
A Minimalist Global User Interface1

Rob Pike

AT&T Bell Laboratories
Murray Hill, New Jersey 07974
rob@research.att.com

Abstract

Help is a combination of editor, window system,
shell, and user interface that provides a novel environment for
the construction of textual applications such as browsers,
debuggers, mailers, and so on. It combines an extremely lean
user interface with some automatic heuristics and defaults to
achieve significant effects with minimal mouse and keyboard
activity. The user interface is driven by a file-oriented
programming interface that may be controlled from programs
or even shell scripts. By taking care of user interface issues
in a central utility,help simplifies the job of programming
applications that make use of a bitmap display and mouse.

Keywords: Windows, User Interfaces, Minimalism

Background

Ten years ago, the best generally available interface to
a computer was a 24×80 character terminal with cursor
addressing. In its place today is a machine with a high-
resolution screen, a mouse, and a multi-window graphical
user interface. That interface is essentially the same whether
it is running on a PC or a high-end 3D graphics workstation.
It is also almost exactly the same as what was available on the
earliest bitmap graphics displays.

The decade that moved menus and windows from the
research lab to more than ten million PC’s, that changed
computer graphics from an esoteric specialty to a
commonplace, has barely advanced the state of the art in user
interfaces. A case can be made that the state of the art is even
backsliding: the hardware and software resources required to
support an X terminal are embarrassing, yet the text editor of
choice in universities on such terminals continues to be a
character-based editor such asvi or emacs, both holdovers
from the 1970’s. With the exception of the Macintosh, whose
users have found many creative ways to avoid being
restrained (or insulted) by the decision that they would find
more than one mouse button confusing, the new generation of

_ ____________________
1This is a revision of a paper by the same title published in the Proceedings of
the Summer 1991 USENIX Conference, Nashville, 1991, pp. 267-279.

machines has not freed its users from the keyboard-heavy
user interfaces that preceded them.

There are many reasons for this failure — one that is
often overlooked is how uncomfortable most commercially
made mice are to use— but the most important might well be
that the interfaces the machines offer are just not very good.
Spottily integrated and weighed down by layers of software
that provide features too numerous to catalog and too
specialized to be helpful, a modern window system expends
its energy trying to look good, either on a brochure or on a
display. What matters much more to a user interface is that it
feel good. It should be dynamic and responsive, efficient and
invisible [Pike88]; instead, a session with X windows
sometimes feels like a telephone conversation by satellite.

Where will we be ten years from now? CRT’s will be
a thing of the past, multimedia will no longer be a buzzword,
pen-based and voice input will be everywhere, and university
students will still be editing withemacs. Pens and touch-
screens are too low-bandwidth for real interaction; voice will
probably also turn out to be inadequate. (Anyway, who
would want to work in an environment surrounded by people
talking to their computers?) Mice are sure to be with us a
while longer, so we should learn how to use them well.

With these churlish thoughts in mind, I began a couple
of years ago to build a system, calledhelp , that would have
as efficient and seamless a user interface as possible. I
deliberately cast aside all my old models of how interfaces
should work; the goal was to learn if I could do better. I also
erased the usual divisions between components: rather than
building an application or an editor or a window system, I
wanted something that centralized a very good user interface
and made it uniformly available to all the components of a
system.

Introduction

Help is an experimental program that combines
aspects of window systems, shells, and editors to address
these issues in the context of textual applications. It is
designed to support software development, but falls short of
being a true programming environment. It is not a ‘toolkit’; it

is a self-contained program, more like a shell than a library,
that joins users and applications. From the perspective of the
application (compiler, browser, etc.), it provides a universal
communication mechanism, based on familiar Unix® file
operations, that permits small applications— even shell
procedures —to exploit the graphical user interface of the
system and communicate with each other. For the user, the
interface is extremely spare, consisting only of text, scroll
bars, one simple kind of window, and a unique function for
each mouse button— no widgets, no icons, not even pop-up
menus. Despite these limitations,help is an effective
environment in which to work and, particularly, to program.

The inspiration forhelp comes from Wirth’s and
Gutknecht’s Oberon system [Wirt89, Reis91]. Oberon is an
attempt to extract the salient features of Xerox’s Cedar
environment and implement them in a system of manageable
size. It is based on a module language, also called Oberon,
and integrates an operating system, editor, window system,
and compiler into a uniform environment. Its user interface is
disarmingly simple: by using the mouse to point at text on the
display, one indicates what subroutine in the system to
execute next. In a normal Unix shell, one types the name of a
file to execute; instead in Oberon one selects with a particular
button of the mouse a module and subroutine within that
module, such asEdit.Open to open a file for editing.
Almost the entire interface follows from this simple idea.

The user interface ofhelp is in turn an attempt to
adapt the user interface of Oberon from its language-oriented
structure on a single-process system to a file-oriented multi-
process system, Plan 9 [Pike90]. That adaptation must not
only remove from the user interface any specifics of the
underlying language; it must provide a way to bind the text on
the display to commands that can operate on it: Oberon passes
a character pointer;help needs a more general method
because the information must pass between processes. The
method chosen uses the standard currency in Plan 9: files and
file servers.

The interface seen by the user

This section explains the basics of the user interface;
the following section uses this as the background to a major
example that illustrates the design and gives a feeling for the
system in action.

Help operates only on text; at the moment it has no
support for graphical output. A three-button mouse and
keyboard provide the interface to the system. The
fundamental operations are to type text with the keyboard and
to control the screen and execute commands with the mouse
buttons. Text may be selected with the left and middle mouse
buttons. The middle button selects text defining the action to
be executed; the left selects the object of that action. The
right button controls the placement of windows. Note that
typing does not execute commands; newline is just a
character.

Several interrelated rules were followed in the design
of the interface. These rules are intended to make the system

as efficient and comfortable as possible for itsusers. First,
brevity: there should be no actions in the interface— button
clicks or other gestures— that do not directly affect the
system. Thushelp is not a ‘click-to-type’ system because
that click is wasted; there are no pop-up menus because the
gesture required to make them appear is wasted; and so on.
Second,no retyping: it should never be necessary or even
worthwhile to retype text that is already on the screen. (Many
systems allow the user to copy the text on the screen to the
input stream, but for small pieces of text such as file names it
often seems easier to retype the text than to use the mouse to
pick it up, which indicates that the interface has failed.) As a
corollary, when browsing or debugging, rather than just
typing new text, it should be possible to work efficiently and
comfortably without using the keyboard at all. Third,
automation: let the machine fill in the details and make
mundane decisions. For example, it should be good enough
just to point at a file name, rather than to pass the mouse over
the entire textual string. Finally, defaults: the most common
use of a feature should be the default. Similarly, the smallest
action should do the most useful thing. Complex actions
should be required only rarely and when the task is unusually
difficult.

The help screen is tiled with windows of editable
text, arranged in (usually) two side-by-side columns. Figure
1 shows ahelp screen in mid-session. Each window has
two subwindows, a singletag line across the top and a body
of text. The tag typically contains the name of the file whose
text appears in the body.

The text in each subwindow (tag or body) may be
edited using a simple cut-and-paste editor integrated into the
system. The left mouse button selects text; the selection is
that text between the point where the button is pressed and
where it is released. Each subwindow has its own selection.
One subwindow— the one with the most recent selection or
typed text— is the location of the current selection and its
selection appears in reverse video. The selection in other
subwindows appears in outline.

Typed text replaces the selection in the subwindow
under the mouse. The right mouse button is used to rearrange
windows. The user points at the tag of a window, presses the
right button, drags the window to where it is desired, and
releases the button. Help then does whatever local
rearrangement is necessary to drop the window to its new
location (the rule of automation). This may involve covering
up some windows or adjusting the position of the moved
window or other windows. Help attempts to make at least
the tag of a window fully visible; if this is impossible, it
covers the window completely.

A tower of small black squares, one per window,
adorns the left edge of each column. (See Figure 1.) These
tabs represent the windows in the column, visible or invisible,
in order from top to bottom of the column, and can be clicked
with the left mouse button to make the corresponding window
fully visible, from the tag to the bottom of the column it is in.
A similar row across the top of the columns allows the

Figure 1: A smallhelp screen showing two columns of windows. The current selection is the black line in the bottom left window.
The directory/usr/rob/src/help has beenOpened and, from there, the source files/usr/rob/src/help/errs.c and
file.c .

columns to expand horizontally. These little tabs are an
adequate but not especially successful solution to the problem
of managing many overlapping windows. The problem needs
more work; perhaps the file name of each window should pop
up alongside the tabs when the mouse is nearby.

Like the left mouse button, the middle button also
selects text, but the act of releasing the button does not leave
the text selected; rather it executes the command indicated by
that text. For example, to cut some text from the screen, one
selects the text with the left button, then selects with the
middle button the wordCut anywhere it appears on the
display. (By convention, capitalized commands represent
built-in functions.) As in any cut-and-paste editor, the cut
text is remembered in a buffer and may be pasted into the text
elsewhere. If the text of the command name is not on the
display, one just types it andthen executes it by selecting
with the middle button. Note thatCut is not a ‘button’ in the
usual window system sense; it is just a word, wherever it
appears, that is bound to some action. To make things easier,
help interprets a middle mouse button click (notdouble
click) anywhere in a word as a selection of the whole word
(the rule of defaults). Thus one may just select the text
normally, then click on Cut with the middle button,
involving less mouse activity than with a typical pop-up
menu. If the text for selection or execution is the null string,
help invokes automatic actions to expand it to a file name or
similar context-dependent block of text. If the selection is
non-null, it is always taken literally.

As an extra acceleration,help has two commands
invoked by chorded mouse buttons. While the left button is
still held down after a selection, clicking the middle button

executesCut ; clicking the right button executesPaste ,
replacing the selected text by the contents of the cut buffer.
These are the most common editing commands and it is
convenient not to move the mouse to execute them (the rules
of brevity and defaults). One may even click the middle and
then right buttons, while holding the left down, to execute a
cut-and-paste, that is, to remember the text in the cut buffer
for later pasting.

More than one word may be selected for execution;
executingOpen /usr/rob/lib/profile creates a new
window and puts the contents of the file in it. (If the file is
already open, the command just guarantees that its window is
visible.) Again, by the rule of automation, the new window’s
location will be chosen byhelp . The hope is to do
something sensible with a minimum of fuss rather than just
the right thing with user intervention. This policy was a
deliberate and distinct break with most previous systems. (It
is present in Oberon and in most tiling window systems but
help takes it farther.) This is a contentious point, buthelp
is an experimental system. One indication that the policy is
sound is that minor changes to the heuristics often result in
dramatic improvements to the feel of the system as a whole.
With a little more work, it should be possible to build a
system that feels just right.

A typical shell window in a traditional window system
permits text to be copied from the typescript and presented as
input to the shell to achieve some sort of history function: the
ability to re-execute a previous command.Help instead tries
to predict the future: to get to the screen commands and text
that will be useful later. Every piece of text on the screen is a
potential command or argument for a command. Many of the

Figure 2: ExecutingCut by sweeping the word while holding down the middle mouse button. The text being selected for execution is
underlined.

Figure 3: Opening files. After typing the full path name ofhelp.c , the selection is automatically the null string at the end of the file
name, so just clickOpen to open that file; the defaults grab the whole name. Next, after pointing intodat.h , Open will get
/usr/rob/src/help/dat.h .

basic commands pull text to the screen from the file system
with a minimum of fuss. For example, ifOpen is executed
without an argument, it uses the file name containing the most
recent selection (the rule of defaults). Thus one may just
point with the left button at a file name and then with the
middle button atOpen to edit a new file. Using all four of
the rules above, ifOpen is applied to a null selection in a file
name that does not begin with a slash (/), the directory name
is extracted from the file name in the tag of the window and
prepended to the selected file name. An elegant use of this is
in the handling of directories. When a directory isOpened,
help puts the its name, including a final slash, in the tag and
just lists the contents in the body. (See Figure 1.)

For example, by pointing at dat.h in the source file
/usr/rob/src/help/help.c and executingOpen, a
new window is created containing the contents of

/usr/rob/src/help/dat.h : two button clicks. (See
Figure 3.) Making any non-null selection disables all such
automatic actions: the resulting text is then exactly what is
selected.

That Open prepends the directory name gives each
window a context: the directory in which the file resides. The
various commands, built-in and external, that operate on files
derive the directory in which to execute from the tag line of
the window. Help has no explicit notion of current working
directory; each command operates in the directory appropriate
to its operands.

The Open command has a further nuance: if the file
name is suffixed by a colon and an integer, for example
help.c:27 , the window will be positioned so the indicated
line is visible and selected. This feature is reminiscent of
Robert Henry’s error (1) program in Berkeley Unix,

although it is integrated more deeply and uniformly. Also,
unlike error , help ’s syntax permits specifying general
locations, although only line numbers will be used in this
paper.

It is possible to execute any external Plan 9 command.
If a command is not a built-in likeOpen, it is assumed to be
an executable file and the arguments are passed to the
command to be executed. For example, if one selects with
the middle button the text

grep ’^main’ /sys/src/cmd/help/*.c

the traditional command will be executed. Again, some
default rules come into play. If the tag line of the window
containing the command has a file name and the command
does not begin with a slash, the directory of the file will be
prepended to the command. If that command cannot be found
locally, it will be searched for in the standard directory of
program binaries. The standard input of the commands is
connected to en empty file; the standard and error outputs are
directed to a special window, called Errors , that will be
created automatically if needed. TheErrors window is also
the destination of any messages printed by the built-in
commands.

The interplay and consequences of these rules are
easily seen by watching the system in action.

An example

In this example I will go through the process of fixing a bug reported to me in a mail message sent by a user. Please
pardon the informal first person for a while; it makes the telling easier.

Whenhelp starts it loads a set of ‘tools’, a term borrowed from Oberon, into the right hand column of its initially two-
column screen. These are files with names like/help/edit/stf (the stuff that thehelp editor provides),
/help/mail/stf , and so on. Each is a plain text file that lists the names of the commands available as parts of the tool,
collected in the appropriate directory. A help window on such a file behaves much like a menu, but is really just a window on
a plain file. The useful properties stem from the interpretation of the file applied by the rules of help ; they are not inherent to
the file.

Figure 4: The screen after booting.

To read my mail, I first executeheaders in the mail tool, that is, I click the middle mouse button on the wordheaders in the
window containing the file/help/mail/stf . This executes the program/help/mail/headers by prefixing the
directory name of the file/help/mail/stf , collected from the tag, to the executed word,headers . This simple mechanism
makes it easy to manage a collection of programs in a directory.

Figure 5: After executingmail/headers .

Headers creates a new window containing the headers of my mail messages, and labels it/mail/box/rob/mbox . I
know Sean has sent me mail, so I point at the header of his mail (just pointing with the left button anywhere in the header line
will do) and click onmessages .

Figure 6: After applyingmessages to the header line of Sean’s mail.

A new version ofhelp has crashed and a broken process lies about waiting to be examined. (This is a property of Plan 9, not of
help .) I point at the process number (I certainly shouldn’t have to type it) and executestack in the debugger tool,

/help/db/stf . This pops up a window containing the traceback as reported byadb , a primitive debugger, under the
auspices of/help/db/stack .

Figure 7: After applyingdb/stack to the broken process.

Notice that this new window has many file names in it. These are extracted from the symbol table of the broken program. I can
look at the line (of assembly language) that died by pointing at the entry/sys/src/libc/mips/strchr.s:34 and
executingOpen, but I’m sure the problem lies further up the call stack. The deepest routine inhelp is textinsert , which
calls strlen on line 32 of the filetext.c . I point at the identifying text in the stack window and executeOpen to see the
source.

Figure 8: AfterOpening text.c at line 32.

The problem is coming to light:s , the argument tostrlen , is zero, and was passed as an argument totextinsert by the
routineerrs , which apparently also got it as an argument fromXdie2 . I close the window ontext.c by hittingClose! in
the tag of the window. By convention, commands ending in an exclamation mark take no arguments; they are window
operations that apply to the window in which they are executed. Next I examine the source of the suspiciously namedXdie2 by
pointing at the stack trace andOpening again. (See Figure 9.)

Figure 9: AfterOpening exec.c at line 252.

Now the problem gets harder. The argument passed to errs is a variable,n, that appears to be global. Who set it to
zero? I can look at all the uses of the variable in the program by pointing at the variable in the source text and executing
uses *.c by sweeping both ‘words’ with the middle button in the C browser tool,/help/cbr/stf . Uses creates a new
window with all references to the variablen in the files/usr/rob/src/help/*.c indicated by file name and line number.
The implementation of the C browser is described below; in a nutshell, it parses the C source to interpret the symbols
dynamically. If instead I had run the regular Unix command

grep n /usr/rob/src/help/*.c

I would have had to wade through every occurrence of the lettern in the program.

Figure 10: After finding all uses ofn.

The first use is clearly the declaration in the header file. It looks likehelp.c:35 should be an initialization. I Open help.c
to that line and see that the variable is indeed initialized. (See Figure 11; a few lines off the top of the window onhelp.c is the
opening declaration ofmain() .) Some other use ofn must have cleared it. Line 252 ofexec.c is the call; I know that’s a
read, not a write, of the variable. So I point toexec.c:213 and executeOpen.

Figure 11: The writing ofn on lineexec.c:213 .

Here is the jackpot of this contrived example. Sometime beforeXdie2 was executed,Xdie1 clearedn. I useCut to remove
the offending line, write the file back out (the wordPut! appears in the tag of a modified window) and then executemk in
/help/cbr to compile the program (a total of three clicks of the middle button). I could now answer Sean’s mail to tell him
that the bug is fixed. I’ll stop now, though, because to answer his mail I’d have to type something. Through this entire demo I
haven’t yet touched the keyboard.

Figure 12: After the program is compiled.

This demonstration illustrates several things besides
the general flavor ofhelp . Most important, by following
some simple rules it is possible to build an extremely efficient
and productive user interface using just a mouse and screen.
This is illustrated by howhelp makes it easy to work with
files and commands in multiple directories. The rules by
which help constructs file names from context and by which
the utilities derive the context in which they execute simplify
the management of programs and other systems constructed
from scattered components. Also, the few common rules
about text and file names allow a variety of applications to
interact through a single user interface. For example, none of
the tool programs has any code to interact directly with the
keyboard or mouse. Insteadhelp passes to an application
the file and character offset of the mouse position. Using the
interface described in the next section, the application can
then examine the text in the window to see what the user is
pointing at. These operations are easily encapsulated in
simple shell scripts, an example of which is given below.

The interface seen by programs

As in 8½, the Plan 9 window system [Pike91],help
provides its client processes access to its structure by
presenting a file service, althoughhelp ’s file structure is
very different. Eachhelp window is represented by a set of
files stored in numbered directories. The number is a unique
identifier, similar to Unix process id’s. Each directory
contains files such as tag andbody , which may be read to
recover the contents of the corresponding subwindow, and
ctl , to which may be written messages to effect changes
such as insertion and deletion of text in contents of the
window. Thehelp directory is conventionally mounted at
/mnt/help , so to copy the text in the body of window
number 7 to a file, one may execute

cp /mnt/help/7/body file

To search for a text pattern,

grep pattern /mnt/help/7/body

An ASCII file /mnt/help/index may be examined to
connect tag file names to window numbers. Each line of this
file is a window number, a tab, and the first line of the tag.

To create a new window, a process just opens
/mnt/help/new/ctl , which places the new window
automatically on the screen near the current selected text, and
may then read from that file the name of the window created,
e.g. /mnt/help/8 . The position and size of the new
window is chosen byhelp .

Another example

The directory/help/cbr contains the C browser we
used above. One of the programs there is calleddecl ; it
finds the declaration of the variable marked by the selected
text. Thus one points at a variable with the left button and
then executes decl in the window for the file
/help/cbr/stf . Help executes /help/cbr/decl
using the context rules for theexecuted text and passes it the

context (window number and location) of theselected text
through an environment variable,helpsel .

Decl is a shell script, a program for the Plan 9 shell,
rc [Duff90]. Here is the complete script:

eval ‘{help/parse -c}
x=‘{cat /mnt/help/new/ctl}
{

echo a
echo $dir/’ Close!’

} | help/buf > /mnt/help/$x/ctl
{

cpp $cppflags $file |
help/rcc -w -g -i$id -n$line |
sed 1q

} > /mnt/help/$x/bodyapp

The first line runs a small program,help/parse , that
examines $helpsel and establishes another set of
environment variables,file , id , and line , describing
what the user is pointing at. The next creates a new window
and setsx to its number. The first block writes the directory
name to the tag line; the second runs the C preprocessor on
the original source file (it should arguably be run on, say,
/mnt/help/8/body) and passes the resulting text to a
special version of the compiler. This compiler has no code
generator; it parses the program and manages the symbol
table, and when it sees the declaration for the indicated
identifier on the appropriate line of the file, it prints the file
coordinates of that declaration. This appears on standard
output, which is appended to the new window by writing to
/mnt/help/$x/bodyapp . The user can then point at the
output to directOpen to display the appropriate line in the
source. (A future change tohelp will be to close this loop
so the Open operation also happens automatically.) Thus
with only three button clicks one may fetch to the screen the
declaration, from whatever file in which it resides, the
declaration of a variable, function, type, or any other C
object.

A couple of observations about this example. First,
help provided all the user interface. To turn a compiler into
a browser involved spending a few hours stripping the code
generator from the compiler and then writing a half dozen
brief shell scripts to connect it up to the user interface for
different browsing functions. Given another language, we
would need only to modify the compiler to achieve the same
result. We would not need to write any user interface
software. Second, the resulting application is not a monolith.
It is instead a small suite of tiny shell scripts that may be
tuned or toyed with for other purposes or experiments.

Other applications are similarly designed. For
example, the debugger interface,/help/db , is a directory of
ten or so brief shell scripts, about a dozen lines each, that
connectadb to help . Adb has a notoriously cryptic input
language; the commands in/help/db package the most
important functions ofadb as easy-to-use operations that
connect to the rest of the system while hiding the rebarbative
syntax. People unfamiliar with adb can easily usehelp ’s
interface to it to examine broken processes. Of course, this is
hardly a full-featured debugger, but it was written in about an

hour and illustrates the principle. It is a prototype, andhelp
is an easy-to-program environment in which to build such test
programs. A more sophisticated debugger could be
assembled in a similar way, perhaps by leaving a debugging
process resident in the background and having thehelp
commands send it requests.

Discussion

Help is a research prototype that explores some ideas
in user interface design. As an experiment it has been
successful. When someone first begins to use help , the
profusion of windows and the different ground rules for the
user interface are disorienting. After a couple of hours,
though, the system seems seductive, even natural. To return
at that point to a more traditional environment is to see how
much smoother help really is. Unfortunately, it is
sometimes necessary to leavehelp because of its limitations.

The time is overdue to rewritehelp with an eye to
such mundane but important features as undo, multiple
windows per file, the ability to handle large files gracefully,
support for traditional shell windows, and syntax for shell-
like functionality such as I/O redirection. Also, of course, the
restriction to textual applications should be eliminated.

One of the original problems with the system—
inadequate heuristics for automatically placing windows—
has been fixed since the first version of this paper. The rule it
follows is first to place the new window at the bottom of the
column containing the selection. It places the tag of the
window immediately below the lowest visible text already in
the column. If that would leave too little of the new window
visible, the new window is placed to cover half of the lowest
window in the column. If that would still leave too little
visible, the new window is positioned over the bottom 25% of
the column and minor adjustments are made so it covers no
partial line of existing text, which may entail hiding some
windows entirely. This procedure is good enough that I
haven’t been encouraged to refine it any further, although
there are probably improvements that could still be made. A
good rule to follow when designing or tuning interfaces is to
attend to any clumsiness that draws your attention to the
interface and distracts from the job at hand. I believe the
heuristic for placing windows is good enough because I don’t
notice it; in fact I had to read the source to help to recall
what it was.

Help does not exploit the multi-machine Plan 9
environment as well as it could. The most obvious example
is that the applications run on the same machine ashelp
itself. This is probably easy to fix:help could run on the
terminal and make an invisible call to the CPU server,
sending requests to run applications to the remote shell-like
process. This is similar to hownmake [Fowl90] runs its
subprocesses.

If imitation is the sincerest form of flattery, the
designers of Oberon’s user interface will (I hope) be honored
by help . But Oberon has some aspects that made it difficult
to adapt the user interface directly to UNIX-like systems such

as Plan 9. The most important is that Oberon is a monolithic
system intimately tied to a module-based language. An
Oberon tool, for instance, is essentially just a listing of the
entry points of a module. In retrospect, the mapping of this
idea into commands in a Unix directory may seem obvious,
but it took a while to discover. Once it was found, the idea to
use the directory name associated with a file or window as a
context, analogous to the Oberon module, was a real
jumping-off point. Help only begins to explore its
ramifications.

Another of Oberon’s difficulties is that it is a single-
process system. When an application is running, all other
activity — even mouse tracking— stops. It turned out to be
easy to adapt the user interface to a multi-process system.
Help may even be superior in this regard to traditional shells
and window systems since it makes a clean separation
between the text that executes a command and the result of
this command. When windows are cheap and easy to use
why not just create a window for every process? Also,
help ’s structure as a Plan 9 file server makes the
implementation of this sort of multiplexing straightforward.

Help is similar to a hypertext system, but the
connections between the components are not in the data—
the contents of the windows— but rather in the way the
system itself interprets the data. When information is added
to a hypertext system, it must be linked (often manually) to
the existing data to be useful. Instead, in help , the links
form automatically and are context-dependent. In a session
with help , things start slowly because the system has little
text to work with. As each new window is created, however,
it is filled with text that points to new and old text, and a kind
of exponential connectivity results. After a few minutes the
screen is filled with active data. Compare Figure 4 to Figure
11 to see snapshots of this process in action.Help is more
dynamic than any hypertext system for software development
that I have seen. (It is also smaller: 4300 lines of C.)

The main area wherehelp has not been pushed hard
enough is, in fact, its intended subject: software development.
The focus has been more on the user interface than on how it
is used. One of the applications that should be explored is
compilation control. Running make in the appropriate
directory is too pedestrian for an environment like this. Also,
for complicated trees of source directories, the makefiles
would need to be modified so the file names would couple
well with help ’s way of working. Make and help don’t
function in similar ways.Make works by being told what
target to build and looking at which files have been changed
that are components of the target. What’s needed forhelp is
almost the opposite: a tool that, perhaps by examining the
index file, sees what source files have been modified and
builds the targets that depend on them. Such a program may
be a simple variation ofmake — the information in the
makefile would be the same— or it may be a whole new
tool. Either way, it should be possible to tighten the binding
between the compilation process and the editing of the source
code; deciding what work to do by noticing file modification
times is inelegant.

There have been other recent attempts to integrate a
user interface more closely with the applications and the
operating system. ConMan and Tcl [Haeb88,Oust90] are
noteworthy examples, but they just provide interprocess
communication within existing environments, permitting
established programs to talk to one another.Help is more
radical. It provides the entire interface to the screen and
mouse for both users and programs. It is not an extra layer of
software above the window system; instead it replaces the
window system, the toolkits, the command interpreter, the
editor, and even the user interface code within the
applications.

Perhaps its most radical idea, though, is that a better
user interface can be one with fewer features.Help doesn’t
even have pop-up menus; it makes them superfluous. It has
no decorations, no pictures, and no modes, yet by using only
a bitmap screen and three mouse buttons (one of which is
underused) it provides a delightfully snappy and natural user
interface, one that makes regular window systems—
including those I have written— seem heavy-handed.Help
demonstrates that the ideas of minimalism, uniformity, and
universality have merit in the design of human-computer
interfaces. In the years to come, as the machines and their
input methods become more complex, those principles will
have to be followed ever more assiduously if we are to get the
most from our systems.

Acknowledgements

Sean Dorward wrote the mail tools and suggested
many improvements to help . Doug Blewett, Tom Duff, Stu
Feldman, Eric Grosse, Dennis Ritchie, and Howard Trickey
made helpful comments on the paper. Brian Kernighan’s
heroic efforts to force this paper throughtroff deserve
particular thanks.

References

[Duff90] Tom Duff, ‘‘Rc - A Shell for Plan 9 and UNIX
systems’’, Proc. of the Summer 1990 UKUUG Conf.,
London, July, 1990, pp. 21-33
[Fowl90] Glenn Fowler, ‘‘A Case for make’’, Softw. - Prac.
and Exp., Vol 20 #S1, June 1990, pp. 30-46
[Haeb90] Paul Haeberli, ‘‘ConMan: A Visual Programming
Language for Interactive Graphics’’, Comp. Graph., Vol 22
#4, Aug. 1988, pp. 103-110
[Oust90] John Ousterhout, ‘‘Tcl: An Embeddable Command
Language’’, Proc. USENIX Winter 1990 Conf., pp. 133-146
[Pike88] Rob Pike, ‘‘Window Systems Should Be
Transparent’’, Comp. Sys., Summer 1988, Vol 1 #3, pp.
279-296
[Pike90] Rob Pike, Dave Presotto, Ken Thompson, and
Howard Trickey, ‘‘Plan 9 from Bell Labs’’, Proc. of the
Summer 1990 UKUUG Conf., London, July, 1990, pp. 1-9
[Pike91] Rob Pike, ‘‘8½, the Plan 9 Window System’’,
USENIX Summer Conf. Proc., Nashville, June, 1991, pp.
257-265
[Reis91] Martin Reiser,The Oberon System, Addison Wesley,
New York, 1991
[Wirt89] N. Wirth and J. Gutknecht, ‘‘The Oberon System’’,
Softw. - Prac. and Exp., Sep 1989, Vol 19 #9, pp 857-894

