Window Systems Should Be Transparent

Rob Pike

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Commercial UNIX window systems are unsatisfactoBgcausdghey arecumber-
some and complicated, they are unsuitable companioranfaperating system that is
appreciated for its technical elegandéheir clumsy user interfaces clutter the view of the
operating systemA good interface should clarify the view, not obsciireMux is one
window system that is popular and therefore worth studying as an examplzodf
design. (Itis not commercially important because it runs only on obsolete hardware.)
This paper usesiux as a case study to illustrate some principles that can help kessp a
interface simple, comfortable, and unobtrusiVghendesigning their products, the pur-
veyors of commercial window systems should keep these principles in mind.

Introduction

Mux is a window system with no icons, no hégility, no customizability, no noise, and only two
menus (one with five entries, one with seveiijie spareness of its user interface distinguishes it from
commercial window systems such as X &uhWindows, yemux is a comfortable and effective system.
As the author ofnux, | am told by many people wHuave tried other window systems thatix is prefer-
able. Whyis a window system that is so simple also so popular?

The task of a window system is to provide a multiplexed interface to an operating sy&tem.
dows’ is an apt word because it is through windows that we see the operating system and its pfograms.
good window system provides an unobstructed view, transparent in two diredfisstsprograms should
be unaffected by the window system under which thy Secondcustomers of a window system should
be able to ignore it when using those programsre,| will concentrate on the viewpoint of theser; the
programming issues are distinct enough to be discussed in a separate paper.

Mux is successful because it is transpasmd unobtrusive This does not mean that its services are
minimal, but that it presents thesimply enough that they can be assimilated and used unconsciously.
After some practice, a user wiux can exploit its facilities without thinking, as automatically as backspac-
ing to correct a typing mistake, or using a steering wheel to guide &lo amount of practice can make it
easy to drive a car by typing compass directions on a keyboard, and no amount of gaiacticke some
window systems feel unobtrusive.

Mux runs only on slow, obsolete hardware thatagslonger manufactured, while X runs on almost
every moderrdisplay. It seems likely I'll soon be asked to turn off myx machine and start using X.
will be reluctant. The window managers I've seen for X are not attractitds not enough that X be stan-
dard, it should also be gooX needs a much smoother window manager.

Mux isn’t perfect, but it's good enough to serve as an example of an effectivntestace. The
principles that make it effective can tistilled to a set of rules of desigitheserules are general enough
to be applied to programs other than window systems; the user interface of a texaefiitnrgger, or any
other practicaprogram should never stand in the way of the task at h@hdrules are not tricks such as
switchable mouse cursors, but principles that help avoid the mistakes that keep a user intenface
becoming subliminal.

Muxwas not designed for novices, lmdvices can use it comfortablywrote it because | wanted an

effective terminal for programmers, suchragself, who use thBNIX® system. Theintent was to make
the system more productivélux also turned outo be easy to use, in part because it was designed with a
consistent idea of who would use Tthefirst rule is therefore:

Design with a specific customer in mind.

The Model

Mux multiplexes the keyboard, mouse, and link tgNaX system among@ set of independent virtual
terminals onone bitmap terminal scree.he multiplexing is discussed fully elsewhere [Pike 1984]; the
following is a summary.A single serial line, running typically at 9600bps, connec#lit terminal to a
“host” UNIX time-sharing systemOn a traditional full-duplex terminal, characters received fromhibet
are displayed on the screemd text typed at the keyboard is sent to the host, to be echoed back to the ter-
minal. Mux turns the Blit into manyterminals by multiplexing the communications resources among a
number of windows, eaabf which acts like a regular terminaCharactersyped on the keyboard appear in
the current windowwhich is selected by pointing with the mouse; oufpoitn a host process goes to the
window associated with its process group.

Each window on anux screen is an independently programmable termiSalmeUNIX programs,
such as the text edit@am and the debuggei [Pike 1987, Cargill 1986], “down-load” code into their
windows tocustomize the terminals’ behaviofhis can be contrasted with the more common technique of
creating a new window fosuch programs. don’t think that either way is superior; the idea of a pro-
grammable terminal is more a byproduct of the wax developed than a conscious design decision.

The default terminal program provided foyix allows “cut and paste” editing of the text in the win-
dow [Goldberg 1984].In some sense, this is an extension of the editingppeyating system provides for
correcting typing mistakesBut because any text dhe screen may be editeehot just the current input
line—some difficult questions mube faced.Whenis input sent to the program reading from the terminal?
When does a program learn that its screen has been edited?

Ordinarily, the operating system handles line-at-a-time inpvihena user types newline (carriage
return), the preceding line of text is passed to the program that is reading from the tetmtiidahe new-
line is typed, the line may be edited (typically by backspacing); after the newtyyet, no changes can
be made.Mux generalizes this editing to apply to any text on the screen, nah@isturrent line of input.
Mux has no current line; instead there is a division between characters the host has seen and characters not
yet transmitted. The location of this division is theutput point:the position inthe text that separates
output from input. Characterdefore the output point have (unless edited) been seen bpsheeither as
output or input; characters after the output point have not been seenhmsth#/hencharacters are sent
from the host, they are insertéato the window at the output point, and the output point is advanced
beyond the character®Vhena newline is typed at the terminal, characters between the output point and the
newline are sent to the host, and the output point is advanced beyond the nEinktly, changes made to
text appearing before the output point are maintained in the terminal only; the hostrsystersees them.
Thus, a user may make changes to the screen at will, but only those changes méue aditpiut point
will be seen by the hosand even then only when a newline is typéthe output point moves forward
monotonically, but the typing cursor may be anywhere in the window.

It is impossible on a traditional terminal to correct a typing mistake @adier line, So someNIX
programs provide an escape to a conventional text editor, for examplanfmse mail messageblux
obviates such escapes becaalséext in mux windows can be editedUnfortunately,this means the con-
tents of the screen are not necessarily the output o)y program; a user’s editsan make the screen
disagree with what the program printéifisual’ programs that maintain their scredayscursor addressing
cannot tolerate this inconsistency, so many window systems disallow gediirag of the display Mux
avoids theproblem differently; it does not support cursor addressingrun a visual program on a Blit,
you must down-load a program that emulates a traditional termilifed. mouse-based programs that fol-
lowedmux have largely displaced visual software on Blits.

A Manual
This section describeaux's complete user interface.

The mouse on the Blit has three buttofi$ie left button (button 1) isised for pointing at another
window to make it the current window, or at text witlasirwindow to select itBy pointing at some text,
holding button 1 down, and releasing it somewhere else, an arbitrary substring may be silelcteble
click on a word or thend of a line selects the word or lin€he middle button (button 2) provides a pop-
up menu of editing facilities; the right button (button 3) providgmop-up menu of window management
facilities.

The editing features affect two objects: therent text,selected with the mousend indicated by
highlighting; and an invisible storage place calledshaf buffer. The button 2 menu looks like:

g cut

U paste

Usnarf
send

D[Ecroll =

Cut copies the selected text to the snarf buffer (overwriting its contantsdeletes it from the screen.
Paste replaces the selected text with a copy of the dmatffer. Snarf copies the selected text to the
snarf buffer without affecting the screeend is described below, anscroll toggles to determine
whether the window scrolls automatically to reveal new text received from the @ost.paste , and
sharf do nothing if the source of the text for the edit is empty.

oooodg

The send “button” is central to mux's convenience.When send is operated, if any texis
selected, it is automatically snarfe@dvithout remembering itsend then deletes any text after the output
point. It then appends the snarf buffafter the output point, exactly as if it had been typédhe text
does not end with a newlinene is added automaticallyzinally, the characters are sent to the host as if
they’d been typedThus,in the simplest case, one may select a previous comoratite screen, activate
send , and thereby cause the command to be re-executed.

Typing is easy.Charactergypedon the keyboard are inserted into the text, replacing the current
selection. Iftheselection is non-empty, it @t first. After a character is typed, the current text is the null
string after the characteflyping a backspace deletes the previous charaeten a newline, but not across
the output point.

The button 3 menu presents a short list of window-manipulation functions:

New

eshape
0 Move
0 Top
UBottom

urrent

DD Delete H

New creates a new window and attachest a new process group and command interpreter on the host.
The size and position of the windowdefined by sweeping with the mousAfter Newis selected, the
mouse cursor changes tdax and arrow, and by pressing button 3 at an arbitrary corner of the new win-
dow and releasing at the diagonally opposite corner, a rectangle is defifvax provides feedback by
displaying dynamically the rectangle definieglthe current mouse positiolReshape andMove change

the shape oposition of a window.Both provide a gunsight cursor with which to indicate the window to be
changed.Move then moves the windowo the position indicated when the button is released (agair,
draws a rectangle for feedbacKeshape executes the same mouse protocoNas/to define thenew
shape of the windowTop andBottom change the stacking order of the indicated windbap makes it

fully visible, in front of the other windowsBottom pushes it to the rear of the stackurrent and
Delete provide the named service for the indicatédddow. Any button 3 operation may be aborted by
clicking button 1 or 2.Finally, by pointing at a non-current window and clicking buttorthg, window is

OoOoooood

made current and top simultaneousHhisis the most common way to change the current window.

The final element of the user interface is a scroll bar in each window to control aceedsstolled
off the top of the window.(To keep things manageablaux maintains only the most recent 10,000 or so
characters for each windowThe scroll bar is activated by depressiagnouse button over the bar, which
is a vertical rectangle at the left of ttvndow. Different buttons provide different actions in the scroll bar.
The scroll bar is probably the least satisfactory part of the user interface; a user can'’t intuitLisewtto
Part of the problem is that the behavior of the buttons depends on where the mouse is pointing, but
doesn’t change the cursor to reflect this changjeshould. In mux's defense, thoughscroll bars in other
systems do not seem particularly bett€heyare a topic for further research.

Some examples

Consider the actions required to make a new window: pregsitign 3 anywhere on the screen,
moving the mouse ovétewon themenu, releasing button 3, moving to one corner of the desired window,
pressing button 3 again, movitgthe diagonally opposite corner, and releasing buttddrBesswindows
are created with defaudize or position, this sequence cannot reasonably be made sifpfeupmenus
are ideal for selecting from smdilts of possibilities because they’re at your fingertips: no mouse motion
is required to activate thenThe Macintosh user soon tired the hand waving necessary to reach the pull-
down menus (and begrudges the screen area they conduarsajnmary,

Minimize mouse activity.

Some systems try to be helpful placing windows automaticallyWhetherwindows should tile or
overlap is an issue | don’t wish to debate, but suffice it to sayfthatl implement overlapping windows,
you should let the user decide where tothem. If you make the window system choose, the user will end
up rearranging the screen anyway.

Don't second-guess the user.

The Reshape button uses the same mechanism as d@wsto define the new position and size of
the window. Devicessuch as sliding corners or edges are convenient but are not worth the trouble to imple-
ment or explain.Theytake up screen space and require parts of the windbave special properties that
are either activated unintentionally or are hard to sel@tidencefor this isthat users complain that the
mux scroll bar is easy to activate accidentally and requaesnuch precision to activate intentionally.
don’t know how to solve the two problems simultaneous®rcea mux user knows how to make new
window, theReshape button is trivial to use and requires no extra explanation; the chamginge cursor
provides the necessary cue.

Use consistent mechanisms for related actions.

One property that distinguishesux from some other systems is thihé current window is selected
by clicking a mouse button; merely placing the momsger the desired window is insufficienAlthoughit
probably makefittle practical differencemux requires the click because there are (rare) times when it is
helpful to type at a window thas largely obscured, and because it is sometimes convenient to move the
mouse cursor out of the way altogether without switching windows.

Selecting text is one of the commonest editing activities, so it shouds leasy as possibl&lux
requires one button push, with the position of the paesssrelease defining the ends of the selecttum-
Windows uses two clicks (and tvmttons), one at each endlhis makes it easy to select more than a win-
dowful of text (which cannot be donenmux), but makes the overwhelmingly more common smaller selec-
tions twice as hard to ddvloreover,between clicks in SunWindows there is an invisible state; the state in
mux is always clear because the button niagsheld down anchux keeps the selection highlighte@&ome-
times generality should be sacrificed to convenience.

Make the common cases easy.

TheUNIX system allows arbitrary type-ahead, so normal terminals often interleave prompts from the
command interpretewith typed input. In mux, however, the prompt always appears at the output point,
which is always at the beginning of a tydete of input. If a prompt is printed while the user is typing a

line, it is inserted automatically at the output paiatthe left of the line.Typedinput is directly usable in a
subsequensend , because iis never corrupted by output in the middle of a lif@utput may appear
betweercomplete lines of input, but that is a lesser problémpracticethe output point keeps output and
input largely disentangled.

Because the character cursor may be placed anywheremagube assembled in convenient order.
After typing mostof a command, a user may reach back near the beginning of the line and correct a spel-
ling mistake or add an argument, or may type a newline, caohegcters between the output point and
the newline to be sent to the hostor example, after typing a long command the user realize that
some other command must be run first to make the long commanderoektly; this can be done by put-
ting the cursor back at the output point, typing the other command and hitting newline to runntpthen
ing the cursor to the end of the remaining input text and typing a second newline.

The output point is an invisible spottime window. Proposaldo make it visible, either by drawing a
second cursor in the window or by discreetly differentiating aéetr the output point, were entertained but
never implementedIn practice theoutput point is usually self-evident, and the effort required to make it
visible didn’'t seem worthwhilelf | were doingmux over, however] might consider doing something to
mark the output point.

Some shells (command interpreters) have a “history” feature that remembers inpustelihend
allows commands tbe rerun by typing some abbreviatiohhis feature is convenient (and even handy in
mux if the desired command is no longer visible) but restrictiver one thing, it only applies to the shell,
not to the programs it runsSincemux windows are terminals, the equival@ifthistory (snarfing and send-
ing) applies to any program without prearrangemeiito, with mux the source of input may be output
from other programsFor instance, many programs when given incorrect arguments will print a “usage
template that shows how to use them correcilith mux, the templatemay be edited into the right form
and sent to the host.

Put features where they only need to be implemented once.

A slightly different usage makasux a sort of interactive pipahe output of one program may be
edited by hand (even just by selection) and pass#tedaput to another progranfror example, file sizes
printed by the directory listing program may be sent to the desk calcukdiw, output from commands
may be used to construct ne@mmands.The best example is editing the outputroéke-n , perhaps to
change the flags temporarily on a particular compilatidnotheris prepending a command to a listfitd
names (such as the outputestho*) and then selecting and sending the erdireng. Send appends a
newline if needed; it is never necessary to touch the keyboard to run a command already on the screen.

One change brought about by such editing is a stgle of output.Interactiveprograms such agh
andadb now produce output that may be used directlynpst to themselvesThis is an issue of syntax
rather than formatOn the UNIX system, commands already produce output whose ferfneg of head-
ers, with one item per lireis expected as input by other prograrfkar example, the old command inter-
preter printed the value of a variable as

var is /usr/rob/paper.ms
but the new one prints
var=/usr/rob/paper.ms

which is exactly the input necessary to recreate the valuarof Thevalue is easily changed by editing
this text and sending it ba¢k the shell. Whenall programs provide output usable as input, the system is
more convenient to use.

Speak the language you understand.

The most common editing action is just grabbingolthcommand and sending iBecausesend
uses the contents of the snarf buffer if nothing is selected, and because the menus pofhepreitious
selection under the mouse cursor, a command may be run repeatedly @lisking button 2. After its
source has been changed using the regular file editor, a program may be recompiled by godatiger
window with the compilation command in the snarf buffer and clicking buttddril the contents of the

sharf buffer change, nothing else is necess@riiefile editor,sam [Pike 1987], which is also based on the
cut and paste model indeed, it is almost identicab mux at that level— uses a separate snarf buffer for
unrelated technical reasons, and it may be best to keep it separate.)

If the user cannot remember what the snarf buffer contains, he or spastan it in, and, if it's
right, hitsend . Paste leaves thaext selected, sgend will send it again.This sort of interplay between
the various commands is vital to a successful interface, and is worth thatlongjin advance and perfect-
ing after usage patterns emergéesend in the earliesmux did not sendhe snarf buffer when there was
no selected textThefeature was added later becausse#med like a good idea and added no clutter to the
user interface lt has turned out to be onerlix's most useful attributes.

Be prepared to redesign as experience accumulates.

Simplicity

Some of the examples in the previous section are ididWose of the individual commands imux
is particularly useful in isolation (except possibly $@nd), but combinations are remarkably expressive.
Idioms develop easily from simple components of a user interfdesy designers of user interfaces try to
keep ahead of the usdry filling the menus with “helpful” commands; what they are doing is inventing
idioms ontheir own, without the users’ direct involvemerithe commands that result are individually
more interesting but less comfortable takeraashole. The menus are larger and harder to handle; the
commands require the user to remember more dedaitsthey are harder to combingnothertack some-
times taken is to make the system customizable, so idioms may be mmédef command sequences,
but this is false economywWhatmustbe added to an interface to make it customizable often outweighs the
gain in effectiveness.

Simple systems are more expressive.

The mostobvious way to achieve simplicity is by leaving things duideed,mux gets by without
several things other systems consider necessary.

Mux windows have no “title bars.”Eachwindow isa rectangle with a plain border, with the current
window’s border heavier than the other windows/ithout a title bar across the top, in principle, windows
may be hard to tell apartBut, in practice, programgrovide different appearances (such as different
prompts), so they are easily distinguishditle bars aren’t worth the screen area they consume or the trou-
ble of defining how to use themAlso, title bars have littlenteresting to say: they announce that every
window is a ‘Shell Window’, or they report throgram’s version numbenVorse,title bars provide a
place on the screen to announce features, states, and modesuthix't be permitted if they couldn’t be
announced, and often shouldn’t be admitted at all.

Don't clutter the display.

The scroll bars are just vertical rectangles; a dark rectangle down teddeftof the window repre-
sents the entire text in the window, and a superimposedréigtgngle represents what'’s visiblEhereare
no top and bottom bumpers buttons. In sam, which was written a couple of years aftenx, the code
that handles the mouse causes the cutsalf to stick to the ends of the bar, as though there were invisible
bumpers, so it's easy to go to either end of the t&kis is easy tamplement, natural to use, and requires
no documentation or explanation.

Program the inputs, not just the outputs.

Mux doesn't ask for confirmation to do risky thingk.always does whahe user asksThe most
obvious case is deleting a windovithe protocol for deleting a window is a two-step process: select
Delete , then indicate which windowTheaction can be aborted before picking the windsevthere is an
element of safety built in; selectiidplete does not immediately endanger amydow. Thisis one rea-
son why a window must beelected by a button click rather than just by the position of the mQus=ein
a while a window is accidentally deleted, but twif happen whatever precautions are taken, and the pain
of recovering it must be weighed against bwgher of dealing with a complicated protocol for deletion.
(Presumably software has some safeguards; edifitirsave their contents, for exampleQonfirmations

are ignored in practiceOncea user is at all familiar with system, the confirmations are executed without
thinking about them; the act of deletion becomes ‘click, clioktead of ‘click, read the message, think
about it, click.’

Confirmations don't work.

Mux has no icons.(I'm referring to little pictorial representations of programs, not programmable
mouse cursors.)Whenmux was being written, | had never heard of icons, but evérwigre writing it
today, | would leave them oult’'s so easy tareate, delete, and rearrange windowmin that it's not
cumbersome to have lots of windows open, and thereforaeuatssary to clean up the display occasion-
ally.

There are times when cleaning up makes sense asugbtween problems, or after some interruption.
Even then, icons are unnecessafy simpler scheme (althoughux doesn’t do this, either) would be to
allow windows to bepushed, intact, off-screen, with just an edge poking in to be grabbed by the mouse
when neededThis requires no more user interfaaed, just as important, no more programmer interface.
(Incidentally, why are iconsecessarily pictorial?Thereis no picture as evocative as the word ‘copy’.)
Bitmap icons first appeared tiling window systems, which cannot allow many programs to have large
windows simultaneouslylconswere therefore invented to collapse large windows way that a touch of
a button could bring them backverlappingwindow systems achieve this differently.

Icons aren’t useful to overlapping window systems.

Not all of what makesux comfortable is what was leftut. It is also important to choose carefully
what to put in, and to makide things that are put in interact coherently with one anoffiee.ways in
which editing and typing interagtere carefully chosen and adjusted (and strongly influenced by Smalltalk
[Goldberg 1984]).Eachof the editing commands isolates a single function, but perforim&dncert with
all the other commandby sharing the interface model and the objects upon which it @bts.is hard to
say without making it sound trivial, but experiengigh other window systems shows it still needs to be
said.

Design the elements of the interface together.

Some window systems have options that adjust the behavguittindividual tastesMux has no
options. Iwould rather defend, and if necessary extend, a good set of design dettiaioradtempt to
make everyone happy by appealingtheir pre-set ideas of how things should Bdl-inclusive systems
end up pleasing no one; they do nothing particularly well, and are unwieldy to implement and to use.

Choose a design and stick to it.

Convenience

How can a system be made convenielit?answerthis question requires the expertise of a human
factors researcher, but | can provide a couple of illustrative examptassiderthe layout of the button 3
menu, pictured earlierFunctionsrelated inpurpose (such asop andBottom) or in user interface (such
asNewandReshape) are grouped togetheDelete , the most destructive operator, isoae end of the
menu, with the least commonly used operations sepaiafiogn the more commonly used ones at the top.
New and Delete are the most common commands to activatel they can be found quickly by their
position at the edges tiie menuNewis at the topDelete at the bottom, and either can be found in an
instant without reading all the entries on the menu.

The shorter the menu, the easier it is to Us#enthe menu gets long, the user must read all the
entries to find the one desire®Railwaytimetables are marked with lines or distinct colors every few lines
to guide the eyelf the marks were every twenggations, they wouldn’t be helpfuBimilarly, a menu with
five or so entries can be understoodaajlance; a menu with twenty must be examined carefully, slowly.
Keeping menus small is an easy way to make a system convenient theseiddle of the seven-element
button 3 menu is @o-man’s-land of infrequently used commands, but all of the five-element button 2
menu is accessible without reading the entriglgking the button 2 meneven one entry longer might
make it considerably harder to use.

Keep menus short.

Cascaded menus are no hkefge. Theindividual menus stay short, but not all options are visible, and such
menus are fussy to use.

Don't use cascading menus.

The cost of adding something to a user interface can be assessed by balancing the woattdof the
tion against the cost of the added complexMux users occasionally ask forf@ature to search for text in
the window. | have resistedheir requests because the extra menu entry, although occasionally useful,
would make the menu harder to use, and the balance does not seem in favor oftedtkagure. Of
course, this is subjective;dould have tried a search button to see if | likedTihe problem with such
experiments, though, is that social pressume&e features harder to remove from a program than to leave
out in the first place.

Balance the benefit of a feature against its overall cost.

Even minor conveniences can have important consequeitesmenus inmux “remember” the
last item selected from thenAfter a user has selected, sagnd , the next time button 2 is depressed the
menu comes up witeend under the cursorThis means that multipleperations, which are quite com-
mon, can be done by clicking the buttaithout having to look at the menudnstead, the usecan
concentrate on the text being edited, maximizing the convenience of pop-up menus.

Remember what the user did last time.

Some systems instedwling the menu up with the mouse cursor at the top of the menu, and with nothing
pre-selected. Aftea few selections, which take a centimeter or two of mouse motion eachotise has
drifted off the window and the deskThis is particularly annoying irsystems that select the current
window solely by mouse positionAlso, such menusorce the user to read the menu, because the selection
must be made every time; just clicking isn’t good enough.

Don't make the mouse ratchet across the screen.

The Apollo and PERQ window systems provaene-line buffer at the bottom of the screen into
which typed characters are echodd@hesesystems don’t have the concept of artput point, but their
designers wanted to allow mouse editing of input tes)each line is typed, thaser’'s attention must
flick from the bottom of the screen to the destination window and back aglaisis needless distraction.

Keep activity localized on the screen.

Responsiveness

Mux is not a speedy window system, but it is a responsive Boeinstance, when aectangle is
swept to make a new window, the window appears instantly trenéssociated shell starts right away.
After the rectangle has been swept, less than a second passes before the shell prompt appears.

Compare this to SunWindows or X, which spawn subprocesses that eveptyellp on the screen.
After requesting a new window, the user is free to do other wBtK.at an unpredictable time, usually
some seconds later, a window will suddenly appear (in SunWindows) or the mouse will suddenly change
state (in X). This can be confusing and troublesemir instance, the behavior of the mouse changes
unpredictably—so in practice it's best just to wail.hesesystems have insufficient correlation between the
action (requesting a window) and its result (acquiring a window); their delaystheakeas unsettling as a
telephone conversation via satellite.

Bind actions directly to their consequences.
A related rule is:

Don't change state unpredictably.

An unresponsive system cannot be used dynamic8lifferent people workdifferently, but some

mux users treat windows like sheets of scratch paper, grabbinregtaone for a quick calculation and then
tossing itaway soon afterwardslThe clumsiness of making and adjusting windows in other systems forces
their windowsto be created statically rather than as occasion demétslsis though the number of win-
dows were fixed, and a window system with a fixed number of windows is like a file sydtlera fixed
number of files.

Don’t make the user wait.

System issues

This paper is not about threystems programming problem of implementingx, but some of the
systems-related decisions méadehe design did influence the user interfa@d®&e most evident of these is
that mux windows do not support cursor addressifithis was a deliberate omissionwlanted to break
cleanly away from ‘visual’ software to tools that use the mousedaythis doesn’t seem lika radical
decision, but when it was made 1881 it was extremely contentiouBairly early, one ofmux's clients
wrote a terminal program, to run in a window, that emulated a traditiox&02#rminal. Before long,
however,mux’s editing capabilities attractegeople by providing a helpful environment that encouraged
them to use the mouse.

Another factor irmux's success was that it does not override the operating system it séfliasit
offers is not a new programmaeterface, but a better user interface to what was already thése, the
way mux handles text fitsn comfortably with theJNIX system’s idea of stream processirfy.user inter-
face that instead depended on novel id@asicilities would not work as wellFor example, &JNIX win-
dow system employing multiple type fonts would not beswascessful, because the operating system does
not itself use multiple fonts.

Tie the user interface to the ideas in the system.

Theideal

When a user interfaosorks well, it's invisible. The driver of a car isn’t conscious of shifting gears,
braking, and steering; thtask at hand is drivingSimilarly, the user of a computer program shouldn’t be
conscious of the details of the interaction, but instead should be free to concentrat@roblém being
solved. Theuser interfaceo correct typing mistakes in a traditional operating system is one interface that
succeeds by this criterion; typing backspace becomes second nature.

Make the user interface invisible.

Not all mux users are completely comfortable with a mouse, but for those thatas, user inter-
face seems nearly as unintrusive as typing backspgceasionallya mux user sits down in front of ter-
minal not runningmux, makes a typing mistake, and reacheslfiermouse instinctivelyThis implies not
only thatmux makes it possible to use the mouse to edit text, butnibatmakes it so easy to use the
mouse that people do so subconsciou3lyatis the mark of a successful interface.

References
[Cargill 1986] T. A. Cargill, ‘The feelof Pi,” Winter USENIX Conference Proceedings, Denver 1986,
62-71, USENIX Assoc., El Cerrito, CA.

[Goldberg 1984] A. Goldberg, Smalltalk-80: The Interactive Programmingnvironment, Addison-
Wesley, Reading, Mass., 1984.

[Pike 1984] R. Pike, ‘TheBlit: a multiplexed graphics terminalXT&T Bell Labs. Tech. J63, (8),
1607-1631 (1984).

[Pike 1987] R. Pike, ‘The text editosam,” Softw. Pract. Exp17, (1), 813-845 (1987).

