A Minimalist Global User Interface!

Rob Pike

AT& T Bell Laboratories
Murray Hill, New Jersey 07974
rob@research.att.com

Abstract machines has not freeits users from the keyboard-heavy

Help is a combination of editor, window system, user interfaces that preceded them.

shell, anduser interface that provides a novel environment for There are many reasons for thiéslure — one that is
the construction of textual applications suab browsers, often overlooked is how uncomfortabieost commercially
debuggers, mailers, and sn. It combines an extremely lean Made mice are to use but the most important mightell be
user interface with some automatic heuristics defhults to ~ that the interfacethe machines offer are just not very good.
achieve significant effects with minimal mouse &egboard Spottily integrated and weighed down by layers of software
activity. The user interface is driven by a file-oriented that provide features too numerous to catatgd too
programming interfacéhat may be controlled from programs Specialized to be helpful, a modenindow system expends
or evenshell scripts.By taking care of user interface issues its energy trying to loolgood, either on a brochure or on a
in a central utility,help simplifies the job ofprogramming display. Whatmatters much more to a useterface is that it

applications that make use of a bitmap display and mouse. feel good. Itshould bedynamic and responsive, efficient and
invisible [Pike88]; instead, a session with ¥indows

Keywords: Windows, User Interfaces, Minimalism sometimes feels like a telephone conversation by satellite.

Where will we be ten years from nowCRT’s will be
Background a thing ofthe past, multimedia will no longer be a buzzword,
pen-based and voice input will be everywhere, amnigersity
students will still be editing witemacs. Pensand touch-
screens are tolmw-bandwidth for real interaction; voice will
probably also turn out to be&éadequate. (Anyway, who
would want towork in an environment surrounded by people
talking to their computers?Mice are sure to be with ua
while longer, so we should learn how to use them well.

Ten years ago, the best generally available intettiace
a computer was a 280 characterterminal with cursor
addressing. Inits place today is anachine with a high-
resolution screen, anouse, and a multi-window graphical
user interface.Thatinterface is essentially treame whether
it is running ona PC or a high-end 3D graphics workstation.
It is also almost exactly the same as wilias available on the
earliest bitmap graphics displays. With these churlishhoughts in mind, | began a couple
of years ago to build a systegsglledhelp , that would have
as efficient and seamless user interface as possiblé.
deliberately cast aside all my old modelshaiw interfaces
should work; the goal was to learnli€ould do better.l also
erased the usual divisions betwessmponents: rather than
building an application oan editor or a window system, |
wanted something that centralized a very good user interface
and made it uniformly available to all the components of a
system.

The decaddhat moved menus and windows from the
research lab to more thaen million PC’s, that changed
computer graphics froman esoteric specialty to
commonplace, has baredglvanced the state of the art in user
interfaces. Acase came made that the state of the art is even
backsliding: the hardware and software resoureggired to
support an X terminahre embarrassing, yet the text editor of
choice in universities on sucterminals continues to be a
character-based editor suchwas or emacs, both holdovers
from the 1970’s.With the exception of the Macintosh, whose
users have found many creative ways to avbieing
restrained (or insulted) by the decision that they would find Help is an experimental program that combines
more than one mousmritton confusing, the new generation of aspects of window systems, shells, and editorsaddress

these issues in the context of textumdplications. It is

'This is a revisiorof a paper by the same title published in the Proceedings ofdeslgned to support §0ﬁwa®velopmeht, but falls sI‘_]orF of
the Summer 1991 USENIX Conference, Nashville, 1991, pp. 267-279. being atrue programming environmentt is not a ‘toolkit’; it

Introduction

is a self-contained program, mdike a shell than a library,
that joins users and applicationsromthe perspective dhe
application (compilerprowser, etc.), it provides a universal
communication mechanism, based on familiar Gniile
operations, that permitsmall applications— even shell
procedures —to exploit the graphical user interface of the
system and communicate with each othEar the user, the

as efficient and comfortable as possible forusers. First,

brevity: there should be no actions in the interfaedoutton

clicks or other gestures— that do not directly affect the
system. Thuselp is not a ‘click-to-type’ system because
that click is wasted; there are no pop-up menus because the
gesture required to make them appear is wasted;so on.
Second,no retyping: it should never benecessary or even

interface is extremely spare, consisting only of text, scroliworthwhile to retype text thas already on the screeMany

bars, one simple kind of window, and a unique funcfmm
each mouse buttoR- no widgets, nacons, not even pop-up
menus. Despitethese limitations,help is an effective
environment in which to work and, particularly, to program.

The inspiration forhelp comes from Wirth’'sand
Gutknecht's Oberon system [Wirt8Reis91]. Oberonis an
attempt to extract the salient features of Xerox's Cedar
environment and implement theim a system of manageable
size. ltis based on a module languagéso called Oberon,
and integrates an operatirsystem, editor, window system,
and compiler inta uniform environmentlts user interface is
disarmingly simple: by using the mouseptint at text on the
display, one indicatesvhat subroutine in the system to
execute nextIn anormal Unix shell, one types the name of a

file to execute; instead in Oberon one selects with a particulaq
button of the mouse a module and subroutine within that

module, such agdit.Open to open a file for editing.
Almost the entire interface follows from this simple idea.

The user interface dfielp is in turn an attempt to

systems allow the usé¢o copy the text on the screen to the
input stream, but for small pieces of text such as file names it
often seemgasier to retype the text than to use the mouse to
pick it up, which indicates thadhe interface has failedAs a
corollary, when browsing or debugging, rather than just
typing new text, it should be possiblewmrk efficiently and
comfortably without using the keyboard atl. Third,
automation: let the machinefill in the details and make
mundane decisionsFor example, it should bgood enough
just to pointat a file name, rather than to pass the mouse over
the entiretextual string. Finally, defaults: the most common
use ofa feature should be the defauBimilarly, the smallest
action should do the most useftding. Complex actions
should be required only rarely amdhen the task is unusually
ifficult.

The help screen istiled with windows of editable
text, arranged iffusually) two side-by-side columnssigure
1 shows ahelp screen in mid-sessionEachwindow has
two subwindows, a singl&g line across the top aralbody

adapt theuser interface of Oberon from its language-orientedof text. Thetag typically contains the name thie file whose

structure on a single-process system to a file-orientetti-
process system, Plan 9 [Pike90That adaptation must not
only removefrom the user interface any specifics of the
underlying language; imust provide a way to bind the text on

text appears in the body.

The text in each subwindoytag or body) may be
edited using aimple cut-and-paste editor integrated into the
system. Thdeft mousebutton selects text; the selection is

the display to commands that can operate on it: Oberon passgs;; text petween the point whettee button is pressed and

a character pointerhelp needs a more general method
because the information must pdsstween processeshe

where it is releasedEachsubwindow has it®wn selection.
One subwindow— the one withthe most recent selection or

method chosen uses the standard currency in Plan 9: files a%ed text— is the locationof the current selection and its

file servers.

Theinterface seen by the user

selection appears in reverse videdhe selection in other
subwindows appears in outline.

Typed text replaces the selection in the subwindow

This section explains the basics of the user interfaceynder the mouseThe right mouse button is used to rearrange
the following section uses this as the background to a majQkindows. Theuser points at the tag of a window, presses the
example that illustrates the design and gives a feeling for thﬁght button, drags the window to where it is desiradd

system in action.

Help operates only on text; at tmoment it has no
support for graphicaloutput. A three-button mouse and
keyboard provide the interfacego the system. The
fundamental operations are to tyteat with the keyboard and

releases thebutton. Help then does whatever local
rearrangement is necessary drop the window to its new
location (the rule of automation)rhis may involve covering
up some windows or adjusting ttposition of the moved
window or otherwindows. Help attempts to make at least

to control the screeand execute commands with the mousethe tag of a window fully visible; if this igmpossible, it

buttons. Texmay be selected with the left and middieuse
buttons. Themiddle button selects text defining the action
be executed; the left seledise object of that actionThe
right button controls the placemeaf windows. Note that
typing does not execute commands; newline is jast
character.

Several interrelated rules wefallowed in the design
of the interface.Theserules are intended to make thygstem

covers the window completely.

A tower of small black squares, one per window,
adorns the left edgef each column.(SeeFigure 1.) These
tabs represent the windows in the coluwisible or invisible,
in order from top to bottom of the column, areh be clicked
with theleft mouse button to make the corresponding window
fully visible, from the tago the bottom of the column it is in.
A similar row across the top of the columns allows the

headers help/Boot Exit

Juse/robfsrc/help/ Close! Get! | | /helpfedit/stf Put)| Close! &
i dat.c || Open fusr/rob/src/help
dat.h || | Pattern '
exrs.c W | Text "memmove’
exec.c] Cut Paste Snarf
file.c] Write New
/usk/rob/src/help/errs.c Close! Get! | /help/cbr/stf Close! dGet!
fusr/rob/src/help/file.c Close! Get! [Jopen mk src decl uses #.c

qid = dp->qid; /help/db/stf Close! Get!

pc regs broke

stack kstack nextkstack
Fhelp/mail/stf Close! Get!

[] headers messages delete reread se

/mips/include/libc.h Close! Get! | From mick@cs.bbk.ac.uk Put}| C

extern void#+ memccpy(void#, void#, int, ulong); From research.att.com!cs.bbk.ac.u
extern void# memset{void#, int, ulong); k!localhost!cs.bbk.ac.uk!mick Fri
extern int memcmp(void#, void#, ulong); Apr 12 13:48:23 EDT 1991

xtern void# memcpy({void#, void#, ulong); Subject: UNIX in song & verse

if(tab==dirtab0 && dp->qid==(CHDIRIQdir1)) []ps

break;
memmove(dir. name , dp-*name, NAMELEN);
dir.qid.path = (QPAGE(Ep->path)<<QPAGESHIFT

memmove({void#, void#, ulong)

extern voids memchr(void#, int, ulong); ob,

/# i i he UKUUG are collecting old-time
string routines verses about UNIX before they

#/ isappear from the minds of thosd

Figure 1: A smalhelp screen showing two columns of windowEhe current selection is the black line in thettom left window.
The directory/usr/rob/src/help has beerOpened and, from there, the source filassr/rob/src/help/errs.c and
file.c

columns to expand horizontallyThese little tabs are an executesCut ; clicking the right button executeBaste ,
adequate but not especially successful solution to the probleneplacing the selected text by the contents ofdiebuffer.
of managing many overlapping windowsheproblemneeds These are the most commaditing commands and it is
more work; perhaps the file naméeach window should pop convenient not to move the mouseexecute them (the rules
up alongside the tabs when the mouse is nearby. of brevity and defaults)Onemay even click the middland
Like the left mouse button, the middle button also then right buttons, while holding the lefown, to execute a

selects text, but the aof releasing the button does not leave CUt-@nd-paste, that is, to rememitiee text in the cut buffer
the text selected; rather it executes the command indibgted fOr later pasting.

that text. For example, to cut some text from the screen, one More than one wordnay be selected for execution;
selects the text withthe left button, then selects with the executingOpen/usr/rob/lib/profile creates anew
middle button the wordCut anywhere itappears on the window and puts the contents of the file in {tf the file is
display. (By convention, capitalized commandspresent already open, the commajubst guarantees that its window is
built-in functions.) As in any cut-and-paste editor, the cut visible.) Again,by the rule of automation, the new window’s
text is remembered in a buffer and may be pastedfetéext location will be chosen byhelp . The hope isto do
elsewhere. Ifthe text of the command name is not on thesomething sensible with a minimuaof fuss rather than just
display, one just types it anthien executes it by selecting the right thing with user interventionThis policy was a
with the middle button.NotethatCut is not a‘button’ in the deliberate andlistinct break with most previous systen{t.
usual window system sensi;is just a word, wherever it is present in Oberon and most tiling window systems but
appears, that is bound to some actidio.makethings easier, help takes it farther.)Thisis a contentious point, bbelp
help interprets a middle mouse button click (rduuble is an experimentasystem. One indication that the policy is
click) anywherein a word as a selection of the whole word sound is that minor changes tlee heuristics often result in
(the rule of defaults). Thus one may just select the text dramatic improvements tihe feel of the system as a whole.
normally, then click onCut with the middle button, With a litle more work, it should be possible to budd
involving less mouse activity than with typical pop-up system that feels just right.

menu. Ifthe textfor selection or execution is the null string,
help invokes automatic actions to expand it to a file name o
similar context-dependertilock of text. If the selection is
non-null, it is always taken literally.

A typical shell window in a traditionakindow system
Ipermits text to be copied from the typescript and presented as
input tothe shell to achieve some sort of history function: the
ability to re-execute a previous commaridelp instead tries

As an extra acceleratiomelp has twocommands to predict the future: to get the screen commands and text
invoked by chorded mouse buttong/hile the left button is that will be useful later Every piece oftext on the screen is a
still held down after a selection, clicking the middle button potential commandr argument for a commanddany of the

fn g% § if(! ~ $#+ 0) %= 2

switch{$service)§

case terminal
bind '#k’ fnet/dk
prompt={('g% * * *)
site=plang

case cpu
bind ’#k’ /net/dk
bind -b /mntfterm/mnt/8.5 fdev
news
fortune

|| 8

| help/Boot Exit
[1 |
Bl /usr/rob/lib/fprofile Close! Get! | | /help/edit/stf Put!] Close! Get!
M| bind —c $home/tmp /tmp M|] open Juse/robflib/profile

bind -a $home/binfrc fbin Pattern '’

bind -a $home/bin/$cputype /bin Text ’

cut Paste Snarf
£n % § if(! ~ $4% 0) $+ 3} wri new

exec 8.5 -i 8.5start #/lib/font/bit/peln/9.0

needed on a nonet terminal

Figure 2: Executin@€ut by sweeping the word while holding down the middle mouse buffbetext being selected faxecution is

underlined.

help/Boot Exit

fusr/rob/lib/profile Put! [Close! Get!

| /help/edit/stf Put!] Close! Get!

fusr/rob/src/help/help.c Close! Get! |

l|] open Juse/robfsrc/help/fhelp.d

#include <u.h>
#include <libc.h>
#include <libg.h>
#include <libframe.h>
#include "dat.h"
#include "fns.h"

int
int

mouseslave;
kbdslave;

Patrsern '’
Text L
Cut Paste
Write New

Snarf

fusr/rob/src/help/dat.h Close! Get! |

[typedef struct Addr Addr ;
typedef struct Client Client;
typedef struct Page Page;
typedef struct Proc Proc;
typedef struct String String;
typedef struct Text Text;

Figure 3: Opening filesAfter typing the full path name dfelp.c

, the selection is automatically the nsifing at the end of the file

name, so just cliclkOpen to open that file; the defauligrab the whole nameNext, after pointing intodat.h , Open will get

lusr/rob/src/help/dat.h

basic commands pull text to tlsereen from the file system /usr/rob/src/help/dat.h

with a minimum of fuss.For example, ifOpen is executed

: two button clicks. (See
Figure 3.) Making any non-null selection disabledl such

without an argumentt uses the file name containing the most automatic actions: the resultirtgxt is then exactly what is

recent selection (the rule of defaultsyhus one may just

point with theleft button at a file name and then with the

middle button aDpen to edit a new file. Using all four of
the rules above, ©pen is appliedto a null selection in a file
name that does not begivith a slash/(), the directory name
is extracted from the file nanie the tag of the window and
prepended to the selected file nanfe elegant usef this is
in the handling of directoriesWwhena directory isOpened,
help puts the its name, including a final slashthe tag and
just lists the contents in the bod{SeeFigure 1.)

in the source file
and executingOpen, a
is created containing theontents of

For example, by pointingat dat.h
lusr/rob/src/help/help.c
new window

selected.

That Open prepends the directory name giveach
window a context: the directory in which the file resid@be
various commands, built-in and external, tbperate on files
derive the directory in which to execute from the liag of
the window. Help has noexplicit notion of current working
directory; each command operatedha directory appropriate
to its operands.

The Open command has a furtheuance: if the file
name is suffixedby a colon and an integer, for example
help.c:27 , the window willbe positioned so the indicated
line is visible and selectedThis featureis reminiscent of
Robert Henry's error (1) program in Berkeley Unix,

although it is integrated more deeply and uniformAlso, the traditional command will be executedAgain, some
unlike error , help 's syntax permits specifying general default rules come intplay. If the tag line of the window
locations, although only line numbers wile used in this containing the command has a file name #m command
paper. does not begin with a slash, tdectory of the file will be
prepended to the commantf.that command cannbe found
)) locally, it will be searched for in the standard directory of
It is possible to execute any external Plan 9 commandqrogram binaries. The standardinput of the commands is
If & commands not a built-in likeOpen, it is assumed to be connected to en empty file; tistandard and error outputs are
an executable file and the arguments are paseethe jrected to a special windovealled Errors , that will be
command to be executedzor example, if one selects with created automaticallij needed. TheErrors window is also
the middle button the text the destination of any messages printed by the built-in

commands.
The interplay and consequences of these rules are
grep main’ /sys/src/cmd/help/*.c easily seen by watching the system in action.
An example

In this example | will go through the process of fixing a bug repddetie in a mail message sent by a ugtlease
pardon the informal first person for a while; it makes the telling easier.

Whenhelp starts it loads a set of ‘toolsy term borrowed from Oberon, into the right hand column of its initially two-
column screen. These are files with names like/help/edit/stf (the stuff that thehelp editor provides),
/help/mail/stf , and so on.Eachis a plain text file that lists the names of the commands available as parts of the tool,
collected in the appropriate directoni help window on such a file behaves much likenanu, but is really just a window on
a plain file. Theuseful properties stem from the interpretation of the file applied by theattesdp ; they are not inherent to
the file.

| help/Boot Exit
[1] i
|| | /help/fedit/stf Close! Get!
M open
p
M| | Pattern *°
|| | Text "
H Cut Paste Snarf

Write New

Fhelp/cbhr/stf Close! Get!
[Jopen mk src decl uses #.c
Fhelp/db/stf Close! Get!

ps pc regs broke

stack kstack nextkstack

Fhelp/mail/stf Close! Get!
[]headers messages delete reread send

N

Figure 4: The screen after booting.

To read my mail, | first executeeaders in the mail tool, that is, | click the middle mouse buttortlmmwordheaders in the
window containing the file/help/mail/stf . This executes the progranihelp/mail/headers by prefixing the
directory name of the filthelp/mail/stf , collected from the tag, to the executed wbehders . Thissimple mechanism
makes it easy to manage a collection of programs in a directory.

headers help/Boot Exit

Write New

Fhelp/cbhr/stf Close! Get!
[Jopen mk src decl uses #.c

Fhelp/db/stf Close! Get!

ps pc regs broke
stack kstack nextkstack

Fhelp/mail/stf Close! Get!
lheaﬂ&fs messages delete reread send

[1 |
|| | /help/edit/stf Close! Get!
M open
p
M| | Pattern *°
|| | Text "
H Cut Paste Snarf
L]

_-/maillhox/roh/mhox Jbinfhelp/mail
1 chk@alias.com Tue Apr 16 19:30 EDT

2 sean Tue Apr 16 19:26 EDT

3 attunix!'rrg Tue Apr 16 19:03 EDT 1991

4 knight%MRCO.CARLETON. CA@mitvma.mit.ed
u Tue Apr 16 19:01 EDT

5 deutsch%PARCPLACE. COM@nmitvma.mit.edu

Tue Apr 16 18:53 EDT

6 howard Tue Apr 16 15:02 EDT

? deutschiPARCPLACE. COM@nmitvma.mit.edu

Tue Apr 16 12:52 EDT

Figure 5: After executingiail/headers

Headers creates a new window containing the headers of my megisages, and labeldriail/box/rob/mbox |
know Sean has sent me mail, so | point at the headgs ofail (just pointing with the left button anywhere in the header line
will do) and click ormessages .

| headers help/Boot Exit
[T |
| From sean Close! | | /help/fedit/stf Close! Get!
M| From sean Tue Apr 16 19:26:14 EDT 1991 L Open

i tried your new help and got this: M| | Pattern *°

help 1?76153: user TLB miss (load or fetch) badvaddr=0x0 W | Text '

help 176153: status=0xfb0c pc=0x18dfd sp=0x3fded W | Cut Paste Snarf

Write New
| L]

Fhelp/cbhr/stf Close! Get!
[Jopen mk src decl uses #.c
Fhelp/db/stf Close! Get!
[]ps pc regs broke

stack kstack nextkstack

Fhelp/mail/stf Close! Get!
readers messages delete reread send

/mail/box/rob/mbox Jbinfhelp/mail
1 chk@alias.com Tue Apr 16 19:30 EDT

2 gean Tue Apr 16 19:26 EDT

3 attunix!'rrg Tue Apr 16 19:03 EDT 1991

4 knight%MRCO.CARLETON. CA@mitvma.mit.ed
u Tue Apr 16 19:01 EDT

5 deutsch%PARCPLACE. COM@nmitvma.mit.edu

Tue Apr 16 18:53 EDT

6 howard Tue Apr 16 15:02 EDT

? deutschiPARCPLACE. COM@nmitvma.mit.edu

Tue Apr 16 12:52 EDT

Figure 6: After applyingnessages to the header line of Sean’s mail.

A new version ohelp has crashed and a broken prodessabout waiting to be examine(Thisis a property of Plan 9, not of
help .) | point at the process number (I certainly shouldn’t htvdype it) and executstack in the debugger tool,

/help/db/stf This pops up a window containinthe traceback as reported bgb, a primitive debugger, under the
auspices ofhelp/db/stack
| headers help/Boot Exit
[T | |
| From sean Close! | | /help/fedit/stf Close! Get!
W[From sean Tue Apr 16 19:26:14 EDT 1991 L Open
M| |i tried your new help and got this: M| | Pattern *°
help 1?76153: user TLB miss (load or fetch) badvaddr=0x0 W | Text '
help 176153: status=0xfb0c pc=0x18dfd sp=0x3fdes W | Cut Paste Snarf
fusr/rob/src/help/ 176153 stack Close!| L Wirite New
— —— - Fhelp/cbhr/stf Close! Get!
last exception: TLB miss (load or fetch)
/sys/src/libc/mips/strchy.s:34 strchr+#687 MOVW O{R3),R5 []Dpen mk src decl uses #.c
strchr{c=#3c, s=#0) called from strlen+#lc /sys/src/libc/port fhelp/db/stf Close! Get!
/strlen.c:? ps pc regs broke
strlen(s=#0) called from textinsert+#30 text.c:32 []sta"k kstack nextkstack
textinsert{sel=#1, t=#30e60, s=#0, qO0=#d, full=#1) called fro N
m errs+#e8 errs.c:33 Fhelp/mail/stf Close! Get!
n = #3d7ce . [] headers messages delete reread send
errs(s=#0) called from Ndie2+#14 exec.c:252 |
p = #40d88
Xdie2() called from lookup+#cd exec.c:101
look =#40be8 1led £ te+#50 .Cc:207 —
ookup(s=#30be8) called from executestS0 exec.c 7mail/bos/rob/mbox 7binfhelp/mail/l
n = #1c5bhf [11 chk@alias.com Tue Apr 16 19:30 EDT
execute(t=#3ebbc, p0=#2, p1=#2) called from control+#430 ctrl 2 gean Tue Apr 16 19:26 EDT
.C:1331 3 attunix!'rrg Tue Apr 16 19:03 EDT 1991
control() called from control ctrl.c:320
t = #3ebbc 4 knight%MRCO.CARLETON. CA@mitvma.mit.ed
op = #0 u Tue Apr 16 19:01 EDT
n = #0 5 deutsch%PARCPLACE. COM@nmitvma.mit.edu
p = #0 Tue Apr 16 18:53 EDT
dclick = #0 6 howard Tue Apr 16 15:02 EDT
po = #2 ? deutschiPARCPLACE. COM@nmitvma.mit.edu
obut = #0 Tue Apr 16 12:52 EDT

Figure 7: After applyinglb/stack

to the broken process.

Notice that this new window has many file names inTiteseare extracted from the symbol table of the brogegram. | can

look at the line (of assembly language) that died by poinginghe entry/sys/src/libc/mips/strchr.s:34
executingOpen, but I'm sure the problem lies further up the call statke deepest routine ihelp is textinsert

calls strlen
source.

on line 32 of the filgext.c

and
, which

I point at the identifying texin the stack window and execuBmen to see the

headers help/Boot Exit

From sean Close! | | /help/edit/stf Close! Get!
From sean Tue Apr 16 19:26:14 EDT 1991 L dpen
i tried your new help and got this: || | Pa™ern
help 1?76153: user TLB miss (load or fetch) badvaddr=0x0 W | Text '
help 176153: status=0xfb0c pc=0x18dfd sp=0x3fded W | Cut Paste Snarf
Write New
1
/usr/roh/srt.:/help/] 176153 stack Close!| || 7help/cbr7stE Tlosel Ger!
last exception: TLB miss (load or fetch)
/sys/src/libc/mips/strchr.s:34 strchr+4#68: MOVW O(R3), RS [lopen mk src decl uses #.c
3trc¥r(c=#30, s=#0) called from strlen+#lc fsys/src/libc/port /help/db/stf Close! Get!
strlen.c:?
strlen{s=#0) called from textinsert+#30 Hext.c:32 []giack Egtack ﬁggiksta2§0ke
textinsert(sel=#1, t=#40e60, s=#0, q0=#0, full=#1) called fro -
m errs+ie8 errs.c.3d /help/mail/stf Close! Get!

strinsert{t, s, n, q0);

p0 = q0-t->org;

if({po < 0)
t->org += n;

else if(p0 <= t->nchars)
frinsert(t, &s, p0);

t=>q0 = q0;

if (! full)

n = #3d7cc headers messages delete reread send
errs(s=#0) called from Ndie2+#14 exec.c:252 |

p = #40d88
Rdie2() called from lookpu+#cd exec.c:101
fusr/rob/src/help/text.c Close! Get! | /mail/box/rob/mbox Jbinfhelp/mail

if(sel) [11 chk@alias.com Tue Apr 16 19:30 EDT

newsel(t); 2 gean Tue Apr 16 19:26 EDT
3

attunix!rrg Tue Apr 16 19:03 EDT 1991

4 knight%MRCO.CARLETON. CA@mitmva.mit.ed
u

Tue Apr 16 19:01 EDT
5 deutsch%PARCPLACE. COM@nmitvma.mit.edu
Tue Apr 16 18:53 EDT
6 howard Tue Apr 16 15:02 EDT
? deutschiPARCPLACE. COM@nmitvma.mit.edu
Tue Apr 16 12:52 EDT

at line 32.

Figure 8: AfterOpeningtext.c

The problem is coming to lighg, the argument tstrlen , is zero,and was passed as an argumernextinsert by the
routineerrs , which apparently also got it as an argument fidie2 . | close the window otext.c by hitting Close! in

the tag of the window.By convention, commands ending &n exclamation mark take no arguments; they are window
operations that apply to the window in which they are executiect | examine the source of the suspiciously naXe&2 by
pointing at the stack trace a@gening again. (Seéigure 9.)

headers help/Boot Exit

From sean Close! | | /help/fedit/stf Close! Get!
From sean Tue Apr 16 19:26:14 EDT 1991 L Ope|
i tried your new help and got this: || | Pattérn *°
help 1?76153: user TLB miss (load or fetch) badvaddr=0x0 W | Text '
help 176153: status=0xfb0c pc=0x18dfd sp=0x3fdes W | Cut Paste Snarf
fusr/rob/src/help/ 176153 stack Close!| L W;lie hNewtf il T
textinsert{sel=#1, t=#30e60, s=#0, qO0=#d, full=#1) called fro shelp/chr/s ose’ et
m errs+#ed errs.c:33 []open mk src decl uses #.c

n = #3d7cc . Fhelp/db/stf Close! Get!
errs(s:#g)_c:iﬁggsfrom ¥die2+#14 exec.|c:252 []ps pc regs broke
Xdie2() called from lookup+#cd exec.c:101 stack kstack nextkstack
lookup(s?#4ﬂhes) called from execute+#50 exec.c:207 Fhelp/mail/stf Close! Get!

i=+f [] headers messages delete reread send

n = #1c5bhf |
execute(t=#3ebbc, p0=#2, p1=#2) called from control+#430 ctrl
.C:1331
fusr/rob/src/help/exec.c Close! Get! | /mail/box/rob/mbox Jbinfhelp/mail
void [11 chk@alias.com Tue Apr 16 19:30 EDT
Xdie2(int argc, char #argv[], Page #page, Text #curt) 2 gean Tue Apr 16 19:26 EDT
H 3 attunix!rrg Tue Apr 16 19:03 EDT 1991

errs((uchar#)n);

4 knight%MRCO.CARLETON.CA@mitvma.mit.ed
u Tue Apr 16 19:01 EDT

findopenl{Page #p, char #name)

Fi3 5 deutsch%PARCPLACE.COM@mitvma.mit.edu
Exact match Tue Apr 16 18:53 EDT

#f 6 howard Tue Apr 16 15:02 EDT

Page# ? deutschiPARCPLACE. COM@nmitvma.mit.edu

Tue Apr 16 12:52 EDT

Figure 9: AfterOpeningexec.c at line 252.

Now the problem gets hardeithe argument passei errs is a variablen, that appears to be globalvho set it to
zero? lcan look at all the uses of the variable in the program by pointing at the vanahlke source text and executing
uses *.c by sweeping both ‘words’ with the middle buttontive C browser toolhelp/cbr/stf . Uses creates a new
window with all references to the variabian the files/usr/rob/src/help/*.c indicated by file name and line number.
The implementation of the C browser is described below; in a nutshell, it pheseS source to interpret the symbols
dynamically. Ifinstead | had run the regular Unix command

grep n /usr/rob/src/help/*.c

I would have had to wade through every occurrence of the ieitethe program.

headers help/Boot Exit

errs((uchar+));

findopenl{Page #p, char #name)
i

char #s;
int n;
Page #q;

Again:
if{p == 0)
return p;

|

- I

| From sean Close! | | /help/fedit/stf Close! Get!

W[From sean Tue Apr 16 19:26:14 EDT 1991 L Open

M| |i tried your new help and got this: M| | Pattern *°

W | help 176153: user TLB miss (load or fetch) badvaddr=0x0 W | Text '
help 176153: status=0xfb0c pc=0x18dfd sp=0x3fdes W | Cut Paste Snarf

Write New
fusr/rob/src/help/ 176153 stack Close!| I
textinsert(sel=#1, t=#40e60, s=#0, qO0=#d, full=#1) called fro|ll shelp/chr/stf Close! Get!
m errs+#e8 errs.c:33 []Dpen mk src decl uses #.
n = #3d7cc /help/db/stf Close! Get!™

fusr/rob/src/help/exec.c Close! Get! | ps pc regs broke
void stack kstack nextkstack
Xdie2(int argc, char #argv[], Page #page, Text #curt) Fhelp/mail/stf Close! Get!
H

[hheaders messages delete reread send

Juse/rob/src/help/]
[./dat.h:136
exec.c:213
exec.c:252
help.c:35

Close!

Figure 10: After finding all uses of.

The first use iglearly the declaration in the header filelooks likehelp.c:35
to that line and see that the variable is indeed initiali8eeFigure11; a few lines off the top of the window balp.c
opening declaration ahain() .) Someother use oh must have cleared itLine 252 ofexec.c
and execut©pen.

read, not a write, of the variabl&ol point toexec.c:213

should be an initializationl Openhelp.c
is the
is the call; | know that's a

headers help/Boot Exit

|
- I
| From sean Close! | | /help/edit/stf Close! Get!
W[From sean Tue Apr 16 19:26:14 EDT 1991 L Open
M| |i tried your new help and got this: W | Faern
W | help 176153: user TLB miss (load or fetch) badvaddr=0x0 W | Text '
H help 176153: status=0xfb0c pc=0x18dfd sp=0x3fdes W | Cut Paste Snarf
fusr/rob/src/help/ 176153 stack Close!| || W;lie hNewtf il T
extinsert{sel=#1, t=#30e60, s=#0, qO0=#d, full=#1) called fro|ll shelp/chr/s ose’ et
errs+ied errs.c-3d [Jopen mk src decl uses #.c
n = #3d7cc Fhelp/db/stf Close! Get!
usr/rob/src/help/exec.c Close! Get! ps pc regs broke
=/oid/ /sre/ p/ l []stack kstack nextkstack
diel{int argc, char #argv[], Page #page, Text #curt) Fhelp/mail/stf Close! Get!

|:||headers messages delete reread send

Juse/rob/src/help/] Close!
fusr/rob/src/help/help.c Close! Get! | M ~.7dat.h:136
Dir d; exdec.c:213
Rectangle r; exec.c:252
help.c:35

n = "a test string'";

if(access("/mnt/help/new", 0) == 0)%
fprint(2, "help: already runningin");
exits("running"};

H

fn = 0;

ARGBEGINE

case 'f’:

Figure 11: The writing ofi on lineexec.c:213

Here is the jackpot of this contrived examp®&ometimebeforeXdie2 was executedXdiel clearedn. | useCut to remove
the offending line, write the file back out (the wdrdt! appears in the tag of a modified window) and then exeolt&s
/help/cbr to compile the program (a total of three clicks of the middle buttbepuld now answer Sean’s mail tell him
that the bug is fixed!'ll stopnow, though, because to answer his mail I'd have to type somethimgughthis entire demo |
haven't yet touched the keyboard.

| headers help/Boot Exit
- I
| From sean Close! | | /help/edit/stf Close! Get!
From sean Tue Apr 16 19:26:14 EDT 1991 dpen
L] L]
M| |i tried your new help and got this: M| | Pattern *°
W | help 176153: user TLB miss (load or fetch) badvaddr=0x0 W | Text '
H help 176153: status=0xfb0c pc=0x18dfd sp=0x3fdes W | Cut Paste Snarf
|| fusr/rob/src/help/ 176153 stack Close!| || W;lie hNewtf il T
] textinsert{sel=#1, t=#340e60, s=#0, qO0=#d, full=#1) called fro|ll shelp/chr/s ose’ et
errs+ied errs.c-3d [Jopen mk src decl uses #.c
n = #3d7cc /help/Jﬁystf Close! Get!
usr/rob/src/help/exec. Close! Get! ps pc regs broke
/oid/ /sre/ p/ d []stack kstack nextkstack
diel{int argc, char #argv[], Page #page, Text #curt) Fhelp/mail/stf Close! Get!

|:||headers messages delete reread send

Juse/rob/src/help/] Close!
fusr/rob/src/help/mk [Close! M~.7dat.h:136
[]ve -w exec.c exdec.c:213
vl help.v clik.v ctrl.v dat.v errs.v exec.v file.v page.v pic exec.c:252
k.v proc.v scrl.v text.v util.v xtrn.v /mips/lib/libframe.a - help.c:35

ﬂg =lregexp -ldmalloc

Figure 12: After the program is compiled.

This demonstration illustrates several things besidexontext (window number antbcation) of theselected text

the general flavor ohelp . Most important, by following

some simple rules it is possible to build an extremely efficient

and productive user interface using just a mousesareken.
This is illustrated by hovielp makes it easy tavork with
files and commands in multiple directorie3he rules by
whichhelp constructs file names from conteattd by which
the utilities derive the context in which theyecute simplify

the management gfrograms and other systems constructed

from scattered componentsAlso, the few common rules
about text and file names alloa variety of applications to
interact through a single user interfadeor example, none of
the tool programs has any cotte interact directly with the
keyboard or mouselnsteadhelp passes to an application
the file and character offset of theouse position.Usingthe

interface described in the next section, #mplication can

then examindghe text in the window to see what the user is

pointing at. These operations are easily encapsulated in
simple shell scripts, an example of which is given below.

Theinterface seen by programs
As in 8% the Plan 9 window system [Pike9tlp

through an environment variableglpsel

Decl is a shell script, a program for tidan 9 shell,
rc [Duff90]. Hereis the complete script:

eval ‘{help/parse -c}
x="{cat /mnt/help/new/ctl}

echo a
echo $dir/’ Close!”
} | help/buf > /mnt/help/$x/ctl

cpp $cppflags $file |
help/rcc -w -g -i$id -n$line |
sed 1q
} > Imnt/help/$x/bodyapp

The first line runs a small programhelp/parse , that
examines $helpsel and establishesanother set of
environment variablesfile , id , and line , describing

what the user is pointing afThe next creates a new window
and setx to its number. Thefirst block writes the directory
name to the tag line; the second rdihe C preprocessor on
the original source file (it should arguably be run on, say,
/mnt/help/8/body) and passes the resultingxt to a

provides its client processes access to its structure bgpecial version of the compileiThis compiler has no code

presenting a file service, althoudtelp ’s file structure is
very different. Eachhelp window is represented byset of
files stored innumbered directoriesThe number is a unique
identifier, similar to Unix process id’s.Each directory
contains files suctastag andbody, which may be read to

recover thecontents of the corresponding subwindow, and/mnt/help/$x/bodyapp

generator; it parses the program and managessyhwol
table, and when it sees thaeclaration for the indicated
identifier on the appropriate line of the file, it prints file
coordinates ofthat declaration. This appears on standard
output, which isappended to the new window by writing to
. Theusercan then point at the

ctl , to which maybe written messages to effect changesoutput to directOpen to display the appropriate line in the
such as insertion and deletion of text in contents of th&ource. (Afuture change thelp will be to close this loop

window. Thehelp directory is conventionally mounted at
/mnt/help , so to copy the text inthe body of window
number 7 to a file, one may execute

cp /mnt/help/7/body file

To search for a text pattern,

grep pattern /mnt/help/7/body

An ASCII file /mnt/help/index may be examined to
connect tag file names teindow numbers.Eachline of this
file is a window number, a tab, and the first line of the tag.

To create a new windowa process just opens
/mnt/help/newi/ctl , which places the newwvindow

so the Open operation also happens automaticallylhus
with only three button clicks onmay fetch to the screen the
declaration, from whatever file in which it residethe
declaration of a variable, function, type, any other C
object.

A couple of observations about théxample. First,
help provided all the user interfac&.o turn acompiler into
a browserinvolved spending a few hours stripping the code
generator from the compiler and thamiting a half dozen
brief shell scripts to connect itp to the user interface for
different browsing functions.Given another languageye
would need only to modify theompiler to achieve the same
result. We would not need to write any user interface

automatically on thecreen near the current selected text, andsoftware. Second, the resulting application is @omonolith.

may then read from that file theme of the window created,
e.g. /mnt/help/8 The position and size of the new
window is chosen bielp .

Another example

The directory’help/cbr contains the rowser we
used above.One of the programs there is callatkcl ; it
finds the declaration of the variable marked by seécted
text. Thusone points at a variable with the ldftitton and
then executesdecl in the window for the file
/help/cbr/stf Help executes /help/cbr/decl
using the context rules for tleecuted text and passes it the

It is instead a small suite of tiny shell scripts that may be
tuned or toyed with for other purposes or experiments.

Other applications are similarly designed. For
example, the debugger interfadieelp/db , is a directory of
ten orso brief shell scripts, about a dozen lines each, that
connectadb to help . Adb has a notoriously cryptic input
language; the commands lhelp/db package the most
important functions ofadb as easy-to-use operations that
connect to the rest of the system while hiding the rebarbative
syntax. Peoplainfamiliar withadb can easily usdelp ’s
interface to it to examinbroken processeOf course, this is
hardly a full-featured debugger, but it was writterabout an

hour and illustrates the principlét is a prototype, antdelp as Plan 9.Themostimportant is that Oberon is a monolithic
is an easy-to-program environmentwhich to build such test system intimately tied to a module-bastahguage. An
programs. A more sophisticated debuggecould be Oberon tool, for instance, is essentially jastisting of the
assembled in a similar way, perhaps by leavirdglugging entry pointsof a module. In retrospect, the mapping of this

process resident in thbackground and having thieelp idea into commands in a Unix directory may seewious,

commands send it requests. but it took a while to discoverOnceit wasfound, the idea to
use the directory name associated with a file or window as a

Discussion context, analogous to th&®beron module, was a real

. .. jumping-off point. Help only begins to explore its
Help is a research prototype that explores some ideas, it -tions.

in user interface designAs an experiment it has been

successful. Whersomeone first beginso usehelp , the Another of Oberon’s difficulties is that it is a single-
profusion of windows and theifferent ground rules for the Process systemWhen an application is running, all other
user interfaceare disorienting. After a couple of hours, activity —even mouse tracking- stops. Itturned out to be
though, the system seems seductive, evatnral. To return ~ €asy to adapt the user interface to a multi-prosgssem.

at that point to a more traditional environménto see how Help may even be superior in thisgard to traditional shells
much smootherhelp really is. Unfortunately, it is and window systems since it makes a clean separation
sometimes necessary to ledap because of its limitations. between the text that executes a command and the result of
o . . this command. When windows are cheap and easy to use
The timeis overdue to rewritéielp with an eye 10 o ot just createa window for every processAlso,
such mundane but important features as undo, multlplehelp 's structure as a Plan 9 filserver makes the

windows per file, theability to handle large files gracefully, jn,jementation of this sort of multiplexing straightforward.
support for traditional shell windows, arsyntax for shell-

like functionality suchas 1/O redirection Also, of course, the Help is similar to a hypertext system, but the
restriction to textual applications should be eliminated. connections between the components are ndhéndata—

the contents of the windows- but rather in theway the

. . i X) system itself interprets théata. Wheninformation is added
inadequate heuristics for automatically placing windews 0 hypertext system, it must be linked (ofteanually) to

has been fixed since the first version of this pagdrerule it the existing data to be usefulnstead,in help , the links

follows is firstto place the new window at the bottom of the form automatically and are context-dependelnt.a session
cqlumn containing theselection. It pIgges the tag of the with help , things start slowly because the system has little
window immediately below thiowest visible text already in .+ + work with. As each new windovis created. however

th‘?b‘io'”?““- If that.V\:jouId.Ielavedtoo little ththlf r}ee?]wmcliow it is filled with text that points to new and old teahd a kind
visible, the new window Iplaced to cover half of the lowest ¢ exponential connectivity resultsAfter a few minutes the

V\{”?dlow r'ln the co_lumn. I.f that_ .VVOUld still leave tooollttl;e screen is filled with activelata. CompareFigure 4 to Figure
visible, the new window is positioned over thettom 25% of 14 1 <ae snapshots of this process in actidelp is more

the _colu_mn and minor adjustments anade SO 't_ COVErs no dynamic than any hypertesystem for software development
partial line of existingtext, which may entail hiding some that | have seen(lt is also smaller: 4300 lines of C.)
windows entirely. This procedure is good enough that |

haven't been encouraged to refine it any further, although The main area wheteelp has not been pushed hard
there are probably improvements that could bellmade.A enough isjn fact, its intended subject: software development.
good rule to follow when designings tuning interfaces is to The focus has been more on the user interface than orit how
attend to any clumsiness that draws your attentmrthe is used. One of the applications that should be eXplOred is
interface and distracts from the job at haridbelievethe ~ compilation control. Running make in the appropriate
heuristic for placing windows is good enough becausenit directory is too pedestrian for an environmigke this. Also,
notice it; in fact | had to read the sourtehelp to recall ~ for complicated trees of source directorites makefiles
what it was. would need to be modified so the file names would couple
well with help 's way of working. Make and help don't
function in similar ways.Make works by beingtold what
target to build and looking athich files have been changed
that are components of the targ@¥hat'sneeded fohelp is
almost the opposite: a tool that, perhdpys examining the
index file, sees whasource files have been modified and
builds thetargets that depend on ther8ucha program may
be a simple variation ofmake — the information inthe
makefile would be the same- or it may be a whole new

If imitation is the sincerest form of flattery, the tool. Eitherway, it should be possibke tighten the binding
designers of Oberon’s user interface will (I hope)honored between the compilation process ahd editing of the source
by help . But Oberon has some aspects that made it difficultcode; deciding what work to do by noticing fiteodification
to adapt the user interface directly to UNIX-like systems sucHimes is inelegant.

One of the original problems with the system

Help does not exploit the multi-machine Plgh
environment asvell as it could. The most obvious example
is thatthe applications run on the same machinehelp
itself. Thisis probably easy to fixhelp could run on the
terminal and makean invisible call to the CPU server,
sending requests to run applicationsthe remote shell-like
process. Thidgs similar to hownmake [Fowl90] runs its
subprocesses.

There have been other recent attenptsntegrate a

user interface more closely with the applications and the

operating system.ConMan and Tcl [Haeb88,0ust90] are
noteworthy exampleshut they just provide interprocess
communication within existing environments, permitting
established programs to talk tme another.Help is more
radical. It provides the entire interface to the screerd
mouse for both users and progranitsis not an extra layesf
software above the window systemnstead it replaces the
window system, the toolkitsthe command interpreter, the
editor, and even the user
applications.

interface code within th

Acknowledgements

Sean Dorwardwrote the mail tools and suggested
many improvementto help . DougBlewett, Tom Duff, Stu
Feldman, EricGrosse, Dennis Ritchie, and Howard Trickey
made helpful comments othe paper. Brian Kernighan’s
heroic efforts to force thigpaper throughtroff deserve
particular thanks.

References

e[Duff90] Tom Duff, “Rc - A Shell for Plan 9 and UNIX

systems”, Proc. of the Summet990 UKUUG Conf,,
London, July, 1990, pp. 21-33

[Fowl90] Glenn Fowler, “A Case fomake”, Softw. - Prac.
and Exp., Vol 20 #S1, June 1990, pp. 30-46

[Haeb90] Paul Haeberli, “ConMan: A Visual Programming
Language for Interactive Graphics”, Comp. Graph., Zal
#4, Aug. 1988, pp. 103-110

[Oust90] JohnOusterhout, “Tcl: An Embeddable Command

Perhaps its most radical idea, though, is that a betteranguage”, Proc. USENIX Winter 1990 Conf., pp. 133-146

user interface can be one with fewer featurdslp doesn't
even have pop-up menus;makes them superfluoudt has

[Pike88] Rob Pike, “Window Systems Should Be
Transparent”, Comp. Sys., Summer 198&| 1 #3, pp.

no decorationsno pictures, and no modes, yet by using only279-296

a bitmap screen and three mousgtons (one of which is
underused) it provides a delightfully snapgyd natural user
interface, one that makes regular window systems
including those | have writtea- seem heavy-handeddelp
demonstrates thahe ideas of minimalism, uniformity, and
universality have merit inthe design of human-computer
interfaces. Inthe years to come, as the machines tair
input methods become more compléxpse principles will

[Pike90] Rob Pike,Dave Presotto, Ken Thompson, and
Howard Trickey, “Plan 9 fromBell Labs”, Proc. of the
Summer 1990 UKUUG Conf., London, July, 1990, pp. 1-9
[Pike91] Rob Pike,“8Y%, the Plan 9 Window System”,
USENIX Summer Conf. Proc., Nashville, June, 1991, pp.
257-265

[Reis91] Martin ReisefThe Oberon System, Addison Wesley,
New York, 1991

have to be followeever more assiduously if we are to get the [Wirt89] N. Wirth and J. Gutknecht, “The Ober@®@ystem”,

most from our systems.

Softw. - Prac. and Exp., Sep 1989, Vol 19 #9, pp 857-894

