' - fcn(lR)]

RPORT ^ IR(ADDRESS)
write memory

RPORT ^R3
[Y' = fcn(memop complete)]

[Y' = FNI]

Place next instr. address in right port.

Raise control line to initiate memory read.

Increment PC.

Loop here till memory read completes.

Load IR with inst. when read completed.

Set machine state as fen of instruction.

Send the contents of IR address field to memory.

Raise write control line to init. memory write.

Place data in right output port.

Loop here till memory write completes.

Inst, not a branch, so simply return to FNI state.
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Branch Example

Suppose that branch instructions have the form
j
BR, COND, ADDRESS },

specifying that if the condition COND is true according to the flags, then the PC is

to be loaded with memory address ADDRESS. The branch instruction { BR. LT.

ADDRESS 1 might then be executed by the following control sequence:

Function of sub-sequence Control [& State] sequence Comments

Fetch Next Inst: RPORT ^ PC
read memory
PC ^ PC + 1

[Y' = fcn(memory complete)]

IR <— mem data

Decode Instruction: [V = fcn(IR)]

Perform Operation: [V = fcn(LTflag)]

Next Address: PC^IR(ADDRESS)
[¥' = FNI]

Place next instr. address in right port.

Raise control line to initiate memory read.

Increment PC.

Loop here till memory read completes.

Load IR with inst, when read completed.

Set machine state as fen of instruction.

Set machine state as fen ALU LTtlag. Set to FNI

if notLT. Else continue and generate new address.

Extract new address field from IR.

Return to the FNI state.

Now, how are the next higher-level system software control functions

mapped onto this basic machine structure? Higher-level functions common to all

machine instructions are often performed within the FNI stage of instruction

execution. After return to the FNI state, but prior to the decode state, one

machine instruction has been completely executed but no action has yet been

taken to execute the next instruction. Therefore, that is a natural place to check

for interrupts from I/O devices, to test the priorities for task switching in a multi-

programming environment, and so forth. The testing of these logical signals, which

are input to the state machine, can often be overlapped with other FNI activity.

Multiple tasks may then be implemented by having the controller manipulate mul-

tiple registers as program-counters.

In summary, once both a machine instruction set and a data path have been

defined, then the control sequences required to interpret the machine instructions

can be "programmed," the overall controller state diagram can be constructed,

the "code" for the AND and OR sections of the state machine can be generated,

and software systems can be built upon the resulting stored-program machine.

Interestingly, the control sequences in the above examples look somewhat like

"programs" written in a very primitive machine language. This observation an-

ticipates the concept of microprogrammed control, which is described in the next

section.

For more information on this material, including the various trade-offs in-

volved in the definition and encoding of instructions, see the many examples in

Bell and Newell.'^ Dietmeyer^ works out an example all the way from state dia-
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gram through the design of the controls of an elementary digital computer. Diet-

meyer also gives formal methods for describing state machine algorithms. An in-

teresting alternative method, based on ideas of T. E. Osborne, is presented along

with practical examples in Clare.''

The abstract concepts behind the arrangement shown in Fig. 6.5 are used in

almost all stored-program digital computers manufactured today. A computer hav-

ing any sort of machine instruction set can be implemented with the arrangement

shown. In many cases, the state machine is implemented in random logic and

therefore is not easily recognizable as one of the forms shown. However, the

operations performed are equivalent to those described here. Note that, in any

case, the number of machine cycles required to mechanize particular algorithms

trades off against the functional capability of the data path.

6.4 MICROPROGRAMMED CONTROL

Sometimes the complete machine instruction set is not definable at the time a

computer is being designed. This contingency often arises when certain opera-

tions, defined by some later user, must be executed at very high speed. Perhaps

the data path is inherently capable of satisfying the required performance con-

straints, but not when operated under the control of any sequence composed of

standard machine instructions. In such cases, special new machine instructions

would have to be defined and then implemented in the state machine control logic.

Another common situation is the need to execute the instruction set of

another computer system for which the user has existing programs. While such

instructions could be executed by simulation, that is, by interpreting them via a

program written in the original machine instruction set, such simulations usually

pay a high performance penalty. It would be much better if the machine could

execute them directly. However, a substantial augmentation and/or modification

of the controller's logic would have to be made, for such direct execution to be

possible.

In both of these situations it would be desirable if the state machine were

implemented in some writable medium, rather than in the fixed code of a standard

programmable logic array and thus patterned permanently in the silicon. While it

is quite possible to build writable programmable logic arrays, none are currently in

use. Instead, machine designers have invented many clever ways of using

standard writable memories to hold the feedback logic of the state machine.

The simplest such arrangement is shown in Fig. 6.7. Here the state machine is

implemented using a set of memory chips. Collectively, this set of memory chips

functions externally exactly as the programmable logic array shown earlier. How-
ever, this very elementary structure has a problem in supporting wide machine

instruction words, since the decoder must exhaustively decode all combinations

of the input variables. Thus, if/ is the number of flag bits and n is the number of

next state lines, then the memory must have 2" +^+ "' words to be of sufficient size
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Fig. 6.7 An alternative form of

stored-program machine, illustrating
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implement the state machine

controlling the data path.

to allow emulation of any machine having instructions / bits wide. For this reason

designers have taken to inserting more complex logic than just a simple instruction

register into the path between the data source and the memory decoder section of

state machines of this form.

A system using a logic path between the memory bus, or source of instruc-

tions, and the memory decoder section of the state machine is shown in Fig. 6.8.

Here a logic block we have termed the microprogram counter path is inserted

between the source of machine instructions and the inputs to the decoder. This

type of control, using either writable or read-only memories, is generally referred

to as microprogrammed control. Notice in Fig. 6.8 that the flags and the machine

instruction fetched from the memory both act as input data to the small micro-

program counter data path, and the outputs of this data path are the microcode

memory address lines. The arrangement shown is very powerful and general, and

capable of emulating any set of instructions for which there is sufficient microcode

memory.

Microcode

memory
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Fig. 6.8 An alternative form

of stored-program machine.
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In a microprogrammed controller, the design of the control logic is reduced to

encoding sequences of control bit patterns to be stored, along with control mem-
ory address sequencing information, in the microcode memory. The encoded con-

trol bit patterns for each clock cycle or machine cycle are visualized, as in the

examples in the past section, as a primitive form of "instruction"' and are called

microinstructions. Rather than create a 'circles and arrows" state diagram and

then "assembling"' PLA code, we write a symbolic microprogram and assemble it

in the same manner as we would a symbolic machine language program.

The microprogram counter (/xPC) data path is similar to the main data path: it

is controlled by a number of outputs from the microcode memory section of the

state machine. Its main purpose is to decrease the amount of microcode memory
required to emulate the particular machine instruction set being implemented.

This is done in two ways: (1) the path maps the/ -i- n bits of state into a smaller

number of bits that are then decoded to address the microcode memory, and (2) it

reduces n by allowing complex operations within the path to be specified with

only a few bits of control information. The controller chip described in the later

sections of this chapter is the microprogram counter data path portion of a micro-

programmed controller for OM2.
The concept of microprogramming was originated by M. V. Wilkes*^" in 1951.

In those days when controller logic functions were implemented using gates con-

structed out of vacuum tubes, switching hardware was very expensive compared

to wires, and great efforts were expended toward gate minimization. This inevita-

bly led to rather intertwined connections in the controller logic, and any change in

function might require a complete redesign. Wilkes presented the notion of mi-

croprogrammed control using a read-only memory to hold the control sequences,

as a means of bringing regularity and structure to the design of system controllers

and thus simplifying their design and redesign. There is a large body of knowledge

associated with the architectural implications of microprogrammed control, and

the serious reader will benefit from a study of the literature.
'•^•^

Today, although we can easily implement control logic in a structured way
using a PLA, we still often use microprogrammed control in order to obtain the

advantages offered by writable control logic. An additional present advantage of

microprogrammed control is that the detailed design/redesign of control logic is

extended into the wide arena of those familiar with linear sequential programming

concepts. In the future as the "programming" of structures into silicon becomes

easier, as the time to implement designs becomes much shorter, and as state

machine "coding" becomes more widely understood, we may find that these ac-

tivities will be viewed as a natural extension of microprogramming.

There is an alternative way of viewing the machine shown in Fig. 6.8. Exam-

ine carefully the loop formed by the microprogram counter data path, the decoder

section of the microcode memory, and the outputs of the microcode memory that

are used to control the microprogram counter. We can view the microcode mem-
ory address as an instruction address and the wires coming from the microcode
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memory to control the microprogram counter path as an instruction. This alterna-

tive view is illustrated in Fig. 6.9. Observe that we have constructed another

stored programmed machine of the same form as that shown in Fig. 6.5. We have

come full circle in our machine design: in our zeal to put as much capability as

possible in the path between the machine instruction and the decoder of the state

machine, we have in fact created a stored programmed machine within a stored

programmed machine. This phenomenon is referred to by Ivan Sutherland as the

"great wheel of reincarnation." Computers often have many such levels of

machine within them, each a general-purpose stored-program machine in its own
right. We thus find that elaborate computing machines are often only simple

machines, nested and connected in complex ways.

6.5 DESIGN OF THE 0M2 CONTROLLER CHIP

We now describe some of the ideas behind the design of one particular micropro-

gram counter path used for controlling the OM data chip in the system con-

figuration^ described in Chapter 5. The design of the controller chip will be exam-

ined at several stages in its development. This material illustrates the mapping

into LSI, and the topological/geometrical planning in LSI of various sub-

systems such as stacks, incrementers/decrementers, and multiplexers that are use-

ful in constructing controllers.

Even at the 1978 value of X = 3 microns, the 0M2 data path and certain forms

of controller can be integrated onto a single chip. The separation of these

modules onto two chips was primarily for research and tutorial purposes in the

university environment, so that different controllers could be used with the 0M2
data chip and vice versa. The fact that data path and controller are on separate

chips does, however, lead to detailed system partitioning decisions aimed at
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minimizing interchip communication. These decisions might be made differently

were data path and controller integrated onto the same chip. Nevertheless, the

issue of minimization of interchip communication would still be involved at the

next system level and is worthy of study.

The basic function of the microprogram counter path, which we call the con-

troller for short, is to provide microprogram memory addresses. The micropro-

gram memory addresses are stored in a latch called the microprogram counter, or

/mPC. The /U.PC should be distinguished from the program counter, or PC, which

stores the main memory addresses of higher level machine instructions. The most

common address calculation is to increment the address by one; so in addition to

the /xPC latch, the controller should contain an incrementer. The second most

important address calculation is the jump or branch; so there should be some
means of forcing values into the /uPC latch. With the hardware mentioned so far,

we have progressed one step beyond the controller type shown in Fig. 6.7: our

instruction register also increments, so we don't need the feedback terms that

originate in the microcode memory and drive the memory decoder.

A great deal of microcode memory space can be saved if subroutines are

available at the microcode level. These subroutines can be shared among mi-

crocode sequences emulating instructions at a higher level. For example, many
different machine instruction types may have the same set of operand fetch se-

quences. If the machine instruction set encodes a variety of indexing or relative

addressing schemes, these operand fetch sequences may be quite lengthy, and

repeating these sequences for every instruction type would waste a great deal of

microcode memory. To provide such microcode subroutine capabilities, pro-

visions must be made for saving /uPC values, which is most easily done with a

stack. Stacks are easily constructed in LSI. An example of stack cell and subsys-

tem design, and stack control driver design, is given in Chapter 3.

The microcoder may also wish to use relative jumps or subroutine calls so that

relocatable microcode can be written. To provide for relative operations, an adder

must be included that can add displacements to the pPC contents. The displace-

ments can either be fixed displacements and come from the microcode or be calcu-

lated displacements and come from the data path. Calculated displacements ena-

ble many-way branching, or dispatching, in the microcode, which is an almost

essential operation for emulating instructions at a higher level. (An example of

dispatching will be given in a later section.) Therefore, provisions should be made

for accepting displacements from either the microcode or the data path.

Another microcode address operation that could be considered is a form of

loop operation, which is useful when sections of microcode are to be executed n

times, where n can either be a constant and come from the microcode or be the

result of a calculation done in the data path. One way to implement this instruction

is to dedicate one register in the data path to be the loop counter and to do condi-

tional branches in the controller based on the result of decrementing the value in

that register. This is simple to do, because the hardware of the controller and data
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path discussed so far will allow the execution of this instruction. Unfortunately,

there is a time penalty when doing interchip communication: the loop counter

must be decremented during one cycle, the result of the decrement must be sent to

the controller during the following cycle, and a conditional branch must be per-

formed in the controller on the third cycle. If the loop counter were in the control-

ler chip, this operation would only take one cycle and would not require the use of

the ALU for one cycle in the data path.

With only one loop counter, loops could not be nested, and loops could not be

used inside of subroutines. If a stack were provided for the counter values, how-

ever, nested loops and loops within subroutines could both be accommodated.

The first 0M2 controller proposal was based primarily on the arguments pre-

sented above. Figure 6. 10 shows a block diagram of the proposed controller. Table

6.1 lists the operations possible for each of the three sections of the controller

chip: the )u.PC source selection, the ixPC stack operation, and the loop stack oper-

ation. In each cycle, the controller executes one operation in each of the three

sections. For most operations, all three sections work together to perform the

programmed operation. There are cases, however, when only one or two of the

sections are needed to perform the controller's instruction, so the other section(s)

are free to perform other tasks. For example, the loop stack may be loading a

count from the data path, while the /xPC sections are performing a subroutine call.

This concurrency saves having to load the count later and may save microcode

space. Because the controller's instruction is broken into three fields, more than

one thing can be happening in parallel in the controller. This is why the instruction

was not kept as one field, but was decoded into the three sections on chip.
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Table 6.1. Operutions of the Initial Controller Proposal.

juPC sources ixPC stack operations

/iPC + 1 Push)LtPC + 1

microcode Push microcode

IjlPC vStack Top Push fxPC + microcode

True: /^PC Stack Top; False: /uPC + 1 Push fxPC Stack Top + microcode

Loop stack operations ^'^P

Push microcode ^^^^ /xPC + literal

Push literal
True: Pop; False: NOP

Push count True: NOP; False: Pop

Pop NOP
Decrement Count

NOP

The controller shown could handle all of the microcode address operations

listed above, and a few new operations were discovered and added to the list.

However, there are a few problems with this design. It is a "brute force'" design:

rather than view the whole chip at one time and look for generalizations, we
looked at each section of the chip and at the chip's operation individually, and

filled the chip with specialized hardware for performing specialized operations.

We found that by adding one circuit "here," a new operation could be performed;

and that by adding another circuit "there," a different operation could be added to

the repertoire. Many designs suffer from "creeping features" of this sort. While it

may be easy to draw circles and arrows on paper, it can be more difficult to draw

adders and multiplexers on silicon. It would be very difficult to route all the wires

needed to interconnect the devices shown in the proposal.

So let's make a few generalizations about the circuits in the design. First,

there are too many adders on the chip. A close look at the proposal shows that

almost all operations used only one adder for any one cycle, and the few opera-

tions that used more than one adder are not critical operations. Incrementing the

/LtPC can also be done in the adder, by clearing one of the data inputs to the adder

and forcing a carry into the first stage. Thus, all three of the adders and the incre-

menter can be combined into one adder, and multiplexers can be put on the inputs

to that adder. Another simplification would be to always load the /u,PC latch from

the output of the adder, which would allow the removal of the multiplexer on the

input to the latch. The only operations that were sacrificed in making the simplifi-

cations involved loading the ixPC stack with the output of an adder. Figure 6.11

shows the block diagram of our simplified controller, and Table 6.2 lists the opera-

tions it performs. Notice that the controller's instruction is now broken into five

fields: controlling the /xPC sources, the fxPC stack sources, the counter operation,

the condition selection, and the fxPC stack operation.
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Table 6.2. Operations of the Final Controller Design.

;u,PC sources /LtPC Stack sources

fxPC + 1 Adder output

/ixPC + microcode + 1 ^PC
microcode microcode

Stacktop + 1 literal

Stacktop + microcode + 1 Counter operations
Stacktop + literal + 1 No Operation
fiPC + literal + 1 F*ush microcode
literal + microcode Push literal

Condition selection Pop to literal bus

False

True

Data path flag

Complement of Data path flag

Count =

Count < >
Data path flag AND Count =

Data path flag OR Count =

true: decrement; false: pop

true:decrement; false: NOP
/LxPC stack operations

Push if condition is true

No push

Pop if condition is true

No pop

Now we will develop the geometrical and topological arrangement of the con-

troller's subsystems. Such arrangements are often called floor plans. A translation

of the preceding ideas into the starting floor plan of the controller is shown in Fig.

6.12. The plan is composed of subsystems built of horizontal bit slices that are

then stacked veilically. The number of bit slices is equal to the microcode address

width for the machine, which in this case is 12 bits.
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The following points were considered when deciding upon the basic

framework of the floor plan. First, the fxPC latch is placed adjacent to the mi-

crocode memory address pins. This is done to minimize the delay when driving

addresses to the memory, as this operation is in the critical timing path for the

entire machine. The input of the latch comes only from the output of the adder, so

the adder should logically be placed next to the /uPC latch. The ad' t is consider-

ably simpler than the full arithmetic logic unit used in the data path. However, it

employs the same principles as the ALU: the Manchester carry chain, the inser-

tion of double inverters every four bits to minimize the delay in the carry chain,

and the logic block to implement the desired functions with the minimum delay

and power. The multiplexer is placed adjacent to the left side of the adder. This

multiplexer operates in the same manner as the input multiplexer to the ALU in

Chapter 5. The /xPC stack is then placed to the left of the multiplexer.

The only problem with this arrangement of the floor plan is that the microcode

bus and the data path bus must also connect to the multiplexer. A large amount of

area is wasted if these two buses are connected to the multiplexer from the side.

Instead, if the buses are placed where the fxPC stack is located, they then connect to

the loop counter circuits directly. But then there is the problem of where to place the

/i.PC stack. The solution is to run the buses {/ir()U}>h the ^iPC stack. Each cell of the

stack thus has the two buses designed right in. The two buses run right on through

the loop counter stack to the loop counter decrementer and the pads.

Having placed the major blocks of the chip into the floor plan, we can exam-

ine the layout of the control circuits and work out a detailed floor plan. Each of the

stacks require push and pop drivers, as discussed in Chapter 3. As in the Chapter 3

example, one set of drivers is placed along the top, and the other set along the

bottom of the stack. The control drivers for the latch, adder, multiplexer, and

counter are identical to those discussed in Chapter 5. The control bits for these
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control drivers could all be derived directly from the outputs of the microcode

memory, but this technique would result in an exceedingly wide microinstruction.

By encoding the operations to be performed by the adder and its input multiplex-

ers, we can dramatically decrease the width of the microinstruction. With proper

encoding of these operations, the functional capability of the chip is not impaired.

(A number of possible control signal combinations are in fact illegal and thus re-

dundant. For instance, if more than one control line for the multiplexer is enabled,

the outputs of two or more sources would be shorted together, and the resulting

multiplexer output would contain erroneous data.) The placements of the control

circuits and encoding PLA's are shown in Fig. 6.13, which also shows additional

details of the final floor plan. Notice that the counter stack is higher than the

12-bit high fxPC stack, so that it can contain entire 16-bit data path words for

parameters passed to subroutines in the microcode. The stacks are aligned on

their least significant bit position, and the additional length of the counter stack

allows space for the control PLAs for the adder and ^tPC stack.

The programmable logic arrays employed in instruction decoding do not have

feedback from their outputs back into their inputs. Their only function is to serve

as combinational logic for condensing the number of control wires and thus saving

microcode memory bits. The finite-state machine for the control of this path is

made up of the microcode memory address feedback through the adder and stack

PLA's and also the microcode literal path feedback into the input of the adder. If

there were feedback terms in any of the PLA's, provisions would have to be made
for access to the state of the feedback terms from off-chip. Without such access.
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the unti'stahU' state information on the chip would make the testing of the com-
pleted chip next to impossible: the current operation of the chip would be a func-

tion not only of the control signals and data that we supply to the chip at a particu-

lar moment, but also of the past control signals and data. In the absence of a

practical way to directly probe all the signal lines on the chip, it is imperative that

all of the chip's state be accessible somehow from otT-chip.

One of the problems encountered in many multichip microprogrammed
machines is that a great deal of interchip communication is required in their opera-

tion. Although the effective computing bandwidth of the machine can be made
large by pipelining the operations, any operation that requires the full circle

through the feedback loop of the state machine will require a great deal of time for

its execution. In the 0M2 system, we have included hardware features in both the

data path and the controller to reduce the chip-to-chip communication as much as

possible. As already mentioned, we included the loop counter circuitry on the

controller chip, thus reducing the loop operation time from 3 cycles to 1 cycle.

Chapter 5 mentions the conditional ALU operations in the data path that can

modify the actual ALU operation as a function of the /7c/^ hit. An example of the

utility of this capability is provided by the multiply operation. When performing a

multiply, the ALU should either add two numbers or just pass one of the numbers

straight through, depending upon the state of a flag. One way to do this operation

would be to send the flag to the controller chip and execute a conditional branch to

one of two locations. One of the two appropriate ALU operations would be at

each of the two microcode locations. However, it would take several cycles to

perform each step of a multiply were this method used. Since in OM the ALU on

the data chip has the capability of modifying its instruction as a function of the

flag, a single cycle will perform this part of the multiply step.

There are times when it would be convenient to communicate many bits be-

tween the controller and the data path in one cycle. For instance, when emulating

the instruction set of a higher level machine, the data path can examine various

fields in the instruction currently being emulated and calculate microcode branch

locations. It is then necessary to load the /LtPC latch with the calculated branch

location. To facilitate this loading, a 16-bit bus, referred to as the "literal bus,"

connects the two chips. To economize on the data path's pin count, this bus is

used to load microcode into the data path chip when it is not transferring literal

data between the two chips. A large number of pads is required for the microcode

and data path literal interconnections. There was insufficient space along the left

edge of the chip for all of the pairs of pads required for this communication.

Hence, we placed some pads along the top of the chip and others along the bot-

tom, and we made connections between these pads and the buses by running

vertical w ires to the appropriate bus lines where they run between the two stacks.

The layout of the completed controller chip is shown on the endpaper. Exam-

ples of the use of several of the controller's operations are given in the following

section.
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6.6 EXAMPLES OF CONTROLLER OPERATION*

This section will illustrate the operation and programming of the controller pre-

sented in the last section, through the use of four programming examples: sub-

routine linkage, For-loops, Do-loops, and field dispatches. Refer to Table 6.2 for a

tabulation of the controller's operations. It should be noted that the /xPC operations

are pipehned by one cycle so that if one particular microinstruction contains a

controllerjump opcode, the following microinstruction will also be executed before

the jump actually occurs.

To call a subroutine, we would like to save the current value of the /uPC on the

^tPC stack and load the fxPC latch with the microcode address of the subroutine.

When we have finished executing the subroutine code and wish to return, we just

pop the return address off the /itPC stack and load it into the ^tPC latch. To save

the /iPC value on the stack, ")u,PC" should be selected as the stack source and

"Push" should be selected as the stack operation. As Table 6.2 shows, the condi-

tion must be true in order for the stack to push a value. Therefore, the condition

selection should be "True" to guarantee that the stack will save the return ad-

dress. While we are saving the current )u,PC value on the stack, we must also load

the /LtPC latch with the subroutine address. To do this, we select "Microcode" as

the /uPC source and put the subroutine address in the literal field of the microcode.

Since we are not using the counter, the counter operation should be "Nop." For

the return, we load the fxPC latch with the return address by selecting

"Stacktop+1" as the /xPC source and pop the stack by selecting "Pop" as the

fxPC stack operation. In order to guarantee that the stack pops the old value off

the stack, we must make sure the condition is true by selecting "True" as the

condition selection.

Figure 6.14 illustrates the execution of subroutine linkages. Four "snapshots"

of the microcode and ^tPC contents are shown at the various steps as the execution

proceeds. Snapshot (a) gives us a background for what is happening: The /xPC is

stepping through a segment of microcode and is about to execute a Call operation.

The Call operation contains a pointer to a subprogram located somewhere in the

microcode memory. Snapshot (b) shows the state of the machine just after the Call

operation is executed. The /jPC now points to microcode addresses inside the

subroutine, while the return address to the main "program" is saved on the stack.

Snapshot (c) shows that the /xPC has advanced to the end of the subroutine, and

the Return operation is about to be executed. The return address is popped off the

stack and loaded into the fxPC latch, and program execution resumes where it left

off in the main program, as shown in the last snapshot.

A For loop should execute the same section of code many times. We can use

the loop counter to store the number of times we have executed the code so that

we know when we have finished the specified number of executions. Thus, when
starting a For loop, we should push the repetition number onto the loop counter

*This section is contributed by Dave Johannsen, California Institute of Technology.
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Fig. 6.14 Illustration of subroutine linkage, (a) Before execution of the Call

instruction, (b) Just after execution of the Call instruction, (c) Just before

execution of the Return instruction, (d) After execution of the Return instruction.

stack. At the end of the loop we decrement the count and. if the resuh is not zero,

v.e should jump back to the start of the loop. If the decremented result is zero, we

have finished execution of the For loop, and we should pop the count off the

loop counter stack. Execution of the For loop in this manner requires that the

end-of-loop command contain the address of the start of the loop. How then can

we construct relocatable code containing For loops? We can eliminate the need

for the end-of-loop command to contain the loop's start address, by saving the

start address on the \xVQ stack. The )uPC latch then merely has to be loaded

with the value contained at the top of the stack. When we use this method of
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saving the loop address, the start-of-loop command becomes

fxPC Source ^ /itPC + 1

fxPC Stack Source ^ fxPC

/xPC Stack Operation <— Push

Condition <— True

Counter Operation *- either Push Microcode or Push Literal

The end-of-loop command becomes

fjiPC Source ^ True: Stacktop + 1; False: /xPC + 1

fxPC Stack Operation -^ Pop

Condition ^ Count NOT EQ
Counter Operation <— True: decrement; False: Pop

The operation of For loops is illustrated in Fig. 6.15. Again, four snapshots are

shown which represent the state of the controller and microcode at various points

in the execution of the loop. Snapshot (a) shows the state of the machine just prior

to the execution of the For operation. When the For operation is executed, the

value in the /xPC latch is pushed onto the /uPC stack, and the number of iterations

specified by the For command is pushed onto the counter stack. The fxPC con-

tinues advancing through the microcode. Snapshot (b) shows the state of the con-

troller and microcode at some point in the middle of the For loop execution. When
the end of the loop is reached, the value on the top of the counter stack is dec-

remented. If the result is not zero, the new value is pushed onto the stack and the

/LtPC latch is loaded with the value on the top of the /jlPC stack, as shown in

snapshot (c). Notice that the value is not popped off the top of the /aPC stack

because we will need the loop address again if the loop is not completed after

executing one more time. When the result is zero, data is popped off the top of

both stacks (to remove the loop address and the old count, which is now = 0)

while the ^tPC value is just incremented, causing the controller to exit from the

For loop, as shown in the last snapshot.

The Do loop is similar to the For loop, except that the code is repeatedly

executed until a condition becomes True. That condition may be, for instance,

when the data path flag becomes True. In this case, the condition selection in the

end-of-loop command becomes "Data path flag" instead of "Count not EQ 0".

Also, since the counter is not being used, the counter operation in both the start-

of-loop and the end-of-loop commands becomes "Nop".
Figure 6. 16 shows some snapshots associated with the execution of a Do loop.

By comparing Figs. 6.15 and 6.16, we can observe the similarities between For

loops and Do loops. Basically, the only difference between these two types of

loops is the decision of when to exit the loop. In a For loop a counter decides when
the loop should be exited, while in the Do loop a flag, such as the flag from the
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data path, decides when the loop should be exited. Since the Do loop does not use

the counter, the counter is not shown in the snapshots of Fig. 6. 16.

When emulating the instruction set of a higher-level machine, we find it is

often convenient to do a multi-way branch. Suppose, for example, that the

machine we are emulating has a 16-bit instruction word that contains a 4-bit op-

code field and a 12-bit address field. In this case, we would have 16 code segments

in the microcode, one for emulating each of the 16 possible opcodes of the higher-

level machine. We would like to be able to perform a 16-way branch, depending on

the contents of the 4-bit opcode field, that would take us directly to the correct

microcode segment, thus implementing the decode stage of instruction interpreta-

tion. We could use the ALU in the data path for calculating the microcode address

for the proper segment, and load the /u,PC latch with the result of this calculation.

This works especially well if the starting addresses of the segments are evenly

spaced, because to calculate the branch address we merely multiply the 4-bit op-

code by the segment length and add the displacement of the first segment. The
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multiplication is particularly easy to perform if the segment length is a power of 2,

because then we have only to shift the 4-bit opcode value of the appropriate

number of places to the left.

A problem with the above method of field dispatching is that the microcode

segments have to be evenly spaced in the microcode, preferably by a power of 2.

In practice, segments are seldom of the same length. Even if they were of the same

length, if one of the segments had to be modified, extensive corrections might

have to be made all though the microcode. As an alternative, a dispatch table can

be inserted into the microcode, which just contains a series ofjump instructions to

the appropriate microcode segments. If this is done, the 4-bit opcode value need

only be shifted left once (because jump instructions are two microcode words

long, due to pipelining), added to the dispatch table displacement, and loaded into

the ijlPC latch. To load the value into the fiPC latch, the data path sends the result

of the above calculation across the literal bus to the controller, and the controller

selects a /xPC source of "Literal".
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Figure 6.17 illustrates the operation of the dispatch instruction. The controller

jumps to a location in the dispatch table that is a function of one of the fields in the

opcode. The dispatch table contains Jump instructions to the various routines that

perform the microinstructions necessary to emulate each of the possible opcodes.

The selection of the proper field in the opcode and the calculation of the dispatch

table address are performed in the data path prior to the dispatch.

6.7 SOME REFLECTIONS ON THE CLASSICAL STORED-PROGRAM MACHINE

In the future, very large quantities of computing machinery may be placed on a

single chip. Such chips will be easily and quickly designed, and rapidly im-

plemented. This capability will present both a great opportunity and a great chal-

lenge. How are we to organize and program such a wealth of hardware? Certainly

not the way we do now.

Scaling of the technology to higher densities is producing effects that may be

clarified by analogy with events in civil architecture. Decades ago, standard
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bricks, "two-by-fours, " and standard plumbing were used as common basic build-

ing blocks. Nevertheless, architects and builders still explored a great range of

architectural variation at the top level of the time: the building of an individual

home. Today, due to the enormous complexities of large cities, many architects

and planners have moved on to tackle the larger issues of city and regional plan-

ning. The basic building blocks have become the housing tract, the business dis-

trict, and the transportation network. While we may regret the passing of an older

style and its traditions, there is no turning back the forces of change.

In present LSI, where we can put many circuits on a chip, we are like the

earlier builder. While we no longer tend to explore and locally optimize at the

circuit level (the level of bricks and two-by-fours), we still explore a great range of

variation at the level of the individual computer system. In future VLSI, where we
may put many processors on a chip, architects will, like the city planner, be more

interested in how to interconnect, program, and control the flow of information

and energy among the components of the overall system. They will move on to

explore a wider range of issues and alternatives at that level, rather than occupy

themselves with the detailed internal structure, design, and coding of each indi-

vidual stored program machine within a system. If systems are to work at all, they

must at the least be understood at their highest level. These are some of the issues

explored in Chapter 8.
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7.1 THE THIRD DIMENSION

The successful design of large scale integrated systems requires careful manage-

ment not only of the two-dimensional silicon area but also of the operation of the

system in the time dimension. Although time is physically different than the spa-

tial dimensions, the general strategies already introduced for carrying the spatial

design from conception to layout apply to system timing as well. These are the

usual strategies for containing complexity: use of abstraction and structured de-

sign.

Much of the functional design of the spatial aspect of a system is done with the

help of block diagrams, logic diagrams, circuit diagrams, and stick diagrams, in a

metric-free topological domain. These representations are helpful because they

allow designers to suppress detail, so that they can think about system behavior at

a level of abstraction that is effective for the task at hand. One specific abstraction

employed in these diagrammatic representations is the suppression of geometrical

detail, while focusing on the topological structure of the circuit or system. Topol-

ogy is sufficient to specify information flow between functional parts, so dia-

grammatic representations are a useful abstraction to the functional or logical

structure of a system.

The third dimension, time, may also be regarded as having features analogous

both to geometry and topology. The definition of a sequential process-whether

represented by a program, flowchart, state diagram, or in plain English -specifies

only the ordering, or partial ordering, of the individual steps that compose it. Thus

it is the metric-free "topological"' concept of sequence , rather than the physical

concept of a time metric, that is most useful for the functional specification of a

system.

As was pointed out in Section 3.5, it is important that the levels of abstraction

used in the design process be related to each other and to physical concepts. The

sequence domain is a self-consistent abstraction that applies across several levels

218
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of system design -programming, organization, logic. However, sequence domain

representations such as flowcharts and state diagrams do not say anything explicit

about space, time, and other physical characteristics of a system. The value of

abstraction to the design process is that it permits one to defer certain bindings to

physical form. The hazard is that one can become so isolated from physics and

economics as to produce elegant schemes that are unworkable in practice. Thus,

an important goal of any study of timing is to devise and explain methods by which

sequence and time can be systematically related.

Although the designer of an integrated system may think about a layout ini-

tially in topological terms, at some point it becomes necessary to think also about

geometry. The cost of a design will eventually be measured in silicon area, and

whether it will work depends on adhering to the geometrical design rules of the

fabrication process. Likewise, the sequence domain conception of system be-

havior becomes coupled with time in two ways. First, most systems are designed

to achieve performance objectives that can be traced back to human needs, expec-

tations, or desires. Second, the electrical behavior of devices and wires is gov-

erned by physical laws that are expressed as partial differential equations in time.

Unfortunately, the world is full of examples of digital systems that, even when
functionally correct, have disappointed their designers and users by being unreli-

able or too slow. Why is it that so many systems have "timing problems' or fail to

achieve performance objectives?

As is the case with the spatial dimensions, the design problems in the third

dimension result not from a lack of possible forms but rather from an overabun-

dance. If one is to build a large scale integrated system with any hope of reliable

operation, it is necessary to restrict oneself to a consistent style of design. The
canonical forms in the time dimension are signaling conventions that are adhered

to throughout the system and serve the function of establishing between all parts

engaged in a communication an interval or sequence of intervals of time for this

communication. If such a scheme is to be regarded as a discipline, it must be

possible to state precisely the requirements that the signaling convention places

on system interconnections and element timing.

Alternative disciplines of design in the time dimension can be characterized

by the way in which they connect sequence and time. The products of two very

different disciplines of design are described in this chapter: synchronous systems

and self-timed systems. In the synchronous discipline of design, which has been

used in a form with a two-phase clock in the designs presented previously in this

book, sequence and time are connected by means of a system-wide clock signal.

In the self-timed discipline, sequence and time are connected in the interior of

parts called elements. The terminal behavior of a self-timed element must satisfy a

sequence domain representation, which assures that correct sequential operation

of a self-timed system is insensitive to element and wiring delays.

Since synchronous systems are by far the best known and most widely used,

we take them as the starting point for the body of this chapter. However, syn-
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chronous systems possess some serious limitations, which are made even worse
as \ is scaled down and as chips become larger.' Some of these Hmitations are

physical in nature and relate to the difficulties of moving information from point to

point within a single clock period. Another limitation is the difficulty of managing

very large designs in a framework in which all system parts must operate together

in Mockstep."

The same considerations of managing the design of very large integrated sys-

tems that provide a motivation for dividing a system into modular parts argue that

the parts be independently timed. If the parts are each synchronous systems with

independent clocks, information communicated from one part to another must be

synchronized to the receiver's clock. Unfortunately, as we show in a later section,

this synchronization cannot be accomplished with complete reliability. The reason

is that synchronizing elements are bistable and have a metastable, or balanced,

condition that occurs under the conditions in which synchronizers must operate.

As was discussed in Section 1.14, there is no bound for the time the bistable

element may remain in this metastable condition. There are many methods to

reduce the probability that such a fault would crash a system, but they all cost

time and so would reduce efficiency.

The limitations imposed by the synchronous discipline suggest that other dis-

ciplines be tried. The outline of the self-timed discipline presented in the final

sections of this chapter describes one approach to system timing that scales well

to VLSI, and that retains synchronous systems under exactly those conditions in

which the synchronous discipline is workable. Self-timed elements can be de-

signed as synchronous systems with an internal clock that can be stopped syn-

chronously and restarted asynchronously. This type of clock allows synchronous

elements to communicate reliably, because their clocks are partly dependent, i.e.,

not independent. Elements may also be designed as asynchronous or speed-

independent circuits. There is no system-wide clock or time reference in a self-

timed system. Instead, initiation of a given computational step depends on com-

pletion signals produced by its sequential predecessors. Thus self-timed systems

operate at a rate determined locally by element and wiring delays, a rate that tends

to reflect average, rather than worst case, delays.

The subject of self-timed logic has two principal facets: the design of elements

and the design of systems of interconnected elements. Along the seam between

those subjects are conventions for self-timed signaling. This bifurcation of the

discipline is deliberate. The design of elements is difficult because it is here that

logic, physics, and timing come together. However, the element designer can

work within a domain in which physical and logical scale are both restricted to be

small enough to make the design manageable. The design of systems is difficult

because of the combinatorics of scale. However, the system designer can work

within a domain similar to that of a programmer, in which many of the details of

the underlying physical system have been suppressed and replaced by an abstrac-

tion that is free of hidden rules; namely, the sequence domain abstraction.
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7.2 SYNCHRONOUS SYSTEMS

In the synchronous discipline of design, sequence and time are connected through

the use of a system-wide clock signal. The clock signal serves two purposes-or

one might say it serves two masters. The clock is a sequence reference and also a

time reference. As a sequence reference, its transitions serve the logical purpose

of defining successive instants at which system state changes may occur. As a

time reference, the period or interval, either fixed or variable, between clock tran-

sitions serves the physical purpose of accounting for element and wiring delays in

paths from the output to input of clocked elements.

The ability of the clock signal to serve two masters, logic and physics, has a

certain compact elegance and conforms to an established tradition of parsimony in

the use of active elements. However, the dual role of the clock binds the system

sequencing and timing so closely that ' 'timing' " is the source of numerous difficul-

ties in the design, maintenance, modification, and reliability of synchronous sys-

tems.

The logical model that synchronous systems resemble is the finite-state

machine, a model that has been described in detail both in Section 3.11 and in

Chapter 6. As illustrated in Fig. 7.1, any such system must satisfy a topological

requirement that every closed signal path pass through a clocked storage element

.

Closed paths that do not pass through clocked storage elements are excluded as

they may create nondeterministic behavior, either through oscillation or through

asynchronous latching. There are several important consequences of this topolog-

ical constraint on the logical design: (1) It assures deterministic behavior if the

physical aspects of the design are also correct. (2) It relieves the designer of any

requirement that the combinational logic be free of transients (static or dynamic

hazards) on its outputs. The only dynamic characteristic of a combinational net

that matters is its propagation delay time. (3) The storage or history dependence of

the system resides entirely within the clocked storage elements, a fact that
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simplifies the design process and often also the maintenance and testing of a sys-

tem.

The clocked storage elements in a synchronous system may take any of a

variety of forms, discussed below, depending on physical requirements such as

speed, economy, or static operation. While these elements are distinguished as

being the only recipients of clock signals, in practice there may be a number of

timing signals derived as different phases or submultiple frequencies of the clock.

In these cases it may be difficult to see the correspondence between the circuit

and the finite-state model. Circuits such as shift registers are finite-state machines,

but they already possess such a natural and regular structure that it would be

pointless and awkward to describe their behavior with state diagrams. Control

elements, such as the finite-state machine stoplight controller described in Section

3.11.1, are a case of imposed structure, in which the combinational logic and

clocked storage elements can be patterned on the silicon in a form that mimics the

usual block diagram of a finite-state machine.

Although clocked storage elements may be clocked by different schemes,

they all are binary storage devices. The sort of physical device that has the prop-

erty of storing information (also called memory, or history dependence) is one that

stores energy, or it may be film or punched cards in which energy is required to

change some detectable condition of the medium.

For semiconductor integrated circuits the energy represented by charge

stored on circuit capacitances is the only practical mechanism for storing informa-

tion. Inductance plays the same role in superconducting circuits. MOS circuits

employ this mechanism very directly in the dynamic register introduced in Chap-

ter 3 and used in designs throughout this book. In the dynamic register illustrated

in Fig. 7.2. the output stored data follows the input as long as the enable input to

the transfer gate is high. When the enable signal goes low, the charge stored on the

node is very well isolated and so maintains the same voltage.
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Unfortunately, this is not the whole story. While the charge is very well iso-

lated, it is not perfectly isolated. Charge escapes by two different mechanisms,

which scale differently. The principal leakage path for 1978 MOS technology is the

reverse leakage current of the drain junction of the pass transistor. The time con-

stant of this decay is in the order of a few seconds at room temperature but de-

creases exponentially with temperature to a millisecond or so at 70°C. This leak-

age path is a current per unit area and, because scaling down the circuit dimen-

sions increases the capacitance per unit area due to decreased oxide thickness, the

time constant of charge decay increases with reduced circuit dimensions. The fine

details of this scaling are largely masked by the exponential temperature depen-

dence, however, so the time constant ofjunction leakage is reasonably regarded as

approximately independent of k over the recent past and future. Subthreshold

currents are expected to become the limiting factor in holding charge on a node as

soon as threshold voltages are reduced to much below 1 volt. This effect of scaling

down the dimensions of MOS circuits was discussed in Section 1.16. We refer to

the time a node will reliably store a bit as the refresh period.

The decay of charge on a dynamic node is no problem so long as the charge is

sensed and refreshed frequently enough; for example, in every clock period as is

done in the OM design. In some cases this is not possible, and static registers are

used instead. An assortment of static registers is shown in Fig. 7.3. The general

idea evident in the circuits in parts (a) and (b) is to amplify and feed back the

stored data so as to counteract the decay of charge. The part (a) circuit does this

through a resistance that must be much larger than the effective /?on of the pass

transistor, so that the storage node can be driven to the value desired. For vol-

tages close to the switching threshold this circuit amounts to a negative resistance

termination to Vinv, where the resistance is -(large /?) /(voltage gain of the pair of

inverters). This circuit can be used advantageously as a termination for buses to

assure static operation. The diagram in part (c) is a storage circuit typical of bipo-

lar families, in which low impedances make dynamic storage unattractive, so that

static storage is the rule rather than the exception.

These static circuits are logically equivalent to the dynamic storage circuit,

except that the stored information will remain indefinitely. The use of extra cir-

cuitry for each node to accomplish this continuous refreshing is usually unneces-

sary, and it will be omitted in the following discussion and figures, with the under-

standing that it could in all cases be included where required.

As an aside, the reader may wonder about the statement above -that capaci-

tance provides the mechanism for information storage. Is this true of the static and

cross-coupled storage circuits as well? Many references on switching circuits

leave the impression that the existence of two logically consistent stable states in

these cross-coupled circuits is sufficient to ensure that the circuit will store a bit.

Some references mention also that the circuit must have more than unity gain

around the loop, which is indeed a necessary, but not sufficient, condition. Con-
sider the consequence if the circuit capacitances were all taken to zero. The circuit
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would then be able to respond instantly to an excitation, which means that a cur-

rent pulse of arbitrarily short duration could change the state of the circuit. If this

arbitrarily small amount of energy could change the state of the circuit, one could

not reasonably expect the circuit to remain in either state. Without capacitance, it

cannot store information. This physical aspect of storage devices is discussed in

detail in Chapter 9.

With this background on storage elements, let us proceed to clocking

schemes. As we pointed out in the opening section of this chapter, it should be

possible to state precisely the requirements the timing form places on system in-

terconnections and on element timing. For synchronous systems, the requirement

on interconnections is the topological requirement that all closed paths pass

through one or more clocked storage elements. The requirements on element tim-

ing depend on the clocking scheme.
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The storage devices described above, all logically equivalent to the dynamic

register, may be used as clocked storage elements in a cheap, fast, and risky

clocking scheme illustrated in Fig. 7.4. (We know of no example of this scheme

being used in LSI circuits, but it was common in many of the early "tran-

sistorized" computers.) This scheme might best be termed "narrow pulse clock-

ing," because it requires that the clock pulse be narrow compared to the delay of

the combinational logic. The present state information changes a short time, about

RonCin, after the leading edge of the clock. The delay through the combinational

logic must be greater than the clock width, or else the change in the present state

information will propagate through the combinational logic to change the next

state information before the trailing edge of the clock.

The combinational logic must be designed so that its delay satisfies a two-

sided relation -greater than the clock width and less than the clock period. As
indicated above, the clock width must also satisfy a two-sided relation -greater

than the time required to transfer charge to the present state inputs of the combi-

nation logic and less than the minimum delay of the combinational logic. The clock

period is also involved in a two-sided relation, unless static registers are used. The

relations that must be satisfied are summarized in Fig. 7.4. They are relations that

apply in a worst-case sense, in spite of variations in temperature, power supply

voltage, aging, and manufacturing.

This "narrow pulse clocking" scheme was abandoned because of the diffi-

culty of satisfying so many two-sided relations simultaneously under so many
conditions of variation. Also, the economies achieved due to the simplicity of the

clocked elements were partly offset by the necessity to "pad out" the delay in

many of the combinational nets. This clocking scheme is quite feasible for inte-
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grated systems, since it is inherent in their manufacture and operation that most of

the variables will track if the clock signal is generated on-chip.

Two-sided relations on timing create enough difficulties in the design and

maintenance of a system so that it is generally worthwhile to use more logic to

make the timing relations one-sided. Elimination of the two-sided relation on

clock width, or the complementary relation on combinational delay, requires the

use of at least two clock phases. This minimum form occurs for much the same

reason that a canal lock requires at least two watertight gates.

The two-phase clocking scheme illustrated in Fig. 7.5 includes four sequen-

tially repeated epochs. During (^, , previously stored information is applied to the

present state inputs of the system's combinational logic. The s^, signal must re-

main high long enough to charge the present state input nodes, a process that

incurs some delay on the order of R^nCin- and that is called the delay time of the

clocked storage element. Following this delay, if inputs are also available, the

combinational logic starts setting up the outputs and next states, independent of

when (^1 may transit from high to low. This epoch is analogous to the operation of

a canal lock releasing a ship. The gate must open before the ship leaves, and the

ship must clear the gate before it is again closed. If the lock master chooses to

leave the gate open for a while after the ship leaves, it does not slow down the

ship.
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What the lock master must never, never do is open both gates at once! The

epoch, labeled in Fig. 7.5 as tu, is an interval produced by the nonoverlapping

phases of the clock. By analogy with the narrow pulse clocking scheme, it is clear

that overlap less than the minimum delay of the combinational logic is harmless to

correct operation. However, as the minimum delay of the combinational logic is

ordinarily legislated to be zero (most people would agree it could not be less, and

for circuits such as shift registers the delay does approach zero), the overlap

period/ 12 must be greater than zero. In practical cases, because /12 does not repre-

sent "dead time" but time during which the combinational logic is working, this

time is made as short as is convenient but not necessarily as short as is possible.

In the epoch during which </?2 is high, the clocked element samples its input.

The combinational outputs must be stable slightly before the trailing edge of (^2 . an

interval called ihe preset time of the clocked storage element. Of course, (^2 must

be wider than the preset time. This (p., epoch is analogous to the entry of a ship into

a lock. The ship cannot enter the lock until the gate is opened, and the gate should

not be closed until the ship is completely inside.

Following (p., is another period of nonoverlap, ^21 , during which the system is

idle. The minimum clock period for correct operation is the maximum combina-

tional delay, plus the maximum delay time and preset time, plus t2\. It is important

therefore to make /21 as small as possible if one is designing for performance. As
we show in the following section, /21 does serve a useful purpose of accommodat-

ing clock skew, a variation in the arrival time of the clock to different clocked

storage elements, and so in some systems /21 can be reduced only as much as a

clock skew allows.

The net result of this two-phase clocking scheme is that the clock period and

its constituent epochs are, with static storage devices, involved in one-sided rela-

tions in which a region of reliable operation can always be found by making

epochs longer. With dynamic storage devices, the relationship between clock

epochs and refresh period does not practically limit choices of periods today but

can be expected to rule out periods longer than a few hundred r when the technol-

ogy reaches its ultimate limits. The complementary relation on the propagation

delay of the combinational logic is a simple maximum value.

Many variations on this basic scheme are found in different kinds of digital

systems, more schemes than we could hope to describe individually. Many pro-

cessors and storage systems are advantageously designed with more than two

clock phases. In processors these phases (usually four or eight, and sometimes a

variable number) delineate minor cycles that subdivide the major cycle. Multiple

phases are also commonly used in systems that employ precharged pull-up, and

other charge transport techniques such as CCD storage. Magnetic bubbles are

made to move in response to a rotating magnetic field, a two-phase clocking

scheme when viewed as two orthogonal fields with sinusoidal oscillation 90° out of

phase with each other.
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Some mention of variant forms with respect to inputs and outputs is also re-

quired, inputs to synchronous systems must appear in synchrony with the clock, a

requirement that is readily satisfied when the inputs are outputs of another system

that shares the same clock. If an input does not assume its correct value until after

the leading edge of </?i, its worst-case delay relative to the leading edge of <^i is

accounted for in the same way as the delay of the clocked storage element. The
general procedure for checking compliance with timing bounds consists of mark-

ing nodes starting with clocked element outputs and system inputs with the latest

time relative to the beginning of <px that the signal will become stable. Programs to

accomplish such checking are not trivial, as they may at first appear, because the

program should account for different delays in different states and inputs. Other-

wise, the large differences between delays for positive and negative transitions

cannot be accounted for; nor can circumstances such as time of output determina-

tion in simple AND and OR circuits be dealt with simply, because these times are

data dependent. Unfortunately, this checking problem is about as difficult as

exhaustive simulation.

The form of finite-state machine model of synchronous systems used in the

descriptions above of clocking schemes is the transition output (Mealy) machine.

It is more general than the state output (Moore) machine since its outputs are

functions both of its input and present state, while for the state output machine the

output is a function only of the present state.- Transition output machines tend to

be used in cascade arrangements in which economy is the principal design goal,

while state output machines are characteristic of pipeline architectures in which

high performance is sought.

Networks of transition output machines must be acyclic, the same require-

ment as for the combinational paths in a single machine. Combinational delays

may accumulate on paths through many machines, so a more general checking

procedure must be used. Networks of state output machines may be connected

cyclically, and checking is confined to communicating pairs of machines. Check-

ing can be made entirely local to each finite-state machine if communication be-

tween machines is performed in pipeline fashion through clocked elements. The

finite-state machine described in Section 3.11 and shown in Figs. 3.21 and 3.22 is

of this sort.

In a two-phase clocking scheme, <^i and ^p2 are symmetrical in the sequence

sense, and perhaps also in time. This symmetry suggests that a reversal of roles

between (/?, and (/?2 is possible. For example, there is no reason in the finite-state

machine structure shown in Fig. 7.5 not to replace the simple amplifier or double

inverter with combinational logic. The general structure allowed in a two-phase

clocking scheme is any composition of basic elements consisting of registers fol-

lowed by combinational logic, in which outputs of elements clocked by (^i drive

only inputs to elements clocked by (p2, and vice versa. Please note that combina-

tional delays must be checked across communicating pairs of machines. This

scheme is similar to that used in both the 0M2 and its controller and is well illus-

trated in Chapters 5 and 6.
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7.3 CLOCK DISTRIBUTION

Readers who have been designing systems with catalog parts are now invited to

stand up and object: "What's with all of these clock phases? My systems use a

single-phase clock.
"

' That is a good question.

The clock supplied externally to catalog parts such as registers, counters, shift

registers, and microprocessors is most often a single-phase clock because this

approach is convenient, and the clock then uses only a single package pin. Inter-

nally, a two-phase clock, or its functional equivalent, is derived from the single-

phase clock, either as part of each clocked element with the single-phase clock

distributed through the chip or once for the chip with the derived two-phase clock

signals distributed as required.

Figure 7.6(a) shows a relationship between a single-phase clock and a two-

phase clock derived from it, and Fig. 7.6(b) shows a circuit that performs this

function. In the following text this form will be taken as canonical, although other

conventions of relating single-phase and two-phase clocks are possible. The

single-phase clock is used in a trailing-edge-triggering discipline, so-called because

system state changes occur following the trailing edge of the clock pulse. This

mode of operation has the advantage over leading-edge triggering that the state

variables are stable during the clock pulse, so one can perform logical operations

between the clock and state variables in order to derive gated clock signals for

selective register loading.

Input here determines output liere
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The preset and delay time relations to the derived two-phase clock can be

translated, as shown in Fig. 7.6(a), to be referred to the trailing edge of the single-

phase clock. A study of this figure shows that, because of delays in deriving (^, and

<iP2, preset times referred to the single-phase clock may be negative. Over a set of

clocked storage elements the preset times will have maximum and minimum val-

ues, just as delay times will. The maximum preset time is called the setup time,

and the minimum preset time, with its sign reversed, is called the hold time. In

single-phase clocking arrangements, the input to a clocked storage element should

become stable by the setup time before the clock edge and hold this value until at

least the hold time after the clock edge. In the two-phase clocking arrangements

most often used in MOS LSI, the preset time is always positive since it is refer-

enced to the trailing edge of (^2, so only its maximum value or setup time is critical

to correct circuit operation.

It is an essential feature of clocking schemes with one-sided relations that

there is a critical period during which the clocked storage element is actually stor-

ing two bits of information. For either single- or two-phase clocking this critical

period begins at the preset time and ends at the delay time. One of the stored bits

is the input value presented before the preset time; the other is the bit presented at

the clocked storage element output. This critical period provides a built-in toler-

ance for clock skew. This term refers to a variation in the effective arrival time of

the clock at different clocked elements. These variations may be due to a combi-

nation of several effects: different threshold voltages, signal propagation delays on

wires, or variation in element delays such as is found when gated clock signals are

used to control register loading.

Clock skew even within a chip can be a problem. The time required for signals

to propagate on wires in MOS technologies is not limited by "speed-of-light"

considerations, except for the very shortest wires, for which these times are neg-

ligible anyway. Rather, it is the resistivity of wires, together with their parasitic

capacitance, that determines the rate at which the voltage driven onto a wire at

one point will equalize across the length of the wire. This process is governed by a

diffusion equation, and so it is referred to here as the diffusion delay. As was

indicated in Section 1.11, the diffusion delay is approximately quadratic with

length. The diffusion delay is independent of line width, since a wider line has

lower resistance but proportionately higher capacitance per unit length. The term

wire delay in what follows refers to the combined effects of the velocity of elec-

tromagnetic wave propagation and diffusion within the wire itself and should not

be confused with the delay that the parasitic capacitance of a wire induces on the

output of a logic circuit.

As was pointed out in Section 2.7, propagation of signals on poly lines, as they

are of fairly high resistance, is a process for which the delays are not negligible.

Given the distances and need for short delay in clock distribution, use of diffused

wires for carrying the clock more than short distances is not recommended either.

For example, the diffusion delay in wires 10 mm long is calculated, by the method
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presented in Section 1.11, and using the typical 1978 MOS electrical parameters

given in Table 2. 1 , to be about 200 nsec in 50 H/D poly wires and about 100 nsec in

diffused wires. The diffusion delay over the same 10 mm distance on a metal hne is

calculated to be only 0.1 nsec.

As k is scaled down, the resistance per unit length of a conductor scales up

quadratically, since it is made not only narrower but also thinner in order to main-

tain the same relative surface flatness. Capacitance per unit length stays constant

in scaling, since reduced capacitance due to decreased width just balances the

increased capacitance per unit area due to thinner oxides. Thus in scaling X down
by a factor of ten from 3 microns to 0.3 microns, one can expect the diffusion

delay to scale up by a factor of 100 for a wire of the same length in microns, or to

remain constant for a wire of the same length in X units. A metal Hne 10 mm long in

this scaled technology would incur a delay of about 10 nsec, about 300t for this 0.03

nsec transit time technology. In r-reiative terms, the metal conductors are much

like today's poly or diffused wires.

Since the diffusion delay is quadratic with length, the delay can be reduced by

placing repeaters at intervals along a long line. However, if clocks are to be dis-

tributed with a delay or skew of at most a few r , clocks cannot be distributed over

areas even approaching that of a chip. The area over which clocks could be dis-

tributed with tolerable skew does represent a lot of circuitry, more than an entire

chip in 1978 technology. Process technology might be able to relieve this diffusion

delay problem in clock distribution and the metal migration problems in power
distribution by providing two or three relatively thicker additional layers of metal.

Clock skew is a serious and common problem in systems built from

"families'" of SSI and MSI circuits. The origin of the problem lies not entirely in

clock distribution, but also in the manufacturers' inattention to preset and delay

time bounds. It is easy to find examples in popular families of catalog parts of

certain pairs of clocked elements in which the hold time (minimum negative preset

time) specified for one part is greater than the minimum delay time of another part.

Although the system may work if delays are "typical," some fraction of a produc-

tion run can be expected not to work, or worse, may fail intermittently in service.

Designers of families of circuits intended and advertised to work together should

strive to make all preset and delay time characteristics consistent within a family,

as variations from one part to another decrease the tolerance of the system to

clock skew.

Let us return now to the typical MOS integrated system with a two-phase

clock distributed as the signals tpi and (^2- These are generally "popular" signals,

second only to VDD and GND, and the capacitance accumulated in their distribu-

tion and gate connections is considerable. It is possible, of course, to drive c^i and

(P2 directly onto the chip from an external driver. Systems operating at the ex-

tremes of performance of the MOS technology benefit from this approach. The
external clock driver can be made to switch fast, and to a higher voltage than

VDD, so that transmission gate outputs can then transit all the way to VDD.
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Because the saturation current varies as (V^^ - Vn^f, there is a large speed advan-

tage on the chip from a higher voltage clock drive.

The performance benefits gained from driving (^i and ^p-z onto the chip from

fast off-chip drivers are achieved at the expense of external components. Al-

though on-chip clock drivers may limit the performance of a system slightly, they

are generally used in the interests of economy. An integrated system that is large

by today's standards may have a clock load on the order of lO^Q, where C^ is the

gate capacitance of a minimum dimension transistor. The techniques developed in

Section 1.5 for driving large capacitive loads are applicable to clock driving. The

total delay in an exponential driving structure with the optimum fan-out of e.

starting from a minimum energy signal to drive lO^Cg, is only 25t. However, the

last stage of the driver would be impractically large: the gate width would be

2 • lO^X/t' . The trade-offs between performance and area may dictate a large fan-out

for the final stage of the clock driver, say about 40, with smaller fan-outs for the

drivers preceeding it. Most of the delay in this driver structure would be in the

final stage.

A clock driver of this sort is illustrated schematically in Fig. 7.7(a), with size

ratios indicated by the delay times. Waveforms expected for this circuit are shown
in Fig. 7.7(b). The clock is assumed to originate from somewhere off the chip.

There is no reason to use tw o pins for this function w here one would serve, so the

canonical scheme for production of a two-phase clock from a single-phase clock is

used. The capacitance of the pin and package are so large compared to Cg that

there is no point in starting from a minimum energy signal. The clock driver shown

in Fig. 7.7(a) presents a load of about 30Cg. If the clock source were an on-chip

clock generator, more stages would be used. The slight asymmetry between i^i and

ifo is of course due to the inverter at the input.

The reader should take careful note of an important characteristic of this clock

driver: namely, that nonoverlap of the clock phases is assured independent of

clock loading. This desirable characteristic is the reason that it is the clock phases,

rather than the NOR gate outputs, that are fed back in a cross-coupled fashion.

The nonoverlap periods can be reduced somewhat at the expense of silicon area

by cross-coupling at every stage. This same circuit trick can be extended as shown

to assure nonoverlap independent of clock loading for gated clocks as well. The

techniques used in these clock driver circuits to assure the existence of the

nonoverlap period independent of the effects of loading on element timing are

much in the spirit of those techniques used in speed-independent and self-timed

systems, in that the circuit adapts its temporal behavior to conform to a sequenc-

ing constraint.

A question is sometimes raised as to whether clocks for different sections of a

chip should be buffered separately, as is often done at a circuit board level for

systems built from collections of circuit boards. On a physical basis, the answer is

no. It is best for two reasons that the clock lines be common throughout the chip:

(1) this approach minimizes clock skew, and (2), since one must pay the same
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transistor area whether the driver is lumped or distributed, optimum driver design

locates the stray capacitance of the clock distribution wires where the largest sig-

nal energy is available, which is after the final driver. There may be organizational

reasons for distributing the final driver stage to locations close to sections being

driven when some logical operations are performed on the clock signal.

7.4 CLOCK GENERATION

Where great clock accuracy is required, or where a system clock is distributed to

many circuits, the clock-generation task is external to the chip and is not the direct

concern of its designers. The clock will ordinarily originate from an electronic

oscillator circuit, the period of which is typically controlled by a crystal or some
other resonant network. Process variation in integrated circuit fabrication does

not allow accurate resonant networks to be fabricated by usual means, but it is

perfectly feasible, indeed essential for self-contained VLSI systems, to generate

clock signals on the chip. It is best in approaching this subject to forget about

electronic oscillator circuits and instead to take a more basic approach originating

with an understanding of what clocks are for.
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As we have mentioned before -and this is a principle that bears repeating on

every opportunity -the role of the clock in a synchronous system is to connect

sequence and time. The interval between clock transitions, whether these tran-

sitions are on one wire or distributed over several wires, must be such as to permit

enough time for the activities planned for that interval. When viewed in this way, a

clock is more like a set of timers than like an oscillator. A model of the temporal

behavior of the systems being clocked is built into the clock generator in the

choice of times for the various timers.

The easiest way to build these timers is as chains of inverters. The propaga-

tion delay time of such a chain will of course vary with r, according to the way in

which the fabrication process, aging, temperature, and power voltage affect t.

However, these variations only make the inverter chain a better model of the

system being clocked than a fixed timer would be, since on the same piece of

silicon these variable factors are nearly the same for the clock and for the system.

It is helpful to distinguish between the two kinds of timers shown in Fig. 7.8.

The first is called a.symmetrical delay, because the propagation delay for positive
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and negative transitions at the input is about the same. The second is a logic

network designed to produce as asymmetrical a delay as possible. A negative

transition propagates through the delay in about 5t independent of length. A com-
plementary form of asymmetrical delay is also possible, but to simplify the figures

and symbology in what follows, we shall use only the form in which a low input

resets the delay and a positive transition propagates slowly. The symbols shown in

the figure allow for taps at various points along the delay.

Clocks that employ these delays as timers are all elaborations of the ring oscil-

lator circuit shown in Fig. 7.9(a). Rings of an odd number of inversions have no

stable condition and will oscillate with a period that is some odd submultiple of the

delay time twice around the ring. The oscillation of the largest period may eventu-

ally predominate following bringing power on, but the erratic clock signals pro-

duced during power-up could leave the system in a peculiar state. It is much better

to produce an initialization signal that is held high during power-up and to use it to

initialize the state and the clock . In the modification of the ring oscillator shown in

Fig. 7.9(b), clock signals are suppressed during initialization and will start im-
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mediately following the negative transition of the Initialize signal. This circuit

produces a symmetrical single-phase clock that can be converted to a two-phase
clock by the circuit shown in Fig. 7.7(a).

Although the clock circuit shown in Fig. 7.9(b) would be adequate for some

applications, many elaborations can be included that are shown together in Fig.

7.9(c). The width of the single-phase clock pulse, related to the ipt period, is de-

termined by one asymmetrical delay, while the interval between clock pulses,

related to the tpi period, is determined by an independent asymmetrical delay.

Another feature of this universal clock is that it allows the system being clocked to

select between a variety of periods, which can be changed on a cycle-by-cycle

basis according to the combinational delay of the operation performed on that

cycle. In order to visualize how this works, note that following the trailing edge

(negative transition) of the clock signal, any high input to the 5-input NOR circuit

has the effect of preventing the occurrence of the next clock pulse. The usual

default case is with the Long', Med', and Run high, and Initialize low, resulting in

a short period determined by the first tap on the period delay. If a decoding of the

state indicates that a longer period is required for that cycle, the Med' or Long'

lines must be driven low before the short default period is elapsed. If for example

the Long' line were low, the period before the next clock pulse would be stretched

to that determined by the full delay. Of course, this scheme may be generalized to

any number of delay taps. Signals such as Med' or Long' can be derived either

from function coding of the combinational sections whose modeled delay they

match, or as microcode bits.

The Run line is a bus intended to generalize this cycle-stretching feature so

that any part of the system being clocked may stop the clock synchronously and

then permit it to restart asynchronously. If this cycle is ever to be stretched to

more than the refresh time, static storage elements must be used (at least for the v?i

part of the cycle for two-phase clocking). This technique of control over the clock

is the basic mechanism exploited later in this chapter to allow asynchronous

communication between synchronous systems.

7.5 SYNCHRONIZATION FAILURE

Jean Buridan (1295-? after 1366), a fourteenth century French philosopher often

cited as a percursor of Isaac Newton for his priority in giving a technical definition

of kinematic terms such as inertia and force, posed in his commentary on Aristo-

tle's De caelo a paradox; that a dog could starve if placed midway between two

equal amounts of food. The unfortunate creature placed in this position would be

equally attracted to each source of food, that is, in a position of equilibrium. One

twentieth century explanation of this paradox -if indeed it is a paradox at all-is

that the structure consisting of the dog and the two sources of food is and behaves

just as any other structure that can store a bit of information.

The analysis of the electrical behavior of cross-coupled circuits presented in

Section 1.14 and developed in physical terms in Section 9.6 applies also to the
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situation described by Buridan. The equilibrium condition either for the dog or for

the cross-coupled circuit is unstable, as any displacement from equilibrium brings

about forces that tend to destroy rather than restore the equilibrium condition. An
unstable equilibrium of this sort is called a metastahle condition . Buridan was

correct in believing that the dog could starve, since a characteristic of a metastable

condition is that '\\.may persist indefinitely. A functional definition of metastability

applied to cross-coupled circuits is the occurrence under undriven conditions of

an output voltage in a range around Vj^, that cannot reliably be interpreted as

either high or low.

A bistable element in a self-contained synchronous system never has the op-

portunity to reach a metastable condition, since satisfaction of the timing con-

straints assures that the output is driven to a voltage outside of the metastable

range. But is any system really self-contained? A system such as a microprocessor

may be entirely synchronous internally but cannot extend this synchrony indefi-

nitely to encompass all of the external world with which it may interact. If asyn-

chronous signals of external origin are allowed to enter a synchronous system as

ordinary inputs, the timing constraints required to assure correct operation cannot

be satisfied, since there is no known relationship between the timing of the asyn-

chronous inputs and the clock.

Figure 7.10 illustrates in a small fragment of a larger synchronous system the

consequence of ignoring synchronization altogether. Even if one employs a model
of the clocked storage elements as having perfectly discrete outputs, the unequal

delay in the paths from the asynchronous input X to the clocked storage elements

allows the inputs to the clocked storage elements during state A to represent an

illegal successor state for a period following a transition of the asynchronous in-
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illustrating synchronizer that would

work perfectly, if perfectly discrete

bistable devices were possible.

put. If the clock happens to capture the inputs during this transitory period, one of

the illegal state transitions shown in dashed lines on the state diagram will result.

So, a slightly smarter thing to do is to ensure that only one clocked storage

element is affected by a given asynchronous input. A clocked storage element that

is used in this way is called a synchronizer, since it is intended to produce an

output signal that is in synchrony with the clock. Figure 7.1 1 shows a redesigned

version of the previous fragment of a circuit modified in its state coding so that the

asynchronous input X affects the input to only one clocked storage element. If it

were only possible to build perfectly discrete bistable devices-indeed, if perfect

discreteness exists in nature (see Chapter 9)-, this scheme would be perfectly

reliable. Unfortunately, there is some probability of synchronization failure , since

a transition of the asynchronous input at certain times relative to the clock will

leave the synchronizer in a metastable condition, and the time required for the

clocked storage element to get out of a metastable condition is unbounded. During

the period in which the synchronizer output remains in a metastable condition, the

logic cannot discriminate between states B and C, and if the condition persists for

too long, an illegal or incorrect successor state can result.

It is part of the interesting history of the subject of synchronization that even

long after the necessity to synchronize asynchronous inputs was recognized as a

standard part of good engineering practice, the faith of logic designers in the dis-

creteness of the outputs of clocked storage elements was so great that the very

existence of synchronization failure was widely denied. Another curious aspect of

the sociology of the problem is the many schemes proposed to "solve"" the prob-

lem, which only move it to another location in a system or reduce its probability.

The inevitability of the problem can be understood by seeing that perfect solutions

require that a discontinuous function be produced, where physics is continuous.

We suspect that synchronization of an input signal to a free-running clock cannot
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be accomplished with perfect reliability with finite circuits. At best, a synchro-

nous system with a clock such as that shown in Fig. 7.9(c) permits a metastable

synchronizer condition to be detected and used to postpone the next clock, thus

synchronizing the system to the signal.
^-^ Synchronization failure was discovered

independently by numerous researchers, designers, and engineers in the 1960s,

some of whom published reports of their analyses or observations. ^'^'^'^'^-"^ The

work done at the Computer Systems Laboratory of Washington University by

Thomas J. Chaney and Charles E. Molnar," and by Marco Hurtado'^ has provided

convincing demonstrations of the existence and fundamental nature of the prob-

lem.

It is fairly easy to estimate the probability of a synchronization failure with a

simple mathematical model. If one observes that a bistable device is in a metasta-

ble condition at some time /, what is the probability that it will have left this

condition by time / + 8, in the limit as 8 approaches zero? The only answer to this

question that seems reasonable is that the probability is proportional to 8: let it be

p8. This assumption produces a simple model in which the exit from a metastable

condition is a Poisson process of rate p, and the probability that a clocked storage

element will remain in the metastable condition, once in it, for a period D or longer

is e~^^. The prediction of this simple model has been verified experimentally and is

consistent with analyses based on circuit models,'- including the analysis presented

in Section 1.14. The parameter p depends on circuit characteristics. A dynamic

storage element is not an acceptable synchronizer, as the time evolution of its

output in undriven conditions is possibly even toward the metastable region (see

Section 9.6). One can identify p in the analysis in Section 1.14 with l/r,,. The time

evolution of the voltage output of the cross-coupled circuit has the effect of

transforming a uniform probability distribution of initial conditions to an exponen-

tial or Poisson distribution of exit events. For ratio logic with a ratio of r, tq is about

equal to the pair delay, (r + Dr.

In order to estimate the probability of a fault in a synchronous system due to

the nonvanishing probability that a synchronization will take longer than some
bounded time, one must also calculate the probability that a synchronization event

will put the synchronizer into a metastable condition. For most synchronizations,

the asynchronous level to be synchronized will transit sufficiently far away from

the time at which it is sampled that the clocked storage element will be overdriven

in the usual way. Only over a rather narrow time aperture, denoted here as A, does

the occurrence of a transition result in the synchronizer taking more than the usual

delay time of the clocked storage element. The boundaries of this aperture are not

sharp but may be treated as such, so that for a particular frequency of transitions

of the asynchronous signal,/, the probability that a metastable condition will be

produced in a single synchronization event is/A. One may take this relation as the

definition of A.

The overall probability of a system failure at each synchronization event,

f^e~^^, depends on p and A, which are parameters of the clocked storage element
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used as a synchronizer; on D, which is a parameter of the synchronous system in

which the synchronizer is used; and on /, which is a parameter of the asynchro-

nous input signal. D is the time allowed in the synchronous system for the decay of

the probability of metastability and is effectively like a delay. It corresponds to the

excess delay allowed from clocked storage element outputs to inputs (see Fig.

7.5) and. even for zero combinational delay, cannot exceed the clock period less

delay and preset times.

In order to get some feeling for the failure rates involved, consider a syn-

chronous processor that is accepting data from, or sending data to, a disk storage

unit at a 1 MHz rate. An asynchronous signal alerts the processor to the presence

of, or need for. a new data item, but the processor is able to clear this signal

synchronously. We can assume that p is about 1/(5t) for ratio logic with /• = 4. If

almost all of a fairly short lOOr clock period were available for the decay of the

probability of metastability, D would be about 80t. It is interesting that when D is

expressed as a multiple of r, the exponent in the formula is then independent of r

and so is independent of scaling circuit dimensions. The scaled down version of

this system would allow less time for the decay of the probability of metastability,

but the synchronizer would exhibit a proportionately higher metastable exit rate.

Experimental determinations of A for «MOS circuits^^ and experiments per-

formed with several bipolar circuit families indicate that A is a small fraction of t,

say about r/10. This estimate agrees with the notion that A corresponds to the time

required for a signal to transit through a small voltage range around the switching

threshold, a time which is proportional to r. For present values of r, A is then

approximately 30 picoseconds, and the probability of a system failure for a single

synchronization event would be about (10^)(30 10~'^)e~*^ or about 3-10"'^. So,

about one in each 3- 10'' items transferred across this interface would be in some
fashion mistreated.

Failure rate depends on the frequency at which the system samples asyn-

chronous inputs. This frequency cannot be greater than the clock frequency and,

as is clear from a careful study of Fig. 7.11, this frequency may be as low as the

frequency of the states whose choice of successor depends on the asynchronous

input. This figure is intended to suggest how synchronizers can be sheltered from

needless synchronization events, as the synchronizer is here sheltered by ANDing
the asynchronous input with a signal that indicates that the system is in state A.

Synchronizers that are used directly on asynchronous input signals and whose

outputs enter PLA or ROM structures may cause failures even when the system is

in a state in which the successor does not depend on the asynchronous input.

For the disk example above, the synchronous processor must sample every

transition of the asynchronous input in order to transfer every data item. If this

processor were engaged in transferring data at a 1 MHz rate about one third of the

time, synchronization failures would occur at a (Poisson) rate of once each 10*^

seconds, or about every 10 days. It is worth noting that the exponential relation in

pD makes the failure rate remarkably sensitive to pD. This dependence may be
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particularly noticable if the clock signal originates off-chip so that pD depends on

T. A chip with a slightly larger than typical r may exhibit a drastically higher than

typical failure rate.

The probabilistic character of synchronization failures makes them exceed-

ingly difficult to trace. Designers of synchronous systems who wish to avoid the

curses and plagues that are the just reward for those that build secret flaws into

human tools and enterprises should cultivate a rational conservatism toward this

problem. The worst-case failure rate for a design should be calculated. If the fail-

ure rate is higher than some criterion, it can be reduced by techniques that in-

crease D. Use of cascaded synchronizers is one technique for increasing D that

does not require increasing the system clock period. Criteria for acceptable failure

rates depend on many of the same economic and social factors that influence other

aspects of system reliability.

One conservative failure rate criterion that can be supported by a physical

argument is that the rate of synchronization failures should be on the order of the

rate at which the bistable synchronizer will change state due to the random ther-

mal motions of the electrons. This rate is shown in Section 9.7 to be (I/T)e~*^sw"^^'.

\i s is the frequency of synchronization events (often 5 =/), this physical crite-

rion is

sfb.e-"'^ = 5/Ae"^"'' + "^< (1/t)6'-'*''sw"'-^».

Solving for D yields

D > [E.JkT + ln(5/AT)](/- + Dr.

If one takes A as about r/lO and 5 and/ in the order of 1/(100t), the second term in

the brackets can be ignored, since the switching energy for today's circuits is

about 10"AT. Bistable devices are so reliable today that the time required to allow

the probability of metastability to decay to achieve the same reliability is very

large-about 510**7, or 0.15 seconds! However, this criterion scales in a remark-

able way. The ratio D/r, which represents the number of transit times the criterion

provides for the metastable exit, scales with the switching energy, which goes

down as a^. This scaling should not be interpreted as meaning that smaller devices

have a higher probability of metastable exit per transit time. Rather, smaller tran-

sistors result in less reliable storage devices, which makes it possible to lower

one's standards. Ultimately small transistors with channel lengths of about 0.25/x

would allow circuits with a switching energy of about lO^AT. Because of the sig-

nificant subthreshold currents at the low threshold voltages implied by this scal-

ing, CMOS circuits with r = 1 would have to be used. At these minimum dimen-

sions, this criterion implies D > 210V, and taking r = 0.02 nanoseconds, D > 400

nanoseconds. So, at this ultimate limit of MOS technology, one cannot disregard

synchronization failure, but one would not expect it to limit designs for synchroni-
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/ation lates up to 1 MHz or so. Since this criterion represents the most conserva-

tive position that can still be rationally defended on physical grounds, it is known
as the Mead Criterion

.

7.6 SELF-TIMED SYSTEMS

The operation of a synchronous system is reminiscent of soldiers marching to the

commands of a drill sergeant. The temporal control over a collective activity is

centralized in a single authority, and the soldiers respond to known commands
that are synchronous with the marching cadence. Lockstep control results in a

particularly simple form of organized behavior that people seem to associate with

the relentless efficiency of machines. However, lockstep control is certainly not

the only way to coordinate the collective activity of many participants, nor is it

particularly efficient unless the tasks of the participants are very well matched.

Self-timed systems are patterned on quite a different image of organized activ-

ity, one in which the temporal control is delegated to the participants. If one were

to try to construct a mental image of self-timed behavior, it would be one in which

an airplane could not depart until after all the passengers scheduled for the flight

had gotten on board. One tries to assure that all system events occur in proper

sequence , but nothing ever has to occur at a particular time

.

Here, in essence, is how this trick is accomplished. Self-timed systems are

interconnections of parts, which are called elements. Time and sequence are re-

lated inside elements, so that events such as signal transitions at the terminals of

an element may occur only in certain orders. Elements can be thought of as per-

forming computational steps whose initiation is caused by signal events at their

inputs, and whose completion is indicated by signal events at their outputs. The

sequencing of the computational steps is determined by the way in which elements

are interconnected. The time required to perform a computation is determined by

the delays imposed by the elements between initiation and completion, and by

interconnection delays.

The term sequence is used here in its most general sense, to indicate an order-

ing that may be either total or partial. The ordering relation between occurrences

of signal events is denoted as .v ^ v, read as x precedes y, for which one might also

say either that .v is he/ore y or that y is after x. These orderings represent sequenc-

ing rules, such as initiation precedes completion, or the arrival of the operands

precedes the operation, and are brought about by circuit behaviors such as input

change precedes output change, or in general, as cause precedes effect. Although

the occurrences of all system events can be expected to be ordered with some

others, highest performance and efficiency are usually achieved in designs in

which ensembles of machines may perform relatively independent parts of a com-

putation concurrently (see Chapter 8). Occurrences that are not ordered with each

other by virtue of their relative independence are denoted as .v ^ y , read as v is

concurrent with y. It is convenient to treat the relation ^ formally as a partial
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ordering, so that it is reflexive: jc =s x; antisymmetric: x ^ y n y ^ a —» x = v; and

transitive: x^yDy^z^-x^z. The relation x =y in the definition above means

that X and y are identical occurrences, not simultaneous. The notion of simul-

taneity is specifically regarded as meaningless and disallowed by the antisymmet-

ric property of ^.

7.6.1 Equipotential Regions

The physical meaning of these sequence domain relations must be interpreted

with care, since an element necessarily has some physical extent. According to

the principle of relativity, relations between occurrences of events at different

points in space may be interpreted inconsistently by observers in different loca-

tions. In a medium such as a chip, on which related signals are carried on wires

whose routing and relative delay may be uncertain, a relation that holds in a region

close to where it is created may fail to hold elsewhere. It is necessary here to

introduce an approximation to avoid complicating the discussion of self-timed sig-

naling more than is justified by the actual situation. This approximation is analo-

gous to applying the classical limit over volumes sufficiently small to approximate a

point in a relativistic space.

Over small areas that are here called equipotential regions, one may treat a

signal as identical at all points on a wire. This approximation is justified so long as

the area is sufficiently small that the delay associated with equalizing the potential

across any wire is small in comparison with switching delays or signal transition

times. This approximation is roughly equivalent to an assertion that related occur-

rences are known to be sufficiently separated in time in comparison with wire

delays that the relation will be observed to hold from any point of observation

within the region.

How large should an equipotential region be? It must be admitted that there

are no hard and fast answers to this question. The choice adhered to here is a

determination of the maximum wire length within an equipotential region for

which wire delays may be disregarded and do not introduce any performance limi-

tations. It is generally not possible to design elements so that the related occur-

rences of signal events are separated by less than a few r, so our choice of the

maximum size for an equipotential region is that it be small enough that the poten-

tial on any wire within this area will equalize in less than r. This condition places

an upper limit on wire length within an equipotential region, generally different for

the various layers, rather than a limit on area. For those wires that cross the

boundary of an equipotential region, the limit applies only to the length within the

region. Also, the limit is not absolute. Longer wires may be used if one is willing to

account for their delay as if they were active elements, by treating different points

on a long wire as the source of different signals.

Wire delay has already been discussed in connection with clock distribution.

The factor that limits the way in which a wire approximates an equipotential now
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and in the future of MOS technology is the diffusion delay. A single chip is today a

good approximation of an equipotential region, as defined here to make all wire

delays less than one transit time, so long as there are no metal wires longer than

about 17 mm, diffused wires longer than about 500^i, or poly wires longer than

about 3()()/x.

As \ and r are scaled down, the diffusion delay for a given wire length mea-
sured in \ units remains constant but in r-relative terms scales up linearly. The
distance in X units over which the potential will equalize in one transit time accord-

ingly scales down as the 1/2 power of the scaling factor. The maximum area of an

equipotential region, which is some measure of the amount of circuitry that can fit

in an equipotential region, scales down roughly linearly. Suppose that k and r were

scaled down by a factor of 10 from today's technology. A signal on a metal wire

will travel only a few hundred microns in one transit time. This maximum wire

length is adequate for communication with negligible delay in an amount of cir-

cuitry that is comparable to only about one tenth of one of today's chips, and over

about one thousandth of the area of the chip in the scaled technology.

In other technologies with smaller transit times and wires that behave more
like transmission lines, such as Josephson junction device technology, the limiting

factor on the area of an equipotential region is transmission line delay. The notion

of an equipotential region can be defined also for systems of chips interconnected

on circuit boards. For typical transition times on package pins of many
nanoseconds, a circuit board up to a meter or so square is a good approximation of

an equipotential region. However, communication delays in pin-driving structures

are so large compared with internal transition times that circuitry in two different

chips may not be in the same equipotential region.

The approximation of the equipotential region was introduced to assure con-

sistent physical meaning for the relations that hold within it. It is necessary that an

element be contained entirely within at least one equipotential region, but as is

illustrated in Fig. 7.12, an element may reside in more than one equipotential

region, or more than one element may be included in a single equipotential region.

The set of equipotential regions of a system does not partition the area in which a

system is constructed, as it would if we required these regions be disjoint. All that

is required is that the set of equipotential regions cover all of the elements of a

I lenient
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Fig. 7.12 Cover of equipotential regions.
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system. Elements A and B, and also B and C, in Fig. 7.12 are related by a reflex-

ive, symmetric, and intransitive compatibility relation.

The equipotential region is a formal expression in the self-timed discipline of

the importance of mapping logical into physical locality and exerts a necessary

and interesting influence on self-timed signaling and on the trade-off between the

size and design difficulty of elements.

7.6.2 Self-timed Signaling Specifications

It is helpful for understanding self-timed signaling to be aware that the rela-

tions maintained at the terminals of an element or system are of two kinds: (1)

relations that constrain the element to certain sequence domain behaviors, and

which are called functional relations or constraints: and (2) relations that constrain

the sequence domain inputs to those that the element is designed to accept, here

called domain relations or constraints. There is an explicit duality here between

the specifications of what the element is to produce at its outputs in response to

inputs, its function, and the specifications of what the element requires at its in-

puts in response to its outputs, its domain. While explicit, this duality is hardly

unique to the self-timed discipline. For example, the delay and preset times of a

clocked storage element are functional and domain specifications, respectively.

The terminology comes from that in mathematics for a function mapping from its

domain. It is inevitable that physical devices used for particular purposes must

restrict their domain by rules of usage.

It is characteristic of all self-timed signaling that elements or systems engaged

in a communication are interconnected on at least one closed signal path. It is the

closed-loop character of the signaling that allows domain constraints to be satis-

fied, for example, that an element or system will not be called upon to initiate an

operation until after it has indicated that it has completed its previous operation.

The functional constraints, because they are also sequence domain relations,

allow an element to impose an arbitrary delay between the occurrence of input

and output signal events. Relations between the occurrence of input and output

signal events of an element are called closed-loop relations, and if in the form input

^ output are functional, and if in the form output ^ input are domain. Open-loop
relations are either between the occurrence of two output signal events of an ele-

ment, and are also functional, or between the occurrence of two input signal events

of an element, and are also domain.

Self-timed signaling within or between equipotential regions differs precisely

in the utility of open-loop relations. Self-timed communication between elements

that reside in the same equipotential region is somewhat easier to accomplish than

communication between elements not in the same equipotential region, because a

sender may produce open-loop orderings at its outputs with assurance that these

orderings are preserved at the inputs of the other elements in this equipotential

region. For example, in one common self-timed signaling convention, the occur-
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rence of a new data value on a set of wires at the sender precedes a transition on

another wire indicating that the data are defined. Data-validity information in this

case costs only a single wire. Communication between elements that are not in the

same equipotential region, such as between elements A and C in Fig. 7.12, is more
expensive. Any open-loop relation produced at the sender is not preserved once

the signals leave its equipotential region. The once-ordered occurrences of signal

events are concurrent at the receiver. Multiple bits cannot be sent in parallel, but

only concurrently, and special encodings must be used to imbed data-validity in-

formation with data. One such encoding is illustrated in an example in Section

7.6.4.

In signaling between equipotential regions, an element sending data receives

an indication that the data reached its destination only by signals that traverse a

closed path back to the sender to initiate another operation. Since this closed path

includes one or more elements, which may introduce arbitrary delay, it is clear

that such signaling conventions accommodate arbitrary delay in wiring as well.

The reader may wish to summarize his or her understanding by noting that the

self-timed discipline tends to extremes in modeling wire delay. Within an equipo-

tential region wires incur negligible delay, so that all relations produced anywhere

in the region hold everywhere, and equipotential self-timed signaling conventions

may be used. Wires between equipotential regions may incur arbitrary delay, no

open-loop relations are preserved, and delay-insensitive self-timed signaling con-

ventions must be used. These two forms of signaling conventions are functionally

similar in their role of communicating data and differ only in details of encoding.

Simple elements exist for translating between these forms.

7.6.3 Organizational Discipline

The physical aspects of the self-timed discipline discussed above are very

closely meshed with an organizational discipline. As was described in the first

section of this chapter, the bifurcation of the discipline is deliberate. The physical

side is concerned with elements and the physical requirements on signaling and

communication. The organizational side is concerned with systems of intercon-

nected elements and the logical requirements on signaling.

The decision to confine time metrics to the interior of elements leads by phys-

ical argument to equipotential regions, and to the requirement that an element be

contained entirely within an equipotential region. As a consequence, the scale of an

element is restricted to be small enough physically that the timing behavior is

simplified by negligible wire delays, and to be small enough logically to assure that

the complexity of the design is manageable. These restrictions make it reasonable

to expect that elements can be designed so that their physical and logical function

can be certified to be correct.

Even given correctly functioning elements, the system designer is responsible

for satisfying the two types of specifications whose duality was discussed above.
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The system must perform its specified function as the collective behavior of its

interconnected elements, but it must do so without violating the rules of usage of

the elements. In the discussion of synchronous systems, the rules of usage were

satisfied through timing and topological constraints. In a self-timed system, timing

constraints are absent at the system level. Correct operation of a self-timed sys-

tem composed of correctly functioning elements can then depend only on satisfy-

ing a topological constraint on the interconnection of elements.

The following definition serves as the basis for the interconnection of self-

timed elements or systems and provides a rigorous framework for certifying cor-

rect sequence domain functioning of a system given only correct sequence domain

functioning of its elements:

Definition. A self-timed system is either (1) a self-timed element, or (2) a legal

interconnection of self-timed systems.

This recursive definition may be applied either as a rule of construction, by which

a system satisfying this definition is built up from elements or systems, or as a rule

of decomposition, by which a system can be analyzed for compliance with the

constructive rules or for faults.

It is curious that the same organizational principles that here seem to follow

from physical necessity-constraints on the size of elements to those that are

managable, and constraints on their interconnection-are the same as others have

arrived at about a decade ago through a different line of reasoning. The framework

established by this definition is similar to that used by Dijkstra et al'^'*'^ for the

structured programming discipline. The discipline described here in different

terms is somewhat more ambitious, in that it seeks to include physical as well as

algorithmic correctness, and is more open-ended, in that the set of legal intercon-

nections is not limited to Dijkstra's pearls. The difficulties experienced in the

combinatorics of scale for large programs suggests that logical complexity alone

will make the design of VLSI systems sufficiently challenging, even without phys-

ical and timing complications. The organizational principles for self-timed systems

are no more restrictive than those used successfully to organize large programs.

7.6.4 An Example

The problem of exposition that Dijkstra refers to in Structured Programming
is evident here as well, that the objects of discussion, that is, very large systems,

are beyond the scope of textbook examples. It is hoped that the following ex-

tended example can be extrapolated by the reader, will fill in some conceptual

holes in a section in which a lot of ground was covered quickly, and will provide

one demonstration that sets of elements, legal interconnections, and signaling

conventions exist and are physically realizable.

This example is of the self-timed counterpart of a binary parallel adder. The
general structure of the adder, illustrated in Fig. 7.13 for the addition of two 3-bit
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binary numbers yielding a 4-bit sum. is the usual unilateral iterative realization.

Each cell is a "full adder,"' a circuit that forms the sum (exclusive-or) .Vj and carry

(majority) Ci,, functions of three inputs, the two bits a^ and h^ from the binary

words to be added and the carry Cj from the previous cell. Although this particular

network is illustrative of a performance characteristic of self-timed systems and is

undoubtedly familiar to most readers of this book, in some of the following discus-

sion a general result will be derived that is not dependent on the details of the cell

functions and interconnection.

^3

a. h.

^ ^

FA

5i

«! /'l

Y Y

FA

"n hi,

Y Y

FA < Fig. 7.13 Binary adder.

Let the cells be self-timed elements, each in its own equipotential region. The

following convention of delay-insensitive signaling will be used. Each signal line

has three conditions: zero (0), and one ( I ), and undefined { - ). Transitions between

and -, or 1 and -, are allowed and transitions between and 1 are disallowed.

This ternary signaling scheme can be implemented physically either by three vol-

tage ranges representing 0, -, 1, the undefined range being in the middle, or by a

double-rail code in which two wires carry the codes 00 for undefined, 10 for zero,

or 01 for one. In the double-rail code, which will be used here to illustrate the

design of the element, the two wires used to represent the variable .v are denoted

as x", read as ".v is zero," and .v', read as "jr is one." Since transitions between the

and 1 conditions are disallowed, the two wires are never in the process of switch-

ing at the same time.

The general signaling scheme for the elements, called with no particular sig-

nificance to the reader the ""weak conditions," is illustrated in Fig. 7.14. There is

no reference to the switching functions produced by a full adder, since this is a

signaling scheme that can be used for any combinational element or system. Any
implementation of the full adder that satisfies these sequencing constraints will

serve. This set of relations includes implicitly that inputs and outputs may become

defined concurrently. The orderings labeled (1), (2), (4), and (5) in the figure are

functional constraints, while the orderings labeled (3) and (6) are domain con-

straints. Notice that the second half of the full cycle, represented by the relations

(4), (5), and (6), serve no purpose other than to return the entire length of every

signal wire (pair) to its initial undefined condition. This example of delay-

insensitive signaling is of a category variously referred to as return-to-zero, Mul-
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A1I--

None--

A11--

C N»'one-- L

Fig. 7.14 Weak conditions.

( 1 ) Some input becomes defined

(2) All inputs become defined

(3) All outputs become defined

(4) Some input becomes undefined

(5) All inputs become undefined

(6) All outputs become undefined

some output becomes defined

all outputs become defined

some input becomes undefined

some output becomes undefined

all outputs become undefined

some input becomes defined

ler, or 4-cycle signaling. The time and switching energy required to return the

signals to their initial condition is circumvented in the category of signaling re-

ferred to as nonreturn-to-zero, transition, or 2-cycle signaling, but at the expense

of additional circuitry and some difficulties with system initialization.

So, this example is concerned with a particular class of elements and systems,

which will be abbreviated as CL for "combinational logic'" that satisfies the weak
conditions. Now, within the framework of the recursive definition of a self-timed

system, it is necessary to say precisely how CLs may be interconnected, that is,

what is a "legal interconnection." As tedious as this may seem at first, the discov-

ery and certification of an interconnection as "legal" is just like the discovery and

proof of a theorem. Fortunately, once stated and proved, such a theorem may be

used over and over again in different designs. The following theorem is a particu-

larly nice one for two reasons. First, it is broad enough to have wide application.

Second, it is a demonstration of closure, or invariance, of a signaling convention

under an interconnection rule. Some theorems are in the form "This system has

property X if it is an element with property X, or if it is interconnection A of

systems with property Y." In a closure theorem, X and Y are the same property.

The "weak conditions'" theorem is stated as follows:

A CL is either a CL element, or is a finite set of U of CL"s interconnected

such that (1) each input of the CL"s in U is either driven from an output of the
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CL's in U or is an input to the interconnection (no dangling inputs); (2) each

output of the CL's in U either drives an input of the CL's in (J or is an output

of the interconnection (no danghng outputs); and (3) there are no closed signal

paths.

This theorem is of course applicable to the adder shown in Fig. 7.13 and means
that this interconnection of elements that satisfy the weak conditions itself satis-

fies the weak conditions. Implicit in the theorem statement are also the domain or

rule-of-use constraints, that if the domain constraints of a CL are satisfied, then

they are satified also for the CL's of which it is composed in the interconnection

specified.

This is not a difficult theorem to prove, but it is fairly lengthy. The critical sec-

tion of the proof centers on relations (2) and (5). To prove that relation (2) is

satisfied for the interconnection, take the set U^ of CL's to which undefined inputs

to the interconnection are connected. At least one output of each V^ is undefined.

Either these outputs are outputs of the interconnection, thus satisfying relation

(2). or else they are inputs to a set U., of CL's. (7, and U-> are disjoint by the acyclic

requirement, and V-z is not empty. Define IJ„ = U„^i U U„ and proceed by induc-

tion. If U„ — U, then the undefined outputs of U„ are outputs of the composition.

Why go to such lengths to prove that the systems one designs have certain

properties? Suppose you had a 32-bit adder composed of self-timed full adder

elements. It is not practically possible to assure oneself by combinatorial methods

that this interconnection satisfies any sequence domain relations. Interconnection

rules based on theorems of legal interconnections are not a matter of going to

lengths, but of taking a shortcut, and serve also to structure the design process in a

hierarchic way. Of course, this approach rests initially on being able to demon-
strate by any means at one's disposal that the elements of which the system is

composed satisfy certain sequence domain constraints. The combinatorics of deal-

ing with systems as compositions of FET's and wires is already fairly difficult at

the level of elements, let alone VLSI chips, both because of the number of parts

and their relatively complex physical behavior. Elements define an enclosure in

which the physical complexities inside are abstracted to the simplest timing con-

cept on which system design can be based: sequence.

Figure 7.15 is a PLA-like design for the full adder element of our example. The

gate labeled "C" is a Muller C-element, a very handy device for the design of

self-timed elements. Its output becomes when all of its inputs are and becomes 1

when all of its inputs are 1 , and otherwise the output stays in whatever condition it

was. The pair of C-elements is required to satisfy the requirement of the weak

conditions that at least one output of the element remains defined until all the

inputs have become undefined. This is a remarkable circuit for the reason that

correct sequence domain behavior at its terminals is absolutely independent of the

speed of its gates, so long as wire delay is negligible. Circuits of this sort are called

speed-independent, a discipline of digital system design developed in the 1950s by

David Muller,'*' and from which much of the self-timed discipline has evolved.
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Fig. 7.15 Full-adder element.

-^^

Another thing to notice about this element is that the carry-out function Ci+i is

generated as soon as the operands a^ and b^ become defined if they are in either the

00 (carry-kill) or 11 (carry-generate) conditions. The time required to perform an

addition is generally limited by the worst-case carry propagation through the en-

tire length of the adder. However, this case occurs only rarely. For operands
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chosen at random, it can be shown that the average maximum number of con-

secutive stages in the 01 or 10 (carry-propagate) condition is bound by log2«,

where // is the word length. So, the adder based on this element will have the sum
completely defined in an average time that varies as log2« after the operands be-

come defined. On average, this is a very fast adder, faster even than can be

achieved in MOS technologies by carry-skip and carry-lookahead schemes. Some
of the interest in "circuits that generate completion signals"'^ is motivated by the

greed for speed.

7.7 SELF-TIMED SIGNALING

The most elementary signal event that can be used to compose self-timed signaling

conventions is a transition. A "'pulse," an occurrence of a level for some fixed

time interval, is not a satisfactory elementary signal event, since regardless of

what width is chosen for the pulse, the possibility exists that some element could

be made that is so slow that it could not detect a pulse of the chosen width. Com-
munication conventions with the same closed-loop character as self-timed signal-

ing, referred to in the colloquial of hardware designers as "handshaking" conven-

tions, often fail to provide a clean interface definition precisely because they mix

time and sequence concepts. One may expect self-timed signaling conventions to

be described exclusively in terms of sequence domain relations between the oc-

currences of signal transitions.

A distinction has already been drawn between equipotential and delay-

insensitive signaling conventions, which is only one axis of variability. The goal of

this section is to describe briefly a distinction based on the number of transitions

associated with each use of an element.

Since there are time and energy costs with driving a transition onto a wire, it

pays to use as few transitions as possible in self-timed signaling conventions. Ig-

noring data wire transitions for the moment, it is clear that there must be at least

two transitions for each operation performed by an element, one to initiate the

operation, and carried on a wire generally labeled Request, and one to indicate

completion of the operation, and carried on a wire generally labeled Acknowledge.

These occurrences must alternate. Suppose that the system were initialized so

that all request and acknowledge wires are in the zero state. An operation in pro-

gress is then indicated by the request/acknowledge pair for an element or system

being in opposite states, and an element or system can indicate completion by

driving its acknowledge wire to the same state as the request wire.

Figure 7.16 illustrates the sequence domain relations for this signaling

scheme, which is variously called transition, 2-cycle, or nonreturn-to-zero (NRZ)
signaling. This diagram includes the necessary open-loop relations between input

data and Request, and between output data and Acknowledge. Relations indicated

by solid arrows are functional constraints, and those indicated by dashed arrows

are domain constraints. Crosshatched areas of input and output data denote the

intervals in which data values may be changing; otherwise, data are stable and

defined.
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2-cycle signaling.
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The 2-cycle signaling scheme illustrated is directly related to a delay-

insensitive functional equivalent form in which the request is imbedded in the

data. The idea here is similar to the double-rail code, in that two wires are required

for each data bit; however, a transition is driven into one wire, or the other, to

indicate a zero or a one. All four states of the two wires are used, and there is no

equivalent ternary form on a single wire. Although the request signal is distributed

across many wires, the signaling convention is still effectively 2-cycle, since to

the environment of the element the set of transitions travels only a single trip to

and from the element. The 2-cycle scheme that satisfies the weak conditions fol-

lows only the first three of the six relations depicted in Fig. 7.14.

The good news about 2-cycle signaling is that it is as fast and as energy-

efficient as possible. There is some bad news, however. Since logic devices tend

to be sensitive to levels or to transitions in a particular direction, the detection of

transitions that may occur in either direction requires some extra logic and state

information in each element. Most transition logic designs use a lot of exclusive-or

tests. For example, in the delay-insensitive form, the parity of each double-rail

pair is 1 for the first piece of data, for the second, 1 for the third, and so on. It is

not possible to know what wire changed without some storage of the pair's previ-

ous condition, but it is possible to tell when the transitions have arrived by detect-

ing a reversal in the parity of all pairs.

The only real alternative to 2-cycle signaling is a form first discovered by

Muller and used in many of his examples of speed-independent circuits. It is some-

times referred to as Muller signaling, or by the terms 4-cycle or return-to-zero

(RZ) signaling. This form has already been well illustrated in its delay-insensitive

form in the example in the previous section. The return-to-zero character of

4-cycIe signaling tends to result in very simple and natural circuit implementations
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but requires twice as many transitions as 2-cycle signaling, and requires signals to

make two trips to and from an element tor each operation. Whenever wire delay is

a substantial fraction of the operation time, this extra trip is a serious performance

penalty. However, when wiring delay is relatively small, it can be argued that

speed-independent elements require the return-to-zero part of the 4-cycle to rid

themselves of the information stored in gate and wiring delays in preparation for

the next cycle. There are many organizational approaches for concealing this

return-to-zero interval by making it concurrent with other operations. For the

sake of completeness, one form of equipotential 4-cycle signaling is illustrated in

Fig. 7.17.

•npu. ..at. im mr
\ ^ \

\
/ ^

"V/ \ /
'"/

\ /

R"U'"' I \ I

(
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/
Fig. 7.17 (Equipotential)

4-cycle signaling.
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Output data
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Given the advantages and disadvantages of each form of signaling, one sus-

pects that 2-cycle signaling will be used exclusively for long distance communica-

tion, particularly from chip to chip. A general one-to-many bus transmission

scheme called the TRIMOSBUS'" is a good example. The circuit economy of

4-cycle signaling favors its use in local communication, particularly with speed-

independent elements.

7.8 SELF-TIMED ELEMENTS

The study of the design of self-timed elements is an extensive subject and is de-

picted here only by a series of illustrations of elements in^/MOS technology.

7.8.1 Muller C-element

The Muller C-element, introduced in the circuit shown in Fig. 7.15, is also some-

times called a "rendezvous," "join," or "last-of circuit. It is a bistable device

that provides an action similar to hysteresis, in that its output becomes 1 only after

all of its inputs are 1, and becomes zero only after all of its inputs are zero. A
2-input C-element can be made by connecting the output of a 3-input majority

circuit back to an input, as shown in Fig. 7.18, both diagrammatically and as an

«MOS circuit. A many-input C-element can be made either by an extension of the

series and parallel structures in the circuit shown, or by the connection shown in
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X \ \ I

> c

Fig. 7.18 MullerC-element. Fig. 7.19 Associativity of C-element function.

Fig. 7.19. In the domain in which C-element inputs transit only to the condition

complementary to the output, the sequential function of the C-element is commuta-

tive and associative like the combinational functions AND and OR.

When used by itself as a self-timed element, the C-element serves as a "ren-

dezvous" or "join" for producing a request signal after all of a number of ac-

knowledge signals are received, and does this job for either 2-cycle or 4-cycle

signaling, and for either positive or negative logic conventions. When used as a

component of a self-timed element, such as in the circuit of Fig. 7.15, the

C-element serves as a latch that responds to the "last of a set of signals changing

in the same direction.

7.8.2 Combinational Elements

The style of combinational element shown in Fig. 7.15 has the advantages of

speed-independence and operates directly on inputs in the double-rail code. Vari-

ants on this circuit with precharged pull-ups are an excellent fit to a?MOS technol-

ogy.

Where economy in area is more important than the advantages of speed-

independence, one can use the very simple scheme illustrated in Fig. 7.20. The
addition of a delay to any ordinary combinational net converts it to a self-timed

combinational element operating on single-rail data. If 2-cycle request/acknowl-
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edge signaling is used, the delay should be symmetrical, and for 4-cycle signaling,

asymmetrical. Depending on the data-validity coding scheme employed, the out-

puts may need to be loaded in latches by a signal produced as Request and not

Acknowledge. The reliability and certification of this device as a self-timed ele-

ment depends upon how accurately and conservatively the delay models the tim-

ing behavior of the combinational net.

Inputs

Request

7^-^
OrdiiiaiA

combination. il

logic

max delay = \t

M D-

Delay > Nt

~1

-> Outputs

-> Acknowledge

Fig. 7.20 Delay-model combinational element.

Self-timed combinational logic

i ! I

The most straightforward method for implementing speed-independent nets

with single-rail data is to include the Request signal in every AND in the AND-
plane and to use the conversion element described below at the output. Similarly,

the delay-model style of implementation with double-rail data can use conversion

elements at input and output.

7.8.3 Conversion elements

Figure 7.21 shows elements for converting between 4-cycle forms of single-rail

plus request equipotential signaling and double-rail delay-insensitive signaling.

Part of the element on the right can be recognized as an extended C-element,

which for rendezvousing very large numbers of bits will require intermediate buf-

fering.

The circuit of Fig. 7.22 provides a method for another form of conversion, to

transfer data from an on-chip equipotential region to a larger r circuit board

equipotential region. The circuit functions by comparing the desired and actual

states of the signals at the pads and produces an acknowledge signal only after

they match. The delay in this circuit is required to allow time after data arrival for

the comparison circuit to indicate inequality. The interval imposed between the

Request and Acknowledge varies both according to the capabilities of the

drivers and the package-pin loading. This technique can be used, for example,

to drive data onto circuit board buses that are terminated by negative resistance

termination to the switching threshold, such as the circuit of Fig. 7.3(a). After the

transfer is acknowledged, the drivers can be disabled and a transition driven on
another pin to indicate availability of the data.
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7.8.4 Synchronous elements

Self-timed elements can be designed as synchronous systems with an internal

clock. If this clock is of the variety shown in Fig. 7.9(c), in which the clock can be

stopped synchronously and restarted asynchronously, the design can also be made
free of synchronization failure. This scheme has been used in proprietary designs

by the author since 1968 and is the subject of an excellent 1976 paper by

Pechoucek.'^ It is not unnatural to imbed synchronous systems as elements in self-

timed systems. If reasonable constraints on the size of an equipotential region,

hence of an element, are adhered to, the equipotential environment assures that

performance and correct operation will not be compromised by wire delay in sig-

nals or in clock distribution.

An example of this style of design applied to a pipeline processing element

is shown in Fig. 7.23. This element includes multiple request/acknowledge

pairs, or links, one or more associated with its input data and one or more with its

output data. One can think of the finite-state control as first obtaining an input

word, then performing some sequence of operations on it, and finally placing the

result in its output register. The way in which this synchronous system interacts

with its asynchronous links is the main point of this example and involves a curi-

ous flow of control through the clock. In the clock step, say, in which the input

register is to be loaded, the input Req that indicates the presence of input data is

not tested directly. If it is 0, or if the Ack signal is still 1 , the system stops in its (^,

epoch. Notice that the Run signal becomes in known time relation or in syn-

chrony with the clock, so there is no problem of synchronization failure in the

clock circuit. When the conditions Req and not Ack are achieved on the input link,

the clock restarts asynchronously, loading the input data on the (^ cycle, then

acknowledges receipt of the data at the beginning of the next (/?, cycle. The remain-

der of the 4-cycle is accomplished asynchronously by the circuit shown. The out-

put circuitry operates in an analogous fashion. Dynamic input registers can gener-

ally be used, since the synchronous system can complete its operation on the input

data in a known time interval. However, as is shown in Fig. 7.23, static output

registers are required since there is no bound on the time the element may spend in

either its input or output loading steps.

7.8.5 Queue (FIFO) Elements

In pipeline processes in which operation times are variable, increased throughput

can be achieved by interconnecting the processing elements through queues. A
queue could be designed as a synchronous element on the same general plan as

illustrated in Fig. 7.23. However, much faster and more area-efficient queues such

as shown in Fig. 7.24 can be made with simple asynchronous controls. The inner

cell is intended to be replicated as many times as the number of words the queue is

to be able to store, and the same control will operate a queue of any word length.

This design is by no means speed-independent, but it is illustrative of the opposite

extreme of asynchronous design. This queue uses 3/2 rules, which means that one
may expect misoperation if particular sets of 3 gates have a smaller cumulative



260 System Timing

Output

data

Fig. 7.24 Queue (FIFO) element.

propagation delay time than other sets of 2 gates. Circuits of this sort must be

certified by careful analysis and simulation based on parameters calculated from

circuit layouts, much as is the case with dynamic storage cells, ratioless shift

registers, and other designs in which relative sensitivity of operation to layout and

circuit values is accepted in order to achieve density and speed.

7.8.6 Interlock element

The interlock element, shown in Fig. 7.25. operates on two control links, repre-

sented by Reql/Ackl and Req2/Ack2, which follow the 4-cycle signaling conven-

tion. While the requests may occur concurrently, the acknowledges are restricted

to be mutually exclusive: hence, the alternative name of this device is a mutual

exclusion circuit. Interlocks are used either alone or as components of more

elaborate elements called arbiters to allow multiple processes to access a single

shared resource such as a large random-access store.
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Fig. 7.25 Interlock element (4-cycle).

Circuit operation is most easily visualized starting with the neither-requesting

input condition, both inputs high, Vi and Vg both near volts, both outputs high,

and then tracing circuit operation from one input changing to low. Since the re-

quests may occur concurrently, the cross-coupled NOR structure can "hang" for

an indeterminate period in a metastable condition. However, both outputs will

remain high until one NOR output differs from the other by greater than V,^.
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8.1 INTRODUCTION

How can the properties of VLSI be exploited to build computational structures?

Our discussion to this point has concentrated primarily on principles for structur-

ing circuits and wires on the chip rather than on the application of VLSI to solve

interesting computational problems. Although the OM example described in

Chapters 5 and 6 shows an elegant use of the structuring principles in the design of

a conventional processor, we are left with an intriguing question: Does VLSI offer

more than inexpensive implementations of conventional computers?

This chapter answers the question with a resounding YES! Because both pro-

cessing elements and memory elements can be easily implemented in VLSI, we
are encouraged to find structures that use a great deal of concurrency—a large

number of calculations occurring at the same time. Although we can clearly design

VLSI structures that have many sites at which processing is performed, how are

these structures to be applied? Some applications may require different sorts of

concurrent processing than others. Are there any principles or theories that will

guide us in the design of highly concurrent systems? (For an introduction to the

promises and problems of VLSI and concurrency, see Sutherland and Mead.')

Unfortunately, we lack experience in designing systems of this sort. As a conse-

quence, this chapter can offer no complete designs that have been applied in real

system applications. Instead, we offer several glimpses of the possibilities avail-

able with VLSI, and of its limitations.

The chapter is organized into four quite separate sections: although they are

designed to be read sequentially, they may also be read concurrently! Section

2 reviews the problems that conventional computer designs present when im-

plemented in VLSI and summarizes efforts to achieve concurrency in general-

purpose computers. Section 3 takes up a particular sort of concurrent organiza-

tion, the array of identical processors, and shows its application to matrix arithme-

tic. Section 4 examines hierarchically organized machines—in this case, machines

structured as a binary tree—and demonstrates how they can be programmed to

263
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perform several tasks. Finally, Section 5 presents a nascent theory of planar com-

putational structures. It links the topological and electrical properties of VLSI
elements to the structure of computations.

8.2 COMMUNICATION AND CONCURRENCY IN CONVENTIONAL COMPUTERS

The architectures of conventional computers suffer from two difficulties that we

try to avoid when designing VLSI computational structures. (1) A processor is

separated from its memory by long communication paths such as buses. These

buses are long enough to slow substantially the transmission of information be-

tween a processor and memory. (2) The '"von Neumann machine" provides only a

single processor that sequentially fetches and executes instructions: it offers few

opportunities for concurrent processing activity. In this section, we survey some
of the attempts to reduce communication costs and to use several processors con-

currently. Although designs using a great deal of concurrency have been cumber-

some to implement in the past, VLSI makes these designs considerably more at-

tractive because of the ease w ith which memory and processing elements can be

placed in close proximity.

Human organizations, like computer organizations, suffer if communication

costs are high or if concurrent processing cannot be exploited. In fact, a human
brings to an organization what VLSI brings to a circuit: both combine processing

and memory effortlessly! Analogies with human structures may help to suggest

the kinds of beha\ ior we might achieve in computational structures.

Humans struggle to reduce communication costs, because the cost is often

measured in large quantities of time. Consider a student assigned to write a re-

search paper that requires the use of a large library. Each time the student needs to

consult a book, he or she could make a trip to the library, climb into the stacks to

retrieve the book, read a few relevant paragraphs, and replace the book. Then the

student would head home to write the sentence that depends on the information

just acquired. Both libraries and people recognize the inefficiency of this approach

and allow students to borrow books. The student will take several dozen books

home and store them on a handy short shelf. Now the communication cost re-

quired to find information is reduced. pro\ ided the item lies within the group of

books selected. A student who finds it difficult to select a small number of suffi-

cient books may move to a carrel in the library to work, again in order to reduce

communication costs with the large library "memory."" The human strives to keep

the information supply close to the processing task.

Concurrency is widely exhibited in human organizations. Henry Ford intro-

duced the production line as a way to exploit concurrency in a well-understood

manufacturing process. This is a particularly simple structure, in which informa-

tion and goods flow rigidly along the production line. A more prevalent, general-

purpose approach to concurrenc\ in organizations is the hierarchy: the president

of a company supervises several subordinates, each of whom in turn supervises a
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like number of sub-subordinates, and so forth until we reach the lowest level

workers.

Two goals of the hierarchy are to keep everyone about equally busy and to

allow adequate information flow in the organization. A supervisor must generate

enough commands to keep several subordinates busy; otherwise it would not be

possible to build large organizations at all. In addition, each subordinate requires a

certain amount of attention from the supervisor. These requirements limit the

number of subordinates who can be assigned to a single supervisor—ten under-

lings can run the most diligent supervisor ragged. Supervisors gather information

to make decisions by querying their subordinates. In a badly organized hierarchy,

supervisors may confer frantically with their superiors to find answers needed for

crucial decisions. Meanwhile workers stand idle, waiting for directions from

above. While it is not possible in general to have all needed information available

from one's own subordinates, concurrent systems require this locality property to

reduce interference from too much communication.

The design of computers and of algorithms has yet to show the ingenuity re-

flected in human organizations. This failure is not for want of cleverness in de-

signers, but rather because the technologies used to implement computers are

much less flexible than the human beings used to implement corporations. VLSI
offers more flexibility than earlier technologies because memory and processing

structures can be implemented with the same technology, and in close proximity.

8.2.1 Communication Costs in Computers

The archetypal computer consists of a single "processor" (the CPU or "central

processing unit"), connected to a large, homogeneous memory (Fig. 8.1). The
processor fetches an instruction from memory, decodes it, executes it, and repeats

the cycle. Many instructions will cause additional references to memory in order

to fetch operands or to store results. The performance of such a computer depends
critically on the speed with which memory can be accessed.

A very simple argument can be developed to determine the speed of the mem-
ory. If a memory of M bits is implemented on a single chip in a two-dimensional

array, wires approximately M^'^ long are required to transmit data between a

memory cell and the processor. (We are concerned with relative units of length

and time because we intend only to compare different designs, not to determine

absolute execution speeds.) The time required for data transmission is propor-

tional to this length: the longer the wire, the greater the distance the signal must
propagate and the greater the wire's capacitance, slowing propagation. In addition

to slowing the memory, long wires also consume a great deal of chip space and
require substantial power to drive. In present implementations of large computers,

performance is further decreased by the several levels of packaging required to

provide a memory of significant size: chip, printed-circuit board, backplane. The
wiring on chips and printed-circuit boards grows as M*'^, but backplane wiring

grows linearly with memory size.

M

Figure 8.1
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The organization shown in Fig. 8.1 is also rather wasteful of resources since

most of the memory and memory wiring is idle most of the time. For a typical large

memory, M might be 32: 10'\ but only a 16- or 32-bit word will be delivered to the

processor with each memory reference. If the memory is organized as an array of
10*^ bits for each bit in the word, only 2 of the 2000 wires needed to address the

array are used in a given reference (1000 select wires running horizontally, and
1000 data wires running vertically). Vast areas of memory thus lie idle because the

amount of information extracted on a single reference is small compared to the

size of the entire memory. The costs of communication are thus exorbitant in

today's computers. Most of the expense, time, and energy required to compute are

consumed by the communication of data over large distances.

Figure 8.2

8.2.1 .1 Memory Locality

Computer designers have recognized the difficulty of communicating with a very

large memory and have taken steps to utilize the memory more effectively. The
result is a memory hierarchy, outlined in Fig. 8.2. The processor communicates

with a series of memories, whose size increases and speed decreases as they be-

come farther from the processor. The closest memory (Mr) provides high-speed

"registers" or "accumulators" that are used very frequently, usually to contain

intermediate results of arithmetic calculations. Next comes "cache" memory
(M(.), designed to hold data and instructions that are referenced frequently. The

"primary" memory (Mp) is similar to the large memory of several million bits (Fig.

8.1). Finally, a "secondary" memory (Ms) of some sort is provided, usually im-

plemented with disks.

The average time required to reference a memory element will depend on

which piece of the memory hierarchy holds the desired element. The intent is that

fast, small memories be referenced more frequently than the slow, large ones.

This desire is reflected in the design of the instruction set of the computer: ref-

erencing "registers" is usually encouraged by the structure of the instruction set;

referencing primary memory (or cache) is supported by the instruction set, but

perhaps in less flexible ways than for register access; finally, accessing a disk is

not directly supported by instruction sets at all, but requires complicated "I/O

control."

It is instructive to formulate a crude model to estimate the performance of the

memory hierarchy. We need to assign representative values to the frequency with

which each memory is accessed and to the size of each memory:

Mr = 16

M, =- 10'"

/r ~ .6 Frequency of access to registers (Mp)

f\.
= .38 Frequency of access to cache (A/,.)

f^~ .02 Frequency of access to primary memory (Mp)

/s == .000005 Frequency of access to secondary memory (Ms)
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Using our model of memory access time, the time required to access memory on

the average isf.VW, + f^VW^. + fpXH^ + IOO/^VM^, measured in arbitrary

units. (The factor of 100 arises because disk access times are substantially worse

than our memory wiring model indicates.) It is instructive to note the relative

contributions of the separate memories: 2.4, 12,6, 50, for a total of — 70. The cost of

access to the slowest memory, the disk, is the most important contribution to the

average.

The memory hierarchy is an improvement over the homogeneous memory of

Fig. 8.1. The time to reference a single memory of size 10^ is 320 units. The time to

reference a three-level hierarchy of about the same size (Mr, Mc Mp, with fre-

quencies shown above) is a mere 20 units.

The effectiveness of the memory hierarchy depends on locality of the memory
references. Cache algorithms copy large chunks (8-32 words) of primary memory
into the cache, hoping that additional memory references will occur in the

neighborhood of the first reference. A similar hope is attached to transfers from

secondary memory. If an application arises in which most of the memory references

do not go to the fast register memory, the memory hierarchy will perform poorly.

Locality can also be viewed as a function of size. If a program and its data can

reside in primary memory for the duration of execution and do not require secon-

dary memory, the average memory access time will drop from 70 to 20. If the

program is small enough to fit in the small cache memory, access time will drop

further to 14.

8.2.1.2 Concurrency in Computers

Not content with the increases in speed due to a memory hierarchy, computer

designers have also sought to increase the concurrency in computer designs. A
number of different approaches have been tried^; we shall illustrate p/pt'/mt' struc-

tures and multiprocessor structures.

Pipelined processors. Pipelined processors are patterned after the production

line found in manufacturing: a portion of the processing is performed by each of

several processors and then handed to the next processor in the line. Starting from

Fig. 8.1, the designer reasons that two processors could function concurrently,

each assigned to half the original memory (Fig. 8.3): a communication path is

provided so that the first processor can transmit results to the second.

The two-processor pipeline more than doubles the processing power avail-

able. If we neglect the cost of interprocessor communication, the time required to

execute an instruction is (Vi) (M/2)*'^ or about one third the time required by the

uniprocessor (Fig. 8.1). The improvement comes from two effects: doubling the

number of processors doubles the speed, but reducing the memory size also in-

creases speed.

A special case of pipelining is illustrated by instruction-fetch overlap in com-
puters. One processor is responsible for fetching an instruction from memory: it

M/2 Mil

Figure 8.3
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then passes on to the second processor information required to execute the in-

struction; the second processor actually performs the execution. In Chapter 6, we
saw this technique applied in OM: while one microinstruction is being executed,

the controller is fetching the next microinstruction. Execution overlap allows the

execution itself to be pipelined. (See Ramamoorthy and Li^ for more pipelining

structures.)

Pipelined structures are perhaps most effective in special-purpose applica-

tions that can utilize a large number of processors. Signal processing is a particu-

larly good example: a signal is sampled digitally to generate a stream of signal

data. This data is pipelined through processors to perform corrections, correla-

tions, frequency analysis, etc. (Section 2 of this chapter illustrates the application

of pipelines to matrix arithmetic of various sorts.)

Unfortunately, it is not always possible to cast problems in a framework

suited to execution on pipelined computers. If the workload is not divided evenly

among the processors, some will stand idle, reducing the effective speed increase.

But it is the rigid communication discipline that most severely restricts the appli-

cation of pipelines.

Multiprocessors. Another important class of concurrent computers are multi-

processors . Unlike the pipeline, these structures provide switching structures that

allow each processor to communicate with each other processor. The hope is that

those algorithms not suited to pipelines because of their communication require-

ments can be executed on multiprocessors.

Figure 8.4 shows a dual-processor configuration, again adapted from Fig. 8.1.

Each processor communicates primarily with a memory half the size of the origi-

nal. In addition , a common "bus" is provided to allow each processor to reference

the others memory.

M!2 M/2

"v
-^ ^

F F

Figure 8.4

Two problems with the dual-processor arrangement are immediately appar-

ent. (1) If each processor references memories at random, the two will interfere

often and vitiate some of the speed gain. (2) Can we assure that the sequential

program suited to the uniprocessor architecture of Fig. 8.1 can be adapted to the

dual-processor configuration? Putting aside for the moment the problems of pro-

gramming a multiprocessor, we shall examine its performance.
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Let us construct a crude model of the time required to execute an instruc-

tion on the dual processor. Assume that each processor references its own mem-
ory with probability { 1 -/), and the other's with probability/. Further, assume that

the useful duty cycle of each processor is d. If both processors can be produc-

tively employed at all times, d will be 1. However, if the two processors must

occasionally wait for each other, i.e., must "synchronize," ^may fall below 1. We
can identify three cases:

1. fa references Mg and P^ references Mb; probability is (1-/)-.

2. Pa and f*b both reference Ma (or equivalently Mb);

probabilities sum to 2/(1-/).

3. Pa references Mb and Pb references Ma; probability \sp.

We also need to model the time required to complete each of the three cases. A
processor references its own memory, of size M/2, in time (M/2)' ^ When a refer-

ence is made to a neighbor's memory, we assume the time for communication on

the bus and referencing the memory sum to (M)"^, as if it were addressing the

entire memory as one array. The times required for the three cases then become

1. {Mi2y'\

2. {Mliy^ + M"\

From these estimates we calculate the expected instruction execution time, re-

membering that 2(/ processors are available:

time = M"H\/d){2"V4+f-p/2).

This expression is plotted in Fig. 8.5, assuming d = \.

Access

time

Figure 8.5
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The simple model of a dual-processor configuration is suggestive of behavior

we can expect from multiprocessor systems that require global communication.

We observe that if^ = 0, execution speed is more than twice that of the uniproces-

sor illustrated in Fig. 8.1. Just as in the pipeline, doubling the number of pro-

cessors contributes a factor of two, but additional speed is achieved because each

processor addresses a smaller memory.

The model also illustrates the importance of locality in the use each processor

makes of its memory. If /is allowed to grow too large, the factor of two contrib-

uted by two processors is erased by interference between the processors when
accessing the common memory.

Perhaps the most important parameter is d, which is determined by our ability

to adapt algorithms to multiprocessor configurations. Some applications seem to

decompose nicely for execution on concurrent hardware, and some offer difficul-

ties. In human organizations we have become resigned to always attacking large

problems in a concurrent way. We will, no doubt, have to do the same with com-

puter programs.

8.2.2 Summary

The schemes we have illustrated that reduce communication costs and try to

exploit concurrency can be combined in various ways in computer structures. The

table below summarizes the speedup effect that these techniques offer, as derived

from our crude models (a? denotes the number of processors used):

Technique Typical speedup factor

Memory hierarchy 10

Pipehning

instruction overlap 2

special-purpose n

Multiprocessors < n

The processor-memory structures and algorithms presented in the remainder of

this chapter all attempt to use as many processors as can be kept simulta-

neously productive and to locate them as close as possible to the data they require

.

These are the considerations exhibited by our simple models of memory hierar-

chies, pipelines and multiprocessors. The examples presented here by no means

exhaust the topic of concurrent computation; the interested reader will find litera-

tures on computer architecture, ^-^ parallel processors and processing, ^•^•^•^ per-

formance evaluation, 2 and algorithm design. ^•^•'•''"''^



8.3 Algorithms for VLSI Processor Arrays 271

8.3 ALGORITHMS FOR VLSI PROCESSOR ARRAYS

8.3.1 Introduction

' 'And the smooth stream in smoother numbersflows."
Alexander Pope

The developments in microelectronics have revolutionized computer design. Inte-

grated circuit technology has increased the number and complexity of components

that can fit on a chip or a printed-circuit board. Component density has been

doubling every one-to-two years, and already a multiplier can fit on a very large

scale integrated (VLSI) circuit chip. As a result, the new technology makes it

feasible to build low-cost, special-purpose, peripheral devices to rapidly solve

sophisticated problems. Reflecting the changing technology, this section proposes

new multiprocessor structures and parallel algorithms for processing some basic

matrix computations.

We are interested in high-performance parallel algorithms that can be im-

plemented directly on low-cost hardware devices. By performance, we are not

referring to the traditional operation counts that characterize classical analyses of

algorithms, but rather, the throughput obtainable when a special-purpose

peripheral device is attached to a general-purpose host computer. This implies that

time spent in I/O, control, and data movement as well as arithmetics must all be

considered. VLSI offers excellent opportunities for inexpensive implementation

of high-performance devices. Thus, in this section the cost of a device will be

determined by the expense of a VLSI implementation. "Fit the job to the bargain

components" (Blakeslee, p. 4).'^

VLSI technology has made one thing clear. Simple and regular interconnec-

tions lead to cheap implementations and high densities, and high density implies

both high performance and low overhead for support components. (Sutherland

and Mead' contains a discussion of the importance of having simple and regular

geometries for data paths.) For these reasons, we are interested in designing paral-

lel algorithms that have simple and regular data flows. We are also interested in

using pipelining as a general method for implementing these algorithms in

hardware. By pipelining, processing may proceed concurrently with input and

output, and consequently overall execution time is minimized. Pipelining plus

multiprocessing at each stage of a pipeline should lead to the best-possible per-

formance. In the following, we demonstrate some simple and regular VLSI pro-

cessor arrays that are capable of pipelining matrix computations with optimal

speed-up.

•''Contributed by H. T. Kung and Charles E. Leiserson, Department of Computer Science,
Camegie-Melion University. Tine first version of Section 8.3, including results reported in Sections
8.3.3 thru 8.3.6 of the present version, was written in April 1978 for submission as a paper to the

Symposium on Sparse Matrix Computations and Their Applications, which was held in Knoxville,

Tennessee, November 2-3, 1978. The paper was presented at the Symposium.
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In Section 8.3.2, we describe the basic hardware requirements and intercon-

nection schemes for the proposed VLSI processor arrays and discuss the feasibil-

ity of building these networks. Section 8.3.3 deals with the matrix-vector multi-

plication problem. Multiplication of two matrices is considered in Section 8.3.4. In

Section 8.3.5. we show that essentially the same interconnection scheme and al-

gorithm as those used for matrix multiplication in Section 8.3.4 can be applied to

find the LU-decomposition of a matrix. Section 8.3.6 is concerned with solving

triangular linear systems. We show that this problem can be solved by almost the

same network and algorithm for matrix-vector multiplication described in Section

8.3.3. Section 8.3.7 discusses applications and extensions of the results presented

in the previous sections. The applications include the computations of finite im-

pulse response filters, convolutions, and discrete Fourier transforms. Some con-

cluding remarks are given in the last section.

The size of each of our processor array networks is dependent only on the

band width of the band matrix to be processed and is independent of the length of

the band. Thus, a fixed-size processor array can pipeline band matrices with arbi-

trarily long bands. The pipelining aspect of our algorithms is. of course, most

effective for band matrices with long bands. For this reason most of the results in

this paper will be presented in terms of their applications to band matrices. It is

important to note, however, that all the results apply equally well to dense ma-

trices since a dense matrix can be viewed as a band matrix with the maximum
possible band width.

8.3.2 The Basic Components and Array Structures

8.3.2.1 The Inner Product Step Processor

The single operation common to all the algorithms considered in this section is the

so-called inner product step. C <^ C + A x B. We postulate a processor that has

three registers /?4. Ra. and R( . Each register has two connections, one for input

and one for output. Figure 8.6 shows two types of geometries for this processor.

Type (a) geometry will be used for matrix-vector multiplication and solution of

triangular linear systems (Sections 8.3.3 and 8.3.6). whereas type (b) geometry

will be used for matrix multiplication and LU-decomposition (Sections 8.3.4 and

8.3.5). The processor is capable of performing the inner product step and is called

the inner product step processor. We shall define a basic time unit in terms of the

operation of this processor. In each unit time interval, the processor shifts the data

on its input lines denoted by A. B. and C into R^. Rs. and /?< , respectively: com-

putes Re «— R( + f^A ^ f^B- 'ind makes the input values for R^ and Rb together with

the new value of R( available as outputs on the output lines denoted by A. B. and

C, respectively. All outputs are latched and the logic is clocked so that when one

processor is connected to another, the changing output of one during a unit time

interval will not interfere w ith the input to another during this time interval. This is

not the only processing element we shall make use of, but it will be the work-
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Fig. 8.6 Geometries for the

inner product step processor.

horse. A special processor for performing division will be specified later when it is

used.
*

8.3.2.2 Processor Arrays

A device is typically composed of many interconnected inner product step pro-

cessors. The basic network organization we shall adopt for processors is mesh-

connected and all connections from a processor are to neighboring processors.

(See Fig. 8.7).

The most widely known system based on this organization is the ILLIAC
IV. '^ If diagonal connections are added in one direction only, we shall call the

resulting scheme hexagonally mesh-connected, or hex-connected for short. We
shall demonstrate that linearly connected and hex-connected processors are

natural for matrix problems.

Processors lying on the boundary of the processor array may have external

connections to the host memory. Thus, an input/output data path of a boundary

processor may sometimes be designated as an external input/output connection

for the device. A boundary processor may receive input from the host memory
through such an external connection, or it may receive a fixed value such as zero.

On the other hand, a boundary processor may send data to the host memory
through an external output connection. An output of a boundary processor may
sometimes be ignored; this will be designated by omitting the corresponding out-

put line.

DQOO Fig. 8.7 Mesh-

connected processor

arrays.

(a) Linearly connected (b) Orthogonally connected (c) Hexagonally connected
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Throughout Section 8.3 we assume that the processors in an array are syn-

chronous as described in Section 8.3.2.1. However, it is possible to view the pro-

cessors as being asynchronous, each computing its output values when all its in-

puts are available as in a data flow model. For the purposes of this section we
believe the synchronous approach to be more direct and intuitive.

The hardware demands of the VLSI processor arrays described here are

readily seen to be modest. The processing elements are uniform, interprocessor

connections are simple and regular, and external connections are minimized. It is

our belief that construction of these processor arrays will prove to be cost-

effective.

8.3.3 Matrix-Vector Multiplication

We consider the problem of multiplying a matrix A = (a,j) with a vector x =

(Xi,. . .,j:„)^. The elements in the product y

following recurrences:

(^i^- • .,>'„)^ can be computed by the

yP> - 0,

= yi
(n+1)

Suppose A is an n X n band matrix with band width w = p+q-l. (See Fig. 8.8 for

the case when/? = 2 and q = 3.) Then the above recurrences can be evaluated by

pipelining thex, andy, through h' linearly connected processors. We illustrate the

algorithm for the band matrix-vector multiplication problem in Fig. 8.8. For this

case the linearly connected network has four processors. See Fig. 8.9.

The general scheme of our pipelining algorithm can be viewed as follows: The

yi, which are initially zero, move to the left while the x, are moving to the right and

the Oij are moving down. All the moves are synchronized. It turns out that each yt

'! i
^21 ^22 ^^23

"31 "32 "33 "34

^42 "43 "44 "45

^1 .''1

An V,

•^3 \-,

V4 1-4

• •

Fig. 8.8 Multiplication of

a vector by a band matrix

with p = 2 and q = 3.
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Fig. 8.9 The linearly connected

network for the matrix-vector

multiplication problem shown
in Fig. 8.8.
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is able to accumulate all its terms, namely, a,,,_2Jri-2, a,,i-iA:,-i, a,,,jr,, and fl,,,+ijr,+ i,

before it leaves the network. Figure 8.10 illustrates the first seven steps of the

algorithm.

Note that when yi and y2 are output they have the correct values. Observe

also that at any given time alternating processors are idle. Indeed, by coalescing

pairs of adjacent processors, it is possible to use w/2 processors in the network for

a general band matrix with band width w.

We now specify the algorithm more precisely. Assume that the processors are

numbered by integers 1, 2, . . . ,w from the left-end processor to the right-end

processor. Each processor has three registers, Ra, Rx and Ry, which will hold

entries in A, x and y, respectively. Initially, all registers contain zeros. Each step

of the algorithm consists of the following operations (but for odd-numbered time

steps, only odd-numbered processors are activated, and for even-numbered time

steps, only even-numbered processors are activated):

1. Shift.

Ra gets a new element in the band of matrix A.

Rj. gets the contents of register Rj. from the left neighboring node.

(The Rj. in processor 1 gets a new component of x.)

Ry gQts the contents of register 7?^ from the right neighboring node.

(Processor 1 outputs its ^j, contents and the Ry in processor w gets zero.)

2. Multiply and Add.

R, Ry + R^ X /?,
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Fig. 8.10 The first seven steps of the matrix-vector multiplication algorithm.

Using the type (a) inner product step processor postulated in Section 8.3.2.1, we
note that the three shift operations in step 1 can be done simultaneously, and that

each step of the algorithm takes a unit of time. Suppose the bandwidth of A is w. It

is readily seen that after w units of time the components of the product y = Ax
start shifting out from the left-end processor at the rate of one output every two

units of time. Therefore, using our network all the n components of y can be

computed in 2n + w time units, as compared to the 0{wn) time needed for the

sequential algorithm on a uniprocessor.

8.3.4 Matrix Multiplication on a Hexagonal Array

This subsection considers the problem of multiplying two n x n matrices. It is

easy to see that the matrix product C = (c,j) of A = (fl,_,) and B = {bij) can be
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(a) Fjg. 8.13 Four steps during

the matrix multiplication

shown in Fig. 8.12.

(b)
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computed by the following recurrences:

,.(A -t n — ,.(k) J^ n h
*-

'J ^
i] ^ik'^kj^

Cii = c\U '^ ij

Let A and 5 be a? x /j band matrices of band width m-, and m'2, respectively. We
show how the recurrences above can be evaluated by pipelining the f/,j, ^,_,, and c,j

through an array of w{w<i hex-connected processors. The algorithm uses the same
principle as the one in Section 8.3.3. We illustrate the general scheme by consider-

ing the matrix multiplication problem depicted in Fig. 8.11. The diamond-shaped

interconnection network for this case is shown in Fig. 8.12, where processors are

hex-connected and dataflows are indicated by arrows.

The elements in the bands of A, fi, and C move through the network in three

directions synchronously. Each c,j is initialized to zero as it enters the network

through the bottom boundaries. One can easily see that with the type (b) inner

product processors described in Section 8.3.2.1, each c,j is able to accumulate all

its terms before it leaves the network through the upper boundaries. Figure 8.13

shows four consecutive steps in the execution of the algorithm. The reader is

invited to study the data flow of this problem more closely by making transparen-

cies of the band matrices (shown in the figures), and moving them over the net-

work picture as described in the algorithm.

Let A and B be n x n band matrices of band width vv, and u'g, respectively.

Then a network of w^w-y hex-connected processors can pipeline the matrix

multiplication A x B in 3n + min(Wi, W2) units oftime.

Note that in any row or column of the network, out of every three consecutive

processors, only one is active at any given time. It is possible to use about one

third of the u ,u'2 processors in the network for multiplying two band matrices

with band widths Wj and wg.

8.3.5. The LU-Decomposition of a Matrix on a Hexagonal Array

The problem of factoring a matrix A into lower and upper triangular matrices L
and U is called LU-decomposition. Figure 8.14 illustrates the LU-decomposition

of a band matrix with p = 4 and q = 4.

Once the L and U factors are known, it is relatively easy to invert A or solve

the linear system Ax - b. (We deal with the latter problem in Section 8.3.6.) This

section describes a parallel LU-decomposition algorithm that has hex-connected

data paths.

We assume that matrix A has the property that its LU-decomposition can be

done by Gaussian elimination without pivoting. (This is true, for example, whenA is

a symmetric positive-definite, or an irreducible, diagonally dominant matrix.) The
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Fig. 8.14 The LU-decomposition of a band matrix.
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triangular matrices L = (1^) and U = (//,j) are evaluated according to the following

recurrences:

«7' = ^u.

^(/c+l, = «<|C, + /^^(_^^,)^

if i<k,
if i = k,

if/ > k.

Ui-i
^^k)

if k>j,

if k^j.

We show that the evaluation of these recurrences can be pipelined on a hex-

connected processor array. A global view of this pipelined computation is shown
in Fig. 8.15 for the LU-decomposition problem depicted in Fig. 8.14. The pro-

cessor array in Fig. 8. 15 is constructed as follows: The processors below the upper

boundaries are the standard type (b) inner product step processors and are hex-

connected in exactly the same way as the matrix multiplication network presented

in Section 8.3.4. The processor at the top, denoted by a circle, is a special pro-

cessor. It computes the reciprocal of its input and passes the result southwest and

also passes the same input northward unchanged. The other processors on the

upper boundaries are again type (b) inner product step processors, but their orien-

tation is changed: the ones on the upper left boundary are rotated 120 degrees

clockwise; the ones on the upper right boundary are rotated 120 degrees coun-

terclockwise.
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Fig. 8.15 The hex-connected

processor array for pipelining the

LU-decomposition of the band

matrix in Fig. 8.14.

"42 a^j

^43
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(a) Fig. 8.16 Four steps during the

LU-decomposition shown in

Fig. 8.15.

(b)
(Continued)
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Figure 8.16 (cont.)

(d)
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The flow of data on the network is indicated by arrows in the figure. As in the

matrix multiplication algorithm, each processor only operates every third time

step. Figure 8. 16 illustrates four consecutive steps during the execution of the

algorithm. Note that in the figure, because A is a band matrix with/? =^ 4 andq = 4,

we have a 1+3,, = «,+3,, and afJ+3 = a, ,,+3 for \ ^ k ^ i and / ^ 2. Thus a 52, for

example, can be viewed as o ^2 when it enters the network.

There are several equivalent networks that reflect only minor changes to the

network presented in this section. For example, the elements of L and U can be

retrieved as output in a number of different ways. Also, the "-1" input to the

network can be changed to a " + 1" if the special processor at the top of the net-

work computes minus the reciprocal of its input.

IfA is an n >< n band matrix with band width w = p + q - \,a processor array

having no more than pq hex-connected processors can compute the LU-
decomposition of A in 3n + min(p,q) units of time. If A is an n x n dense

matrix, this means that n'^ hex-connected processors can compute the L and
U matrices in An units of time, which inchides I/O time.

The remarkable fact that the matrix multiplication network forms a part of the

LU-decomposition network is due to the similarity of their defining recurrences.

In any row or column of the LU-decomposition network, only one out of every

three consecutive processors is active at a given time. As we observed for matrix

multiplication, the number of processors can be reduced to about p<7/3.

8.3.6 Triangular Linear Systems

Suppose that we want to solve a linear system Ax = b. Then after having done
with the LU-decomposition of A (e.g., by methods described in Section 8.3.5), we
still have to solve two triangular linear systems, Ly = b and Ux - y. This section

concerns itself with the solution of triangular linear systems. An upper triangular

linear system can always be rewritten as a lower triangular linear system. Without

loss of generality, this section deals exclusively with lower triangular linear sys-

tems.

Let A = {aij) be a nonsingular n x n band lower triangular matrix. Suppose
that A and an ^-vector b = (b^, . . . ,b„V are given. The problem is to compute x -

Ui, . . . ,jr„)^ such that Ax - b. The vector x can be computed by the following

recurrences:

y?' = 0,

yT' = y?^ + dikXk,

Xi = ibi-yf)/au.

Suppose that A is a band matrix with band width w = q. (See Fig. 8.17 for the case

when q = 4.) Then the above recurrences can be evaluated by the algorithm and
network almost identical to those used for band matrix-vector multiplication in
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Section 8.3.3. (Observe the similarity of the defining recurrences for these two
problems.) We illustrate our result by considering the linear system problem in

Fig. 8.17. For this case, the network and the general scheme of the algorithm are

described in Fig. 8.18.

Fig. 8.17 The band (lower)

triangular linear system

where q = 4.
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Fig. 8.18 The linearly connected

network for solving the linear system

shown in Fig. 8.17.

<- >•
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The y,, which are initially zero, move leftward through the network while the

Xi, fl,j, and bj are moving as indicated in Fig. 8. 18. The left-end processor is special

in that it performs jc,*— (^, - yiVfli,. (In fact, the special processor introduced in

Section 8.3.5 to solve the LU-decomposition problem is a special case of this more
general processor.) Each yt accumulates inner product terms in the rest of the

processors as it moves to the left. At the time y, reaches the left-end processor, it

has the value Oa^i + «.2J^2 + • • • + a,.i_iAf,_i, and consequently the a:, computed by

Xi <— {bi - yd/an at the processor will have the correct value. Figure 8.19 demon-
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strates the first seven steps of the algorithm. From the figure one can check that

the final values of .v,, x,, V;,, and .V4 are all correct. With this network we can solve

an n x // band triangular linear system with band width vv - q in 2n + q units of

time. As we observed for the matrix-vector multiplication problem, the number of

processors required by the network can be reduced to w/2.

8.3.7 Applications and Comments

8.3. 7. 1 Variants of the Algorithms and Networks

Variants of the basic algorithms and networks presented above will often be used

in actual practice. No attempt is given here for listing all the possible variants; it is

important that the reader understand the basic principles used so that he or she

can construct appropriate variants for specific problems.

As pointed out in Section 8.3.1, although most of our illustrations are done for

band matrices, all the algorithms work for the regular n x n dense matrix. In this

case the band width of the matrix is h' = 2« - 1 . If the band width of a matrix is so

large that a corresponding algorithm requires more processors than a given net-

work provides, then one should decompose the matrix and solve each subproblem

on the network. For instance, the matrix multiplication of two a? x n matrices or the

LU-decompositionof an/? x /; matrix can be done inO(/rVA-) lime on a A: x A. array,

for k < n.

One can often reduce the number of processors required by an algorithm if the

matrix is known to be sparse or symmetric. For example, the matrices arising

from a set of finite differences or finite elements approximations to differential

equations are usually "sparse band matrices." These are band matrices whose
nonzero entries appear only in a few of those lines in the band that are parallel to

the diagonal. In this case by introducing proper delays to each processor for shift-

ing its data to its neighbors, the number of processors re --aired by the algorithm in

Section 8.3.3 can be reduced to the number of those diagonal lines that contain

nonzero entries. This variant is useful for performing iterative methods involving

sparse band matrices. Another example is concerned with the LU-decomposition

problem considered in Section 8.3.5. If matrix A is symmetric positive-definite,

then it is possible to use only the left portion of the hex-connected network, since

in this case U is simply DU, where D is the diagonal matrix (0^^).

The optimal choice of the size of the network to solve a particular problem

depends upon not only the problem but also the memory bandwidth to the host

computer. For achieving high performance, it is desirable to have as many pro-

cessors as possible in the network, provided they can all be kept busy doing useful

computations.

It is possible to use our algorithms and networks to solve some nonnumerical

problems when appropriate interpretations are given to the addition ( + ) and mul-

tiplication (X) operations. For example, some pattern-matching problems can be

viewed as matrix problems with comparison and Boolean operations. It can be



8.3 Algorithms for VLSI Processor Arrays 289

instructive to view the + and x operations as operations in an abstract algebraic

structure, such as a semi-ring, and then to examine how our results hold in these

abstract settings.

8.3 . 7.2 Convolution, Filter, and Discrete Fourier Ti-ansform

There are a number of important problems that can be formulated as matrix-vector

multiplication problems and thus can be solved rapidly by the algorithm and net-

work in Section 8.3.3. The problems of computing convolutions, finite impulse

response (FIR) filters, and discrete Fourier transforms are such examples. If a

matrix has the property that the entries on any line parallel to the diagonal are all

the same, then the matrix is a Toeplitz matrix. The convolution problem is simply

the matrix- vector multiplication where the matrix is a triangular Toeplitz matrix

(see Fig. 8.20).

^3 «2 ay

J4 ^3 fl2 "]

a^ a^ ^3 aj a.

— — — —
\'l 'h

-^'2 H

^3 h

-V4 = b.

^•5 bs

Fig. 8.20 The convolution

of vectors a and .v.

A p-tap FIR filter can be viewed as a matrix-vector multiplication where the

matrix is a band upper triangular Toeplitz matrix with band width w = p. Figure

8.21 represents the computation of a4-tap filter.

Oy aj ^3 ^4

13] Oj 123 a^

"[ "2 ^3 '^4

fl] 02 a^ ^4

— — — —
-^1 y\

^2 yj

-^3 -^•3

.V4 >'4 Fig. 8.21 A4-tap FIR filter

with coefficients a , , a 2,

a 3 , and a 4

.
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I I I 1

1 CJ tj- (jj-*

1 CJ^ U)-* OJ^

1 OJ^ OJ^ CJ^ Fig. 8.22 The discrete Fourier

transform of vector .v.

On the other hand, an «-point discrete Fourier transform is the matrix-vector

multipHcation, where the (i ,J) entry of the matrix is aj"-i'<J-J' and a> is a primitive

nth root of unity (see Fig. 8.22).

Therefore, using a Hnearly connected network of size 0(n) both the convolu-

tion of two Aj-vectors and the n-point discrete Fourier transform can be computed
in 0{n) units of time, rather than 0(n log n) as required by the sequential FFT
algorithm. Moreover, note that for the convolution and filter problems each pro-

cessor has to receive an entry of the matrix only once, and this entry can be

shipped to the processor through horizontal connections and can stay in the pro-

cessor during the rest of the computation. For the discrete Fourier transform prob-

lem each processor can in fact generate on-the-fly the powers of co it requires. As a

result, for these three problems it is not necessary for each processor in the net-

work to have the external input connection on the top of the processor, as de-

picted in Fig. 8.9.

In the following we describe how the powers of ct» can be generated on-the-fly

during the process of computing an «-point discrete Fourier transform. The re-

quirement is that if a processor is / units apart from the middle processor, then at

time / + 27 the processor must have the value of co-*
"^'^ for all i,j. This requirement

can be fulfilled by using the algorithm below. We assume that each processor has

one additional register R,. All processors except the middle one perform the fol-

lowing operations in each step, but for odd- (respectively, even-) numbered time

steps, only processors that are odd (even) units apart from the middle processor

are activated. For all processors except the middle one the contents of both R^

and Rt are initially "0"

.

1. Shift. If the processor is in the left- (respectively, right-) hand side of the

middle processor, then

Ryi gets the contents of register /?^ from the right- (respectively,

left-) neighboring processor.

R, gets the contents of register R, from the right- (respectively, left-)

neighboring processor.
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2. Multiply.

R^ <—Ra X Rf

The middle processor is special; it performs the following operations at every

even-numbered time step. For this processor the contents of both R^ and Rt are

initially " 1 "

.

1. /?.4^/?.4 X /?,2 X O).

2. Rt<^RtX CO.

8.3.7.3 The Common Memory Access Pattern

Note that all the algorithms given in this section store and retrieve elements of the

matrix in the same order. (See Figs. 8.9, 8.12, 8.15, and 8.18.) Therefore, we
recommend that matrices always be arranged in memory according to this particu-

lar ordering so that they can be accessed efficiently by any of the algorithms.

8.3.7.4 The Pivoting Problem, and Orthogonal Factorization

In Section 8.3.5 we assume that the matrix A has the property that there is no need

of using pivoting when Gaussian elimination is applied to A. What should one do if

A does not have this nice property? (Note that Gaussian elimination becomes very

inefficient on mesh-connected processors if pivoting is necessary.) This question

motivated us to consider Givens's transformation (see, for example, Ham-
mering'^) for triangularizing a matrix, which is known to be a numerically stable

method. It turns out that, like Gaussian elimination without pivoting, the orthog-

onal factorization based on Givens's transformation can be implemented natu-

rally on mesh-connected processors, although a pipelined implementation appears

to be more complex. (Results on Givens's transformation will be reported

elsewhere.) (Sameh and Kuck'^ considered parallel linear system solvers based on

Givens's transformation, but they did not give solutions to the processor com-

munication problem considered here.)

8.3.8 Concluding Remarks

Research in interconnection networks and algorithms has been traditionally

motivated by large scale parallel array computers such as ILLIAC IV.^-'^-'^ The
results presented here were, however, motivated by the advance in VLSI, though

they are certainly applicable to parallel array processors. We have shown that

many basic computations can be done very efficiently by special-purpose multi-

processors, which may be built cheaply using VLSI technology. The important

feature common to all of our algorithms is that their data flows are very simple and

regular, and they are pipeline algorithms . We have discovered that some data

flow patterns are fundamental in matrix computations. For example, the two-way
flow on the linearly connected network is common to both matrix-vector multi-
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plication and solution of triangular linear systems (Sections 8.3.3 and 8.3.6), and the

three-way flow on the hexagonally mesh-connected network is common to both

matrix multiplication and LU-decomposition (Sections 8.3.4 and 8.3.5). A practi-

cal implication of this fact is that one device may be used for solving many differ-

ent problems. Moreover, we note that almost all the processors needed in any of

these devices are the inner product step processor postulated in Section 8.3.2. A
careful design for this processor is desirable since it is the workhorse for all the

devices presented.

For the important problem of solving a dense system of n linear equations in

0(a2) time on n x n mesh-connected processors, we have improved upon the re-

cent results of Kant and Kimura'^. The basis of their results is a theorem on de-

terminants that was known to J. Sylvester in 1851. Their algorithm requires that

the matrix be "strongly nonsingular" in the sense that every square submatrix is

nonsingular. It is sufficent for our algorithms that the matrix be symmetric

positive-definite or irreducible diagonally dominant.

Hoare^" and Thurber and Wald^ describe some matrix multiplication al-

gorithms on an orthogonally connected processor array. Unlike our results, their

algorithms require that one or more of the three matrices involved in matrix mul-

tiplication have to stay in the array statically during the computation. This means
extra I/O time and extra logic in each processing element in the network. Because

of the use of hexagonal connection for the array, we are able to pipeline all three

matrices through the network.

Inter-processor communications will likely continue to dominate the cost of

parallel algorithms and systems. Communication paths inherently take more space

and energy than processing elements in many problems of practical interest. We
regard the problem of minimizing communication costs as fundamental. We hope

the results of this section have demonstrated that the communication problem in

parallel algorithms is not only tractable but also interesting. We expect that a large

number of algorithms having small communication costs will be discovered in the

future.

8.4 HIERARCHICALLY ORGANIZED MACHINES

We know that human organizations use hierarchical structure to extract the

greatest possible benefit from the daily activities of tens of thousands of individu-

als. We know that complex systems can be constructed by subdividing them into

less complex systems, which are again subdivided, as many times as necessary,

until the resulting systems are simple enough to construct easily. In Section 8.5 we
show that the organization of real estate on the silicon surface dictates a hierarchi-

cal communication system for any devices that must support global communica-

tion. Such hierarchical communication exists in conventional computers only in a

limited way. Are there new machine structures that communicate hierarchically,
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that support systems consisting of an arbitrary hierarchy of subsystems, and that

can coordinate the activities of any number of submachines?

8.4.1 Binary Trees

Consider any number of processors physically arranged as a binary tree. Each

processor has two subprocessors that it can control. These subprocessors, in turn,

have two sub-subprocessors, and so on. A possible layout of such a binary pro-

cessor tree is shown in Fig. 8.23. At the lowest level a small array of ordinary

memory cells, labeled Mq, is accessed by the lowest level processors, labeled Pq.

The combination of one lowest level processor with its associated memory is the

element of computing power. These units are grouped together in pairs and ac-

cessed by the next level processor, labeled P^. Two P/s with their associated

lower level units are grouped together and accessed by the next level higher pro-

cessor, labeled P2. This arrangement is repeated recursively until an entire silicon

chip is covered by the processor-memory hierarchy. The rate at which information

can be transferred within a processor is independent of the level of the processor.

As the wires within a processor get longer, the drivers must become proportion-

ately larger to drive them. The highest level processor that communicates off the

silicon chip to the outside world has large drivers and hence is able to drive off-
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Fig. 8.23 Layout for a binary processor tree.
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chip without suffering a severe performance penalty. Such a machine can thus be

extended to a large number of individual chips and still maintain the full speed of

the individual processors within it.

A conventional computer is a special case of this organization, consisting of a

memory array and a bottom-level processor. Also, there is another way to map a

conventional computer onto a binary tree of processors. View the highest level

processor as a cpu and load all subprocessors with programs that merely decode

requests for the memory below them. Loaded with these programs, the structure

between the two extreme levels becomes a memory decoder tree between a con-

ventional cpu and its memory.

More importantly, this binary tree structure is a completely general, concur-

rent processing engine and can be used for problems decomposed in an arbitrary

hierarchical way. If a problem requires more than two subprocessors at any level,

a subtree of physical processors can be operated as one logical processor, match-

ing the problem's structure. Algorithms for constructing logical processors of any

size are given in the next section. The tree has the inherent ability for all pro-

cessors to compute concurrently and hence has a vastly larger potential comput-

ing power than a conventional machine using a similar amount of silicon real es-

tate.

Since the number of processors decreases exponentially with the level, the

total bandwidth available, whether processing or communication, decreases ex-

ponentially with the level. Half of the total bandwidth of the system is concen-

trated at level 0, one quarter at level 1, one eighth at level 2, etc. A particular

computation is well matched to such a processor if its bandwidth requirements are

concentrated at the lowest levels. If an algorithm requires more communication at

any level than the structure provides, it will not be able to take advantage of all the

processing power of the structure. An extreme example of this sort is the von

Neumann machine where all computation occurs at the highest level processor,

and where the lower level processors are used only one at a time as an ordinary

memory. Such a machine requires equal bandwidth at each level of the hierarchy

and is an exponential waste of the resources of the machine.

It is also clear that a tree structure is testable if a single processor is testable.

Each supervisor merely loads a test program into its two subordinates and exer-

cises them. Once it has established that both work correctly, it loads each with the

program it just used to test them. A tree of A^ levels can thus be tested in N times

the time necessary to test one processor.

It is difficult to predict how any radically different machine structure will

perform in a real computing environment. Ideally, we should implement a number

of complete systems, spanning a large range of user requirements, in order to gain

experience with the strengths and weaknesses of any given scheme. Failing that,

we can at least map certain algorithms onto our machine in the hope that they will

shed light on its capabilities and its problems. Several such mappings are presented

in the next section. (We plan to develop others and we hope our readers will

contribute still more for subsequent editions of this text.)
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8.4.2 Algorithms for the Tree Machine*

Suppose we apply the notion of hierarchical design to interprocessor communica-

tion paths. That is, we use a binary tree as a model for the interconnections be-

tween a collection of processors. This section presents some problems that map

onto this architecture nicely, and take advantage of the concurrency provided in

the tree.

A Word About Notation

The processors in the tree have some characteristics that must be emphasized by

the notation we use to describe them.

Each processor is a general computing machine with some amount of local

store. We want to describe a template for both the program and the data that will

characterize the processor. This template will be instantiated as the many nodes of

the tree.

We want to limit communication paths between each processor, its parent,

and its children, to explicitly defined entry points. That is, there is no omnipotent

processor that is able to oversee and influence the actions of other processors

except as explicitly described. Each processor can expect to have local sover-

eignty and can only be affected by communication it expects.

And perhaps most importantly, we want to encourage locality in the problem

solutions. Communication between processors requires synchronizing their ac-

tions, limiting the amount of concurrency that can be utilized.

The notation that embodies these criteria is the class construct described in

Dahl, Dijkstra, and Hoare.^* The class allows us to define as a single entity both a

data structure and the procedures that operate on it. Thus the implementation

details are known only to the class itself. Each instance of the class, an object, can

be thought of as a machine capable of local computation but responding to well-

defined orders from the outside world.

The most widely known programming language that incorporates the class

construct is SIMULA 67. ^^ Classes are also available in various flavors in lan-

guages such as Alphard,^^ CLU,^'* and Smalltalk. ^^

We will use a modified version of the SIMULA syntax to describe the nodes

in the processor tree. The syntax for a class declaration can be described in BNF
as follows:

<class declaration> :: = class <class identifier>;

<formal parameter part>;

<attribute part>;

<class body>

<classbody> :: = <statement>

(Statements in SIMULA use the syntax of Algol 60. SIMULA is in fact a superset

of Algol 60.)

*Contributed by Sally A. Browning, California Institute of Technology.
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Because we are describing highly concurrent algorithms, we need to get

around the sequential nature of SIMULA statements. For this reason we expand
the meaning of the semicolon symbol. In vanilla SIMULA, semicolon is used to

terminate a statement. We use semicolon to make a statement about the execution

as well. Read semicolon as "At this point, all statements in progress must be

terminated before advancing to the next statement." Linefeed will be used to

indicate syntactic end of the statement. In other words, linefeeds are used to sepa-

rate statements; semicolons are used to separate groups of statements that can

execute concurrently. E. W. Dijkstra introduced this semicolon convention. ^'^

A Word About Branching Ratios

Although the physical structure of our tree restricts each processor to two de-

scendents, we can impose a logical structure that allows an arbitrary branching

ratio. Each logical processor consists of several physical processors, enough to

provide the desired number of offspring. A logical node with N children is built

from N- 1 physical nodes and is log N levels deep. Figure 8.24 shows some sam-

ple logical processors.

Fig. 8.24 Logical nodes

(solid boxes) with two

to seven descendents.

We will now describe the process of mapping our logical structure onto the

physical tree in SIMULA. We define two CLASSes: a node and a processor. A
node represents the physical entity. It has exactly two descendents. A processor

will refer to the logical entity, with an arbitrary number of children.

In the following SIMULA definitions, N represents the number of descen-

dents desired. As we build the logical node, we attempt to keep it balanced. That

is, all available physical nodes on a given level of the tree will be used before a

new level is added. Nodes on a given level are added to the logical processor from

left to right, as in Fig. 8.24. Note that CLASS Processor is a refinement ofCLASS
Node that knows how to choose one of N descendents.

CLASS Node(n): INTEGER n;

BEGIN
REF(Node)left,right:

!init code to build logical node:

IFn>2THENleft:-NEWNode((n + l)//2):

IFn>3 THEN right:-NEW Node(n//2):

END of CLASS Node:
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Node CLASS Processor;

BEGIN
REF(Processor) PROCEDURE Son(s): INTEGER s;

BEGIN REF(node)p;

p:-IFs< = (A? + l)//2 THEN left ELSE right;

WHILE p IN Processor DO
p:-IF s<=(p.n+ l)//2 THEN p. left ELSE p. right;

Son:-p;

END of PROCEDURE Son;

END of CLASS Processor;

8.4.2.1 Algorithms with Polynomial Complexity

One of the traditional approaches to solving a problem that is too large or too

complex when considered as a whole is to recursively break the problem into

pieces that are manageable. In a structure with many interconnected processors,

we attempt to concurrently apply as many processors to the problem as possible in

order to reduce execution time. We will look at two algorithms that use this ap-

proach-sorting and matrix multiplication. While both of these problems are

solved nicely on cellular arrays, it is instructive to map them onto a machine with

different communication properties.

Sorting in Linear Time

We use a binary tree with depth log N to sort N numbers. The sort is accomplished

as a by-product of loading the numbers into memory and then reading them out

again. The numbers themselves are never in sorted order internally but come out

of the tree in the desired order.

Sorting is a particularly interesting example because it illustrates a fundamen-

tal issue in concurrency. It is well known that sorting on a sequential machine can be

done with 0(Nlog N) comparisons. However, it has been shown on very funda-

mental grounds that if communication is restricted to two nearest neighbors, at least

N^ comparisons are required. ^^ The apparent advantage of the 0{N\ogN) al-

gorithms comes as a direct result of longer communication paths. It is also clear

that no scheme will be able to produce an ordered set of numbers until all numbers
are loaded into the machine. For this reason, the best we can expect is to use A^

processors for 0(AO cycles. The following algorithm is an implementation of heap

sorting, one of the well-known techniques used in sequential machines.''^

The algorithm that runs in each processor has a procedure for loading the tree

called Fillup and a procedure invoked during the output cycle called Passup

.

Filliip keeps the largest number seen to date and passes the smaller one to the

right or left child, keeping the tree balanced by alternating sides.

Passup returns this processor's current number and refills itself with the

larger of the numbers stored in its descendents. This action is pipelined so that the

largest number is always available in the root.
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Here is a SIMULA description of the heap sort algorithm running in each

processor. The variable number holds the number stored in this processor. The

Boolean symbol empty reflects the validity of that number. Balanced is a Boolean

identifier that is used to keep the tree balanced as it is loaded.

CLASS processor;

BEGIN

INTEGER number;

BOOLEAN balanced,empty;

REF(processor)left, right;

PROCEDURE fillup(candidate); INTEGER candidate;

BEGIN
IF empty THEN
BEGIN

number: =candidate

empty: = FALSE;
END
ELSE
BEGIN

IF candidatOnumber THEN !swap;

BEGIN INTEGER t:

t:=candidate;

candidate: =number;

number: =t;

END;
IF balanced

THEN left.fillup(candidate)

ELSE right. fillup(candidate);

balanced: =NOT balanced;

END;
END of procedure fillup;

INTEGER PROCEDURE passup;

BEGIN
passup: =number;

IF left = =NONE AND right= =NONE THEN empty: =TRUE !its a leaf;

ELSE
IF left. empty THEN
BEGIN

IF right. empty THEN empty: =TRUE !both subtrees empty;

ELSE number: =right. passup; !fill from right son:

END
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ELSE
IF right. empty THEN number: =left.passup !fill from left son;

ELSE number: =IF left. number>right.number

THEN left.passup ELSE right. passup:

!take the larger of the two;

END of procedure passupnumber;

!init code;

empty: =TRUE;
balanced: =TRUE;
!left and right set;

END of class processor;

This sort algorithm is bounded by the time it takes to load and remove the

numbers. Thus it has time complexity 0{N). It requires ^processors as well.

P. N. Armstrong^^ has proposed a special-purpose machine that uses N com-
paritors (processors) to sort N numbers in linear time. His design is a hardware

implementation of the bubble sort algorithm. While we have chosen a different

algorithm, namely heap sort, we can sort as quickly on our general-purpose

machine. The two structures are functionally equivalent when applied to the sort-

ing problem.

Matrix Multiplication

We now examine the problem of multiplying two N x N matrices together. The

brute-force attack on the problem yields a solution in 0{N'-^) time. We present two

algorithms to do the multiplication. Each is a brute-force approach. They differ in

the way they subdivide the matrix and in communication requirements. The first

approach we will take is to divide the matrix into progressively smaller matrices

until we are multiplying single elements together. The second method divides the

multiplicand into rows and the multiplier into columns and then pipelines the load-

ing and multiplication of pairs of single elements.

After presenting the two matrix multiplication algorithms, we discuss the dif-

ference in complexity of the two. We also look at the possibility of doing chain

multiplication and matrix exponentiation. Finally, we compare the performance of

the tree machine with the hexagonal array of Kung and Leiserson (Section 8.3).

Subdivision into submatrices. Suppose we have two NxN matrices to multiply

together. Using the divide and conquer approach, we can break the problem down
into smaller and smaller submatrices until they can be easily multiplied together.

There is an algorithmic way of combining the product submatrices to produce the

correct solution to the complete problem.
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The simplest matrices to multiply are of size 1 x 1; we stop the decomposition
at this point. Note that each of the /V^ elements in the product is generated by

summing N pairwise products, with one operand contributed by the multiplicand

matrix and the other from the multiplier matrix. N \x\ matrices are multiplied for

each of the TV- elements of the product, for a total of N^ multiplications.

The tree machine that uses this recursive decomposition has N^ leaves, one
for each pairwise product of single elements from the operands. The other nodes
in the tree are used to decompose and reassemble the matrices.

We use the following rule to subdivide the problem.

Let A . B. and C be N x N matrices such that AB = C. We subdivide all three

into four (N/2) x {N/2) submatrices. If A = (A,j) and B = (Bu), then

C = (A,,fiu +A,,B,j), ij = 1,2.

We will consider matrices whose size N equals 2 " without loss of generality. A
tree to multiply two matrices of size 2 *' will haveM levels ofprocessors that add two

matrices together. M levels that split and assemble the matrix, and one level (the

leaf nodes) that multiply two numbers together. Thus the tree is 2M + 1 logical

levels deep.

Each adder node has two descendents. and each split/assemble node has four

descendents. Thus the physical structure will use two levels to simulate the 4-way

branching, and the tree will in fact be 3M levels deep. That is, the depth is 3 log N.

Accordingly, it requires N^ leaf nodes and 2N^ - 1 processors to do the computa-

tion.

Let us look at the communication requirements between nodes of the tree.

The root node must be prepared to store the entire matrix. The adder nodes in

level one (the root is level 0) will each deal with a quarter of the original matrix, as

will the split/assemble nodes in level three. The further down the tree you go, the

smaller the matrix the node must store and transfer.

However, note that each of the N^ elements must travel the entire length of

the tree and back again during the execution of the algorithm. While communica-

tion requirements are low at the leaves, they are extremely high (like N^ numbers

to receive and (N/2)^ to pass down to each descendent) at the root.

In the algorithm given below, the add operation takes O(N^) time. By doing

the adding in parallel either by row, using N processors, or by pairs of elements,

using A'- processors, we can make this operation linear or constant in time. How-
ever, the problem is still limited by the split/assemble process that requires each

element to travel the height of the tree. That is, the best time performance we can

achieve with this algorithm is O(iW-).

We now present a SIMULA representation of a matrix and use it in the al-

gorithm that follows. The algorithm uses two kinds of processors, the adders and

the split/assemble nodes. Each matrix is divided into submatrices by procedure
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Quarter as follows:

CLASS Matrix(n); INTEGER n;

BEGIN
INTEGER ARRAY val[l:n,l:n];

REF(matrix) PROCEDURE quarter(select); INTEGER select;

BEGIN REF(matrix)aq; INTEGER i,j,k,l;

aq:-NEW matrix(n//2);

i:=j: = l:

IF select=2 THEN j: = n//2+ 1

ELSE IF select = 3 THEN i:=n//2+l

ELSE IF select=4THEN i:=j: = n//2+ 1;

FOR k: = 1 STEP 1 UNTIL aq.n DO
F0R1: = 1 STEP! UNTIL aq.n DO

aq.val[k,l]:=val[i + k-l,j+l-l];
quarter: -aq;

END of procedure quarter:

REF(matrix) PROCEDURE compose(a,b.c,d): REF(matrix)a,b,c,d;

BEGIN INTEGER i,j:

FOR i: = 1 STEP 1 UNTIL a. n DO
FORj: = 1 STEP 1 UNTIL a.n DO

val[i,j]:=a.val[i,j];

FOR i: = 1 STEP 1 UNTIL b.n DO
FORj: = 1 STEP 1 UNTIL b.n DO

val[i,j + n//2]: = b.val[i,j]:

FOR i: = 1 STEP 1 UNTIL c.n DO
FORj: = 1 STEP 1 UNTIL c.n DO

val[i + n//2,j]:=c.val[i,j]:

FOR i: = 1 STEP 1 UNTIL d.n DO
FORj: = 1 STEP 1 UNTIL d.n DO

val[i +n//2,j +n//2]: =d.val[i,j];

compose: -THIS matrix:

END of procedure compose;

END of class matrix;

CLASS processor(size);

BEGIN
REF(matrix)mat;

REF(processor)one,two, three,four;
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REF(matrix) PROCEDURE multiply(a.b); REF(matnx)a,b;

BEGIN REF(matrix)c:

c:-NEW matrix(a.n);

IFc.n=l THEN c.val| IJ]:=a.val( IJ]*b.val| IJ );

ELSE
c.compose(one.mult&add(a.quarter( 1 ),b.quarter( 1 ),

a.quarter(2),b.quarter(3)), two.mult&add(a.quarter(l),

b.quarter(2),a.quarter(2),b.quarter(4)),

three. mult&add(a.quarter(3),b.quarter( l),a.quarter(4),

b.quarterO)), four.mult&add(a.quarter(3).b.quarter(2),

a.quarter(4).b.quarter(4)));

multiply:-c;

END of procedure multiply;

REF(matrix) PROCEDURE mult&add(a,b,c,d); REF(matrix)a,b,c,d;

BEGIN REF(matrix)cl,c2; INTEGER i,j;

cl:-one.multiply(a,b); c2: -two. multiply (c,d);

FORi: = l STEP 1 UNTIL cl.n DO
FORj: = l STEP 1 UNTIL c2.n DO

cl.val[i,j]:=cl.val[ij] + c2.val[i,j];

mult&add:-cl;

END of procedure mult&add;

END of class processor;

Subdivision by row and column. By subdividing the matrices differently, by row
and column rather than as submatrices, we can perform the multiplication using

fewer processors and taking greater advantage of the concurrency provided by the

tree. This algorithm uses 2N^ - 1 processors and runs in O(N^) time. This is an

order of A' improvement in time over the sequential brute-force method.

Suppose we have a tree that has a branching ratio ofN at each node and is two
levels deep. That is, the root node has Ndescendents, each controlling N leaves of

the tree. Then there are N^ leaves and a total of2N^ - 1 processors.

Each child node of the root, hereafter called a row supervisor, will represent a

row of the multiplicand matrix and produce a row of the product matrix. Each of

its N descendents will hold one element of the row it represents.

The multiplier matrix is loaded into the tree one element at a time, by column.

The root hands each element to all row supervisors, which send it to their appro-

priate leaf: the first element in any column goes to the first child of each row
supervisor, the Mh element to the Mh child. That child multiplies the multiplier

element by the multiplicand element it holds and returns the product to the row

supervisor. When an entire column of the multiplier has been loaded into the tree,

each row supervisor takes the N products generated in its children, adds them,

and returns one element in the corresponding column of the product matrix. That

is, when the first column of the multiplier has been loaded into the tree, the first

column of the product matrix is available, and so on.
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This process can be pipelined to take 0{N^) time. Thus the time it takes to

load the N"^ elements of the matrices dominates the time complexity of the prob-

lem.

In the following SIMULA presentation of the algorithm described above, two

different processor CLASSes are described. Each is a refinement of the processor

that supported arbitrary branching ratios given in an earlier section. CLASS Row-
supervisor provides a template for the supervisory nodes that distribute the mul-

tiplier and sum the individual element products to produce an entry in the product

matrix. CLASS Lea/ defines the lowest level of the tree, capable of representing

an element of the multiplicand and multiplying it by a number provided by the row

supervisor. Both of these classes have two routines defined in them. Load is used

to load the multiplicand matrix. Multiply is used to load the multiplier, perform the

multiplication, and produce the product matrix.

Processor CLASS Rowsupervisor;

BEGIN

!the matrix size, N, is an attribute ofCLASS Processor, and is available

to us;

REAL product;

INTEGER count;

PROCEDURE Load(element); REAL element;

BEGIN
count: =count+l;

son[count].load(element);

IF count =N THEN count: =0;

END of procedure Load;

REAL PROCEDURE Multiply(element); REAL element;

BEGIN
count: =count + 1;

product: = product + son[count].multiply(element);

IFcount =NTHEN
BEGIN

multiply: =product;

count: =0;

product: =0.0;

END;
END of procedure Multiply;

!initialization;

count: =0;

product: =0.0;

END of class Rowsupervisor;



304 Highly Concurrent Systems

Processor CLASS Leaf:

BEGIN

REAL rowelement;

PROCEDURE Load(element); REAL element;

BEGIN
rowelement: =element:

END of procedure Load:

PROCEDURE Multiply(element): REAL element:

BEGIN
multiply: = rowelement*element;

END of procedure Multiply:

END of class Leaf;

A discussion of the two algorithms. Let us reflect a moment on these two so-

lutions to the matrix multipHcation problem. The tree machine is basically a recur-

sive structure. Yet the most obvious recursive solution to our problem, the sub-

division into smaller matrices, does not yield the least complex algorithm. The
second approach does not use the recursive decomposition of the matrix, but

capitalizes instead on the independence and overlap of the sums and products of

the solution matrix. We make use of the fact, for example, that the first column of

the multiplier is used to generate the first column of the product, and never again.

We do not need to preload the tree machine with both of the operand matrices, but

we can overlap the loading of the multiplier with the generation of the product.

This allows us to remove a factor of log N from the time complexity of the prob-

lem.

What we learn from a compaiison of these two algorithms is that mapping a

recursive algorithm onto a recursive structure does not always yield an optimal

solution. That is, the recursive algorithm is not necessarily maximally concurrent.

By examining the individual steps of the process we want to accomplish, and

finding the minimum set of states that require synchronization, we can do better.

Because the data elements travel around the tree less in the second algorithm,

we can examine the possibility of chain multiplication, that is, multiplying more

than two matrices together to produce the desired product matrix. Remember that

one column of the product is generated for each column of the multiplier that is

loaded into the machine. Each row supervisor contributes one element to that

column. After all N columns have been generated, the jth row supervisor has

produced all of the elements in the 7th row of the product. If we were to load the

product into the tree, we would want thejth row supervisor to receive theyth row.
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If we introduce a mechanism for the row supervisor to keep the product elements

as they are generated and dispense them to the appropriate leaf, we can avoid

loading each intermediate matrix into the tree.

Suppose we use another memory cell in each leaf to store the value that will

be used as the multiplicand element in the next multiplication. We also need a

piece of state information that tells us when the multiplication in progress finishes

and that it is the time to use the new multiplicand. Then when the Jth column of

the multiplier is being processed, the^th child of each row supervisor will be given

the product element generated as its next value.

The time complexity for chain multiplication as described above is of the same

order as if the intermediate products were generated explicitly: generated, read

out, and reloaded as the multiplicand. However, there is a considerable saving in

input /output operations if the chain multiply is done in place.

Suppose we want to multiply a chain of five N x N matrices together.

Generatmg explicit intermediate products requires loading the tree with the N^
elements eight times. If the multiplication is done in place, as our algorithm

suggests, only the five operand matrices need be loaded. In general, a chain ofM
matrices can be multiplied with M loads in place, but it requires 2(M - 1) loads if

intermediate values are generated explicitly.

The hexagonal array of processors described in Section 8.3 does matrix multi-

plication in 0(N) time using 3N^ - 3^ + 1 processors. The linear time complexity is

achieved by loading an entire row or column of the matrix in parallel.

If we widen the communication paths in our tree to handle an entire column in

one burst, as indeed we must in order to make a fair comparison of the two ar-

chitectures, we see that our tree can accomplish the matrix multiplication in linear

time as well. Only one third of the processors in the hexagonal array are busy in a

given cycle. Thus both the tree machine and the processor array use about the same

number of active processors to solve the problem.

As in the sorting example, we see that a proper decomposition of the problem

yields a solution on our general computing structure that is comparable to the

performance of a special-purpose machine.

8.4.2.2 Solutions to NP-complete Problems

Complexity theory^'** has established a context within which it is possible to make
certain statements concerning the inherent complexity of computations. These

statements are universally couched in the terminology of sequential machines.

There is, however, a class of problems for which the possibility of large-scale

concurrency has been addressed.

Consider a computation in which there are N conceptual steps. At each step,

Q alternative branches may be taken. Such a computation may be viewed as a tree

with 2^ possible outcomes. If at each step there is enough information available to
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decide which branch to take, a sequential machine will be able to complete the

computation in KN cycles, where K is the average number of cycles spent on each

step. The dependence of the number of machine cycles upon the number of con-

ceptual steps is thus linear in N or of order N, written 0{N).

In many computations, not enough information has been generated by previ-

ous steps to determine which branch to take. Later steps will generate this infor-

mation, but we cannot execute the later steps until after the earlier steps! In such

cases, the sequential machine must simply try one branch at random. If it con-

cludes after executing subsequent steps that the particular branch taken was
wrong, it must backtrack to the original point and try another route.

In a wild flight of fancy, we might become frustrated with this behavior and

wish we had a machine that was so smart that it could tell if it was on the right

path, even if there was no possibility of choosing such a path with the information

on hand. It would make an arbitrary choice at each branch—and always be right!

Of course, such a machine cannot be built with real logic operating with real pro-

grams. However, we can imagine such a machine in much the same way we imag-

ine a spaceship traveling faster than the speed of light. Machines of this sort are

called nondeterministic , since there is no way a machine exhibiting this behavior

can be specified on rational grounds.

Returning to our problem, it is clear that a sequential nondeterministic

machine could solve the problem in O(A') cycles. Problems that can be solved

by such an imaginary nondeterministic machine in a number of cycles that is

bounded by some fixed power of N are said to be Nondeterministic-Polynomial

,

abbreviated NP.^-'"'

It is quite clear that the behavior of a nondeterministic machine can be simu-

lated by a set of concurrent deterministic machines. Each machine can simply

follow a separate path through the tree. At the end, there will be Q^ processors,

representing each possible outcome of the computation. Although different prob-

lems will have different branching ratios {Q) and different depths (AO, all can be

mapped onto the tree machine using techniques described earlier.

It has been shown that there is a class of problems of this sort where there are

no shortcuts. Working one path through to the end gives no clue concerning the

outcome of another path. Such problems, called NP-complete, are, in some sense,

maximally difficult among the problems in NP.

A great deal of lore has developed concerning NP-complete problems. It has

been shown that, in a certain sense, they are all "equivalently hard."^^ Suppose

machine Y can solve a single kind of NP-complete problem. The equivalence

property states that there is an algorithm that can run on an ordinary sequential

machine in a polynomial number of cycles that transforms a description of a

problem into the one solvable by Y. If Y can solve its NP-complete problem

in polynomial time, then it can be used to solve any NP-complete problem in

polynomial time. If Y requires exponential time, any NP-complete problem will

also require exponential time on machine Y.
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The methods we use to describe trees of different branching ratios mapped
onto a binary tree are similar to the methods used to map one NP-complete prob-

lem onto a machine that solves another. When a tree with branching ratio greater

than 2 is mapped onto a binary tree, the depth of the tree increases. In a similar

fashion, the algorithm that transforms NP-complete problems may increase the

number of alternative branches (Q) and decrease the number of conceptual steps

(AO, or vice versa. Thus the mappings that establish the equivalence class of NP-

complete problems are exactly like the mappings from trees of one branching ratio

to another.

The theory that establishes the NP-complete equivalence class offers direct

guidance in mapping such problems into a highly concurrent structure. Because

we can solve any one problem in our concurrent tree machine, and because we
know a mapping from an arbitrary NP-complete problem into this one, we can

solve the arbitrary problem.

The traditional approach to solving the class of problems that grow non-

polynomially has been to recognize space or processing power as a limited re-

source. The problems have exponential time complexity because the solutions

proceed sequentially.

As VLSI becomes a reality, however, it is interesting to treat processors as an

unlimited resource and look at the time complexity of these problems when they

take advantage of ultraconcurrency. We emphasize, however, that while the time

complexity is significantly reduced, problems require an exponential number of

processors. A problem of reasonable size will use an enormous number of pro-

cessors.

In a later section, an example is worked for an NP-complete problem that

grows as N'^. The problem uses a graph of 4 nodes, and our concurrent solution

requires 95 processors. A graph of 10 nodes could use as many as 2*10'*^ pro-

cessors!

We will examine two NP-complete problems. The clique problem has time

complexity of 0(2^) when the possible cliques are considered sequentially. The

color-cost problem is O(N^). By taking advantage of the parallel consideration of

possible solutions, we present solutions to these two problems that take polyno-

mial, in fact O(N^), time.

The Clique Problem

A clique is a complete subgraph. That is, given an undirected graph G, a clique C
contained in G is a graph such that for all nodes n,m in C, there is an edge (n,m).

Finding the largest clique in an arbitrary graph is an NP-complete problem.

Given a graph G with TV nodes, numbered from 1 to TV, we will consider each

node sequentially and generate potential cliques. Ignoring the edges for a moment,
a collection of M nodes leads to 2"^ - 1 potential cliques. This, interestingly

enough, is the number of nodes in a binary tree of depth M. We will use this fact to

generate the cliques in our graph incrementally.
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Each level in the tree represents the addition of another node to be consid-

ered. Each processor at a given level will spawn two descendents. The left child

will consider the subgraph consisting of the new node and all but the last node of

the parent subgraph. The right-child's subgraph will add the new node to the com-
plete parent subgraph. In this manner, we generate all possible subgraphs for a

graph of N nodes. Figure 8.25 is an example for N = 4.

Fig. 8.25 Systematic generation of subgraphs in a graph of four nodes.

If each node stores an edge list, the tree can be pruned of subgraphs that are

not cliques. The number of processors required is reduced, but the worst-case

behavior is identical. A maximum of 2'^ - 1 processors is required to solve the

problem for a graph of size N. Our solution, which uses pruning, requires O(N^)

time.

Each processor stores the edge list as a Boolean matrix called edge, and an in-

teger size that holds the size (number of nodes) of the clique this processor repre-

sents. An array called ('//^//f contains the numbers of the nodes that form the clique.

When a processor is activated by a call to procedure Findclique , it will already

have a clique assigned to it. Findclique' s purpose is to generate cliques for its

descendent nodes. It does this according to the method described above. That is,

if the subgraph that contains the new node and all of the nodes in clique , except

the last one. is a clique, it will be assigned to the left child. Likewise, if the addi-

tion of node to clique yields a complete subgraph, the right child will represent it.

If either of the subgraphs is not complete, the descendent will not be generated.

The tree of all cliques is generated iteratively by considering each node of the

graph in turn. In the main program given below, p is a reference to the root pro-

cessor. Each processor in the tree will pass up the largest clique among its chil-

dren. Thus the root returns the size of the largest clique known to date.

We now present the clique algorithm followed by a simple example.
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CLASS processor;

BEGIN
REF(processor)left, right;

BOOLEAN ARRAY edge[l:n,l:n];

INTEGER ARRAY clique[l :n];

INTEGER size;

BOOLEAN PROCEDURE IsClique;

BEGIN INTEGER i,j;

IsClique: =TRUE;
FORii-lTOsizeDO

FOR j: = lTOsizeDO
IF NOT edge[i,j] THEN IsClique: =FALSE;

END of procedure IsClique;

REF(processor) PROCEDURE FindClique(node);

BEGIN INTEGER i; REF(processor)l,r;

1: =r: =THIS processor;

IF size =0 THEN !then this is the root node;

BEGIN
clique[l]: = node

size: = l

FindClique:-THIS processor;

END
ELSE
BEGIN

IF left. size=0 THEN
BEGIN

FOR i: = 1 TO size- 1 DO left.clique[i]: =clique[i]

left.clique[size]: =node
left. size: =size;

IF NOT left. IsClique THEN left. size: =0;

END
ELSE l:-left.FindClique(node);

IFright.size=OTHEN

BEGIN
FOR i: - 1 TO size DO right. clique[i]: =clique[i]

right.clique[size-i- 1]: =node
right, size := size +1;

IF NOT right. IsClique THEN right.size: -0;

END
ELSE r:-right.FindClique(node);

IF l.size>sizeTHEN

BEGIN
IFl.size>r.size

THEN FindClique:-l

ELSE FindClique:-r;

END
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ELSE IF r.sizosize

THEN FindCIique:-r

ELSE FindCliqiie:-THlS processor;

END:
END of procedure FindClique;

size:=0;

!left and right set up correctly;

!read in edge list;

END of class processor;

!main program to start it all up;

BEGIN REF(processor)largest: INTEGER i

FOR i: = 1 TO n DO largest:-p.findclique(node);

END of main;

Figure 8.26 gives a sample graph of six nodes. Figure 8.27 shows the processor

tree that is built and used to find the cliques in the graph. The tree has height 6,

and the largest cliques have 4 nodes. Each processor in the tree represents a clique

in the graph.

1 3 5

: 4 6

Fig. 8.26 Sample graph for the

clique problem.

Fig. 8.27 Tree built to find cliques in the graph of Fig. 8.26.
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T/ie Color-Cost Problem

This NP-complete problem is an adaptation of the K-colorability problem. Given

an undirected graph G of N nodes and a set of A^ colors, each with an associated

cost, we want to find a minimum cost coloring of the graph such that no nodes

sharing an edge are the same color.

There are N-'^' possible colorings of the graph. Evaluating them sequentially

produces a solution in time 0{N'^). We present a parallel algorithm of order A^^.

In this problem we make use of the ability to simulate arbitrary branching

ratios on our binary tree. We discuss the problem in terms of logical nodes with up

to N descendents. An earlier section describes the method of mapping logical

structures onto the physical one.

As in the clique problem, each level in the processor tree represents the con-

sideration of another node. That is, level one shows possible colors for the first

node, level two colors the second node based on the choices made for level one,

and so on. We will describe the generation of the potential colorings.

Each node has an edge list called "'edge" and a list of costs indexed by color

number called "colorcosts." There is an array called "coloring" that reflects the

color choices for preceding nodes, and there is a Boolean array called "colors"

that is used to generate the possible colorings for this node.

The algorithm given in procedure "color" begins by assuming that all colors

yield valid colorings. The array "coloring" is used to eliminate those colors that

have been used to color nodes that share an edge with this node. This reduced set

of colors, all of which are legal colorings, is used to spawn descendents, one for

each coloring of this node.

When the tree is N levels deep, all the legal colorings have been generated.

The leaf nodes calculate a cost for the coloring they represent, and each parent

node takes as its cost the least cost among its children. Thus the minimum cost

coloring is stored at the root.

Here is the color cost algorithm that will run in each processor.

CLASS processor;

BEGIN

BOOLEAN ARRAY edge[l:n,l:n],colors[l:n];

INTEGER ARRAY coloring[l:n],colorcosts[l:n];

INTEGER cost:

PROCEDURE color(node): INTEGER node:

BEGIN INTEGER!:
IFnodOnTHEN
BEGIN

cost:=0:

FORi: = l TO node-1 DO cost: =cost + colorcost[coloring[r

END
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ELSE
BEGIN

FOR i: = 1 TO node-1 DO IF edge| 1 , node) THEN
colorsjcoloring[i]|: = FALSE;
FORi: = lTOnDO

lFcolors|i|THEN

BEGIN
son(i).coloring|node|: =i

son(i). color! node + 1 ):

END
ELSEson(i):-NONE:

cost:=maxcost:

FORi: = ITOnDO
IF (IF son(i) = NONE THEN FALSE ELSE cost>son(i).cost)

THEN cost: =son(i).cost;

END:
END of procedure color;

REF( Processor) PROCEDURE Son(s): INTEGER s:

BEGIN REF(node)p:

p:-IF s< = (n+ 1 ) // 2 THEN left ELSE right:

WHILE p IN Processor DO
p:-IFs<=(p.n + l)//2THENp.leftELSEp.right;

Son:-p:

END of PROCEDURE Son:

END of class processor:

Let us work a small example. We will use the graph and color set given in Fig.

8.28. Color Plate 16 shows the colorings and costs arrived at by the algorithm.

Each level of the tree represents a node of the tree. That is, if the root is level 0,

the first node is colored in level 1 , and level 4 represents potential colorings for the

fourth node. Besides representing a part of a coloring, each node also contains the

minimum cost coloring found among its descendent colorings.

We see that there are two equivalent colorings that yield the minimum cost of

3. Coloring nodes (1,2,3,4) either (green, blue, red, blue) or (red, blue,green, blue)

gives us a coloring with minimum cost.

-

\X
4

Color Cost

blue

green 1

red
1

black 3

Fig. 8.28 Sample graph and color table

for the color-cost problem.
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8.4.3 Conclusions

The tree of processors we have described is a general computing structure. Each

node in the tree is a processor with general computing capability. It is not designed

with a specific problem or class of problems in mind.

The most dramatic results are achieved when the machine is applied to a prob-

lem that can take advantage of the ultraconcurrency provided by the tree of pro-

cessors. We have presented solutions to four problems that, in varying degrees,

have this characteristic.

The four examples presented can be summarized by citing the execution time

and number of processors required. Note that the total chip area of a tree machine

is related to the number of processors.

Problem Time Processors

Sorting N N
Matrix Multiplication A^^ 2N^ -

1

Clique A^ 2^-1
Color Cost N^ 2N-^' - 1

If an algorithm exhibits exponential growth, as do the clique and color-cost

problems, the lower bound on time complexity is N. A tree with an exponential

number of leaves will be 0(N) deep. Again, our solutions do not realize this lower

bound. The loading of the edge matrix is an O(N^) operation. Additionally, each

node of the graph is considered in turn and causes the traversal of a tree of depth

up to N. This too is of O(N^) in time. Are there better algorithms that can achieve

the lower bound complexity? And can a statement be made about the concurrency

of the NP-complete problems in general?

Because we are used to designing machines for a sequential environment, we
do not yet understand the effect that ultraconcurrency will have on the concep-

tualization of problem solutions. An open question is to characterize those prob-

lems that can benefit from the concurrency provided by our tree of processors.

Are the communication paths of the tree adequate for this class of problems? Can
we design algorithms with the traditional programming notations, or does their

sequential nature hide the concurrency? What are the problem-independent pro-

cedures that should reside in each processor to facilitate communication among
the nodes? And, given a fixed number of processors, can we algorithmically di-

vide the problem to maximally use the nodes available to it? These are just a few

of the interesting questions that arise from the study of a concurrent environment.

8.5 HIGHLY CONCURRENT STRUCTURES WITH GLOBAL COMMUNICATION*

This section presents an analysis of the constraints placed by physical laws on a

VLSI system in which information must be communicated from any location to

^Adapted from a paper by Carver Mead and Martin Rem.'"
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any other. We will analyze in detail the requirements that global communication

places on the design of such a computing structure.

There has previously been no adequate theoretical basis for optimizing the

overall organization of systems implemented in the VLSI technology. Conven-

tional complexity theory is inadequate because its measure of cost is the number
of steps taken by a sequential machine to complete the computation. No account

is taken of the size of the machine (and hence the time required for each step).

Possible concurrency is ignored, thereby ruling out the most important potential

contribution of the silicon technology. Traditional switching theory is also in-

adequate: it provides a beautiful formalism for describing elementary logic

functions but its optimization methods concern themselves with logical operations

rather than communication requirements. Even in today's integrated circuits, the

wires required for communicating information across the chip account for most of

the area. Driving these wires accounts for most of the time delay and energy dissi-

pation. In very large scale integrated systems, the situation becomes even more

extreme, a point considered in detail in Chapter 7. In this section, we describe a

method by which the conceptual organization of a large chip can be analyzed and a

lower bound placed on its size, cycle time, and energy dissipation, before a de-

tailed design is undertaken. The results of this analysis suggest rather general

guidelines for the organization of all large integrated systems.

8.5.1 Metrics of Space, Time, and Energy

8.5.1.1 Physical Properties

Devices used to construct monolithic silicon integrated circuits are universally of

the charge-controlled type. A charge Q placed on the control electrode (gate,

base, etc.) results in a current / - ^/r flowing through the device. The transit time

T is the time required for charge carriers to move through the active region of the

device.

All times in an integrated system can be formulated as simple multiples of r.

For one transistor to drive another identical to it, a charge Q must flow through its

active region, requiring time t. If the capacitance Cl of the load driven is K times

the gate capacitance Cg of the driving transistor, a time Kr = (CJCg) r is required.

Likewise, the elementary energy associated with the signal charge Q on the gate

capacitance Cg is Eo - CgVV2. A load capacitance KCg requires an energy KEq.

Since wires have a minimum width, their capacitance is directly proportional to

their length. Thus the energy required to transmit a signal from one point on the

chip to another is proportional to the distance separating the two points. As the

unit of length we employ the minimum spacing of two conducting paths. For the

unit of time we choose the time it takes a minimum-sized transistor to charge a

wire of unit length plus another transistor like itself. One unit of time is thus

slightly larger than the transit time of a transistor.
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8.5.1.2 Advantages of hierarchical structures

We are considering large integrated systems in which it is necessary to communi-

cate information throughout the entire system. As an example, consider a bit of in-

formation stored on the gate of a minimum-sized transistor in a random-access mem-
ory. The bit must be communicated to the memory bus of a CPU. Since there are

many words of data in the memory, there are many possible sources for each wire

in the memory bus. Figure 8.29 illustrates two possible approaches to organizing

such a bus. In part (a), a transistor associated with each bit drives the bus wire

directly. If the bus wire has a capacitance Cw, the time required to drive the bus

wire is / = T {CJC^). In a typical computer memory Cw is many orders of mag-

nitude larger than Cg, and the delay introduced by such a scheme is very long.

Since Cw is proportional to the length of the wire, it is also proportional to 5, the

number of driver transistors connnected to the wire, and to b^, the spacing be-

tween transistors. The time is thus,

t =boTS. (8-1)

Bus line

^L ^ ^r i

Fig. 8.29(a) A bus driven directly by memory cells.

^l H

(a)

Bus line

Fig. 8.29(b) A "conceptual" bus driver tree.

(h)

A second scheme is shown in part (b). Here each transistor drives a wire only long

enough to reach its neighbor. Each such wire is connected to the gate of a tran-

sistor twice as large as the transistor driving it. The arrangement is repeated up-

ward until the top level where all sources have a path to the bus. In this scheme
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the delay in driving the lowest level wire is approximately Irho. The delay intro-

duced by the wires at each level is the same, since each driver transistor and each

wire is twice as large as those driving it. Hence the delay in driving the bus line is

IrNho where N is the number of levels in the structure. Since there are S = 2^

transistors at the lowest level, the delay may be written:

/ = 2Tb^^Og2S. (8-2)

Comparing Eqs. (8-1) and (8-2), we see that for large S the delay has been made
much shorter by using a hierarchical structure.

8.5.1.3 A Cost Criterion

A hierarchy such as that shown in Fig. 8.29(b) may use any integral number, a, of

transistors driving each wire. We refer to a as the branching ratio of the driver

hierarchy. The driver transistors will in general be a times the size of those driving

them. The delay for such a structure is/ = arhJog^S = /)oT(a/log a) log 5', depen-

dent upon the branching ratio of the hierarchy. This delay is plotted in Fig. 8.30,

normalized to its minimum value which is attained at a = e.

While dramatic improvements in the performance of integrated structures can

be achieved by a hierarchical organization, a penalty is always paid in the area

required for wires. In the simple case shown, a bus requiring one wire when driven

directly requires log^^ wires when organized as a hierarchy. For this reason it is

not possible to optimize a design without a cost function involving both area and

Relative

delay

Fig. 8.30 Delay of a hierarchical

structure as a function of alpha.

Alpha
100
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time. We will use the area-time product as an example of such a cost function.

Other cost functions may be more appropriate under some circumstances. For the

above simple example, the cost function is area*time = blrS (log 5)- a/(log a)-. This

cost is minimized for a = e^ — 1.4.

8.5.1.4 Hierarchical Computing Systems

The analysis given above suggests a very general structure for computing systems.

Lowest level cells are grouped together into modules in such a way that a cells

drive their outputs onto an output wire. Each output wire is connected to a driver

transistor that is a times as large as those driving the wire. Modules are grouped in

such a way that a of those module's drivers are connected to an inter-module

communication wire. This wire in turn is connected to a driver transistor a^ times

as large as the lowest level transistors. This process is continued until the appro-

priate size system has been realized. Notice that the area of the driver transistor

for each wire in such a structure is proportional to the area of the wire. For this

reason, we compute only the area of the wires. The drivers somewhat enlarge the

unit of wire area, but do not change the functional form of the solutions.

8.5.2 Random-Access Memory—An Example

In this section we discuss the design of a large random-access memory (RAM) of 5

bits. We will apply a rigid structural discipline to our design, and compute the cost

and performance of the resulting memory.
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DDDD DDDD DDDD DDDD DDDDDDDDDDDDDDDD DDDD DDDD DDDD DDDD DDDD DDDD DDDD DDDD
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1
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1 1 I 1

Fig. 8.31 Three levels of a memory

hierarchy with alpha = 4.
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I / log a log a
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(i I Fig. 8.32 A RAM module of

level / (/ > 0).
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8.5.2.1 Organization ofthe RAM
We organize the RAM in a hierarchical fashion. The elements of level are the bits

themselves, each bit consisting of two crossing wires: a select wire and a data

wire. When the select wire is driven, the element puts its contents on the data

wire. We group a^ bits into an a x a square to form a module of level 1. If the

width of an element (a bit) is ho the elements have to drive wires of length abo. A
module on level I consists of an array of horizontal select and vertical data wires,

constituting the a^ bits of level 0, and some additional logic and wires at the side.

We group again a^ of these modules into a square to form a module of level 2, etc.

Figure 8.31 shows three levels of the hierarchy for a = 4.

To study the memory in more detail we look at a module of level /(Fig. 8.32).

We describe how to extract one of its a'^' bits. In order to select one bit of storage,

2/loga address wires are required. We run iloga of them, called the row address

wires, vertically along the side of the module, and the other iloga, the column

address wires, horizontally. Its a'^ submodules are organized into a rows of a

submodules each. When the select wire of the module is driven, loga of the row

address wires are used (by the decoder) to select one of the a rows of submodules;

the select wire running through that row is driven. The other (/ - Dloga row

address wires are run horizontally into each of the a rows of submodules, where

they serve as column address wires for the submodules. Of the iloga column ad-

dress wires, (/ - 1) loga are run vertically into each of the a columns of sub-

modules, where they serve as row addresses. The other loga address wires are
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used by the multiplexer to select one of the a data wires coming out of the columns

of submodules. The signal on the selected data wire is driven onto the data wire of

the module itself.

If we wish to have a memory of S words with N + 1 levels (level through AO
we choose N = log5/21ogQ:, or S = a^^. This gives a hierarchical structure with S
bits from which we can extract one bit at a time. If we want the word length to be

logS, we employ log5 of these structures in parallel: to select one word we select

one bit in each of the log5 hierarchies.

8.5.2.2 Area ofthe RAM
Figure 8.33 allows us to compute the size of a RAM. Let L, denote the width of a

module of level /; then we have the following recurrence relation:

Li = /log a -I- 1 + logo + aL,_,.

The solution to the above relation is

a' - 1 / 2a*+' - a'
Li = a'bo + +

a- 1 (a- 1)2

i+ 1

a- 1

log a.

Fig. 8.33 Total area per bit of a RAM
as a function of alpha.
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We are interested in the width per bit. rather than the width itself. In one direction,

horizontal or vertical, module /has a' bits; we therefore compute LJa':

Li 1 2a -
1^ = />o

+ +
;

a' a —
\ (a —

1 )-

log or

a —
+ 1 + / loga + 1 (8-3)

An interesting property of the width per bit, as expressed by Eq. (8-3), is that its

limit for /^ x is finite:

Li
lim ho +

1 1

1 (a-iy
log a. (8-4)

This means that the width per bit L^/a' is bounded from above by Eq. (8-4) inde-

pendent of the number of levels of a RAM. Expression (8-3) converges in an expo-

nential fashion toward its limit: for small values of/, (8-3) is already very close to

(8-4). We therefore use (8-4) as the width per bit for a RAM; its square is then the

area per bit. By dividing the area per bit by the bit area h'i we obtain the total area

per bit area for a RAM. Figure 8.33 shows this quotient as a function of a for four

different values of ho. It gives the overhead factor in the area that is due to the

wires. For a memory of 64K bits with N - 2. a should be 16. Expression (8-4) is

then roughly equal to Z?,, + 0.6. This shows that in 3-level 64K dynamic MOS
memories, for which Z?,, lies between 1 and 2, roughly half of the area will be

occupied by wires.

One may wonder why we have not discussed the area that is consumed by the

wires for power and ground. The reason for this is that these wires can be thought

of as increasing only the width ho of each bit; they do this by an amount that is

roughly independent of a, as is shown in the following analysis.

For simplicity we assume that the wires for power and ground run in orthogonal

directions, say parallel to the data and select wires. We compute how much one of

them contributes to the width of a module /. As discussed in Chapter 2. the current

density that can reliably be carried by a metal conductor is limited by metal

migration phenomena. Assuming that all wires are of the same thickness, the width

of a power or ground wire must be proportional to the current it carries and hence to

the number of bits served by it. Let the width at the highest level be n ; given 5 and

the design of the lowest level memory cell this parameter is easy to compute. The

width of the wire in a module on level / is proportional to the current it must supply

and is hence //(a-'7a-^). In one direction, horizontal or vertical, there are a'^/a'

such modules. The total contribution of all modules on level / is thus // (a'/a^).

Taking the sum of this expression for / = 0.1 N yields

// a- 1

a a a- 1
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There are yfS hits in one direction. The increase of the bit width, due to power and

ground, is therefore

// a

VS a-\

which is roughly equal to

Vs

We are interested in the optimal choice of a, but to make that choice we will

have to look at the access time as well, which also depends on a.

8.5.2.3 Access Time of the RAM
Each element of level drives a wire of length abo to reach the periphery of its

module on level 1; this takes time abo- Each module on level 1 drives in the same

amount of time a wire that is a times longer to reach the periphery of its module on

level 2, etc. With N being the level of the highest module, the time required to

extract one bit of storage adds up to ab^^N. We use this figure as the access time.

For a RAM of S words, the access time in units of r is then o:^o(log5'/21og a).

8.5.2.4 The Cost ofthe RAM
We take the product of the area and the access time as the cost function of the

RAM. A RAM of S words of log S bits each has the following area-time product:

1 2a - 1 V ah,, ^ ^
b, + + log a — ^log^^. (8-5)

a-\ (a-\Y / 2 log a

Figure 8.34 shows (8-5), normalized with respect to 51og^5, as a function of a for

different values of/?,,. One notices that for increasing bit sizes the branching ratio

of the hierarchy should decrease. Static memories should therefore have a smaller

a than dynamic ones. For dynamic MOS memories the optimal choice for a lies

between 8 and 16; for static MOS memories {b^ ~ 4), between 4 and 8. One may
speculate that ''smart memories" (structures in which part of the processing task

is distributed over the memory cells) will have small branching ratios and hence
relatively deep hierarchies.
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Fig. 8.34 Area-time product of a RAM
as a function of alpha.

Alpha =

8.5.2.5 Energy per Access

In real systems, the cost of power, cooling, and electrical bypassing often exceeds

the cost of the chips themselves. Hence any discussion of the cost of computation

must include the energy cost of individual steps of the computation process. In a

RAM, each access costs an energy proportional to the length of the wires that

must be charged or discharged during a given cycle. Consider a RAM such as that

shown in Fig. 8.32. At the highest level (level iV) such a device has 5 = a- ^ bits. In

each cycle, log 5 address wires of length L-, will in general change state. In addi-

tion one horizontal select line, a vertical data lines, and one multiplexer output

line (all of length L.v) will change state. Thus at level N, the energy expended per

access will be

£v==^A[log5 + a + 2].

At level N - 1,2 log a fewer address wires will be needed. Since only one select

line will be active, only a of the a^ submodules will be active. Each submodule

contains wires approximately 1/a as large as those at level N.

Thus the total energy per access is

Er = L.v [log 5(1 + 1 - 2 log a/log 5 + 1 - 4 log a/log S +) + a + 2].



8.5 Highly Concurrent Structures with Global Communication 323

100

Energy

per

access

64K RAM

Fig. 8.35 Energy per access
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This expression evaluates to

Et ^ Lyv log 5/Iog a[log 5/4 + ( a + 2 )/2]

.

Using the values from Eq. (8-4), the energy per access of any given size RAM
may be evaluated. The results of such an evaluation for a 64K bit RAM are shown
in Fig. 8.35. These curves suggest that considerably less power would be required

if mem.ory chips, even of current size, were built with smaller submodules and

smaller a.

8.5.3 Content Addressable Memory

The basic elements of the RAM are bits. The content addressable memory (CAM)
is an example of a word organized memory. We consider a "pure" CAM. It con-

sists of words of w bits each. We access a word by applying w bits of data to the

system. We assume that there is only one word in the memory with that content,

and the address of that word is produced by the memory.

8.5.3.1 Organization ofthe CAM
The basic elements are the bits of length and width b , . For reasons that become

clear later, the bits do not constitute the modules of level 0: the modules on level

• n
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log u T

,

a w y:
y;

words u
-3
-3

<

Fig. 8.36 A CAM module of level zero.
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of the hierarchy consist of a>v words of u' bits each (see Fig. 8.36). The w data bits

are run via parallel wires vertically through the module. Out of each word comes
one horizontal match wire going to the right. A word drives its match wire if each

data bit received is equal to the corresponding bit stored. When there are aw
words in a module of level 0, the address of the matching word leaves the module
via the log an- address wires.

The above organization of a module of level has one defect: it would require

the individual bits of storage to drive wires of length \\t>i, which might be greater

than the desired ahy. to reach the address wires. In Section 8.5.1.2 we concluded

that this type of communication should be achieved by hierarchy. We therefore

organize the driving of the match wire by the u- bits in a word in the same manner

as shown in Fig. 8.29(b).

Each word is chopped up into u/a subwordsof abits each (Fig. 8.37). Each of

the n/a subwords sends a signal to a "match tree*" that has a branching ratio of a

and delivers, via logaU' levels, the logical product of its inputs. The top node of the

match tree can drive a wire of length b^a logaU' = /?,vf, the length of a word in the

memory. Therefore, the word itself can drive a wire of length biaw and we may

\l.itcli tree

• • • ^subwords . . .

k-

K-

a/.,
1

»

w loe u' log Q

Fig. 8.37 One word of storage in the CAM.
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group together aw words into module (Fig. 8.36). Notice that the module's

length is roughly equal to a times its width. This will be true for modules on higher

levels as well.

We now describe a module of level / (Fig. 8.38). It contains wa'*''^^ words and

consists of a^ submodules of level /-I, grouped into a^ rows of a^ submodules

each. Each such row contains, besides the a^ submodules, w data wires to trans-

port the data to each of the submodules and log w a"'"' outcoming address wires to

transport to the right the address of the matching word. Each submodule has
y^Q,4!-3 words and hence one row contains wa^'~' words, thus explaining the

number of address wires. A module on level / has a^ of these rows and thus re-

quires log w a^'^' outcoming address wires; they are placed to the right of the rows.

a^ IV, log w a
—*H M

log w aM - 1

!

Data in 1

3
O

(/)

D

<

• • • a^ submodules • • •

Address out

a*

submodules

i

Fig. 8.38 A CAM module of level / (/ > 0).

In the CAM we have a^ submodules per module, in the RAM only a^. This is

only an apparent difference: in the CAM we have, for simplicity, combined two

steps in the hierarchy; we have however maintained our multiplication factor a for

the wire lengths. The length of a module of level / - 1, L,_i, is roughly equal to a
times the width of a module of level / - 1 , W,-, . Therefore, module / - 1 can already

drive wires of length aW,_,. As a consequence, we can put q:^ submodules into one

row as this would require the driving of wires only of length a^VVj-j in each row.
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But then we can, and this is the second step, combine a^ rows as this would

require the driving of wires of length about a^Lj^i, which is roughly equal to

8.5.3.2 Area of the CAM
We compute the length and the width separately. For the length of a module on

level /, Lj, we have the relation (cf. Figs. 8-36 and 8-38)

lOgH'
Ln = aw I /?, H

loga

Li = aHw + L,_i + logwa^'"').

The solution to this recurrence relation is

logH' \
Li - a^'^^n'l by + + (w + logu^)

logo; /

4^2, + 2 _ 4^2 3^2;+2 _ 4,-^2 _ 3^2 \

H log a
(a'- W

A module on level / has wa-'"^' bits in the vertical direction. The length per bit is

therefore Lflwa^'^'K This has the following limit for /-^ oo;

logH' q:(h' + logw + 31oga:) 4a;loga:
b,+ + +

. (8-6)
loga w(a^ - 1) wia^ - 1)^

As in the case of the RAM, Li/u'a^'+i is already very close to the limit for small

values of /; the rate of convergence is again exponential. We use expression (8-6)

as the length per bit of a CAM

.

We find for the width of a module on level /, W,, the following recurrence

relation (cf. Figs. 8-36 and 8-38):

H'

Wo = — (ah] + I) + log aw ,

a

Wi = a^^ii + logwa^'+' .
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Its solution is

1 \ a2,+2 _

Wi = a^'w \b,+— + —^

a a- — I

logw

4^2*^2 _ 4^2 ^2/+ 2 _ 4/ _ 1

+
I

log a.

(a' \r 1

In the horizontal direction there are wa^' bits. The width per bit, Wj/wa^', has the

following limit for i ^^ x;

b, +
o:^ log aw 4o;-logQ:

1

nia^ - 1) H'(a2 _ i)2

(8-7)

We take the product of expressions (8-6) and (8-7) as the area per bit.

By dividing the area per bit by the bit area h'i we obtain the total area per bit

area for a CAM. Figure 8.39 shows this quotient for iv = 32 as a function of a for

different values of ^ ,

.

If we compare Figs. 8.33 and 8.39 we notice that for small values of a the

wires in the CAM cause less overhead in area than those in the RAM. For large

values of a, it is the RAM that enjoys a smaller overhead in area. For equal bit

Total area

bit area

Fig. 8.39 Total area per bit as a function of alpha

for a CAM with word length 32.

16

Alpha
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sizes, that is, with bo = b^, the area overhead factor for the RAM and the CAM are

about equal at a = 8.

As in the RAM we can compute by how much we should increase the bit

size bi if we wish to take power and ground into account. We leave it as an

exercise for the readers to convince themselves that both power and ground give

an increase of i4{a^/{a'^ - 1)) to the length and the width of the CAM. This is even

closer to u than in the case of the RAM. If we wish to amortize this amount over

the bits, the bit width /?, should be incremented by (2/// VSn'){a'/(a- - !)) for a

CAM of 5 words of vv bits each.

8.5.3.3 Access Time ofthe CAM
For the access time we take the time required to extract the address of the match-

ing word of data from a memory of S words. With the highest level being level N
we have S = wa^^', or

log.S - iogu' 1

N =
4 log a 4

A word of storage has a response time of (logu/logQ;)a/7|; for a module of level

this becomes ((logu/log a) + 1) a/?,. Each new level of the hierarchy multiplies

the wire lengths by a factor a^ and hence requires an additional time of 2a^,. For

N levels we find

logW \ / log^ + logH' 1 ,

access time ={2N + —^— + I \ab, = —^ ^— +— \ah,. (8-8)

log a / \ 2 log a 2

8.5.3.4 The Cost ofthe CAM
We take again the product of the area and the access time as the cost function. For

a CAM of S words of u' bits each, formulas (8-6), (8-7), and (8-8) yield the cost

function

/ logu' a:(vi' + logw + 31oga) 4Q:loga \

\b,+ + : ; +
loga w(a'^ - 1) wia^ - 1)^ /

/ 1 tt^logctH- 4a^oga \( log 5 + log h' 1
,

,

X U, + — + + +— \ahi\rS.
w(a^ - 1) H'(a^ - 1)^ /\ 21ogo; 2

Figure 8.40 shows the cost function as a function of a for a CAM of 64K words

of 32 bits each. The curves are fairly independent of the choice of w provided we
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choose H' great enough, say w ^ 16. A change in S will basically move the curves

only up and down, it will not affect the positions of their minima.

We notice again that increasing the bit size will decrease the optimal choice of

a. Comparing Figs. 8.34 and 8.40 we see that content addressable memories

should have smaller branching ratios than random access memories. For bi = 4,

which seems a reasonable figure, the optimal choice of a is 4.

8.5.3 .5 General Method ofAnalysis

We have presented a general method for analyzing the cost and performance of

recursively defined VLSI structures. Parameters of any such structure may be

optimized with respect to some combination of access time, area, and energy.

The results of this study indicate that as more processing is available in each

module at level zero, b^ will be larger and the optimal value of a will decrease. A
system with a = 4 would seem to be appropriate for structures in which substan-

tial processing is commingled with storage.

Very general arguments were used to generate the basic recursive structure.

For that reason it appears that a very large fraction of VLSI computing structures

will be designed in this way. The way in which the area, time, and energy mea-

sures were established should make it clear how to apply these techniques to other

recursively defined computing structures.
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8.6 CHALLENGES FOR THE FUTURE

We have seen that it is possible to construct general-purpose computing engines

that exploit tremendous concurrency, if computations are properly matched to the

machine. The vast quantity of concurrency available in such machines can be an

enormous help with the computing tasks we face. However, to date we have no

formal way of making the possible concurrency in any given calculation apparent

or finding if we have come close to the possible concurrency inherent in the com-

putation.

Our present use of concurrent processing is limited in part by our inability to

escape the strong hold that the conventional sequential machine exerts on our

thinking. We must approach problems with concurrency in mind, recognizing that

communication is expensive and that computation is not. Progress in these en-

deavors will surely increase when some VLSI computers of the sort we have

illustrated in this chapter begin to appear. When the effort of casting the problem

as a structure of concurrent processes is rewarded by a tangible increase in per-

formance, the incentive to design concurrent algorithms and machines will surely

increase.

The tools that we use to design and implement concurrent processes are

primitive. We are badly in need of notation or language that expresses the power

and constraints of highly concurrent machines. Whether such machines are gen-

eral- or special-purpose, a natural way is needed to map problems onto them. Only

in this way will it be possible for applications to rapidly find their way into execu-

tion in this new computing environment. In addition we need a method of formally

proving the correctness of algorithms mapped onto such machines; it is not possi-

ble for human programmers to keep track of the exact relationship of the enor-

mous number of tasks executing on such a machine. An ideal notation would allow

expression of only those operations that are free of obvious fatal errors such as

deadlock.

Perhaps the greatest challenge that VLSI presents to computer science is that

of developing a theory of computation that accommodates a more general model

of the costs involved in computing. Can we find a way to express computations

that is independent of the relative costs of processing and communication, and

then use the cost properties of a piece of hardware to derive the proper program or

programs? The current VLSI revolution has revealed the weaknesses of a theory

too solidly attached to the cost properties of the single sequential machine.
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PHYSICS OF
COMPUTATIONAL

SYSTEMS

Computation is a physical process . Data elements must be represented by some

physical quantity in a physical structure, for example, as the charge on a capacitor

or the magnetic flux in a superconducting ring. These physical quantities must be

stored, sensed, and logically combined by the elementary devices of any technol-

ogy out of which we build computing machinery. At any given point in the evolu-

tion of a technology, the smallest logic devices have a definite physical extent,

require certain minimum time to perform their function, and dissipate a switching

energy when switching from one logical state to another. From the system

viewpoint, these quantities are the units of cost for a computation. They set the

scale factor on the size, speed, and power requirements of a computing system.

The basic truth that data elements are physical objects, rather than merely

mathematical ones, expands the ways in which we view information and computa-

tion. Over the years, many eminent scientists have studied the interaction of

physics and information, and of physics and computation, in certain isolated areas

where these fields overlap. Out of this background is now emerging a more unified

discipline that combines computer science, information theory, thermodynamics,

and quantum mechanics. We have chosen to call this discipline the physics of

computational systems.

This physical view of information processing leads to quantitative metrics of

computational complexity and enables comparisons to be made over a wide range

of algorithms, computing structures, and technologies. But this is not all: It also

leads to the identification of fundamental constraints on the properties of compu-
tational elements and to fundamental lower bounds on the area, time, and energy

required for computation. In what follows we have made connections with the

body of existing theory where possible. In several areas where no credible theory

exists, we have outlined what one might look Hke. We hope that our efforts will

stimulate further work on these important fundamental problems.
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9.1 DIGITAL SYSTEMS

How do digital electronic circuits differ from other electronic circuits? The answer

lies not so much in how the circuits are constructed but rather in how they are

used. In analog electronic circuits, a small signal, such as that originating from a

phonograph pickup or magnetic tape head, is amplified until it has enough power
for the intended output device, such as a loudspeaker. There is a class of computa-

tional systems that use analog electronic information to represent quantities upon
which computations are performed, and analog integrators, adders, and so forth,

to perform the computations. Why use an electronic signal to represent only one

bit of information, when we could use the same signal as an analog quantity to

represent 12 or 16 bits of information? Unfortunately, as we pass an analog signal

through a number of computational elements, each element unavoidably intro-

duces noise and distortion. These deviations from ideality accumulate as errors in

the output signal. After passing through a very large number of analog computa-

tional elements, a signal becomes so degraded that the final output signal no longer

represents the outcome of the computation.

Useful computations often require millions or even billions of steps before the

desired result is produced. Analog representations of information cannot undergo

such a large number of computational transformations without a significant ac-

cumulation of errors and loss of information. A digital representation of informa-

tion is often used because such representations may pass through an indefinite

sequence of digital electronic circuits without information loss or accumulation of

errors. This indefinite extensibility is the distinguishing property of digital systems

constructed of such circuits. As we will see, this property places important physi-

cal constraints on the design of the devices and digital logic circuits in digital

systems, and on the energy required to perform digital computations.

Logic circuits that can be cascaded in indefinitely extensible numbers must

restore the logic level at each stage. Depending on the details of the logic family,

the logic levels and switching thresholds are usually associated with logic circuit

transfer functions involving voltages, or currents. However, independent of the

logic family, the actual signal that represents information is stored as an energy

associated with the control element of the input switching device of each logic

circuit. Within a logic family, the stored energy per bit is scaled with the physical

size of the input device: large input devices require a large energy stored on their

input in order to carry out their function, while small devices require a small

energy. Any given logic family has a well-defined way of apportioning the output

signal from one device to its recipients so that they will all function properly.

We will now study the propagation of signal energy through indefinitely long

cascades of restoring logic circuits, using transfer functions involving signal

energy level. Although we use a particular logic family for illustration, the results

are applicable to all restoring logic. In order to avoid the complexities resulting

from scaling the amount of signal energy at each stage with device size, fan-out.
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etc., we use cascades of identical inverters. This study leads to a conceptually

correct picture of the fundamental requirements that restoring logic circuits must

satisfy.

9.1.1 Restoring Logic

In order for a logic signal to propagate through an indefinite number of such

restoring logic circuits, in spite of the unavoidable errors and lack of ideality in the

circuits themselves, it is necessary that such errors not propagate from one circuit

to the next. Consider the chain of identical inverters shown in Fig. 9.1. As long as

the node 1 signal energy level stays within the range of valid logic- 1, then any

change in this energy must result in a smaller change in the energy level at node 2.

This condition must be true over the entire range of inputs recognizable as a valid

logic- 1 and likewise for the range of inputs representing a valid logic-0. The
transfer functions of the restoring logic device must therefore have the form

shown in Fig. 9.1. Since the slope of the curve must be less than unity over the

entire range of valid logic- 1 and also over the entire range of valid logic-0, it

follows that the slope of the curve must be steeper than unity in the region

between valid logic- 1 and valid logic-0. Since the point at which the input energy

level equals the output energy level is the dividing point between logic- 1 and

logic-0, this requirement is often stated in the following form: The magnitude of

ode 1 |. N ode 2 . Node 3 [s

M>^
Gain

^^ '
L

alid logic-0 region Valid logic-:

Node 2

signal energy level

Logic

threshold

Fig. 9.1 Inverter signal energy

transfer characteristics, in a cascade

of similar inverters.

Node 1

signal energy level
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the slope of the transfer function must be greater than one at the point where the

input level is equal to the output level.

Each restoring logic circuit must be able to drive the inputs of at least one

circuit like itself. Thus the energy required to change the output node from a

logic-0 to a logic- 1 is at least as large as that required to change the input node

from a logic-1 to a logic-0. Since this switching must be accomplished within a

finite time, it follows that in the region between a valid logic-1 and a valid logic-0,

the restoring logic circuit must exhibit power f^ain. The circuit must be able to

supply more energy to the input node of the next stage than was supplied to its

input node. Therefore, it is not possible to derive all the energy for the switching

event from the input signal. We conclude that restoring logic circuits must draw

power from some power supply separate from the actual signal path. This re-

quirement has a number of important implications.

^^'
'

inver er.
Perhaps the simplest implementation of a restoring logic circuit is the CMOS

inverter, shown in Fig. 9.2. Input information is represented by the energy stored

on the gate capacitances of the two transistors. The output node capacitance, C,

represents the input gate capacitances of a similar successor device. A given

charge Q on the output node results in a certain voltage V'„i„ at that node. The

positive and negative supply voltages for the CMOS inverter are -h V/2 and - V/2,

respectively. At the logic-0 level, the charge -CV/2 results in a voltage -V/2.

Similarly, a charge -^CV/2 is necessary to charge the node to a voltage -i- V/2. The
relationship between V„i„ and Q is shown in Fig. 9.3. The energy stored on the

capacitor is indicated for a logic-1 and for a logic-0 b\ the shad :>' areas.

Over the range of input voltage representing a logic-0, the upper (p-channel)

transistor is turned on and the lower (//-channel) transistor is turned off. The

output is thus '"connected"" to the positive supply and hence ""restored"" to this

level. Similarly, the output is ""connected" to the negative supply by the turned on

/7-channel transistor if the input is a logic-!. The basic scheme is to provide two

power supply wires that are at voltages equal to the desired signal levels. Tran-

sistors are used as "switches"" to connect the output to the appropriate one of

these levels. The result of the logic operation is an energy stored on the capaci-

tance C:

Energy stored = J V.,„ hit = J V„„(./0/Jn dt = J V„„ dQ.

Energy relationships are easily visualized by plotting the charge on the

capacitor versus the voltage across it, as shown in Fig. 9.3. The diagonal line

represents the constraint imposed by the capacitor:

Q = CV,.u,.

Let us follow a switching event that takes the system from the lower left corner of

the plot (logic-0) to the upper right corner (logic-1) in Fig. 9.4. The vertical

»^ —ilk
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2

Fig. 9.3 Voltage and charge relationship

for the simple inverter shown in Fig. 9.2.

Voltage.

Charge. Q

Fig. 9.4 Relationship between stored

energy and energy lost during charging the

capacitor, for the circuit shown in Fig. 9.2.

distance from the diagonal line to the upper line labeled V/2 is equal to the voltage

across the p-channel transistor. As charge flows through the resistance of the

p-channel transistor, a total energy equal to the area above the diagonal line is

dissipated. The energy stored on the capacitor is shown by the area labeled

"stored for 1." Similarly, an energy equal to the area under the diagonal line will

be dissipated in the resistance of the « -channel transistor as the system is switched

from the upper right corner of the plot to the lower left corner. We define the

energy required to switch from one state to the other and back as the switching

energy, Eg^,, of the inverter; it is the total area of the box in Fig. 9.3:

^sw C V .

Notice that this energy is independent of the shape of the Q versus Vout relation-

ship for the capacitor, of the characteristics of the transistors, and of the time

dependence of the switching event.

It is convenient to think of the "signal" as positive for a logic-1, negative for a

logic-0, and zero at the inverter logic threshold. We therefore define a signal

energy level that has this property:

Signal energy level =
J (V-Viny)d

\ Q

This quantity represents the potential of the node relative to the inverter logic

threshold, weighted by the magnitude of the charge representing the signal. It is

used in all signal energy level plots in this chapter.
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We might attempt to reduce the energy dissipation by connecting a third

transistor from the node to ground. A logic transition would then consist of

activating this transistor prior to activating either the upper or lower transistors.

The energy dissipation would thus be cut in half, since the act of discharging

would require only C ( V/2)-. However, the energy used to charge and discharge the

gate capacitance of the third transistor is at least (C/2)V-. The total energy

dissipated in switching a minimum node (2 gate capacitances) is not changed.

9.1.2 Steering Logic

Throughout the development of this text, we have shown many examples of logic

functions being performed by steering signals through pass transistors to appro-

priate destinations. In this way a given logic function can often be implemented

with a smaller number of stages than would be the case if only restoring logic were

used. In such steering logic, data flows on signal paths through a network of pass

transistors. The route taken by the signals is determined by the settings of

"switches'" operated by control drivers. Changing the setting of the steering

"switches'" requires charging and discharging the gates of the pass transistors.

This energy is supplied by the control drivers. Changing the logical state of signal

path inputs to the steering network requires charging and discharging portions of

the signal path. In both cases, an energy of ~£'sw must be dissipated for each pass

transistor charged or discharged, and the energy involved must come from restor-

ing logic. This energy is dissipated either by the drivers of the signal paths, by the

drivers of the gates of the pass transistors, or both. After passing through a

number of steering logic stages, signals of necessity degrade both in terms of logic

level and of time performance. Restoring stages must be placed at intervals

throughout an array of steering logic to regenerate the signals.

9.1.3 LC Logic

Restoring logic circuits appear to be very inefficient. More energy is dissipated

during the charging of the capacitor within such a logic circuit than is finally stored

on the capacitor. The origin of this loss is clear: The power supply is at a fixed

voltage, and whenever the capacitor voltage is less than the supply voltage, any

current through the charging transistor will dissipate energy. How might we con-

struct a logic family that does not dissipate energy? The construction of a lossless

logic family would be very desirable, but is it in fact possible? If it is not possible,

can we at least determine the minimum amount of energy that must be dissipated

per switching event?

We might try to circumvent the "lossy" properties of the restoring logic fam-

ily by storing energy in one of two alternate forms, and then using a transistor to

switch between the two. An example of an attempt at such a scheme is shown in

Fig. 9.5. Here the logic signal is stored as either a current through the inductor L

or a charge on the capacitor C. A transition of the circuit from one state to the

\
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Capacitor

voltage

Fig. 9.5 Scheme for attempting

to construct dissipationless logic.

'I '2

Fig. 9.6 LC logic switching from "zero"

state to "one" state.

Other is illustrated in Fig. 9.6. Waveforms are shown for the voltage across the

capacitor and the current through the inductor. Initially the logic signal is stored as

a current in the inductor while the voltage across the capacitor is zero. At time /i,

the series transistor .V2 is turned on while the parallel transistor xi is turned off. At

ti, the voltage on the capacitor reaches its maximum value, the series transistor ^2

is turned off, and the charge representing the signal is stored on the capacitor C.

The current in the inductor is now zero. This quiescent state can be maintained on

the capacitor for an indefinite period.

In order to restore the circuit to its original configuration we need only reverse

the procedure as shown in Fig. 9.7. At time t^, the transistor X2 is turned on,

thereby initiating a flow of current from the capacitor into the inductor. The cur-

rent will increase, reach a peak, and then oscillate back until t^, when it reaches its

maximum negative value once again. At this point the parallel transistor Xi is

turned on and the series transistor ^2 is turned off. The circuit has executed one

complete cycle. If the transistors jci andx2 were perfect switches, this form of logic

would be dissipationless. We would be able to run an indefinite number of switch-

ing events without losing the signal energy. However, in order for the logic to

function, the gate voltages on the transistors Xi and X2 must come from a signal

such as the capacitor voltage Vf
Figure 9.8 shows the details of the two waveforms in the neighborhood of time

t^. The current is nearing its maximum negative value and the voltage is approach-

ing zero. When the voltage reaches some small value (shown as -Vo in the

diagram) the transistor ^2 begins to open. Thus, instead of traveling a straight
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Capacitor

voltage

Capacitor

voltage

Fig. 9.7 LC logic switching from "one" state to

"zero" state.

Fig. 9.8 Detail of Fig. 9.6 showing the waveform

in the neighborhood of /4.

trajectory as it would if the transistor were not activated, it will follow a shallower

curve, eventually leveling out at zero voltage. No transistor is able to change from

a completely on condition to a completely off condition without having a finite

voltage change applied to its control electrode. In this case we have assumed the

transistor to have zero resistance for gate voltages greater than Vq- It changes to

an infinite resistance for gate voltages less than zero. Intermediate in the switching

process, the transistor will not act as either a perfect short circuit or a perfect open

circuit. It will have a finite voltage across it together with a finite current through

it. The energy dissipated in an elementary switching event will be proportional to

the current times the voltage, integrated through the switching transient:

f's.v = j V I dt = j V C idV/dt) dt = j C V dV = (Vi) CV^r.

Thus we see that the total switching energy is equal to that stored on the

capacitor with an applied voltage V„. This irreducible dissipation is required by

any switch that cannot sense an infinitesimal voltage difference. This energy is the

same as the snitching energy of an ordinary restoring logic circuit powered by a

power supply of voltage Vq-

The conclusion from this example is clear. Storing a large quantity of energy

in a switching circuit may have the effect that only a small fraction of that energy

will be lost in any given switching event. The necessary irreversible energy loss in
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any switching event does not, however, depend upon the total energy stored but

upon the properties of the switching elements that must sense another logic signal

similar to the one they are generating. We will generalize from this and other

examples like it, to derive a conclusion for all operable logic families. This

conclusion is here presented as a postulate, and like all postulates this one derives

its validity from a long, unsuccessful search for counterexamples:

A certain energy, Eo,is required to change the state ofa switching device. No
logic element constructed using that switching device can dissipate less energy

than Eq per switching event.

9.2 VOLTAGE LIMIT

We have seen that a restoring logic circuit must dissipate at least as much energy

as that required to change the state of one of its switching devices. It is thus

desirable to use switching devices that can sense as small an energy as possible.

The contribution of VLSI to reducing the cost of computation can be traced

directly to the reduction in this quantity of energy. There are two independent

ways to make this energy small. (1) Make the geometry of the elementary tran-

sistors as small as possible. As discussed in Chapter 1, FET gate lengths must not

be made smaller than about !4 micron. (2) Make the operating voltage small. A
lower limit on the operating voltage of FET circuits is established in the following

discussion. The minimum operating voltage is set by the requirement that the gain

of an elementary circuit exceed unity.

When an MOS device is operated near its threshold, the channel resistance

/?ch is exponentially dependent upon the gate voltage Vgi

where q is the magnitude of the electronic charge. The factor n is due to the

substrate effect and is between 1 and 2 for most processes.

A model of a complementary circuit (such as a CMOS inverter) is shown in

Fig. 9.9. The resistances /?, of the lower /? -channel device and /?2 of the upper

p-channel device are exponentially dependent on the input voltage Vin as follows:

The output voltage is

V(i?, - R>)
* out

2(/?, + R.)

We are interested in the gain near the switching threshold, which because of

the supply voltage convention is at V^ = 0. Expanding the exponentials as a
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Fig. 9.9 Model of a

complementary device such

as a CMOS inverter.

Gate voltage

power series, and ignoring all but the first order terms in Vm, we find

V,. {q\l2nkT)V,^.

The gain of the circuit is thus equal to qVllnkT. Hence realistic supply vol-

tages for complementary circuits should be greater than a few kTlq. At room tem-

perature {kTlq ) = 25 mV. Ratio logic families, such as n MOS, can be analyzed by

the same technique. Since they have only one nonlinear device rather than two,

their gain is approximately half that given above. They will therefore require twice

the minimum supply voltage required by complementary devices. A detailed

analysis of the low voltage operation of CMOS circuits has been published by

Swanson and Meindl.'

9.3 DISCRETENESS OF CHARGE

The analysis of the last section indicates that single inverters can be made to

operate with greater than unity gain on power supply voltages of a few kTlq. There

is, unfortunately, more to the voltage limit story. Over a large ensemble of tran-

sistors, some will have higher or lower threshold voltage than desired due to

statistical fluctuations in the number of impurity ions under the gate. It is possible

that the pull-up transistor of an inverter could have a particularly high threshold

?
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voltage, while its companion would have a particularly low threshold. If the sum

of the two variations in threshold voltage exceeds the supply voltage 2V, the de-

vice output will always remain in one state. For a Gaussian distribution in

threshold voltage with variance AVfj,, the probability of such an occurrence is

p = ^-4V/Al-th,

Keyes^ has estimated the variance AVj^ ~ .08V. We might require that, in a

VLSI system containing 10^ inverters, the probability of all the system's tran-

sistors being within threshold limits be greater than 0.9. Such a criterion would

require a supply voltage of = 0.7 volt. Unless special attention is directed toward

reducing threshold variations, systems with 14 micron device geometries will be

forced to operate with higher supply voltages than the straightforward scaling

would indicate.

The minimum operating voltage together with the minimum size of an indi-

vidual transistor determines the minimum energy dissipated in an elementary logic

operation. This energy is then the unit in which all energies in computation are

measured. We have defined the total energy required for a complete cycle from

logic- 1 to logic-0 and back to logic- 1 as the switching energy E^^. It is equivalent

to the area of the entire square in Fig. 9.3.

9.4 TRANSITIONS IN QUANTUM MECHANICAL SYSTEMS

Try as we might, we are unable to devise, even conceptually, a lossless logic

element. In such situations, it is wise to ask whether the obstacle we have encoun-

tered is a practical or fundamental one. For example, many of the principles of

thermodynamics were developed because the efficiency of heat engines could not

be improved past a certain point. Where do we look for the physical laws underly-

ing all logic forms and computational systems? Classical physics does not provide

a sufficient basis for representing the fundamental behavior of information storage

devices. We must instead examine the properties of quantum mechanical systems,

as they apply to devices with two stable states, and develop the basic physical

principles underlying the representation and manipulation of information. These

principles will also help us in a later section visualize the fundamental nature of

irreversibility in computational systems.

The quantum theory forces us to think about nature in an entirely new way. In

the classical view, matter was considered to be made up of particles such as elec-

trons and protons. These objects were visualized as hard, shiny spheres whose
motion followed Newton's laws. On the other hand, light was visualized as an

electromagnetic wave, composed of electric and magnetic fields, and could be

described by Maxwell's equations. However, early experiments with electrons,

and later with other particles, showed diffraction behavior indistinguishable from
that observed with light. A vast collection of experimental evidence gradually
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made it clear that light and matter are special cases of the same kind of stuff. The
best way to develop one's intuition here is to view all matter as waves of various

types. When we are asked for the position of a particle, we must determine how
the particle is localized, compute the shape of a wave packet representing the

particle, take the center of the packet as the "position" of the particle, and the

average "size" of the wave packet as the "uncertainty" in the position. All our

intuition about waves in general can be used directly. The "particle" nature of

matter only becomes apparent when waves interact.

If all matter is really made of waves, how are the classical particle attributes

such as energy and momentum related to the properties of waves (frequency,

wavelength, etc)? The quantum theory identifies the energy of a particle with the

frequency of its corresponding wave, and the momentum of the particle with the

inverse of the wavelength.

The units used to describe the attributes of particles are not the same as those

used for waves. Planck's constant, h = 6.62 x 10 ''^ joule-sec/cycle, is the con-

version constant introduced to unify the disparate views. Energy E is related to

frequency i' by

E = hv.

Momentum p is related to wavelength X by

p = h/\.

Since wave equations are usually written in terms of the angular frequency

CO = 2ttv and the wave vector k = IrrlX, it is common practice to use the constant

h = hlliT in such expressions {fi is pronounced "h-bar"). The quantum conversion

relations then become

E = fjo) and p = fiK,

where ^ = 1.05 x 10"''^ joule-sec/radian = 6.58 x 10"'" eV-sec/radian.

One electron-volt (eV) is the energy gained by one electronic charge after

being accelerated through a potential difference of one volt. (The charge on the

electron is 1.6 X 10"^^ ampere-second, and thus one eV = 1.6 x 10"'^ joule).

A light wave is made up of a magnetic field and an electric field. The change in

the magnetic field with time acts as a source for the electric field. The changing

electric field acts as a source for the magnetic field. If we do not wish to bother

with the details of the internal workings of the wave, we often refer to its

amplitude (the magnitude of either the electric or magnetic field: it doesn't matter

which one. as long as we stick with it consistently) or to its intensity (the absolute

square of the amplitude). In the case of matter, the internal workings are more

complicated and we refer to a generalized amplitude ^ called the wave function.
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Since we are dealing with waves that have both amplitude and phase, it is

convenient to represent the wave function as a complex number represented by a

point in the complex plane. The real component of a complex number is its

x-coordinate and the imaginary component is itsy-coordinate. The magnitude of a

complex number is the amplitude of the wave and is represented as the length of

the line from the origin to the point. The phase of the wave is the angle of the line.

The absolute square of the wave function is the density of matter. It can be

conveniently calculated by multiplying the wave function ^ by its own complex

conjugate ^*:

Density = ^*^.

The density is usually normalized so that when it is integrated over the region of

space being considered, the total comes out to be the number of particles in that

space. The charge density can then be computed by multiplying the density by the

charge per particle. Similarly, the mass density is the density times the mass per

particle, etc. To find the center of mass of a wave along, for example, the jc-axis,

we merely multiply the density at every point by thex-coordinate at that point and

integrate over the entire space:

(x) = j ^I^*'q^jc t/(volume) =
J

^*x^c/(volume).

The computation is exactly the same as finding the first moment of the density

function.

Let us examine how the wave nature of matter works in a simple special case.

Classically, an atom consists of a positively charged nucleus surrounded by one or

more electrons. The electrons are held in "orbits" around the nucleus since their

negative charge is attracted to it, much as the planets are attracted to the sun. This

classical view has a fatal flaw. If an electron is circling the nucleus, its coordinates

are oscillating with time. Such an oscillating charge is known to create an elec-

tromagnetic wave, which radiates energy away from the source. It is, in effect, a

minute radio transmitter. Why don't the electrons radiate away all their kinetic

energy and fall into the nucleus? If the electron is a wave, the only stable orbits

will be those where the wave function comes back around the nucleus in phase
with itself. In other words, there are a number of very special orbits that have the

property that the wave function changes by an integral multiple of 2 77 radians as it

encircles the nucleus. These remarkable solutions to the wave equations corre-

spond to standing waves. The density function of an electron in a state repre-

sented by such a solution does not change with time. Such states are called

eigenstates of the system. Since the density function of a system in an eigenstate

does not change with time, the system does not radiate energy, and thus the orbits

of electrons around a nucleus can be stable.
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The eigenstates of a physically bounded system form a discrete set. The phase
of the wave function can rotate 0, 2n, Att, etc., as it makes one entire circuit in the

space. In each eigenstate, the system will have a definite energy. A transition

between eigenstates will be accompanied by the radiation or absorption of a def-

inite amount of energy. This quantization of the energy of all physical systems is

the origin of the name quantum theory.

Suppose we have a system with two eigenstates, characterized by wave
functions M^ , and M^^ with corresponding energies E

,
and E, . The time dependence

of the wave functions can be written explicitly as follows:

Here <^i and if-, are functions only of the coordinates and not of time. The time

dependence of the expected value {x) of any coordinates: of a system in one of its

eigenstates can be computed from the wave function;

:) =
J

M^*.v^.

The integral is taken over all space where the amplitude of the wave function is

nonzero. It can be seen from these expressions that (.v) is not a function of time. A
similar computation can be performed for any other measurable parameters of the

system. //; all cases, the expected values of measurable parameters of a system in

an eigenstate do not vary with time.

Consider a system whose wave function is made up of a combination of the

two wave functions:

^s = A^i + B^., = Acp^e"--^"^ + Bip.e''---^"^,

where A- + B~ = 1. The total energy of the system is Ei„t = A''Ei + B-E^- The

expected value of .v for this wave function is

(.y) =
J

^*jc^ = ^ABj ipj*X(p.2 cos(E, - E.,)t/fi + terms independent of time.

The expected values of measurable parameters of a state composed of two

eigenstates oscillate with a frequency corresponding to the difference in the

energies of the eigenstates.

In particular, the center of charge of the system oscillates with time. This

oscillating charge distribution radiates electromagnetic energy. Suppose the sys-

tem starts in the higher energy eigenstate ^, , corresponding to A = 1 and 5 = 0. A
slight perturbation might cause a very small oscillation in the charge distribution.

This oscillation, no matter how small, will result in energy being radiated away.

Any energy lost will lower the total energy of the system to a value less than £",
. Its

state will no longer be an eigenstate: B is no longer equal to zero, and A is no
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longer equal to unity. A transition between ^, and ^2 is underway. A larger

oscillation amplitude results in more radiation, and hence faster energy loss. Thus,

in its early stages, such a transition grows exponentially. As the transition pro-

ceeds, B grows and A decreases. The state of the system will evolve to a point

where A = B. This is the point of maximum oscillation amplitude and hence

maximum rate of radiated energy loss. Finally, the oscillation will die exponen-

tially, as A tends to zero and B tends to unity. The system has radiated away

exactly E, - £"2 of energy and is in its new eigenstate "^2-

Such a quantum system can absorb energy from the radiation field by the

inverse of the process we have described. We can confine two such elementary

systems into a single larger combination. If we start with one system in state 1 and

the other in state 2, the first will radiate its energy as described previously. If the

combination is isolated from the rest of the universe, the radiation cannot escape,

and will cause the second system to make a transition from state 2 to state 1 . The

second will then radiate its energy back to the first. The combination will oscillate

forever, transferring energy from system 1 to system 2 and back.

The situation is completely different if we have a large number of physically

dispersed absorber systems. The outgoing radiation will excite different absorbers

at different times. By the time the absorbers radiate their energy back to the

original system, each contribution will arrive with a random phase. The contribu-

tions cannot act coherently to drive our original system back into state 1. By
introducing a large number of absorbers we have been able to assure that our

system remains in state 2 after making its transition. Information concerning the

final state of the system has been gained through the loss of the phase information

of the wave function. In this way, time is given a preferred direction. The result

costs us the transition energy, which we cannot recover. This is the physical basis

of the second law of thermodynamics, which we will discuss in Sections 9.5 and

9.11.

9.4.1 Transition Times

The physical picture of quantum mechanical transitions presented above allows us

to make quantitative estimates of the time required for transitions between
eigenstates. If the energies of the eigenstates of a system are the same, none of the

expected values of its measurable parameters can change with time. If the

eigenstates are at different energies, it is possible for the system to oscillate with

time, and thus to make a transition from one state to another. The rate of buildup

of the oscillation is determined by how tightly the system is coupled to the

electromagnetic radiation field. The magnitude of this coupling is given by the

term J<pi*.v<p2 in the above example. Even for very large coupling terms, the

system requires of the order of one cycle to radiate away its energy, thus setting a

lower limit to the transition time r between two states separated by an energy AE:

r > - h/^E.
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Suppose we use a quantum system having two eigenstates as a storage device

to represent a bit of information. We will choose a symmetrical system, i.e., one

having two eigenstates of the same energy, since it will remain in a given state

unless externally perturbed. Starting with such a system in one of its eigenstates, a

transition from one state to another can be caused as follows:

1. Perturb the system such that the desired state has a lower energy than the

initial state.

2. Excite the system in order to mix the wave function of the initial state with

that of the final state.

3. Wait for the resulting oscillating charge distribution to radiate energy until the

system has come to equilibrium in the final state.

4. Remove the perturbation so that the two states once again have the same
energy.

We might ask if metastable behavior is possible during transitions between

the discrete eigenstates of a quantum mechanical system. If we interrupt a quan-

tum mechanical transition midway, we are left with a system with equal probabil-

ity of being in either state. Since the states now have equal energies, there is no

preferred direction to the transition. This situation is the quantum equivalent of

the '"hung" flip-flop. Even after an arbitrarily long time, there is a finite probabil-

ity that the system will not have recovered from its mixed state. Quantum
mechanics offers no escape from the possibility of incomplete transitions. De-

signers must cope with the phenomenon of metastability at a system level, as

discussed in Chapter 7.

9.5 IRREVERSIBILITY

Except for one, the laws of physics are symmetrical with respect to time. A mov-

ing picture of a physical event can be played backwards and still represent a pos-

sible physical event. This notion flies in the face of our common perception of the

relentless onward march of time. The preferred direction comes from the loss of

information contained in the phase of the wave function. Order and coherence are

easy to lose but hard to recover. Thermodynamics introduces the term entropy as

a measure of disorder in a system. A more detailed discussion is given in Section

9.11.

The second law of thermodynamics is a concise statement of the asymmetric

nature of disorder. It states that the total entropy in the universe always increases.

In any closed system, the total entropy can at best remain constant and can never

decrease with time. An increase in order or organization in one part of the uni-

verse can occur only at the expense of a still larger increase in disorder in

another part.

We have attempted to construct a logic element that can be placed in a definite

state. This definiteness is a state of low entropy. Consider a flip-flop balanced near

its metastable point. In that condition, our uncertainty as to the final state of the
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flip-flop is very high, and therefore it is in a high entropy condition. Once it has

switched to one or the other of its stable states, we are very sure of the outcome.

The device has made a decision. It has removed entropy from the information

system. This decision has been accomplished by turning electrical energy into

heat.

In order to introduce a direction into a transition between states, energy must

be lost irreversibly. A system that conserves energy cannot make a transition

to a definite state and thus cannot make a decision.

9.5.1 Logically Reversible Systems

In our discussion of the inherent dissipative nature of restoring logic we have not

considered the reversibility (or lack thereof) of the computing process itself. There

have been a number of discussions on this topic. ^-^ It appears possible to con-

struct universal computing machines that are reversible in the sense that once they

have reached a final step of computation they can be played backward and will

retrace the steps of computation to their initial state. The point here is not whether

such reversible machines exist but that if one were to construct such a machine it

would need a control signal that would tell it whether to compute in the forward or

reverse direction. Whichever direction its computation was proceeding, a dissipa-

tion of energy would be necessary to keep the computation proceeding in that

direction. Thus, far from recovering the energy spent in the original computation,

one would spend at least as much energy retracing the steps of the computation. If

the control signal were not present, and each individual logic element were capa-

ble of computing in either direction reversibly, the system would simply have no

direction whatsoever. The situation is made clearer with reference to Fig. 9. 10.

The elementary logic device in the box accepts inputs from the left and pro-

duces outputs on the right that are some logic function of the inputs. It uses a

certain energy from the power supply, and this energy is converted into heat. The

Signa

energy in

Supply

energy in

energy out

Fig. 9.10 Energy flow in

restoring logic.
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device is arranged with a control signal such that it can be run backward. With the

control signal in the opposite state, inputs are taken from the right and outputs are

presented to the left, again with an input of electrical energy from the power sup-

ply and the output of heat energy.

Suppose we were to construct a truly reversible logic device. The signals at

either side of the box can be either inputs or outputs and energy can flow either

into or out of the power supply depending upon the direction of signal flow. (In

some schemes the connection to the power supply is not required). It is clear that

this device has no preferred direction of computation; it has no way of deciding

whether computation should proceed from left to right or from right to left. This is

simply a macroscopic example of the necessity of energy dissipation as a

mechanism for providing a direction for the computation process. This dissipation

is a necessity stemming from the second law of thermodynamics. The only physi-

cal law that gives time a preferred direction is the second law ofthermodynamics

.

Conceptual heat engines that are claimed to be reversible are the topic of any

elementary treatment of thermodynamics. Such reversible engines are fitted with

two heat reservoirs. If mechanical work is done on the heat engine by an external

system, heat is pumped from the low-temperature reservoir to the high-

temperature one. If the engine is allowed to do mechanical work on an external

system, heat flows from high to low temperature. Such discussions omit the

mechanism that controls the energy flow into or out of the heat engine. Such a

mechanism must dissipate energy and therefore destroys the reversibility of the

entire system. The difference in viewpoint is exactly the same as that we encoun-

tered with LC logic. The energy processed by the heat engine can be made arbi-

trarily large if a large (and therefore slow) enough engine is constructed. The

necessary dissipation in the control device that operates the valves, etc., can be

made negligible compared with the energy scale of the entire engine. However,

the dissipation in these devices can never be eliminated. Schemes employing sens-

ing and control devices that dissipate no energy can be used to construct perpetual

motion machines. Perhaps the best known example is the Maxwell Demon J^

Logical and energetic reversibility are separate and distinct ideas. It is possi-

ble to construct logically reversible computing systems, but not energetically re-

versible ones. Logically reversible operations may be a convenient formalism for

viewing certain logic families such as magnetic bubbles. Creating or destroying a

bubble is extremely awkward, but bubbles can be steered on different paths with

ease. Schemes for implementing combinational functions in a logically reversible

way have been proposed that do not create or destroy ones or zeroes.-'"* Such

schemes would seem to be ideally matched to the properties of bubble devices.

However, such logically reversible schemes are not energetically reversible.

Magnetic bubble devices require a static bias field perpendicular to the plane of

the substrate. In addition, the bubbles are caused to move by a clock magnetic

field vector in the plane of the substrate. The clock field vector rotates 360 degrees

every clock cycle. In such a logic family, the direction of the computation is

determined by the direction of rotation of the clock magnetic field. Energy stored
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in the domain walls of a bubble at any location must be dissipated as the bubble is

moved to another location. The dissipated energy is supplied by the clock mag-

netic field.

9.6 MEMORY

The requirements described above for restoring logic circuits allow an essentially

indefinite spatial extension of combinational logic operations. However, modern
computation is normally not done in a strictly combinational manner. One step of

a computation produces an intermediate result. This result then forms the input to

a second step and so forth until the entire computation is complete. Such a se-

quential mode of computation, no matter how concurrent in nature, requires that

intermediate results be stored in some form of memory device. Binary information

implies elementary memory elements of a bistable nature -one state denoting a

logic-0, the other a logic- 1. A mechanical system that behaves in this way is the

inverted pendulum shown in Fig. 9.11(a). The force of gravity holds the pendulum
stably in either the rightmost or the leftmost position. Switching from one state to

the other can be accomplished by pushing the weight up to its maximum position

and letting it fall onto the opposite stop.

Physicists view bistable systems of this sort in terms of a diagram such as that

shown in Fig. 9.11(b). In such diagrams the potential energy of the physical sys-

tem is plotted as a function of its spatial or electrical coordinate. If the pendulum is

left in one of its stable states, given by the minima in the potential diagram, it will

stay there indefinitely until enough external energy is provided to surmount the

potential maximum and to allow the system to re-equilibrate in the other potential

minimum. Note that the energy provided by the external switching source is lost

in the impact when the pendulum falls to its stop (and perhaps bounces a bit until

the energy is dissipated). Many writers have considered particles in potential wells

of this shape to derive minimum switching energies for computation.-'^

(a)

Potential

energy

Fig. 9.11 (a) Inverted pendulum,

(b) Potential energy of pendulum.

(b)

Angle
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The slope of the potential energy curve, i.e., the derivative of the potential

energy with respect to the angle of the pendulum, has the units of a torque. This

torque is being supplied by gravity and pushes the pendulum toward one of its stable

positions.

The energy required to switch from one state to the other can be supplied

deliberately , or by some random occurrence. Suppose our pendulum were mounted
on a railroad car. While the train is stationary, we expect the device to remain in its

initial state. However, when the train passes over a very rough stretch of track, the

pendulum may bounce into the other state. The potential maximum must be high

enough to prevent such random events.

We must ask if the requirements we have established for restoring logic allow us

to construct memory devices of the required reliability. Suppose a number of

identical inverters, each having the energy transfer characteristic previously shown
in Fig. 9.1, are connected in tandem as shown in Fig. 9.12. The resulting signal

energy transfer characteristic between nodes 1 and 3 contains a point where the

signal energy level on node 3 is equal to the signal energy level on node 1 , as shown

in Fig. 9.12. With this particular signal energy on node 1 , we could disconnect the

output of the second inverter from the input to the third, connecting it instead to the

input of the first. Neither node energy in the resulting device would show any

inclination to change with time toward either a logic- 1 or a logic-0. This situation is

precisely that of the "hung" flip-flop described in Chapters 1 and 7. If, however, the

signal energy at one node were displaced slightly from this point of metastable

equilibrium, it would evolve exponentially with time as shown in Fig. 9.13.

Node 2 Node 3 Node 1 Node

Node 3

signal energy level

Signal

energy

level

Time

Fig. 9.12 Signal energy transfer characteristic

of inverter pair.

Fig. 9.13 Time evolution of the two

nodes of a flip-flop.
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-D^^[>^[>^l

Signal

energy

level

Fig. 9.14 Growth of node signal

energy in a string of inverters.

Node number

We will analyze the time evolution of this system in detail later in this section.

However, it is clear that for the signals to move away from the logic threshold,

each inverter must exhibit power gain. A small deviation from threshold at one

input results in a larger deviation in the opposite direction at the second input,

resulting in a still larger deviation in the first input, etc. Hence, qualitatively, we
can see that the requirements for restoring logic that allow it to perform in-

definitely extensible combinational functions are precisely the same as those that

allow us to implement stable, reliable, flip-flop style memory. In fact, the flip-flop

can be viewed as an implementation of a recursive definition of restoring logic.

It simply maps the spatial behavior of an indefinitely long string of restoring de-

vices into the time domain. This mapping is illustrated in Fig. 9.14. Here, a string

of inverters has a signal very close to the logic threshold applied at their input. The
voltages at the outputs of the even stages and the odd stages diverge in opposite

directions from the logic threshold as shown in the figure. Since each deviation

from the logic threshold is larger than that of the stage before by the gain of the

inverter, this curve is seen to be similar in form to that of Fig. 9. 13 where the time

behavior of the even and odd output of the flip-flop is shown as a function of time.

The details of this mapping from the spatial to the time domain for any logic family

will provide us with a fundamental measure of the time scale introduced by de-

vices of that family.
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9.6.1 Time Behavior of the Flip-Flop

A simple small-signal model of a flip-flop composed of CMOS inverters with both

amplifying stages in their gain region is shown in Fig. 9.15. The inverters have been

represented by an input capacitance and a current source supplying a current equal

to the gate charge Q divided by the transit time r. Both stages are treated as

identical. The differential equations describing the time evolution of the two node

voltages are

dQi/dt = -Q-,/t and JQz/dt = -QJr.

Fig. 9.15 Small signal

equivalent circuit of flip-flop.

It can be verified by direct substitution that the following simple exponential

form (shown in Fig. 9.13) satisfies the two differential equations:

Qi- -Q^ = Qoe"' = CV,e"\ (9.1)

Let us compare this solution with that for the cascaded inverters of Fig. 9. 14.

With a voltage V^ at the input of the cascade, the value of the voltage at the n th node
will be equal to

V„ = VoA" = Vo£''""^ (9.2)

Comparing Eqs. 9. 1 and 9.2, we see that the growth of the node voltage in the

inverter spatial cascade corresponds in the following manner to the growth of the

node voltage in the flip-flop with time:

n\n{A) < > th

[in the spatial domain] [in the time domain]

Hence the factor ln(A) per stage plays the same role in the growth in signal per

stage in combinational logic as does the factor 1/r per unit time in the time evolu-

tion of a nearly balanced flip-flop. This is a fundamental result that maps the spat-

ial domain of combinational logic into the time domain of flip-flop-like devices.

Thus, we can model much of the behavior of combinational restoring logic by

studying the behavior of simple cross-coupled flip-flops in the time domain. For

this reason, the flip-flop occupies a central place in the theory of the physics of
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computational systems. Since the flip-flop is inherently a self-contained device

and represents all the degrees of freedom available in a logic family, we can use

it to construct fundamental characterizations of logic families.

9.6.2 Energetics of the Flip-Flop

Our inverted pendulum is not an accurate physical model for the flip-flop, since

the pendulum uses a conservative field, (i.e., gravity) and therefore cannot be

arranged in such a way to provide necessary power gain. Another way of stating

the problem is that there is no mechanism possible using inverted pendula coupled

in any way to perform restoring logic operations on other pendula. We supply

power to the pendulum only when we are increasing the elevation of its mass in

the gravitational field. Suppose we attempt to change the state of a flip-flop by

supplying a current into the side of the flip-flop that is at the lower potential. If the

current we supply is just large enough, the potential on that side of the flip-flop will

be raised, turning on the transistor on the opposite side and changing the state of

the flip-flop. However, we could supply a lower current (and therefore lower

power) for an indefinite period of time without changing the state of the flip-flop.

In this way, a large quantity of energy can be supplied to the flip-flop without

changing its state, provided that the energy is supplied slowly enough.

Stored energy represents information. In order to change the energy level

representing one bit of information, there is a minimum amount of energy we must

dissipate, set by the properties of the switching devices used. For that reason, the

rate at which a system can process information is related to the system power
dissipation. The factor that relates the two isfsw. the energy dissipated per device

per switching event.

What "force" holds the flip-flop of Fig. 9.13 in one of its two stable states?

Suppose we attach a voltage source from ground to one of the nodes, and adjust its

value somewhere between -V/2 and +V/2. The circuit will "fight back" by

drawing a current from the voltage source. The magnitude of that current versus

the value of the node voltage is shown as / in Fig. 9.16. If we disconnect the

voltage source when the node is at some intermediate voltage, the current being

absorbed by the transistors of the circuit can no longer be supplied by the source

and will act to discharge the capacitance of the node and therefore return the node
voltage to its stable state. The current thus acts like a "restoring force," similar to

the gravitational restoring force on the inverted pendulum. The curve labeled F in

Fig. 9.16 is the integral of the current from -V/2 to the voltage in question. Since

the current is just the derivative of F with respect to the node voltage, F acts as

some kind of "potential" analogous to the gravitational potential energy in the

pendulum. It is called the dissipative function,^ or thermodynamic potential of the

flip-flop. The circuit is stable only at a local minimum in F.

F has the units of power: it is precisely half of the total power P dissipated in

any circuit whose only dissipative elements are linear resistors. From Fig. 9.16



356 Physics of Computational Systems

Fig. 9.16 Power dissipation (P),

node current (/), and dissipative

function (F) of a CMOS flip-flop

versus voltage of driven node.

we can see that F is still very nearly half of P for the flip-flop, even though the

resistance of the transistors is exponentially dependent on their gate voltage.

What are the general relations between F and P? The field of nonequilibrium

thermodynamics, of which this question is a part, has not as yet provided the

answer. Since F represents useful work done to keep the flip-flop in its stable

state, it seems that the total power dissipated by the flip-flop must be greater than

F. We do not have a proof of this property, even though it seems intuitively

obvious. It is interesting that the conditions of Sections 9.2 and 9.8 that are

required for logic to operate are precisely the ones that make the problem untreat-

able by ordinary nonequilibrium theory. A thermodynamics of systems of this

type would be a profound contribution. We discuss the matter further in Section

9.11.

Active memory circuits like the flip-flop (also called "static" in the popular

literature) are held in one of two stable states by a local minimum in the dissipative

function. In order to switch between the two states, not only must the energy fsw

be supplied to the circuit but it must be supplied within a certain time. An amount

of power must be supplied that exceeds the maximum in the dissipative function.

Passive memory circuits (also called '"dynamic") can be switched by supplying

the switching energy as slowly as desired. Notice that the minimum energy re-

quired to switch a flip-flop is indeed £"su . since one node makes a positive transi-

tion while the other node makes a negative transition.
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For efficient logic families like CMOS, the dissipative function is similar in

form to the actual power dissipation of the circuit. However, for less efficient

families, the dissipative function may represent only a small fraction of the total

energy consumed by the circuit. Many logic families dissipate much more power

than that actually required to change the stored energy. It is always possible to

waste power. The simplest example is to simply connect a resistor from VDD to

ground. The power that is wasted will have no effect whatsoever upon the per-

formance of the device. It is even possible to waste power in such a way that it

depends upon one of the voltages in the circuit. For example, a transistor can be

connected with its drain to VDD and its source to ground. The gate can be con-

nected to one of the nodes of a flip-flop. The total power dissipated by the flip-flop

will then be the actual power dissipated by the internal circuit plus the power
wasted in this parasitic transistor.

The ratio of the actual power to the dissipative function is a measure of

ideality of these restoring logic circuits. Power must be dissipated in order to

construct a controllable potential function and thus allow logic decisions to be

made and information stored. However, it is possible to construct circuits that

dissipate much more power than that required to restore the bistable element into

one of the two stable states. The smaller the power dissipated over and above the

dissipative function itself, the more ideal the logic circuit.

Ideally we would apply the results of nonequilibrium thermodynamics to the

flip-flop as a system. However, no general resuhs are known for systems in which

more than kT of energy is lost in a single event. This is an area of opportunity for

fundamental work.

9.7 THERMAL LIMIT

The energy E^^, representing the difference between a logic- 1 and a logic-0, must

be very large compared with the thermal energy kT, where k = 8.62 x 10~^ eV/°K

is Boltzmann's constant. At room temperature, where T ^ 293°K, the thermal

energy kT ^ 0.025 eV = 4.0 x IQ-^' joule. The probability P of a thermal fluctua-

tion of energy Esw within the response time t of the circuit is given by the

Boltzmann relation:

P = exp[-Es^,/kT],

leading to a failure rate of il/r)exp[-E^,JkT] failures per second, per device.

It is thus possible to reduce the probability of error due to thermal fluctua-

tions, to any degree required, by increasing the signal energy used to represent the

information. This then is the definition of our "indefinite'' number of computational

steps. It is possible to reduce the ultimate error rate to any desired extent but not

eliminate it altogether.
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Many authors have concluded that the minimum value of E^^ is equal toA:7.

No workable system can be built with such low stored energies. From the above
discussion, it is clear that the minimum switching energy is given by

£sw > kT ln(mean time between errors/r).

Even for very large systems computing for very long periods of time, a switch-

ing energy of Esw = 100^7 provides a very low probability of failure due to thermal

fluctuation. There does remain a finite chance that some storage element will switch

spontaneously due to thermal noise, but in today's systems and even foreseeable

VLSI systems, the probability of such a random switching event due to thermal

noise is much less than that of a failure due to electrical noise, cosmic rays, or

mundane device failure mechanisms. For example, in systems with poorly designed

timing constraints, synchronizer failures occur many orders of magnitude more

frequently than thermal failures (this observation is the origin of the Seitz. Criterion

given in Chapter 7).

9.8 QUANTUM LIMITS

The low voltage limit on the operation of amplifying electronic devices discussed

earlier is a fundamental one, arising from the quantization of the electronic

medium (the charge on the electron) and the energy uncertainty due to thermal

fluctuations kT. It is therefore a result of both quantum and thermodynamic prin-

ciples. While we have derived the limit by a classical circuit theory approach, the

quantum nature of the electron appears in the channel resistance's exponential

dependence on the gate voltage. This dependence also involves the ratio of the

thermal energy kT to the charge q on the electron, due to the thermal distribution

of individual electrons in the source of the FET and the fact that each electron

must independently surmount a potential barrier in the semiconductor. Hence, we
may think of the set of electrons that surmount the potential barrier as a collection

of individual events whose statistics are governed by thermal fluctuations and the

magnitude of the electronic charge. Information is represented by a quantity that

is quantized. Each quantum of that quantity must carry an energy greater than A 7.

Hence, even in logic in which a very large number of electrons are used to represent

a logic signal, the voltage must be larger than A 7/^/. A similar limit applies to logic in

which the quantum of information storage is the magnetic flux unit 4>o. In this case,

the current supplied into the control inductance of any device must be at least

A: 7/00.

A lower bound on the switching energy of logic devices was found in the

previous section to depend on thermal considerations. The lower bound on the

size of properly operational FETs is determined not by thermal considerations but

by the discreteness of electrical charge mentioned earlier and by the wave nature

ofthe electron.
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The wave function of a free electron can be written as ^ = e""^ . The depen-

dence of the wave vector k on the energy E is given by

K = {2mE/h'y'\

If the energy E is positive, then k is real and ^ represents a traveling wave. If the

energy is negative, then k is imaginary and ^ is a damped exponential. The simple

fluid model of the FET, given in the Section 1.15 (A Fluid Model for Visualizing

MOS Transistor Behavior), may help us to visualize how electrons are contained

in a transistor. The "outline of the dam" in the figures in that section (in other

words the line representing the barrier over which "fluid" must flow) is called the

conduction band edge. The conduction band edge is the zero of energy for elec-

trons in the semiconductor. Electrons with higher energies can move freely about.

Electrons with lower energies cannot. Consider an electron in the source region in

"case 1" of Fig. 1.37(b) that is moving toward the drain region. When the electron

encounters the barrier, it does not have the energy to surmount it. Therefore, it is

reflected and ends up traveling in the opposite direction. However, the reflection

is not abrupt. The wave function is exponentially damped to the right of the con-

duction band edge. If the barrier is thin enough, the damped exponential may have

a substantial amplitude on the opposite side. In this way the electron can pass

through a classically "forbidden" region. This process is called tunneling

.

For a transistor to operate properly, the current due to electron tunneling

must be smaller than other currents in the circuit. Suppose the barrier (usually the

depletion region around the drain) has a thickness Ajr. The ratio of the wave func-

tion on the two sides of the barrier is e-^'<^'^-^. Since the electron density is pro-

portional to the square of the wave function, the density ratio on the two sides of

the barrier will be e'-^"^^-^. In order to keep tunneling from dominating the device

behavior, this ratio must be small, which implies

2|/<|Ajc > 1,

and thus

^x > (0.5)(^72w£b)"^

For a value of the barrier energy, E^y, of one eV, we find that Ax is about

1.0 X 10^^ micron. Gate oxides and junction depletion layers must be many times

this thickness. In 1978, gate oxide is already less than 0.1 micron thick. We are

thus within sight of a fundamental size limitation due to quantum phenomena.
When making the preceding calculation, we must use for the mass m the effec-

tive mass of the electron in the particular semiconducting material from which the

device is constructed. The preceding calculation assumes m to equal one free

electron mass, m^ = 0.91 x 10 -"
g, which is approximately the effective mass in

silicon. However, effective masses in high-mobility materials are much less than
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one m,.. For this reason it is dangerous to compare performance figures for devices

made of different materials. A high-mobility material may give a very short transit

time for today's dimensions. However, it is usually not possible to construct as

small a device with this material as with a lower mobility, higher effective mass
semiconductor. The smallest operational devices of high-mobility materials will

thus be larger, and generally no faster, than those made of silicon.

9.9 TWO TECHNOLOGIES AN EXAMPLE

In this section we will apply physical considerations to the comparison of two very

different technologies for constructing computational systems. The technologies

selected for this example are based on (1) semiconductor FET devices, and (2)

superconducting logic devices. The material presented in this example demon-

strates the importance of considering not only device physics and device design but

also system physics and system architecture, when making such comparisons.

Several types of limits on the performance of semiconductor FET logic

families have been noted in the foregoing discussion: those dealing with the tem-

perature of operation, those arising from quantum phenomena, those associated

with the granularity of charge in the semiconductor substrate, and voltage con-

straints arising from gain considerations. Of these, the limit due to quantum
phenomena appears the least restrictive.

Therefore any quantum-limited process operating at very low temperature

merits serious study. For this reason, superconducting logic families have at-

tracted much attention. In such logic families, information is stored as a magnetic

flux trapped in a superconducting ring and is switched by means of a Josephson^

(or similar) junction. Devices have been demonstrated that exhibit very fast

switching times and low operating power. It is important to understand the rela-

tive merits of such a radically different technology from the point of view of over-

all system design. We should therefore find some way to compare it directly with

semiconductor technology over the range of sizes implied by scaling into submi-

cron dimensions.

Over a wide range of technologies, complexity levels, and functionality, one

clear metric of system cost has emerged: the maximum power dissipated by a

system. In modern technology the basic electronic components account for a very

small fraction of the cost of a complete system. The cost of the "system power

overhead,"" including power supplies, power distribution, filtering, decoupling,

cabling, connections, lights, switches, packaging, thermal management, and

mechanical artifacts, usually accounts for the lion's share of the total system cost.

The electronic devices affect the system power overhead through the energy E^w

required to perform an elementary logic operation, while system architecture af-

fects it through the communications overhead superimposed on the basic logic

functions.

In comparing radically different technologies, it is important to compare total

system cost and therefore total system power. Total system power scales as the
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switching energy of the basic technology. Propagation delay can often be traded

off against power dissipation over a wide range in any given technology, but their

product cannot be reduced below the switching energy. In a charge controlled

semiconductor device such as the MOSFET, the irreducible switching energy is

^sw = CgV^, for gate capacitance Cg and total supply voltage V.

In a superconducting device f^sw = LI-, where L is the inductance of the

superconducting loop plus the associated junction, and / is the supply current. In

both technologies, parasitics will increase Esw to several times the values com-
puted for minimum devices. However, for purposes of comparison, we will con-

sider only the minimum devices themselves.

Since all energies in both types of logic are multiples of kT, it might appear

that operating a computer at very low temperatures would reduce the total power
required. That this is not the case is easily demonstrated. Suppose that to perform

a computation a machine dissipates energy E^ = nlcTi^ as heat at some low temper-

ature Tl- To maintain the low temperature, this heat energy must be transported to

and released at room temperature, 7h , by some refrigerator. The total energy to run

the system is equal to £l p'us the work required to run the refrigerator. Ther-

modynamics^ shows us that a refrigerator operating on the Carnot cycle requires the

least amount of work input per unit of heat transported from the low-temperature

environment to the high-temperature environment. On input of work W, a Carnot

refrigerator can transport, from the Tl to 7h environments, a quantity ofheat energy

Q given by

Q/W = 7,7(7,, -
7l).

Thus the work W required to transport fL^om 7^10 7^ is, in general,

W ^ E^iTy, - T,J/T,^.

The total energy, ^tof required for the computation is therefore

E,„,^nkT^ + nkTdiTn - Tl)/Tl\ = nkJ^.

As 7l is lowered, the switching energy is lowered, but the work input to the

refrigerator must be increased by at least an equal amount. The total energy cost,

including that necessary to run the refrigerator, is thus independent of the temper-

ature of the computer's switches. This energy cost is, at minimum, identically

equal to nkT at the temperature of the ultimate heat sink. In some space applica-

tions a heat sink at very low temperatures is available. However, for terrestrial

computers, refrigerating electronic devices in order to reduce the energy of com-
putation is logically equivalent to constructing a perpetual motion machine. For

this reason, we will use kT at the heat sink temperature in system energy calcula-

tions, independent of the actual temperature at which switching devices operate.
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Fig. 9.17 Comparison of switching

energies of room temperature FET
logic and superconducting logic.

Now we turn to the details of the technology comparison. The switching

energy of MOSFET logic is Es„ = C^V-. The most straightforward MOSFET
scaling results from reducing all dimensions by the same scaling factor. If this type

of scaling is applied to the MOS family, the gate capacitance decreases linearly

with the scaling factor. In order to keep the electric fields constant, the supply

voltage is scaled by the same scaling factor. The switching energy is thus reduced

by the third power of the scaling factor, as illustrated in the top curve in Fig. 9.17.

The lower size limit shown is a conservative estimate set by device physics factors

previously discussed.

Were it possible to build FET devices that operate with one electronic charge

on their gate, their performance would not benefit from scaling to smaller dimen-

sions. In such a device, the switching energy can be expressed in terms of c/, the

charge of the electron:

£s« = CV' = C7-7C.

Since C decreases as the device dimensions are scaled down, the switching energy

actually increases. This relationship illustrates a general principle:

A logic device working at its quantum limit requires a higher switching energy

as the dimensions of the device are made smaller.

Even at present dimensions, superconducting logic operates at or near its

quantum limit. The flux in a superconducting ring must be an integral multiple of
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the flux quantum Oq — 2 x 10~^^ Webers. The switching energy for a device

operating with one flux quantum can be written as

£sw = LP = ^o'/L.

Note that the inductance L = ^JI is directly proportional to the size of the loop.

The above dependence for superconducting logic is illustrated in the bottom curve

in Fig. 9.17. The lower size limit shown is set by the penetration depth \ of the

superconductor.^ Magnetic field strength decreases with distance, x, into the

superconductor as e''^'^. If the thickness of the superconducting ring is less than a

few \, the ring cannot localize the flux within it. A typical value of \ is 0.1 micron.

In many superconducting circuits, the inductance is formed by a strip-line

parallel to the substrate ground plane and spaced from it by a thin (—0.1 micron)

insulating layer. Scaling of such devices without decreasing the insulator thick-

ness results in the middle curve shown in Fig. 9.17.

Comparing the curves, it is clear that, when an accounting is made of the total

system energy, and when the effects of scaling to submicron dimensions are taken

into account, room temperature FET logic is a remarkable technology. At

achieveable submicron dimensions, it can actually outperform its superconducting

counterpart. Lower switching energies in the superconductor technology can be

achieved only by sacrificing density. This trade-off may be desirable under some
circumstances. It seems more likely, however, that maximum computation per

unit cost will be achieved by jointly minimizing switching energy and maximizing

circuit density.

The absolute speed attainable with the superconducting logic is, however,

considerably better than that of its FET counterpart. For a critically damped
Josephson junction, the time response t is either

Tlc =^ {LCy^'- (limited by the resonant circuit)

or

Tq = hlE^^ (limited by the quantum transition time).

In these equations, L is the loop inductance used above and C is the junction

capacitance. The current carrying capability of the Josephson junction varies ex-

ponentially with dielectric thickness. Since the current level of the Josephson cir-

cuits increases only gradually as the devices are scaled down, the dielectric thick-

ness can be assumed approximately constant as the devices are scaled. Hence tlc

will scale down as the 3/2 power of the device's linear dimensions. The quantum
transition time is set entirely by the switching energy. For the FET, the oxide

thickness must be scaled, and the delay time varies linearly with the scaling factor.

At 1 micron feature size, for example, the switching time of a minimum dissi-

pation superconducting device is ~ 2 x 10"" sec, hmited by the quantum transi-

tion time. By using higher currents and increased switching energy, the switching
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time can be made as short as r^ ^ 2 x 10 '' sec. For an FET with the same
feature size, the transit time is ~ 5 x 10 " sec. The trade-off between power and
delay time extends to shorter times for Josephson devices than it does for FETs.
Although the minimum switching energy (referred to at room temperature) will be

about the same as that of future minimum feature size FET's, one will have the

option of switching Josephson devices on the order of one hundred times faster

than the fastest FETs, but at the cost of some hundreds of times the power. Ex-

tremely fast switching times put even more premium on management of communi-
cation paths (in 10 '•' sec, a signal in a superconducting transmission line travels

=«10 microns).

One basic problem with low-temperature logic is that the lower switching

energy levels result in poor noise immunity. They therefore require better shield-

ing to reduce the effect of external electromagnetic occurrences to a level well

below the switching energy.

Another problem is that the low switching energy creates a mismatch to the

outside world for which a penalty in additional power consumption has to be paid,

since the drivers to the outside world consume a large amount of power and intro-

duce extra delays. As long as information is not required to exit the low-

temperature environment, chip-to-chip communication can be done at high

bandwidth. Note that, in this respect, superconducting logic is superior since it is

much better matched to the impedance of transmission lines than is FET logic. In

any event, exponentially staged drivers are required when driving from the low-

energy environment to the outside world, as discussed in Chapter 1. These drivers

introduce a minimum delay t^j.'-

Tar ^ re\n{Y).

where Y is the ratio of energy required at the destination to that of the elementary

logic device. If the switching energy of a logic element is a factor of 100 smaller

due to operation at low temperature, a factor of at least 10 in driver delay is intro-

duced. Furthermore, the dissipation of the last stage of the driver is determined by

the energy level necessary in the outside world, not in the low-temperature envi-

ronment. The cost of this driving energy is at least 100 times higher than that for a

room-temperature driver of the same capability, due to the constraints imposed by

the laws of thermodynamics.

Architects comparing alternative technologies for building computing systems

take into account many costs other than just total switching energy. The weights

assigned to the various factors usually depend upon their proximity to absolute

constraints imposed by physical law or by system performance and cost consider-

ations. In certain situations, we may be perfectly willing to pay the price for large

increments in energy, energy conversion equipment, mass, volume, and structural

and operational complexity, to achieve an increment of system performance.

Suppose, for example, we now had to specify a very high performance, gen-

eral purpose computer for the late 80s or early 90s. Since switching speed trans-

lates directly into time performance in the classical stored program computer, we
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might see no other alternative for high performance than a machine based on

superconducting devices. Such a decision recognizes that no present alternatives

exist for trading off processing speed against concurrency in multiple processors

for general purpose computation. That such alternatives must ultimately exist is of

course evident from observations of the information processing capability of living

organisms.

Superconducting devices meet the requirement for high speed in the classical

computer, and a number of machines based on that technology will likely be built

before viable high-concurrency alternatives appear. However, in the longer term,

in applications where mass, volume, structural complexity, and cost are real con-

straints, semiconductor devices operated at heat sink temperature will generally

have the advantage. Thus, the switching technology likely to dominate the terres-

trial environment, used for personal computing and personal communications on a

vast scale in an enormous number of different applications, is semiconductor

technology. For other applications, the semiconductor technology itself may ben-

efit in a variety of ways from low-temperature operation (Ref. 9 of Ch. 1), as for

example in the reduction of subthreshold current in submicron FET's.

9.10 COMPLEXITY OF COMPUTATION

Classical complexity theory counts the number of steps required by a particular

algorithm to perform a given computation. That number is called the complexity of

the algorithm. The number of elementary logic events is closely related to the

number of computational steps. We have seen that each elementary logic event

required a minimum energy, E^^. Therefore, the minimum energy required to per-

form a computation is equal to the number of elementary logic events multiplied

by the switching energy per logic event.

The complexity of a physical computation is most appropriately measured in

energy units. It must include the elementary switching energies mentioned above,

plus the energy cost of communicating information throughout the system. Thus,

the computation energy provides us a unified measure of the efficiency of the

algorithm, the computational structure, and the mapping of one onto the other.

Any change that results in a lower energy cost of computation for a given technol-

ogy implies an improvement in one or more of these three basic ingredients of the

design of computing systems.

It is useful to define complexity in such a way that it does not depend on the

particular state of the technological evolution. This can be accomplished by nor-

malizing the energy to the switching energy of the elementary logic devices:

Energy required for computation
Complexity of computation =

Esw

This measure of the complexity of a computation is equivalent to the total entropy

of the computation as defined in the next section.
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9.1 1 ENTROPIC VIEW OF COMPUTATION

The term entropy occurs in two widely separated fields: thermodynamics^ and

information theory.'""'- The underlying ideas are similar in both fields: entropy

is used as a measure of the amount of disorder in a system.

In thermodynamics, entropy is defined as proportional to the logarithm of the

number of ways of arranging the internal particles of a system while holding the

external aggregrate properties constant. Suppose a system consists of two con-

tainers holding a total of 10 blue molecules and 10 red molecules. There is only one

way in which the molecules can be arranged so that all 10 blue ones are in one

container, and all 10 red ones are in the other. On the other hand, there are a very

large number of ways we can arrange to have 5 of each color in each container.

The second arrangement has much more disorder and therefore much more en-

tropy than the first.

In information theory, entropy is defined as the logarithm of the number of

possible messages that can be represented by a bit string of given length. A simple

example serves to clarify the idea. A string containing n bits can represent at most
2" different messages. A string containing m bits can represent 2"' different mes-

sages. If certain bit combinations were not allowed, fewer messages could be rep-

resented. If no constraints are placed on the way the bits are used (if no combina-

tions are excluded, for example), then the entropy is equal to the number of bits in

the string. The entropy of the two strings taken together is just log(2"'^"') - n + m
bits, exactly the total number of bits in the combined message. Entropy as a

measure of information content thus conforms to our intuitive notion that twice as

long a message should be able to carry twice as much information.

How can the basic ideas of information theory be extended to the notion of

computation? We can view the methods of classical complexity theory in the fol-

lowing way. A computation poses a question about a certain collection of data.

The operation of the computational algorithm is similar to a giant game of "twenty

questions." Each logical decision cuts down the solution space to some fraction of

its former size. The number of decisions is the logarithm of the ratio of the size of

the total possible solution space to the size of the resolution element of the final

answer.

The relation between this metric of classical computational complexity and

the entropy of information theory is thus clear. Both give the number of decisions

required to specify one correct answer element in some total space. In the infor-

mation theory case, the space is that of all messages representable with a given

length and format. In the computation case, the space is that of all solutions possi-

ble with a given algorithm and quantity of starting data.

We will call the number of logic operations required to perform a given com-

putation on a given assemblage of data the logical entropy, 5^, of the data relative

to that computation. The purpose of the computation is to produce just one cor-

rect outcome, i.e., the computation must reduce the logical entropy to zero. In-

formation theory concludes that with sufficiently complex coding and decoding

schemes, information can be communicated reliably with only —/:! of energy per

..
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bit'^ however, for a simple one-bit code much more energy is required to obtain

an equally low error probability. In order that the reliability of the computation be

maintained as discussed in Section 9.7, many /:T of energy must be used to process

each bit of information. If the actual energy used is E^^, then the energy efficiency,

relative to the information theoretic limit, is —kTIE^^.

Each bit of logical entropy requires at least E^^ of energy dissipation for its

removal:

- A^l/A^dl ^ l/^sw bits processed/joule.

Stated another way, the increment of energy dissipated to reduce the logical en-

tropy is greater than or equal to the switching energy multiplied by the actual

reduction of the logical entropy in bits processed:

A£:dl ^ - £swA5l joule.

In any physical computing system, the logical entropy treated by classical

complexity theory is only part of the story. There is also a spatial entropy as-

sociated with a computation. Spatial entropy may be thought of as a measure of

data being in the wrong place, just as logical entropy is a measure of data being in

the wrong form. Data communications are used to remove spatial entropy, just as

logical operations are used to remove logical entropy. Communication is thus as

fundamental a part of the computation process as are logical operations.

Consider a spatially distributed structure consisting of information storage

sites and communication pathways between the sites. An elementary communica-
tion event in an assemblage of data in this structure is the transmission of one bit

of information from one storage site to another. By analogy with information

theory, an abstract kind of spatial entropy might be defined as the logarithm of the

number of possible combinations of communications that can be performed in a

given spatial assemblage of data. However, such a definition does not characterize

the energy requirements for communications for a real computation in a real phys-

ical structure. By analogy with our definition of logical entropy, we define the

spatial entropy, .Sg, of a given assemblage of data in a given structure relative to a

given computation as the number of communication events required for that com-
putation, with each event weighted by its energy dissipation relative to E^^. At

least E^^ of energy dissipation is necessary for each communication event, since at

least one switching event must occur to cause a communication event. The trans-

mission of a bit of information may require some additional dissipation of energy,

the amount depending upon the length and physical characteristics of the trans-

mission pathway. Therefore, the spatial entropy, S^, is just the total required

communication energy divided by E^^. Each bit of spatial entropy requires at least

£^sw of energy dissipation for its removal:

- A5s/A£'ds ^ 1/^sw bits communicated/joule.
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In other words, the increment of energy dissipated to reduce the spatial entropy is

greater than or equal to the switching energy multiplied by the actual reduction of

the spatial entropy in bits communicated:

A£ds ^ - £:swA5s joule.

We now develop a constraint relationship between reductions in logical and

spatial entropy during a computation, and necessary associated increases in ther-

modynamic entropy in the overall system. In order to best do this, we first take a

closer look at the concept of thermodynamic entropy, S. The original definition of

entropy, and the idea of changes in entropy being a useful measure of changes in

the state of a system, emerged during early studies of heat engines, before the

underlying nature of entropy as a measure of disorder had been visualized. In

these studies, the incremental change in entropy of a system during reversible or

quasi-static processes is defined as the ratio of heat energy input into a system

divided by the absolute temperature at which this input occurs. The difference in

entropy between two states of a system is then calculated by a process of integra-

tion using any incrementally reversible or "quasi-static'' path between the states.

The calculated difference is the same for any such special paths. This state vari-

able was found to have very interesting properties. For example, it could be used

to predict whether or not a postulated process could actually occur. All actual

processes are irreversible, and it turns out that during an irreversible process be-

tween two states of a system a larger increase in thermodynamic entropy occurs

than would be predicted by the integration for a reversible or quasi-static path

between the states. Thus, no postulated process can occur that would result in a

decrease in thermodynamic entropy in an isolated system.

The realization that entropy is actually a measure of disorder or uncertainty

emerged during the later work of Boltzmann and Gibbs during the development of

statistical mechanics. Unfortunately, thermodynamic entropy, S, has retained its

historical units of an energy per degree absolute temperature. These units tend to

obscure and make mysterious what otherwise might be a more straightforward,

dimensionless concept of disorder, such as those introduced for logical and spatial

entropy. For this reason, we define a dimensionless form of thermodynamic en-

tropy, Sj = S/k. By choosing a proportionality constant, k, having the correct

value and dimensions, we find that Sj actually equals the logarithm of the number
of ways of arranging the quantum states of the particles of a system while keeping

the aggregate properties constant. (Sj as defined here is in many treatments of

statistical mechanics referred to as the logarithm of the "thermodynamic probabil-

ity," and written as S/k = \nW, or as S/k = In O*). Thus Sj is an extensive but

dimensionless quantity, having the units of "particles," that measures the relative

disorderliness of a system of particles. The correct constant, k, is none other than

Boltzmann's constant. It may be thought of as the gas constant per particle, or per

atom, and is also the conversion factor from the scale of energy to the scale of
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temperature. (The gaseous state is a state of maximum entropy. In such a state,

adding heat energy just increases temperature. In lower entropy states, more in-

teresting things may happen upon the input or removal of heat energy, sometimes

vividly reflecting major changes in the relative disorder of a system of particles, as

for example during the melting of a block of ice by adding heat energy at 273 °K.)

The total energy dissipated during a computation necessarily produces an in-

crease in thermodynamic entropy in the overall system:

AS ^ (AEoL + AEosVT,

and thus

ASjkT^ -fswA5L -fswA5s.

This leads us to the "bottom line." In order to reduce logical and spatial

entropy in any real physical computational process, energy must be dissipated,

causing a corresponding increase in the thermodynamic entropy of the system, as

follows:

ASr + (E.JkT) A5l + {EsJkT)ASs ^ 0.

The relationship between logical and thermodynamic entropy can be clarified

by considering a CMOS inverter, such as that in Fig 9.2. The charge on the output

node can be viewed as made up of a number of particles; electrons with charge -q
and holes with charge +q. The total number of particles is fixed at No = CV/2q.

Our resources consist of N^ electrons and N^ holes. The logarithm of the number
of ways to achieve any given voltage on the node is the dimensionless ther-

modynamic entropy, S^, of the node at that voltage (relative to an additive con-

stant). When the node contains No electrons, its voltage is -V/2. When the node

contains No holes, its voltage is + V/2. These are both states of zero entropy (rela-

tive to an additive constant), since there is only one way we can deploy our re-

sources to achieve each of them. All other states are mixtures of some electrons

and some holes and may be achieved by deploying our resources in a number of

different ways. When the output node is at zero voltage, halfway between the

positive and negative supply rails, it contains No/2 electrons and No/2 holes. This

is the point of the maximum thermodynamic entropy. It is likewise the point of

maximum uncertainty in the logic state of the node, and hence of logical entropy.

Energy is the only common coinage in the world of entropy. The amount of energy

required to change the thermodynamic entropy by one unit is kT. The amount of

energy required to change the logical entropy by one bit is ^sw The term Es^/kT

appearing above is just the scale factor between the amounts of energy required to

produce unit changes in the two levels of entropy.

We may now view the voltage limit developed in Section 9.2 in a more funda-

mental way. Consider the flip-flop of Fig. 9.13 as a thermodynamic system. It can
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interact with the external environment by absorbing electrons and holes from the

two rails of the power supply. In the storage nodes of the circuit, excess electrons

and holes annihilate each other in such a way that the constraints described above

are satisfied. Each rail can be viewed as containing a gas of the appropriate parti-

cles, each with an average energy qV/2. The environment can also absorb heat

from the tlip-flop. Under what conditions can this device spontaneously evolve

from a "hung" state of high internal entropy to one of lower entropy? Each parti-

cle that can surmount the barrier of a transistor and enter the flip-flop decreases

the entropy of the environment by one unit. The energy qV/2 carried into the

nip-tlop by each such particle is, on the average, dissipated inside and causes an

equal quantity of heat to flow back into the environment. This heat increases the

entropy of the environment by qVllkT units. The thermodynamic entropy change

in the overall system, that of the environment plus that of the flip-flop, must be

greater than zero:

A^Tdoiai) = qVllkT - 1 + {IS J of flip-flop) > 0.

In order that the entropy of the flip-flop decrease, the first two terms must be

greater than zero, leading to a result identical to that of Section 9.2:

qVllkT- I >0,

and thus,

V > IkTIq.

Computation in a macroscopic system can be viewed in the same terms. With

respect to a given computation, an assemblage of data in an information process-

ing structure possesses a certain logical and spatial entropy. Under proper condi-

tions, we may be able to remove all of the logical and spatial entropy from a

system leaving it in the state of zero logical and spatial entropy: we call this state

"the right answer." A sufficient dissipation of energy and outflow of heat must

occur during the computation to increase the entropy of the environment by at

least an equal amount. When viewed this way, information processing engines are

really seen as just "heat engines,"" and information as just another physical com-

modity, being churned about by the electronic gears and wheels of our intricate

computing machinery.

9.12 CONCLUSION

We opened this book with a discussion of the physical properties of elementary

switching devices. We have now closed with a discussion of physical principles

that influence the higher level properties of computational systems.
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The communication of information over space and time, the storage and logi-

cal manipulation of information by change of state at energy storage sites, and the

transport of energy into and heat out of systems, depend not only on abstract

mathematical principles but also on physical laws. The synthesis and functioning

of very large scale systems, whether artifical or natural, proceed under and indeed

are directed by the constraints imposed by the laws of physics.

We look forward to the further development of the physics of computational

systems. We hope others will uncover new insights and examples in this important

area of investigation, for reporting in future editions of this text.
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APPROXIMATE VALUES
OF PHYSICAL CONSTANTS

The following values are given in the "rationalized mks" system of units, in which

meter, kilogram, and second are the basic units for mechanics, and are

supplemented with the coulomb, a unit of charge. The units of charge, current,

voltage, power, energy, resistivity, capacitance, and inductance are the same as

those in common use. The ampere is a coulomb per second. The energy required

to lift one coulomb of charge through a potential difference of one volt is one joule.

A joule per second is a watt. An ohm is defined as the resistance required to

develop a volt across it when an ampere flows through it. A farad is the capaci-

tance that can store one coulomb at one volt. One henry is the inductance across

which one volt is developed when the rate of change of current through it is one

ampere per second.

The term rationalized is applied to this system of units because the choice of

value for the permeability of vacuum, ^t,,. as 47t x 10"'^ allows Maxwell's

equations to be written without the appearance of factors of 477-. The velocity of

light, which can be measured, then determines the value of e„, the only other

physical constant that must appear in Maxwell's equations.

Certain energies below are expressed in terms of the electron-volt, or eV, an

informal unit equal to the energy required to lift an electron through a potential

difference of one volt.

Charge on the electron q ~ 1.6 x 10~'" coulomb

Electron volt eV ^ 1.6 x 10 '•' joule

Planck's constant h — 6.6 x 10 •" joule-second/cycle

= 4.1 X 10 '' eV-second/cycle

//-bar fi = li/27T - 1.05 x 10 •" joule-second/radian

— 6.6 X 10 "' eV-second/radian

379



380 Approximate Values of Physical Constants

1 cycle/second

Flux quantum

Boltzmann's constant

Permeability of vacuum

Permittivity of vacuum

Velocity of light in

vacuum

Wavelength of visible

light in vacuum

= 277" radians/second = 1 hertz

tlJ„ = h/lq == 2.1 X 10 '• volt-second [or weber]

A: - 1.4 X 10^^'joule/°K

- 8.6 X 10 ' eV/°K

/^o = 47r X 10^ henry/meter

e,, - 8.85 X 10'^ - 10-«/367r farad/meter

c = (eoMo) '"^ = 3.0 X 10" meters/second

0.4 to 0.7 micron (4000 to 7000 A)

The following are approximate values for properties of materials used in

integrated system fabrication:

Dielectric constant, e/e,,, for silicon — 11.7; for Si02 — 3.9 .

Volume resistivity, p, for aluminum — 2.6 x 10"" ohm-meter (the resistance

per unit length of a conductor of cross section A is piA).

Coefficient of thermal expansion, for Si = 2.5 x lO" /°C; for SiO., - 0.5 x

io-« /°C.

Silicon's atomic number is 14, atomic weight is 28, melting point is 1415°C,

and specific gravity is 2.3.

An excellent treatment of the physical properties of common semiconductors

is given in A. S. Grove, Physics and Technology ofSemiconductor Devices , New
York: Wiley, 1967. Standard references on physical constants and the properties

of materials are American Institute of Physics Handbook, McGraw-Hill, and

Handbook of Chemistry and Physics, Chemical Rubber Publishing Company.



References to color plates appear in boldface type.

INDEX

Abstraction: Compression and suppression of

detail at each level of design process, 68,

218

Access time, 264-270, 315-330

in a hierarchical structure, as function of

branching ratio, 316

of content-addressable memory, 328

of memory in a conventional computer sys-

tem, 264-270

of random access memory, 321

Adder, 0M2 controller chip, 204-208

Algorithms, for the tree machine

finding the cliques in a graph, 307-3 10

finding the minimum cost coloring of a graph,

311-312

matrix multiplication, 299-305

NP-complete problems, 305-312

sorting, 297-299

See also Tree machine

Algorithms, for VLSI processor arrays

convolution, 289

discrete Fourier transform, 289-291

FIR (finite impulse response) filter, 289-291

LU-decomposition, 280-285

matrix multiplication, 276-280, 299-305

matrix-vector multiplication, 274-276

solution of triangular linear systems, 285-288

Algorithms, implemented as sequences of

machine instructions in the stored pro-

gram machine, 193

Alignment marks, 97, 98, 128, 132

See also Starting frame
Alignment, using interferometric techniques,

140-143

Alto personal computer system, xii, 110-111

ALU (arithmetic logic unit), OM2 data path

chip, 150-156, 170-176

carry chain circuit, 150-151

control driver, 153-154, P12a

examples of use in microprogramming, 174,

176-179

flags, loading the flag register, 171-172,

175-176

input select control driver, 155-156, P12b
layout of one-bit slice, Pll

level restoring at intervals in the carry chain

to minimize delay, 153-154

logic function block, 151-153, PIG
multiplexer, input/output registers, 155-156

precharging of the carry chain, 151

Arbiters, arbitration, 260-261
Asynchronous communication between syn-

chronous elements, 259

Asynchronous inputs to synchronous systems,

237-241

Backscattering phenomenon in electron beam
lithography, 139-140

Barrel shifter, 0M2 data path chip, 157-163,

170, P13
a simple 1-bit shifter, and a crossbar switch,

as starting ideas, 157-158

examples of use in microprogramming,
176-179

four-by-four barrel shifter with two buses and

split vertical wires, 159- 160

layout of section of barrel shifter, P13

literal interface, 160-161

shift constant decoders, 161-162

381
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Bilateral signal propagation in pass transistor,

78

Bipolar technology, 57-58

Biowbacks from reticles. 94.%. 132. 135

Body eftect, on threshold voltages, 19-20

Boltzmanns constant (A ), 35. 241 . 341-343,

357-358, 361-362, 366-370. 380

Bonding pads, 133

Bounds checking, 130

Box specification in CIF, 1 19

Branching ratio

arbitrary, in a binary tree structure. 296

area, access time, and cost of the CAM as a

function of. 323-329

area, access time, energy per access, and cost

of the RAM as a function of, 317-323

in hierarchical structures, 315-316

of logical nodes in tree machine, 296

Buridan, Jean: the starving dog paradox of, 236

Buried contacts, 133

Buses, 0M2, 156-157, 173-174

precharging of, 156-157

sources and destinations, 174

timing of transfers, 156

Butting contact, 44, 50, P3d

Caltech

evolution of design methodology in courses

at, ix

integrated systems course, i\, 146

multiproject chips. 128-135

OM project, a universit\ project in experi-

mental computer architecture. 146-148

Caltech Intermediate Form. See CIF
Canal-lock analogy, for two-phase clock

scheme. 226-227

Capacitance

calculation of gate. 4-5

parasitic. 1 1-12

per square, table of. 5

1

role in storing information. 223-224. 333-340

Capacitances of paths in the various levels in

MOS integrated systems. 5

1

dependence of. upon voltage. 53-56

Capacitive loads. Sec Depletion mode vs. en-

hancement mode pull-ups: Driving large

capacitive loads

Carnot cycle, used to calculate minimum
energy input into a system based on low

temperature logic, 361

Cascading of drivers to minimize delays in

driving large capacitive loads, 12-14,

165-166

Cells

PL A, 102-106

shift register (SRCELL), 99-102, P9b
stack, 72, P6

use of regular arrays of. to construct subsys-

tems, 71-75. 149-164

Charge coupled devices (CCD's), 29, 79

Charge on the electron U/ ). 35. 341-344. 358,

362, 369-370, 379

Checkplots

advantages of color, 101

color code for, 64

simplification using cell outline and connec-

tion point form. 106-107

Stipple patterns, in black and white, 101

used in debugging layout digitization, 93-94,

101-102

Chip. See Integrated systems: Multiproject chip

Choice of technology, 56-59

CIF: Caltech Intermediate Form, a standard

machine readable form for representing

integrated system layouts, 115-127, 130

boxes specified by length, width, center loca-

tion, and direction, 1 19

CIF 2.0 specification. 115-127

commands, list of. 116

concatenation of transformations, in symbol
calls. 122. 125-126

converting wires to boxes. 119. 126-127

directions, specified by vectors. 1 18

format for output of symbolic layout lan-

guages or interactive layout systems. 1 15

geometric primitives: boxes, polygons,

flashes, wires. 118-119

layer settings preserved across symbol calls

and definitions, 123

layer specification. 120

library of standard symbols. 123-124

measurements, in right-handed coordinate

system, in hundredths of a micron,

117-118

mirroringof symbols in. 122. 125-126

/;MOS layer names. 120

no direct iteration facilities. 121

no floating point numbers, 1 17

notation for syntax, 116

recursive symbol calls not allowed, 122

semantics, 1 17-126

symbols, 120-126

calls may nest. 122

definitions may not nest, 116, 121

definitions precede instantiations, 122

facilities deliberately limited. 121

no scaling in calls. 121. 125

scaling in definitions. 121

transformations in calls. 122. 125-126

syntax. 115-117

transformation matrix. 125-126

translation of symbols in. 122. 125-126

user expansion bv reserved digit commands.
124

I
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warning about the order of graphical trans-

formations, 102

Clique problem, on the tree machine, 307-310

Clock (signal)

circuits, 233-236

connects sequence with time. 221

distribution, 229-233

drivers, 231-233

generation, 233-236

period, 25-26, 65. 225-241

period, estimation of, 25-26, 167

skew, 227, 230-232

Clocked storage elements, 222-228

Clocking schemes
derivation of two-phase clock from single-

phase clock, 229-230

multiple-phase, 227

narrow-pulse (risky). 225-226
single-phase, 229-230

two-phase, nonoverlapping, 25, 65,

226-233

Coefficient of thermal expansion. Si, Si02, 380

Color code assignments to the layers in n MOS
integrated systems, 64

See also Notation, Stick diagrams

Color-cost problem, on the tree machine,
311-313. P16

Combinational logic, in /(MOS
examples:

logic function block, 151-153. PIO
selector circuit, 77, P7a
tally circuit, 78-79, P7b

inapplicability of traditional minimization

techniques, 62, 77

irregular functions are implemented in regular

manner using FLA, 79-82

other functions map into regular structures of

repeated cells, 78-79

pass transistor "switch"" logic, similarity to

early relay switching logic, 78-79
self-timed, 247-252, 255-256

successive stages of, interspersed with regis-

ters, to form data paths, 76

used in feedback path of finite-state

machines, 82-83

See also, forfurther examples, ALU; Barrel

shifter; OM2 Data Path chip

Communication cost

in conventional computers, 265

in VLSI systems, 313-330, 365-370
Complementary MOS (CMOS), 1 1 , 53, 57,

336-338,341-342.354-357
Complexity, classical, of computational al-

gorithms, 305-307. 365

Complexity of physical computation. 365

See also Entropy; Switching energy
Computation as a physical process, 333

representation of data elements by physical

quantities, 333

the computer as a "heat engine," 370

See also Physics of computational systems

Concurrent processing

in conventional computers, 264-270

in human organizations, 264-265. 292

in the tree machine, 292-312

in VLSI processor arrays, 271-292

large scale, structures and algorithms for,

271-313

notation for describing, 295-296

See also Pipelining

Contact cuts (coded black), formation during

wafer fabrication, 43-44

See also Design rules

Contact pads, 45, 97, 133

See also Bonding pads

Contact printing with working plates, 96, 136

Content addressable memory (CAM) example
of metrics of space, time, and energy

in hierarchical structures

access time. 328

area, 326-328

cost, 328-329

hierarchical organization of. 323-325

See also Memory
Control drivers. See Drivers

Convolution, 289

Creeping features phenomenon, 206

Critical dimensions, 97, 128

See also Starting frame

Cross-coupled circuits, 26-28
metastability phenomenon, 26-28

Crossbar switch, 158

CRT display, use of in interactive layout sys-

tems, 110-114

Current density

limitations in conductors, 52, 133

scaling of, 36

Current limit, for superconducting logic, 358

Cut-off region, in MOSFET, 19

Data elements represented by physical quan-

tities. 333

Data paths

composed of successive stages of registers

and combinational logic, 75-76

controlled by finite-state machines, 88-89,

190-203

example, 145-188

See also 0M2 data path chip

d.c. power, 34

d.c. current. See Metal migration

Decoder circuits, 161-162

Delay

arbitrary, in self-timed signaling, 245
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circuit, asymmetric, 234-235

circuit, symmetric, 234-235

tan-out effect on. II

inverter. 10- 11

scaling etYect on, 24-26

wire, 230, 243-244

See also MOS transistor. Pass transistor; De-

pletion mode vs. enhancement mode
pull-ups; Driving large capacitive loads;

Self-timed systems; System timing.

Delay time of clocked storage element or flip-

flop, 226

Depletion layer, 53-56, 359

Depletion mode transistor. Sec MOS transistor

Depletion mode vs. enhancement mode pull-

ups, comparison of rising transients.

20-21

Design files in intermediate form, and in PG
format, 92-98

.SV<'r//,s<>CIF;PG files

Design rules, for layout geometries, 47-5 1 ,

P2-P3
advantages of dimensionless, scalable rules,

47-48

definition of length unit. A, of, 48

for butting contact, 50, P3
macroscopic, for scribe lines and bonding

pads, 133

Design rules, for timing

for composition of self-timed systems,

242-261

for composition of synchronous systems,

65-70.218-228

Dicing of wafers into chips. See Packaging

Dielectric constant, for Si, SiOa. 380

Diffusion level (coded green), in an /;MOS
integrated system, 1

capacitance of, vs. voltage, 54-56

electrical parameters of paths. 51

forms transistor wherever crossed by

polysilicon. 1

production of paths in, during wafer fabri-

cation. 42, 43, Pla.Pld
5('(' also Design rules

Diffusion (delay, equation)

in pass transistor logic. 22-23

in wires, 230-244

Digital systems, fundamental physical view of.

334-341

energy dissipation in, 336-341. 348-351,

355-357

gain, necessity of. 336

indefinite extensibility of. 334-336, 351, 353,

357

memory. 351-357

restoring logic, 335-338

steering logic. 338

See also Entropy; Flip-flop; Physics of com-
putational systems

Digitization, of layouts. 98. 108-109

Direct wafer writing using electron beam lithog-

raphy. 138-143

Directions in GIF, 118

Discreteness of charge, causes threshold vari-

ations in small FETs, limiting scaling of

supply voltages, 342-343

Dissipation of energy, necessary for digital sys-

tems, 336-341, 348-351, 355-357

See also Energy

Dissipative function, 355-357

Double-rail code, signaling by, 248

Drain. See MOS transistor

Drivers

associated with output pads, 133

clock, 231-233

0M2 ALU control, 153-154, P12

0M2 ALU input select control. 155-156. P12

0M2 output-pad, 165-166, P15

stack control. 73-74

super buffer. 17-18

tristate. 165

Driving large capacitive loads, 12-14

effect of scaling on time for, 14-15

minimization of delay time, 12-14

plot of relative delay vs. size factor used in

successive stages for, 13

Eigenstates, 345-346

See also Transitions in quantum mechanical

systems

Electrical parameters, of //MOS layers, 51-52

capacitances per square micron, 51

dependence of capacitances upon voltage,

54-56

resistances per square, 5

1

scaling of, 51

Electron

charge on the, 35, 341-344. 358, 362, 369-

370, 379

mass of. 359

mobility in silicon. 59, 359-360

Electron beam lithography, 138-143

advantage of greatly extending the pos-

sibilities for organizing multiproject

chips, 138

avoidance of the runout problem, 138

backscattering phenomenon, 139-140

direct wafer writing, 138-143

proximity effect, 139

short implementation turnaround time using

direct wafer writing, 142-143

to make masks for optical exposure, 142

to make masks for x-ray exposure, 142

writing time problem at small \, 138
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Electron storage ring

generates high intensity x-rays for production

x-ray lithography. 143

synchrotron radiation produced by, 143

Electron volt (eV), 344, 359, 379

Energy
dissipation, necessary for computation, •

336-341,348-351,355-357

information stored as, 336-337

LC logic, as an attempt to construct logic that

does not dissipate, 338-341

required for communication, 265, 322,

365-368

signal, transfer characteristics, in restoring

logic, 335-336, 352-355

switching, 34-36, 333, 337, 343. 355-358.

360-370

See also Entropy; Physics of computational

systems; Switching energy

Enhancement mode transistor. See MOS tran-

sistor; Pass transistor; Depletion mode
vs. enhancement mode pull-ups

Entropic view of computation. 366-370

the computer as a "heat engine," 370

Entropy
as measure of complexity, 365-368

as measure of uncertainty. 348. 368

decrease, during computation, 349, 367-370

information theoretic, 366

logical, a measure of data being in the "wrong
form." 366-367

relationship between computational and

thermodynamic. 365-370

spatial, a measure of data being in the "wrong
place," 367

thermodynamic, 348-349. 366-370

as a measure of disorder. 348. 368

calculation of differences in. 368

dimensionless form of, 368

the "twenty questions" analogy. 366

See also Energy; Flip-flop; Irreversibility;

Thermodynamics
Equipotential region. 243-244

Etching

alternatives for, 47

during waferfabrication. 41-44

using plasmas vs. wet etching. 47

Fabrication. See Wafer fabrication

Fan-out. effect of on delays. 1

1

FET: Field effect transistor. See MOS tran-

sistor

Fetch next instruction (FNI) state, in the

stored-program machine. 193-195

Fiducial marks. 96. 128. 134

See also Starting frame

FIFO queue, 259-260

Film processing analogy for integrated system

implementation. 93, 137

Finite-state machine

basic idea of. 82-84

controlling a data path. 82-90. 189-203

design of. based on the PLA. 84

Mealy machine form, 228

model of synchronous system, 221

Moore machine form. 228

placement of transistors within PLA planes to

program, according to encoded state

transition table, 87-88

size and scaling, of example. 88

state diagram, 85-86

state output vs. transition output, 228

state transition table, 86-88

stick diagram example, 87-88, P8

traffic light controller example of, 85-88, P8

FIR (finite impulse response) filter, 289-291

Flags, flag register, in the stored-program

machine, 191-192

Flags, flag register, 0M2 data path chip,

171-172, 175-176

Flip-flop

clocked storage elements, 222-228

cross-coupled circuits, 26-28

energetics of, 355-357

entropy decrease in, 349, 369-370

gain necessary in, 353

relation of time behavior of, to spatial proper-

ties of restoring logic, 353

See also Digital systems; Entropy; Memory;
Registers; Switching energy

Floor plan, 0M2 controller chip, 207-209

Floor plan, OM2 data path chip, 149

Fluid model for visualizing MOS transistor be-

havior, 29-33

Flux quantum (O,,). 363, 380

Fourier transform, 289-291

Function block. See Logic function block

Functional specification of the 0M2 data path

chip, 168-186

Gate, logic. See Inverter; NAND logic gate;

NOR logic gate

Gate, of transistor. See MOS transistor

Gate oxide (thin oxide)

formation of. during processing, 43

patterning of, to form buried contact between

poly and diffusion, 133

thickness (D), 2

GND: Mnemonic for circuit ground, 5

Graphical transformations, 100-102, 122,

125-127

Handlayout. 98-109

See also Layout
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Hazards, static and dynamic. 221

Hierarchy, concept in

communication paths. 3 13-330

compiitinj; structures. 292-294. 317-318, 329

human organizations, as a model for highly

concurrent systems. 265, 292

memory. 266-267. 313-330

tree machine organization. 292-296

Hierarchy, formal construction of, by recursive

definition. 247

Hold time, 230

See iil.'x) Preset time

IC: Integrated circuit. See Integrated systems

ICARUS, an interactive layout system.

109-115

Implementation of integrated system designs

(designer's view of the data manage-

ment, patterning, fabrication, packaging

and testing steps in)

overview of steps in, 92-98

conversion of design files to intermediate

form. 92

merging of design files to form a multi-

project chip. 128-130

pattern generation, maskmaking. 92-98

wafer fabrication, 93-94. 97

electrical testing, 97

packaging. 97

functional tests to debug designs, 97

the '"film processing'" analogy, 93, 137

turnaround time. 98. 129-130

we'll get "finer grain " and "faster" film as

time passes! 137

See cilsD CIF; Masks; Multiproject chip Pack-

aging: Pattern generator; Patterning;

Reticles: Starting frame: Testing: Walci

fabrication

Information theory, 366-367

Input pads, with associated lightning arrestors,

133

Instruction fetch-execute sequence, in the

stored-program machine. 193-195

Instruction register (IR). in the stored-program

machine. 194

Integrated systems, Large-Scale (LSI), and
Very Large-Scale (VLSI)

architecture of, 60-90, 145-167. 189-210,

263-330

design of, 1-25,60-90, 145-167, 189-210

implementation of, 39-59, 91-143

physics of. Chapter 9

scaling of. 33-37. 51-52. 57-59. 93. 98. 220.

223.231,241,244
simple description of conducting and insulat-

ing levels and function of, 1

timing, sequencing and synchronization of,

65-67,218-261

Intel 4004, one of the earliest microprocessors,
61-63

Interactive layout systems, 109-1 15

Interlock element. 260-261

Intermediate form, for layout description,

92-94,99, 115-127, 130, 134

See also CIF
Interior scribe lines, 131

Interrupts, in the stored-program machine, 199

Inverter, basic digital

delay, 10-12

effect of fan-out on, 1

1

effect of parasitics on, 11-12

effect of ratio on, 10-11

logic function and symbol, circuit diagram,

layout. 6

logic threshold voltage, V,nv. 9-10

pair delay. 1

1

pull-up. pull-down characteristics, 7

pull-up/pull-down ratio ik)

definition of, 10

effect on inverter pair delay, 1

1

effect on transfer characteristic. 8

guidelines for values of, 10, 25

transfer characteristics, 7-8

use of depletion mode pull-up in, 6

V'out vs. \\„. graphical solution for, 7-8

Inverting logic. See Restoring logic

Ion implantation

design rules for, 49, P2h
regions (coded yellow) determine locations of

depletion mode transistors, 42-43, Plb
technology, 43. 47

Irreversibility. 348-351

distinction between logical and physical re-

versibility, 349-350

entropy as a measure of disorder of a system,

348, 368

second law of thermodynamics as a concise

statement of the asymmetric nature of

disorder: only physical law giving time a

preferred direction, 348, 350

preferred time direction derived from loss of

information in the wave function,

347-348

transitions between states induced by ir-

reversible loss of energy. 349

ISP description. OM2 data path. 182-185

I-L technology. 57

JFET. 57-59

Josephson junction technology

compared with MOSFET, 360-365

wire delay in. 244

See also Technology comparison example
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Lambda (\, length unit), 48

See also Design rules

Layer specification in CIF, 120, 123

Layout
by hand, 98-109

color code, 64

digitization using a symbolic layout language,

99-109

digitization with an interactive layout system,

109-115

examples, 99-107, 150-166, P9-P15
from stick diagrams, 98-109

length unit, \, 48

regularity simplifies digitization, 98

trade-off of geometrical primitive complexity,

minimum achievable area, and machine
aid complexity, 99

See also CIF; Design rules; Symbolic layout

languages

LC logic, as an attempt to construct dissipation-

less logic, 338-341

Leakage currents

consequences to refresh period, 223

drain junction, 134,223

induced by light, 134

Length to width ratio (Z ), 8

See also MOS transistor

Length unit, X, 48

LIFO stack. See Stack subsystem
Lightning arrestors, attached to input pads to

protect input MOSFET gates, 133

Limitations to scaling, due to

collection of technology problems, 35-37
discreteness of charge, 342-343
requirement on gain, 341-342

thermal effects, 357-358

tunneling, 37, 359

Linear systems, solution of, 285-288
Literals and the literal interface, 0M2, 158-161,

172,210

Lithography

non-optical

electron-beam, 138-143

x-ray, 42, 137, 141-143

optical

contact printing, 96, 1 36- 1 37

projection alignment and exposure,

136-137, 140-142

See also Electron beam lithography; Masks;
Patterning; Projection alignment and ex-

posure; Wafer fabrication; X-ray lithog-

raphy

Locality, 265-267, 294

Locality, formal expression of in self-timed dis-

cipline, 245

Logic function block, 151-153, PIG
advantages of, 151, 153

implements sixteen functions of two vari-

ables, 151-153

useinOM2ALU, 151-153

Logic threshold voltage (V^v), 8-10, 16-17

Logic-Oand logic-

1

definition, relation to inverting logic thresh-

old voltage (Vinv), 9

notational association with logic variables,

64-65

Logical entropy. See Entropy
Loop counter stack, 0M2 controller, 205

Low temperature logic, 35-36, 360-365

LSI (Large-Scale Integrated) systems. See In-

tegrated systems

LU-decomposition, 280-285

See also Algorithms for VLSI processor ar-

rays

Machine instruction set, in the stored-program

machine, 193-199

Machine instructions, executed by sequences of

basic control operations or microinstruc-

tions, 193-203

Manchester carry chain, 22-23, 150-151, 167

Masks
clear field (positive) vs. dark field (negative),

98

for optical contact printing, 96, 136

for projection exposure, 136, 140

for x-ray exposure, 141-143

level name codes, 129

line width pulling, 135

made by electron-beam exposure, 142

made by pattern generation, 93-96

master and submaster masks, working masks
(plates), 94-97, 135-136

use in wafer fabrication, 39-50

See also Starting frame

Matrix method of concatenating CIF transfor-

mations, 125-126

Matrix operations, 272-292, 299-305
LU-decomposition, 280-285

matrix multiplication, 276-280, 299-305
m.atrix-vector multiplication, 274-276

solution of triangular linear systems, 285-288
Mead Criterion, 241-242, 358

See also Seitz Criterion

Measurements in CIF, 117-118

Memory
area, access time, energy per access, and cost

as function of branching ratio, 317-329

as bottleneck in conventional computer ar-

chitecture, 265-266

commingled with processors, 271-294,

329-330

content addressable, 323-329
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energetics of the flip-flop, 355-357

hierarchy in conventional computing sys-

tems. 266-267

random access, 163-164, 317-323

registers, dynamic, 70-71. 222-223

registers, static, 223-224

registers, 2-port inOM2, 163-164

time behavior of the flip-flop, 354-355

Sec also Computation as a physical process;

Content addressable memory; Digital

systems; Flip-flop; Random access

memory; Registers; Shift register; Stor-

age

MESFET. 57-59

Metal (coded blue), level in an ii MOS integrated

system, 1

capacitance of, vs. voltage, 55-56

current density limitation in, 52-53

electrical parameters of paths, 51-52

migration phenomenon, 36, 52-53

patterning of. 43-44. Plf

volume resistivity (p), 380

Sec also Design rules

Metastability

in arbitration. 261

in cross-coupled circuits. 26-28

in quantum mechanical systems, 348

in synchronization failure, 220, 237-242

phenomenon of, 26-28, 348

Microprocessor

example, 145-188.203-216

Intel 4004. one of the earliest, 61-63

Microprogram counter (yuPC), 202-216

Microprogram counter data path. 201-204

Microprogram counter stack. 0M2 controller

chip, 204-210

Microprogrammed control

origination of concept by M. V. Wilkes, 202

some advantages of, 200-202

stored-program machine control sequences

generated by finite-state machine ""look-

like programs" in a primitive machine

language, anticipating the concept of,

199

storing control sequences in a memory in,

200-201

use of microprogram counter path, 201

the microprogram counter path as one

stored-program machine within another,

203

writable control logic using, 200, 202

See also Stored-program machine

Microprogramming
0M2 controller chip examples. 21 1-216

OM2 data path chip examples. 176-179

Migration phenomenon, metal. 36. 52-53

Mirroring of CIF symbols, 122, 125-126

M.I.T., 1978 VLSI system design course

a feasibility test, x

hardware and software support for, x

material covered, x

multiproject chip implementation, x

remote-entry of design files via the

ARPANET, x

Mks system of units, 379

Mobility

of charge carriers, definition of, 3

of electrons in silicon, 59

relationship to effective mass and effect on

scaling, 359-360

MOS capacitor, 29-30

MOS transistor

basic properties, 1-5, 18-21

created wherever a polysilicon path crosses

over a diffusion path, 1

current-voltage characteristics, 3,7, 19

depletion mode type, 6, 20-21

differentiation of enhancement mode vs. de-

pletion mode type of, during wafer fabri-

cation, 42-43

enhancement mode type, 3, 18-21

lag and limitations on rising transient when
used as pull-up, 20-21

fluid model for visualizing MOS transistor

behavior, 29-33

gate capacitance, calculation of, 3-4

variation with voltage, 55-56

gate dimensions (L, W. D), 2

length-to-width ratio (Z), 8

source, channel, drain regions, 1-5

threshold voltage, 2

transit time, 3-4

See also Pass transistor; Threshold voltage;

Transit time

MOSFET: Metal-oxide-semiconductor field ef-

fect transistor. See MOS transistor

Muller C-element, 250-25 1 , 254-255

Multiplexers, 155,206-208

Multiprocessor architectures, 268-270

conventional. 268-270

processor arrays, 271-292

tree machines, 292-313

Multiproject chip, 98, 114, 128-137

bounds checking when merging, to prevent

one project from clobbering another, 130

Caltech example, 134-135

CIF to PG conversion time, 134

chip size constraints, 131

conveying information to the mask house via

software blowbacks of mask levels, 132

electron beam lithography extends pos-

sibilities for, 138

enables learning by doing, 91

implementation turnaround time, 129
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interior scribe lines, 131

large number of PG file items in, 134

many designs merged, implemented together,

reducing procedural overhead per proj-

ect, 128

merging at the GIF or PG level, 130

minimum fab run produces many chips, 128

M.I.T. 1978 VLSI system design course,

tested remote-entry, fast-turnaround im-

plementation of student projects, x

negotiation for space on, 1 30

overglassing sometimes not used, 133

photomicrograph of example, 129

power density guidelines, 133

practical detail and tips, 133-137

sharing useful cells, 133

spec sheets, and other information, for mask
house and fab line use, 134-135

starting frame for organizing, 128-129

targeting different projects in a single mask
set for different processes, 132

used for design iterations of subsystems

when developing a complex VLSI sys-

tem, 128

used for university class projects, x, 91

,

128-136

wire bonding customized to each project, 128

Xerox PARC/Caltech example, 130-134

yields per project typically high, 128

See also GIF; Implementation; Masks; Pack-

aging; Pattern generator; Patterning;

Reticles; Starting frame; Testing; Wafer
fabrication

NAND logic gate and circuit

circuit diagram, logic function, logic symbol,

and layout, 15

delay, 16

logic threshold voltage, 16

pull-up/pull-down ratio, effect on delay and

on transfer characteristic, 16

N-channel MOS transistor. See MOS transistor

Nondeterministic machines, 306

NOR logic gate and circuit

circuit diagram, logic function, logic symbol,

and layout, 17

delay, 17

logic threshold voltage, 16

puil-up/pull-down ratio, effect on delay and

on transfer characteristic, 16-17

Notation

circuit diagram, 2, 6, 15, 17

color code, 42-44, 64, P1-P3
describing concurrent processes, 295

for associating logic variables with signals, 64

layout, 2, 6, 15, 17, 64, 101, P1-P4, P9

logic symbols, 6, 15, 17

mixed, 64, P4
stick diagram, 64, P4

two-phase nonoverlapping clock scheme, 65

NP-complete problems, 305-312

characteristics of, 305-307

clique, 307-310

color-cost, 31 1-312

solution using concurrent processing,

306-307

0M2, an example LSI computer system,

145-188,203-216

0M2 controller chip, provides a source of

examples of computational subsystems

implemented in LSI layout structures,

145-148.203-216

adder, 204-209

block diagrams, 205, 207

buses run right through all subsystem cells,

208

controller generates microprogram memory
addresses, 204

controller opcodes, 206-207

controller operation examples, 211-216

creeping features phenomenon, 206

floor plan, 207-209

layout. Endpaper
literal bus, 210

loop count decrementer and stack, 205

microcode dispatching (many-way branch-

ing), 204, 214-216

microcode DO loops and FOR loops, pro-

gramming examples, 21 1-215

microcode subroutines, subroutine linkage,

204,211-212
microprogram counter (piPG), (/u,PG) latch,

(mPG) stack, 204-216

multiplexer, 205-209

PLA's to decode control ops, 209

0M2 data path chip, provides a source of

examples of computational subsystems

and digital logic functions implemented

in LSI layout structures, 145-188

ALU, 150-156, P11,P12
barrel shifter, 157-163, P13
buses. 156-157

communication with the outside world.

164-166

control operation encoding. 166-176, 186

drivers, 153-157, 165-166, P12, F15
estimation of clock period, 167

flags, flag register, 171-172. 175-176

floor plan. 149

functional specification. 168-186

ISP description, 182-185
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layout. Frontispiece

layout, using simple machine aids, 98

literals, literal interface. 158-161, 172

logic function block. 151-153, PIO
microprogramming examples, 176-179

output drivers, 165-166, P15

pinout. 188

register array, 149, 163-164, 170, P14
summary of control op commands, 186

VDDandGNDnet, 164

See also ALU; Barrel shifter. Register array

0M2 project, history of, 146-147

0M2 system, overview of

controller chip, 145-149

data path chip, 145-149

memory manager chip, 148

system bus interface chip, 148

clock chip. 148

Oscillator. See Clock

Output pads, with associated drivers, 133,

164-166

Overglassing, a protective oxide layer over

the chip, 44-45, 133

Oxide. See Gate oxide (thin oxide); Over-

glassing; Silicon dioxide

Packaging

chip size for standard 40-pin, 1 3

1

scribing and dicing of wafers into chips.

mounting of chips in package, 45, 97,

131, 133

wire bonding to connect chip I/O pads to

package leads, 45, 97

wire bonding to customize individual projects

in multiproject chip, 128

Parasitic effects, on delays in restoring logic.

11-12

Parity mark. 129. 134

See also Starting frame

Pass transistor

bilateral signal propagation in. 78-79

body effect on threshold voltage. 19. 25.

delay. 22-24

effect on pull-up/pull-down ratios of restoring

logic coupled by, 24-25

interspersed between inverters to form shift

register. 66-70

minimization of delay in cascade of, by inter-

posing restoring logic, 22-24

used to build "switch logic' or "steering

logic," 22, 77-79, 150-154, 157-163,338

used to isolate charge on MOSFET gate, thus

storing information, 66-71

used to propagate carry signals in adders, 22

See also MOS transistor

Pattern generator: A computer-controlled

projector-like mechanism used to make

reticles from layer descriptions defined

by PG files, 93-96

constraint on chip size due to, 131

rectangle description and parameters, 95-99

sorting for efficient flashing, 95

See also Implementation; PG files; Reticles

Patterning

description of the basic steps of, 39-42

of metal layer, 43-44, Plf

of oxide, to determine placement of diffusion

paths, gate regions, 42, Pla

of oxide, to form contact cuts, 44, Pie

of polysilicon, 43, Pic

of resist to determine placement of ion im-

planted regions, 42-43, Plb
scaling of technology for, 42, 137-143

using electron-beam exposure, 138-143

using x-ray exposure, 141-143

See also Masks; Resist; Wafer fabrication

Permeability of vacuum (/x,,), 380

Permittivity of vacuum (€o), 380

Personal computers, distributed, in the future

computing environment, 109

PG ( pattern generator) files

composed of a sequence of rectangle descrip-

tions, 95-99

generation of, from intermediate form design

files, 92-99

sorting for efficient flashing, 95

See also GIF; Pattern generator

Photorepeater

used to make masks from reticles, 96, 131

(.V, y) step-and- repeat distances of, 96, 135

Photoresist. See Resist

Physical constants, table of, 379-380

Physics of computational systems, 333-371

complexity of physical computation, 365

computation as a physical process, 333

data elements represented by physical quan-

tities, 333

digital systems, 334-341

restoring logic, 335-338

steering logic, 338

discreteness of charge, 342-343

entropic view of computation, 366-370

irreversibility. 348-351

logically reversible systems, 349-351

memory, 351-357

energetics of the flip-flop, 355-357

time behavior of the flip-flop, 354

quantum limits, 358-360

switching energy, 34-36, 333, 337, 343,

355-358, 360-370

technology comparison example, 360-365

thermal limit, 357-358

transitions in quantum mechanical systems,

343-348
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voltage limit, 341-342

See also Separate entries for the above
Piano and piano-player analogy, for data path

and controller, 190

Pinout, 0M2 data path chip, 188

Pipelining, technique for achieving high concur-

rency, 76, 228, 267, 272-292

PLA (programmable logic array)

AND and OR planes, 80-82

basic design, NOR-NOR form, 79-82

cells, 103-106

circuit diagram, 81

examples, 81-82, 85-88, 102-108, F7c, P8
layout, 102-108

product term, 82, 87-88

programmability of, 80-82, 87-88

self-timed, example, 250-251

stick diagram of, P7c, F8
symbolic description of layout, 102-108

used in finite-state machine, 84-88, P8
used to implement irregular combinational

logic, 80-82

Planck's constant (/;) and alternate form (h),

344-348,359,363,379
Plasma etching, 47

/?//! junction, 53-55, 134, 359

Polycell design technique, 62

Polysilicon (coded red), level in an/;MOS inte-

grated system, 1

capacitance of, vs. voltage, 55-56

electrical parameters of paths, 51-52

forms transistor wherever crosses diffusion, 1

patterning of, 43, Flc

warning of high resistance disease, 52

See also Design rules

Power
d.c.,34

density guidelines, 133

effect of scaling on, 34-36

switching, 34

Power-delay product. See Switching energy
Preset time, 227, 229-231

maximum value (setup time), 230

minimum value (hold time), 230

Probe pads, 134

Process. See Wafer fabrication

Product term, of PLA, 80-82, 87-88

Program counter (PC), in the stored-program

machine, 193

Programmable logic array. See PLA
Programs: Implementing algorithms as se-

quences of machine instructions, in the

stored-program machine, 193

Project chips. See Multiproject chip

Projection alignment and exposure
at relatively small values of X, using an opti-

cal source, 140

at ultimately small values of \, using an x-ray

source, 141-143

interferometric high resolution alignment

techniques for, 140-142

using master masks, 136-137

Proximity effect in electron beam lithography,

139

Pull-up/pull-down ratio. See Inverter

Pull-ups

characteristics of depletion mode vs. en-

hancement mode, 20-21

depletion mode, 6-7, 20-21

Quantum limits, discreteness of charge and
wave nature of the electron, set limits on
FET size, 342-343, 358-360

See also Tunneling

Quantum mechanics, 343-348

See also Transitions in quantum mechanical

systems

Queue (FIFO), self-timed, 259-260

Random access memory (RAM ) example of

metrics of space, time, and energy in hi-

erarchical structures

access time, 321

area, 319-321

cost, 321-322

energy per access, 322-323

hierarchical organization of, 317-319

See also Memory
Ratio, length to width. See MOS transistor

Ratio, pull-up/pull-down. See Inverter

Rationalized mks system of units, 379
Recursively defined computing structures, 292,

329.

See also Hierarchy

Reflections on the classical stored-program

machine, 216-217
Refresh period, 223

Register array, 0M2 data path chip, 149,

163-164, 170, P14
block diagram, circuit diagram, of two-port

register cell, 163

layout of two dual-port cells, P14
Register-to-register transfer, with interspersed

combinational logic, to form a data path,

75-76

See also Data path

Registers

data stored in, as charge on inverting logic

input gates, isolated by open pass tran-

sistors, 66-71

difference between static and dynamic, 223,

356

dynamic, 70-71, 222-223

0M2, 163-164, P14
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refresh period and requirement, of dynamic.

222-223

selectively loadable, 71

static, 223-224

Resist (also called photoresist)

backscatteringeflect on, in K-beam direct

wafer exposure, 139-140

exposure and development of during pattern-

ing. 39-42

type, and process step, determines required

mask polarity. 135

use during wafer fabrication, 39-44

See also Patterning; Wafer fabrication

Resistances of paths in the various levels in

MOS integrated systems. 51-52

implications to wire delay. 230-23 1 . 243-244

Resistive region, in MOSFET. 4, 18-19

Restoring logic

general properties, 335-341. 352-357

inverting logic form, in //MOS, basic circuits

and layouts for, 5-18

signal energy transfer characteristics,

335-336, 352-355

See also Digital systems: Inverter: NAND
logic gate: NOR logic gate

Reticles

blowbacks from, 96, 132

5X, lOX. 94-96, 131, 134-135

making of, first step in maskmaking, 93-96

maximum size constrains chip size, 98-131
used in optical projection step and align ex-

posure, 140-142

used in x-ray step and align exposure,
141-143

Ring oscillator. 235-236

ROM (read-only memory), 80

Rotation of CIF symbols. 122. 125-126
Runout phenomenon, 137-138

circumventing the, 138-141

Saturation region, in MOSFET. 5, 19

Scaling

effects of in // MOS, on.

current per unit area. 36

d.c. power. 34

drain-to-source current, 34

electrical parameters, 51-52

gate capacitance, 34

power per unit area, 36

subthreshold conductance. 35-36. 223

switching energy. 34

switching power, 34

transit time, 34

limitations to. due to.

collection of technology problems. 35-37
discreteness of charge. 342-343
requirement on gain, 341-342

thermal effects, 357-359

tunneling. 37. 359

ofdesigns.93.98

of patterning and fabrication technologies,

42.46-47. 137-143

of several alternative integrated circuit and
system technologies, 57-59

of supply voltage, and the/,, W. D, and

threshold voltage of all transistors in an

integrated system, 33-37

of synchronization failure rate, 241

of synchronous systems, 220

of wire delay, diffusion delay, 231, 244

physical limitations to, 36-37

Scaling factor, a. 33

Scribe lines. 97, 128-133

Sec also Starting frame

Scribing, 45.97. 131, 133

See also Packaging

Second law of thermodynamics, 348-350

See also Entropy: Irreversibility; Ther-

modynamics
Seitz Criterion. 241-242, 358

See also Mead Criterion

Selector circuit, 77, P7

Self-timed systems, 219-220, 242-261

arbiters, arbitration, 260-261

as interconnections of self-timed elements,

247

combinational elements, 255-256

concurrency, notion of, 242

double-rail code, 248

equipotential regions, 243-245

example. 247-252

interlock element. 260-261

Muller C-element . 250-25 1 . 254-255

organizational discipline. 246-247

queue (FIFO), 259-260

recursive definition of. 247

sequence domain, 218-219, 242-254

signaling, 4-cycle (RZ). 253-254

signaling specifications and conventions,

245-246, 252-254

signaling, 2-cycie (NRZ), 252-254

simultaneity, notion of, regarded as meaning-

less. 243

speed-independent circuits, 250

ternary signaling, 248

timing relations, closed-loop vs. open-loop,

functional vs. domain, 245-246
5('(' also System Timing

Semantics of CIF, 117-126

Sequence: Logical abstraction from physical

time metric, 218-219

Sequence domain. 218-219, 242-254

Setup time, 229-230

See also Preset time
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Shift register

arrays, 67

basic design and function, 66-70, P5

cell, 99-102, P9b

layout. 100, P9b

simple mental model for visualizing move-

ment of data through successive stages,

68-70

stick diagram, P9a

Shift-up register array, 67, P5c

Signal energy transfer characteristics of restor-

ing logic, 335-336, 352-355

Signaling, self-timed, 252-254

Silicon: A tetravalent, nonmetallic element of

atomic weight 14; next to oxygen the

most abundant element in Earth's crust

(made worth more than its weight in gold

by the "alchemy"" of the integrated sys-

tem implementation process!), 1, 38-45,

51-59,359,380

Silicon dioxide, (SiO,), 39-45, 138, 380

influence on wafer runout, 138

patterning of, 39-42

thermal coefficient of expansion much less

than that of silicon, 138,380

used to form insulating layers in wafer fabri-

cation process, 42-45

See also Gate oxide (thin oxide): Over-

glassing

Silicon, polycrystalline. See Polysilicon

Silicon Valley, also known as "Silicon Gulch"':

Region having a heavy concentration of

high-technology industry, stretching

from Palo Alto to San Jose, on the San
Francisco peninsula, vi, 134

Sorting, 297-299

Source. See MOS transistor

Space vs. time trade-offs, 14-15, 200, 264-330,

360-370

Spatial entropy. See Entropy

Speed-independent circuits, 250

Stacks, 0M2 controller chip, 204-210

Stack subsystem, an example subsystem de-

sign, 71-75, P6
Starting frame: Set of nonproject layout ar-

tifacts that convey a project chip set

through implementation, 128-133

alignment marks, 97-98, 128

critical dimensions, 97, 128

electrical test patterns, 128

fiducial marks, 96, 128, 134

interior scribe lines, 131

line-width testers, 97, 128

mask level name codes, 129

parity mark, 129, 134

scribe lines, 97, 128, 131-133

test transistors, 97-98

use in organizing multiproject chips, 128-137

See also Implementation; Multiproject chip

State

as stored energy, 66, 223-224, 334-338,

351-357,366-370

of finite-state machine, 82-88, 192-200

transitions in, 82-88, 192-200, 334-341,

343-357

See also Digital systems; Entropy; Finite-

state machine: Flip-flop: Memory; Tran-

sitions in quantum mechanical systems

State diagram

of finite-state machine, 85-86

of stored-program machine controller,

195-197

to clarify synchronization circumstances,

237-238

State transition table, of finite-state machine,

86-88

Steering logic, 22, 77-79, 150-163, 338

See also Digital systems; Pass transistor

Step and repeat camera. See Photorepeater

Step and repeat distance, 96, 135

Stick diagrams

color code, 64

compact representation of design topology,

64

examples, P4-P10
generating layouts from, 99-109

Storage (also called memory)
clocked storage elements, 222-228

role of capacitance or inductance, 223-224,

333-340

See also Cross-coupled circuits: Flip-flop;

Memory: Registers

Stored-program machine

algorithms implemented as sequences of

machine instructions, 193

ALU instruction example, 197-198

branch instruction example, 199

communication costs in, 265-266

composed of controller, data path, and mem-
ory, 193-203

controller sequence examples, 197-200

fetch-execute sequence, 193-195

fetch next instruction (FNI) state, 193-195

flags, flag register, 191-192

higher-level functions (interrupts, task

switching) usually performed from FNI
state, 199

instruction decoding, 195-197

instruction register (IR), 194

interrupts, 199

machine instruction set, 193

machine instructions, sequences of control

ops, 194

memory access time in, 265-267
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memory hierarchy in. 266-267

memory instruction example, 198

microprogram counter (/uPC), 202-207

microprogram counter data path, 201-203

microprogrammed control of, 200-203

multiple program counters, use of, 199

program counter (PC), 193

programs, sequences of machine instruc-

tions, 193

state diagram for controller of, 195-197

Turing machine. 193

von Neumann machine. 193, 264, 294

Sec (ilsi) Microprogrammed control; 0M2
controller chip; OM2 data path chip;

Stored-program machine concept

Stored-program machine concept, developed

through a sequence of examples.

190-203

controller and data path, the piano analogy,

190

finite-state machine controls data path,

190-192

use of program counter and instruction regis-

ter, 193-195

instruction fetch-execute sequence. 193-195

fetch next instruction (FNI), 195

decode instruction. 195

fetch instruction operands. 195

perform operation, 195

store result. 195

set up address, return to FNI. 195

generating the state diagram of a controller

for executing machine instructions,

195-197

Structured design of digital integrated systems

digital systems as data paths controlled by

finite-state machines, 75-76, 82-90,

189-203

data paths are made of registers and combina-

tional logic, 75-76. 82-90

finite-state machines made of registers and

combinational logic. 83-88

how to make registers in ii MOS. 66-7 1

,

75-76, 163-164

how to make combinational logic in /;MOS,
76-82

regularity at layout level, 46, 150-164

regularity at cell topology level. 46. 67. 72,

78,80,89-90, 150-164

regularity at subsystem level. 89-90

relation to correctness and hierarchic design,

in self-timed systems, formally de-

veloped by recursive definition, 247

relation to structured programming. 247-248

subsystem (of cells) design examples, 71-75,

150-164

system design example. 145-217

timing. 218-261

use of a simple clocking scheme, 65-76
Sec also Clocking schemes; Combinational

logic; Data paths; Digital systems;

Finite-state machines; Notation; Regis-

ters; Stored-program machine; Symbolic
layout language; System timing

Subsystem, an example design of, 71-75

Subthreshold conductance, 35-36

consequences to refresh period, 223

effect of scaling threshold voltage on, 35-36

Super buffers, 17-18

Switch logic. Sec Steering logic

Switch model, of MOS transistor, 68-70, 76-79

Switching energy: Energy dissipated in a single

isolated switching event, 34-36, 333,

337, 343, 355-358, 360-370

concept of, 336-337

effects of FET scaling on. 34-36

important metric of device performance. 34

in relationship of thermodynamic and compu-
tational entropy. 365, 367-369

normalization factor, in complexity of physi-

cal computation. 365

role in system reliability, 355-358
relation to stored energy, 336-337

See also Dissipation of energy; Entropy;

Flip-fiop; Irreversibility; Technology
comparison example; Thermal limit

Switching power, 34

Symbol calls in CIF, 122-123

Symbol definitions in CIF, 121-122

Symbolic layout language

analogous to macro assembly language,

98-99

defining your own. 99. 106-108

generation of checkplots and PG filesof lay-

outs described in. 99. 101. 106

informal example of. 99-108

cell layouts, as symbols constructed of

geometric primitives, 99-100

graphical transformations, 101-102

translation, replication of symbols,
101-102

used to encode shift register and PLA lay-

out examples, 100-107

regular designs easier to encode in, 98

trade-off of geometrical primitive complexity,

minimum achievable area, and machine

aid complexity, 99

warning about the order of graphical trans-

formations, 102

Synchronization failure, 220, 236-242

Synchronizers, 238-248

Synchronous systems, 82-84, 218-242

as discipline for structuring design, 218-228

as elements in larger self-timed systems. 259

clock distribution in. 229-233

composition rules for, 221-222
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scaling, effect of, 220

use of two-phase nonoverlapping clock

scheme in, 82-84. 226-238

Synchroton radiation, soft x-ray component of,

used for x-ray lithography, 143

Syntax of CIF, 115-117

System of units, rationalized mks, 379

System timing, 218-262

arbiters, arbitration, 262

asynchronous communication between syn-

chronous elements, 259

canal-lock analogy, for two-phase clock

scheme, 226-227

clock (signal), 25,65,221-242

clock distribution, 229-233

clocking schemes, 25, 65, 221-252

self-timed systems, 242-261

sequence domain, 218

signaling, self-timed, 252-254

synchronization failure, 220, 236-242

synchronizers, 238-248

synchronous systems, 221-228

thermal noise effect on synchronizers, 241

,

357-358

See also Clock; Clocking schemes; Delay;

Self-timed systems; Time

Table of physical constants, 379-380

Tally circuit, 78-79, P7b

Task switching, in the stored-program machine,

199

Technology alternatives, 56-59

Technology comparison example, systems of

FET devices vs. systems of Josephson
devices, 360-365

architectural comparisons must take into ac-

count overall system physics in addition

to device physics, 360

Carnot cycle, in calculating minimum possi-

ble energy input into system operated at

low temperature, 361

FET switching energy scales down as third

power of a, 34, 362

Josephson devices near quantum limit at

present dimensions, and switching

energy near minimum possible, 362

Josephson devices trade-off power vs. delay

to much shorter delays than scaled

FET"s,364
switching energy of scaled FET's and

Josephson devices similar, 364

Temperature
effect on logic devices, 357-358, 360-365

effect on subthreshold conduction, 35

FET operation at low values of, 36, 365

superconducting device operation at low val-

ues of, 360-365

Termination, negative resistance, 223-224

Ternary signaling, 248

Testing

electrical, 97

functional, to debug designs, 97

functional, to test final parts, 45-46

models for failure modes used to construct

schemes for, 46

starting frame patterns for. 97. 128

See also Yield statistics

Thermal limit, on ratio of switching energy to

thermal energy, forgiven probability of

system failure. 357-358

Thermal noise. 241 , 357-358

Thermodynamics
Carnot cycle. 361

entropy, 348-350, 365-370

second law of, 348-350

See also Energy; Entropy; Irreversibility;

Low temperature logic; Technology
comparison example

Thin oxide. See Gate oxide

Threshold voltage, logic. 8-10. 16-17

Threshold voltage, transistor

body effect on, 19-20,25

conductance as a function of, 35-36

scaling of. 35-36

selection of system values for. 9-10

V'tj,. of enhancement mode MOS transistor,

2-3

V(jpp. of depletion mode MOS transisitor, 6

Time
circuit delay, 10-18, 20-26, 221-236

hold, 230

implementation turnaround, 98, 129-130

metastable decay, 26-28

preset, 227.229-231

quantum transition. 347-348

relationship to sequence. 218-220

setup, 230

transit, 3

See also Delay; Irreversibility; System tim-

ing; Transit time.

Timing, 65, 218-261

See also System timing

Topological requirements for correct timing op-

eration. 218-221. 247

Topology, encoding of circuit layout, using

stick diagrams, 64
Traffic light controller, an example finite-state

machine, 85-88
Transfer characteristics

inverter, 7-8

signal energy, of restoring logic. 335-336,

352-355

Transformations in CIF. 122, 125-126

Transistor. See MOS transistor

Transit time (t)

calculation of, 3
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definition of, 3

eflecl of scaling on. 33-36

in diffcrenl technologies, 58-59

relationship to clock period, 25-26

relationship to probability of synchronization

failure, 239-241

relationship to wire delay, 243-244

variation from fab line to fab line, 93

Transitions in quantum mechanical systems,

343-349

between eigenstates. 345-346

irreversible loss of energy necessary to in-

duce transition between states, 349

metastability in. 348

preferred time direction comes from loss of

information in the wave function.

347_348

transition times, 347-348

tutorial on nature of. 343-347

Translation of CIF symbols, 122, 125-126

Transmission gate. Sec Pass transistor

Tree machine: hierarchical, recursively defined

organization of processors connected as

a binary tree. 292-294

algorithms for, 297-312

arbitrary branching ratio in. 296

notation for expressing concurrent algorithms

running on. 295-296

solving NP-complete problems on. 305-3 12

testability of. 294

See also Algorithms, for tree machine

Triangular linear systems, solution of, using an

array of processors, 285-288

Tunneling, phenomenon of, places limits on

oxide thicknesses and junction depletion

layers, 37, 359

Turing machine (abstract stored-program

machine), 193

Turnaround time, of implementation, 98,

129-130

Two-phase nonoverlapping clock scheme, 25,

65.226-233

See also Clocking schemes

Valve model for visualizing movement of data

through successive inverter stages

coupled by pass transistors, 68-70

VDD: Mnemonic for positive supply voltage in

/(MOS integrated system. 3

VDD and GND net. 0M2'data path chip, as a

set of interdigitated combs, 164

Velocity oflight(r), 380

Velocity of light, not a limiting factor on signal

propagation on chip. 14. 230

VLSI processor arrays

algorithms for. 271-292

hexagonally connected, 273

inner step processor in, 272-273

linearly connected, 273

matrix operations using, 272-292

orthogonally connected, 273

pipelined processing in, 271-288

See also Algorithms, for VLSI processor ar-

rays

VLSI (Very Large-Scale Integrated) systems.

See Integrated systems

Voltage limit, minimum supply voltage for

which gain of inverter still exceeds unity.

341-342

analogous current limit in superconducting

logic, 338

entropic origin of, 369-370

von Neumann machine (stored-program

machine), 193,264,294

Wafer fabrication, 38-50. 93-94. 97. PI

advantage of silicon gate process. 43

description of silicon gate //-channel MOS
process for, 42-46. PI

design and layout independent, 93

in the future, 137-143

scaling of processing technology, 46-47

See also Masks; Packaging; Patterning; Re-

sist

Wafer runout. See Runout phenomenon
Warning about order of graphical transforma-

tions, 102

Wave function, 344-348, 359

See also Transitions in quantum mechanical

systems

Wire bonding. See Packaging

Wire delay: Signal propagation delay in wires,

230-231,243-244

Working plates, 94, 96-97, 132, 135-136

Xerox PARC
Alto personal computer system, xii, 1 10-1 14

early collaboration with Caltech on integrated

systems research, ix

information management for the 1978 M.I.T.

multiproject chip, x

multiproject chip example. 130-134

X-ray lithography. 42, 137, 141-143

advantages, 141-143

alignment by optical interferometry, 140-143

promise of high thruput process at ultimately

small values of A, 142-143

step-and-align technique in, to avoid the run-

out phenomenon. 138

Yield per project in multiproject chips. 1 28

Yield statistics, 45-46

simple Poisson model for. 45

See also Testing
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