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Preface

Intelligence is natural to all of us. We use it with great ease: We can

recognize the people around us, walk, read a paper, drive a car and

at the same time listen to a silly joke, laugh, go to work, stop at the

newsstand to buy a newspaper, count the change, write a memo,

order a computer, make a phone call, plan a dinner at a restaurant,

play a game of chess, and watch a science ®ction movie on TV in

the evening. This makes us wonder how all that is possible. How

can the mind or the brain manage to make this work? Philosophers

for thousands of years have tried their luck on this question with

mixed success.

When the digital computer was invented more than half a cen-

tury ago, many felt that the essence of thinking, the core of intelli-

gence, had been found: not the IQÐcomputers. Computers were

called ``electronic brains'' in the early days. Soon everybody

thought that it was possible to reproduce intelligence with com-

puters. An exciting new methodology emerged: computer simula-

tion. All of a sudden, it became possible to simulate thinking,

problem solving, even natural language: Arti®cial intelligence was

born. The human mind was viewed as a computer. Although com-

puters have clearly been one of the biggest technological successes

in the history of mankind, at closer inspection they have not ful-

®lled the expectations of producing intelligence, at least as we

normally understand it. Rather than helping clarify the problems

involved, computers in fact created considerable confusion. In

1997, when Garry Kasparov played against Deep Blue, IBM's

famous chess computer, it became clear that computers could play

world champion±level chess. But it is also became clear that this

did not imply that Deep Blue was particularly intelligent. Search-

ing many positions does not require much intelligence.

The trouble with computer intelligence became obvious as

researchers and engineers were trying to build machines for more

commonplace activities like identifying faces in crowds, walking,

performing household chores, and talking in natural ways. As it

turned out, what is easy for peopleÐrecognizing a friend, reading,



drinking from a coffee cup, folding a newspaper, preparing a

mealÐwas extremely hard for machines, and what is often hard for

peopleÐthings like logic, solving puzzles, and playing chessÐis

easy for computers. The idea that once we have programs that can

solve problems and prove theorems, we can simply add a camera

and an arm and we have an intelligent robot, turned out to be not

only misguided but completely unrealistic.

By the mid-1980s, researchers from arti®cial intelligence, com-

puter science, brain and cognitive science, and psychology had

realized that perhaps the idea of computers as intelligent machines

was misguided. The brain does not run ``programs'': It does some-

thing entirely different. But what is it? Evolutionary theory teaches

us that the brain has evolved not to do mathematical proofs, but to

control behavior, to ensure our survival. The researchers from these

various disciplines agreed that intelligence always manifests itself

in behavior and that we must understand the behavior. If an organ-

ism does not behave, does not do anything in the real world, how

would we ever know whether it possesses any kind of intelligence

or not? At the very least, the organism, the animal, the person, the

machine must make sounds, change the environment in some

ways, move, draw something, produce signs that can be interpreted

by others.

Toward the end of the 1980s, an exciting new ®eld had appeared:

We call it ``embodied cognitive science.'' (It is also called ``new

arti®cial intelligence,'' ``behavior-based arti®cial intelligence,'' and

``nouvelle arti®cial intelligence.'') Rodney Brooks of the MIT Arti-

®cial Intelligence Laboratory, one of the founders of this new ®eld,

suggested that all this discussion about thinking, logic, and prob-

lem solving was based on assumptions that come from our own in-

trospection, from how we tend to see ourselves. He suggested that

we drop these assumptions, that we do away with thinking and

with what people call high-level cognition and focus on the inter-

action with the real world. Intelligence must have a body. Brooks

called it ``embodied intelligence.''

What originally seemed nothing more than a cute idea turned out

to have profound rami®cations and changed the entire research

disciplines of arti®cial intelligence and cognitive science. It is cur-

rently beginning to exert its in¯uence on psychology, neurobiology,

and ethology as well as engineering. The more deeply people

thought about the problems, the more it became obvious that a

radical departure from traditional thinking was required; a mere
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variation on existing methods would simply not do. How can

coherent and apparently intelligent behavior come about without

thinking? If intelligence isn't thinking, what is it then? This is what

the book is all about.

Ten years of research in this new ®eld have generated an enor-

mous number of stunning results and surprising insights. Although

it is hard to believe, robots have been built that help each other,

even though they have only simple re¯exes. Other robots can clean

¯oors, even though they are programmed only to avoid things. Yet

others learn to distinguish and collect objects without even know-

ing about it. How is any of this possible? Even people who have

been working in the ®eld of embodied cognitive science for many

years are still constantly surprised. The longer one works in the

®eld, the more one marvels at the ingenuity of nature.

The goal of this book is to provide a systematic introduction into

this new way of thinking, embodied cognitive science. But before

you go on reading, let us issue a warning. We have been using an

earlier version of this book to teach interdisciplinary classes in

arti®cial intelligence and cognitive science over the last few years.

At the end of the term, students in computer science, psychology,

and neurobiology alike have often come up to us, saying that they

were very excited about the ideas presented and the potential for

new kinds of explanations. However, they found they were having

a hard time with some of the other classes they had to take, for

example in cognitive psychology. Because of the insights offered by

this new approach, they simply could no longer believe the kinds

of explanations offered in more traditional ®elds. So before you

start reading, you have to be well aware that you may never again

be able to think about humans, animals, computers, and robots in

the same, comfortable way as before. On the other hand, you can be

assured that you will gain a fascinating new perspective.

We would also like to warn teachers. Because the ®eld is rela-

tively new compared to standard disciplines like theory of compu-

tation, mathematics, psychology, the natural sciences, and classical

arti®cial intelligence, it lacks the systematicness and rigor of those

disciplines. The book does provide a framework for the study of

intelligence, but it does not deliver all the answers. Therefore, it is

a book more to stimulate ideas and creativity than to tell students

``how things really are.'' This is why, instead of traditional class-

work problems, we have added ``Issues to Think About'' to each

chapter. We hope that you and your students will ®nd pleasure in
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thinking about them. The book strives to attract your attention to an

exciting new ®eld of research, to uncountable fascinating problems,

to a whole universe of new experiments to think about and to let

your mind wander through. One of its main purposes is to get the

reader thinking about old problems in novel ways and to generate

new issues for investigation. In this spirit, we are convinced that

the book will attract many bright, gifted students and form the basis

for highly rewarding course work.

Like traditional arti®cial intelligence, embodied cognitive science

has as its goal understanding intelligence by building artifacts.

Because intelligence is ``embodied,'' we need to build physical

things: robots. Building robots is not only extremely instructive, it

is also fun. And robot building has become much easier in recent

years. Moreover, one can now buy relatively cheap robots in

the stores that are perfectly suited for the experiments suggested in

this book. However, many potentially interested readers may

not want to get involved in robot building at all. This presents no

problem. If you are such a reader, you can either read the text

and simply think about the issues suggestedÐand you should have

no dif®culties in getting acquainted with this new ®eldÐor,

alternatively, you can work with simulation models: It is perfectly

possible to do the suggested projects using simulation. Our web

page provides a few pointers on simulators that you may want to

use (www.i®.unizh.ch/~pfeifer/mitbook). Both methods, experi-

menting with real robots and working with simulations, have

advantages and disadvantages. In some casesÐwhen doing arti®-

cial evolutionÐsimulation is even necessary: Real robots simply

won't do, at least not given the current state of the art. We highly

recommend experimentation with robots, simulators, or both. The

experiences gained through such experimentation are invaluable.

Contents

The book is targeted toward an interdisciplinary audience and

requires no prior knowledge or expertise. The ®rst part sets the

stage, starting with an introduction of what intelligence is all about.

In spite of the wide disagreement on this issue, we try to extract the

common denominator underlying all the varying ideas about what

constitutes intelligence. We also outline a number of ways intelli-

gence can be investigated. In particular, we introduce the autono-

mous agents approach, central to embodied cognitive science.
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As originally planned, the book was to have two parts, one out-

lining the traditional view, the other analyzing what is wrong with

it, with a small section at the end on alternatives. After discussions

with many students, we became convinced that these are not the

main things students are looking for: They don't want to know

the old way of thinking and why it is wrong, they want to know the

new way of thinking and why it is right. This realization entirely

changed the book's character. It still contains a chapter, albeit a

short one, on the traditional approach: The classical way of think-

ing about intelligence is still dominant not only in scienti®c circles,

but also in people's everyday thinking (chapter 2). Most of us are

comfortable with the idea that the human is an information pro-

cessing system and that intelligence is located in the brain. What

other explanation could there be? Chapter 3 presents the reasons

why these kinds of explanations are insuf®cient and have led to

insurmountable problems.

The next part (chapter 4) provides the theoretical groundwork for

understanding the terminology and the various approaches dis-

cussed in the literature. This part may be dif®cult reading for some,

but it is absolutely essential to appreciating the rest of the book. In

it, we discuss the idea of ``complete agents,'' which are the crea-

tures we want to build. You may ®nd that not everything in this

chapter becomes clear at the ®rst reading. The best strategy in such

cases is to read on and return to this chapter again later. As part of

the basics, we have included an introduction to neural networks

(chapter 5), which you may choose to skip if you already have a

background in neural networks. Even in that case, however, we

would recommend that you at least skim the chapter because it

is speci®cally geared toward neural networks for autonomous

agents, a type of network not often covered in detail in the standard

literature.

The next section reviews the major approaches that have been

suggested in the literature, including the Braitenberg vehicles

(chapter 6), the subsumption architecture (chapter 7), and the

evolutionary approach and arti®cial life (chapter 8), as well as

dynamical systems, behavioral economics, and schema-based

approaches (chapter 9).

The section on principles of intelligent systems is one of the core

sections. It summarizes the insights of the ®eld, and the consensus

Ðto the extent that it existsÐin a compact, general way (chapter

10). Chapters 11 through 14 elaborate the principles governing
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design of intelligent systems. They contain a lot of detail, and you

may want to skip them initially. It should present no problem to

the reader to continue with chapter 15 right after chapter 10.

Chapter 15 is a case study of how embodied cognitive science, as

expressed by the design principles, can be applied to human

memory. Memory is clearly one of the most intriguing phenomena

in the study of intelligence, which is why we felt it would be an

excellent candidate for showing the power of embodied cognitive

science for studying what is normally considered a high-level cog-

nitive competence.

The next section is about building and evaluating autonomous

agents, both real and simulated. Chapter 16 provides insights into

the intertwined and subtle considerations involved in the design

process. It turns out that there are no precise recipes for success-

ful design. Actually designing interesting agents, as robots or as

simulated creatures, requires a lot of creativity. Chapter 17, on

evaluation, is very important; embodied cognitive science is an

enormously dynamic ®eld, but there is a de®nite lack of rigor and

scienti®c method. So do read this chapter carefully and try to apply

it to your own experiments.

The last part of the book concerns future and integration. Chapter

18 outlines where the ®eld may go in the coming years. This

includes scienti®c developments, as well as technological devel-

opments and applications in industry and society. It has an inten-

tionally speculative character and we hope that this will add to the

®eld's attractiveness. Proposals offered range from such down-to-

earth suggestions as building more complex robots to amphibious

robots inhabiting the sewage systems of our large cities. Chapter

19, entitled ``Intelligence revisited,'' brings together everything we

have said throughout the book in a theoretical framework. Such a

framework can be viewed as a ®rst step toward a theory of intelli-

gence. We conclude by outlining some of the more important

implications of the insights gained on society at large.

Scope

This book presents all the background knowledge required for

understanding the fundamental principles underlying intelligence.

It also covers the reasons why the classical approach has failed.

Moreover, it provides enough detailed materials on all aspects of

physical and simulated agents (robot design, neural networks,
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control architectures, learning algorithms, programming) so that

students can start doing experiments and projects on their own.

The entire setup is highly interdisciplinary. Connections between

disciplines are woven into the entire text. Thus, the book provides

a rich source of associations that will be valuable in particular to

the motivated and talented students with interests reaching beyond

one discipline. A glossary at the end should also serve as a useful

reference.

This book does not cover algorithms of classical arti®cial intelli-

gence. It is also not a systematic technical introduction into robot

vision or other classical topics of robotics such as motion planning.

This is due to its complete-agent perspective: its focus is on the

agent as a whole, on its behavior, rather than on individual com-

petences. This perspective has been the main organizing principle.

It is also the reason some topics that are treated in a single chapter

in other textbooks are distributed over several in this one. Learn-

ing, for example, is essential to neural networks, categorization,

sensory-motor control, and value systems, all of which are princi-

ples concerning complete agents and include aspects other than

learning.

This book is not about robot building; it is not about designing

circuit boards and controllers for robots. Though design issues

have a prominent place, it is not an engineering text. The book

covers a lot of ground from a conceptual perspective. This is

unavoidable. It re¯ects the nature of intelligence, which is multi-

facated and messy. Also, because it is the ®rst comprehensive book

about this ®eld, it includes materials you might disagree with.

Although we have tried our best to bring everything together and

merge it into a coherent framework, many issues have not yet been

settled in the ®eld of embodied cognitive science.

History of This Project

The whole enterprise that has come to fruition with this book

started roughly 10 years ago when we began to run into funda-

mental problems with arti®cial intelligence. In the mid-1980s we

had already been working with expert systems for a number of

years. Over time we realized, as did many others, that the technol-

ogy did not ful®ll its promises. Accomplishing what we proposed

turned out to be much harder than expected: Only a very few of the

projects we undertook ended up with systems that could be used in
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everyday routine practice. The problems were not simply of prac-

tical nature, they were somehow insurmountable. At about that

time, Terry Winograd and Fernando Flores's seminal book Under-

standing Computers and Cognition was published. Although we

initially did not understand all the issues involved, we realized

immediately that there was something important about this book.

It tied in smoothly with long-standing criticisms of arti®cial intel-

ligence by Hubert Dreyfus, and with at least some of the points

Gerald Edelman and George Reeke had been making for some time.

The main point of criticism for all these critics was arti®cial intel-

ligence's exclusive information processing perspective. All argued

that viewing human intelligence as information processing is mis-

leading and does not provide the best type of explanation for it. We

took the Winograd and Flores book seriously and ran a seminar

about it. In the meantime, William J. Clancey, an expert systems

specialist at Stanford, had also started thinking about the founda-

tions of classical arti®cial intelligence. His thinking has been very

in¯uential for our endeavors.

While on sabbatical leave in 1990±91 at the Free University of

Brussels, in Luc Steels' Arti®cial Intelligence Laboratory, I (Rolf

Pfeifer) had plenty of time to think about the fundamental problems

in arti®cial intelligence. This was when I completely changed my

whole research program. I had become convinced that we needed

an entirely new approach to the study of intelligence, if we wanted

to make progress in really understanding it. Since then we have, in

our research, been dealing only with embodied cognitive science.

In 1991, a workshop on ``emergence'' was held in the beautiful

monastery of Corsendonk in Belgium, attended by most of the

players in the ®eld: Rodney Brooks of MIT; Bill Clancey of the

Institute for Research on Learning; John Hallam of the University of

Edinburgh; Stevan Harnad of University of Southampton; Leslie

Kaelbling of Brown University; Chris Langton of Los Alamos and

the Santa Fe Institute; Maja Mataric, now of the University of

Sourthern California, Los Angeles; David McFarland of Oxford

University; Tim Smithers, now of University of Navara, San Sebas-

tian; Luc Steels of the Free University of Brussels; Chuck Taylor of

UCLA; and Francisco Varela of the Ecole Polytechnique in Paris.

This meeting can be seen somehow as the founding meeting of the

still very young ®eld of embodied cognitive science. Roughly three

years later, Lin Chen of the Beijing Open Laboratory for Cognitive

Science invited Rolf Pfeifer to deliver a series of lectures on the
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new approach to cognitive science. He was the ®rst to suggest that

these lectures be turned into a book. We would like to thank Lin for

this suggestion. Since the Corsendonk meeting, much progress has

been made. The ®eld has matured into a scienti®c discipline. It is

time for a comprehensive textbook.
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I The Study of IntelligenceÐFoundations and Issues

This book's central goal is to allow the reader to acquire a deeper

understanding of intelligence. A number of consequences follow

from this goal. First, we have to de®ne what we mean by ``intelli-

gence.'' Second a ``deeper understanding'' implies that our current

understanding is insuf®cient and needs to be improved. Thus, we

need to ferret out in what respect it is not satisfactory, which in

turn requires analyzing our current view, its underlying assump-

tions, and its rami®cations. Part I is devoted to the elaboration of

these points.

Although we all have a good idea of what we mean by ``intelli-

gence,'' there is no general agreement on a particular de®nition.

Moreover, questions like ``Are animals intelligent?'' ``Can animals

think?'' ``Can computers (or robots) be intelligent?'' ``How can we

measure intelligence?'' ``Is intelligence inherited or can it be

acquired?'' and ``To what extent are emotions involved in intelli-

gence?'' provoke a great deal of disagreement. Chapter 1 conveys a

¯avor of all the aspects and the variety of ideas involved by looking

at de®nitions, commonsense notions, and ways of testing intelli-

gence. Just to illustrate the topic's complexity and controversial

nature, the chapter presents the IQ test, ``emotional intelligence,''

and the nature-nurture debate, as well as a test for machine intelli-

gence, the Turing test. Once the parameters of the ®eld ``intelli-

gence'' have been delineated, the chapter discusses the various

ways intelligence can be and has been investigated. Finally, it

introduces the main methodology to be used in this book, the syn-

thetic methodology; in particular, the use of so-called autonomous

agents to investigate intelligence is considered.

Once we are clear about what we mean by ``intelligence'' and

how it can be investigated, we are in a position to analyze the dif-

ferent theoretical positions. In cognitive science, empirical and

theoretical research on intelligence has been dominated by the

computer metaphor: intelligence as information processing, as the

manipulation of abstract symbolsÐthe essence of the cognitivistic

paradigm. The cognitivistic paradigmÐelaborated in chapter 2Ðis



intuitively highly appealing and has attracted many of the leading

researchers over the last half century or so. As it has turned out,

however, the paradigm has a number of undesirable implications

that cannot be resolved within the framework it sets up. Very

broadly speaking, they all concern the fact that humans, animals,

and robots have to interact with the real world, whereas the com-

puter metaphor has focused on abstract virtual or computational

worlds and has neglected their relationship to the real world.

Chapter 3 discusses the problems and issues this neglect of the real

world entails. One very prominent problem, the symbol grounding

problem, concerns how the symbols used in a model acquire

meaning, that is, how they relate to an organism's experience.

Although many solutions to these problems have been suggested,

radically different approaches are required if we are to come to

grips with them, and this is the crux of the entire book: elaborating

these alternative approaches.

Part I 2



1 The Study of Intelligence

Intelligence has always been a controversial topic. Science ®c-

tion stories involving intelligent robots abound. Superintelligent

machines have, for a long time, been the stuff of nightmares. Com-

puters and, even more so, robots have inspired people's fantasies.

Because of the enormous developments in digital electronics and

microtechnology in recent years, true arti®cial intelligence seems

to be drawing near. So it is not really surprising that discussions

concerning arti®cial intelligence are often highly emotional. But

nightmares and science ®ction do not entirely explain the issue's

emotional charge. Intelligence was an emotional topic long before

computers started to spread. Just think of IQ tests. There has been a

long and heated debate about what IQ tests actually measure: Is it

really intelligence, or something else? And what about the recent

hype about ``emotional intelligence''? Is emotional intelligence,

rather than IQ, the real intelligence? Another question often asked:

Are ants intelligent? Or ant colonies? Are rats intelligent? Maybe

not, but they are certainly more intelligent that ants. And humans

are more intelligent than ratsÐat least in many respects. Most

adults can speak and write and many can play chessÐactivities no

animal can perform. But among humans, talking or playing chess

(at least at a basic level) is not considered something exceptional. I,

Rolf Pfeifer, know how to play chess, but nobody who has seen my

performance in a game would attribute extraordinary intelligence

to me. However, if a one-year-old child did exactly the same thing,

we would think that the kid was superintelligent. If a dog did it, we

would think the dog was a genius. So what we consider intelligent

depends also on our expectations. But not only that: Assume you

are playing chess against a computer. If you win, you can be happy.

But even if you lose, you might still argue that you were playing

intelligently, whereas the computer was only testing many alter-

natives in a completely unintelligent way, as ®gure 1.1 illustrates.

Well, you might have been able to make that argument, at least,

until the May 11, 1997. On that date the world was focusing on a

particular room on the 35th ¯oor of 787 Seventh Avenue in New



York City, where, for the ®rst time in history, a chess program won

an entire match against the reigning world champion. The hapless

champion was Garry Kasparov, the chess program, Deep Blue,

developed by a research team at IBM. Kasparov won the ®rst of

six games and lost the second. The next three games were draws. At

this point, both Kasparov and Deep Blue had 2.5 points, with

just one game to go. As we all know, Kasparov lost the ®nal one.

What does that mean? Is the person's reaction in ®gure 1.1 still jus-

ti®ed? Or is it indeed the case that now computers have achieved

human level intelligence? Deep Blue's victory is certainly a mile-

stone in the history of arti®cial intelligence. After all, chess was

considered the hallmark of intelligence in the old days of arti®-

cial intelligence. But we hope to demonstrate in this book that the

person in ®gure 1.1 can relax: Nothing has changed fundamentally.

The decisive factor in Deep Blue's victory was the speed of the

computer. So this victory was a logical development, to be ex-

pected sooner or later. More is required, however, before we can

speak of intelligence.

This book is about intelligence. So we should somehow be able

to tell what we mean by the term. This is not an easy task, as we

Figure 1.1 A human playing chess against a computer. Although the human is losing, he still
feels he is intelligent, whereas he considers the computer to be stupid. Even after the
historic victory of IBM's Deep Blue over world champion Garry Kasparov in 1997, the
reaction of the human is still justified. Deep Blue's success is due largely to pro-
cessing speed.
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have already begun to see. There is very little agreement on what

does and does not constitute intelligence. For the most part, the

discussion of what intelligence is and isn't seems to concern what

people ®nd interesting and what they don't. Some ®nd it interest-

ing that termites can construct enormous buildings and that birds

can ¯y in ¯ocks with marvelous shapes. Others are amazed that

humans can speak and recognize a particular face in a large crowd.

Still others wonder about dogs catching Frisbees. Almost every-

body is impressed with Einstein's achievements in general relativ-

ity. And most are still fascinated by grand masters playing a game

of chess. To do justice to this variety, we start with a tour d'horizon

of what many people have said about the phenomenon of intelli-

gence. As we do so, we have to be aware that intelligence is a

descriptive term: It describes certain properties of individuals or

groups of individuals. Descriptive terms are largely arbitrary, and it

is therefore unlikely that descriptive de®nitions of complex ideas

can satisfy everybody. Nevertheless, all de®nitions of intelligence

have a common denominator related to novelty and adaptivity.

This forms the starting point of our investigation.

An exact characterization of intelligence is not all that important

to understanding it. What does matter is that we work on the rele-

vant issues. Rather than arguing whether a particular behavior

should be called intelligent or notÐa point that is always debat-

ableÐwe try to provide answers to the following question: Given

some behaviorÐsay of a human, an elephant, an ant, or a robotÐ

that we ®nd interesting in some ways, how does the behavior come

about? If we can give good answers to this question for a broad

range of behaviors, we can say that we have gained an under-

standing of the principles underlying intelligence. This is precisely

what we are after in this book. Of course, we have to de®ne exactly

what we mean by ``good answers'': Our entire conception depends

on this. We do just that, in detail, throughout the book. Thus we are

suggesting that we replace the original question of de®ning intelli-

gence with the more pro®table one of how a particular behavior in

which we are interested comes about.

Before we start, let us introduce a few terms. By cognitive science

we mean the interdisciplinary investigation of intelligence, or

more generally, the mind. We are mostly interested in that part of

cognitive science that applies a synthetic methodology, that is, the

methodology of ``understanding by building.'' Cognitive science is

also concerned with exploring general principles of intelligence,
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not only those related to the human mind. It has a large overlap

with arti®cial intelligence (AI). The difference between the two

®elds is that cognitive science has closer ties to empirical sciences

like psychology, biology, and neurobiology, whereas AI is more

closely associated with computer science, algorithms, and logic.

But many researchers in AI would consider themselves cognitive

scientists. We sometimes use the terms classical AI to distinguish

the traditional approach from the more recent one described in this

book, which we call embodied cognitive science. When talking

about intelligence, we often do not want to make any distinction

among humans, animals, and arti®cial creatures like robots or

simulated organisms. In these cases we normally use the term

agent.

1.1 Characterizing Intelligence

We start our tour d'horizon with a few de®nitions of intelligence,

move on to commonsense notions, then discuss intelligence test-

ing, a particular way of characterizing intelligence. We then turn

to a very special kind of intelligence test, the Turing test, and a

famous thought experiment, the Chinese Room. From this cursory

review, we then de®ne our starting point.

De®nitions

As we said, it is hard to de®ne intelligence, and not much agree-

ment has been achieved. The introductory comments on intelli-

gence in the Penguin Dictionary of Psychology re¯ect this lack of

consensus: ``Few concepts in psychology have received more

devoted attention and few have resisted clari®cation so thoroughly''

(Reber 1995, p. 379). Nevertheless, de®nitions can provide a source

of intuition, so let's examine some. In 1921, the Journal of Educa-

tional Psychology (Vol. 12, pp. 123±147, 195±216) asked fourteen

leading experts in the ®eld at the time to provide their de®nitions

of intelligence. As one might expect, the journal got 14 different

answers back. Some of the responses received can be summarized

as follows: The ability to carry on abstract thinking (L. M. Terman);

Having learned or ability to learn to adjust oneself to the environ-

ment (S. S. Colvin); The ability to adapt oneself adequately to rela-

tively new situations in life (R. Pintner); A biological mechanism

by which the effects of a complexity of stimuli are brought together
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and given a somewhat uni®ed effect in behavior (J. Peterson); The

capacity to acquire capacity (H. Woodrow); The capacity to learn or

to pro®t by experience (W. F. Dearborn). Although the de®nitions

are different, they all make certain points that we ®nd important.

Note the very different levels involved. Terman talks about the

ability for abstract thinking. By contrast, Peterson refers to biologi-

cal mechanisms. A crucial point: Some mention the environment,

some don't. In many investigations of intelligence, the environment

was largely neglected.

The quotations above represented the opinion of experts. Let us

now look at what people in general think about intelligence, at

commonsense notions of intelligence. You may be surprised at

some inclusions in this list.

Commonsense Notions

It is important to understand commonsense notions of intelligence,

®rst because they are a great source of inspiration, and second

because, ultimately, the scienti®c study of intelligence must relate

to them: It must provide a better understanding of precisely these

concepts. Commonsense notions often specify certain capabilities

typical of intelligent beings. They include, among others, thinking

and problem solving; the competence to speak, read, and write;

intuition and creativity; learning and memory; emotions; surviving

in a complex world; and consciousness. They also include the dis-

tinction of degrees of intelligence.

A GRADUATED PROPERTY

The ®rst thing to note is that people clearly distinguish levels of

intelligence. Albert Einstein (®gure 1.2) was certainly extremely

intelligent. If you want to go to college, you have to be intelligent.

The word is often used in this sense, namely as a synonym for

``very intelligent,'' ``more intelligent than others.'' When we say a

person is intelligent, we normally mean that the person has an

above average level of intelligence.

Obviously, some people are more intelligent than others.

Humans are more intelligent than animals, and among animals,

dolphins and apes are considered more intelligent than cows or

ants. We have a tendency to order living beings as being more or

less intelligentÐintelligence is not a characteristic that is either

present or not, rather one that is present in degrees. But it is also
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clear that ordering intelligence on a linear scale is not possible.

Some students are good at writing essays, others can do math, still

others play music, and a fourth group might excel at camping out

in the wild: How should we compare their intelligence? It is not

obvious how such a comparison can be made in a sensible and

pro®table way.

THINKING AND PROBLEM SOLVING

The ability to think is often mentioned as an essential characteristic

of intelligence. Thinking, in its commonsense meaning, includes

problem solving and logical reasoning but also less structured

forms of mental activity such as those we use in our everyday lives,

when doing household chores or planning a weekend trip. Most

people would probably agree with the ordering of the degrees of

intelligence of animals mentioned in the previous section. This

implies that animals also have a certain level of intelligence. But

do animals think? The capacity to think is a characteristic of

an intelligent being in commonsense belief. Well, maybe some

animals do think, and others don't. We have no way of really

knowing. To ®nd out, however, we could conduct an experiment.

For example, we could give a horse an arithmetic problem in some

form, as is sometimes seen on TV shows, and if it comes up with

the right answer, say by knocking on the ground the correct number

of times, we might say that it has been thinking. The fact that these

demonstrations have been shown to be tricks is beside the point

Figure 1.2 Portrait of an intelligent person. There is universal agreement that Einstein, an
enormously creative thinker, was highly intelligent.
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here. What matters is that we never know whether another agent is

thinking or not: We can only speculate about it.

Problem solving is closely related to thinking. Typical problem

solving tasks are ®nding a bug in a computer program, diagnosing

the disease of a patient, ®nding a solution to a high school physics

problem, designing an experiment with animals to test a hypothe-

sis, or compiling a portfolio for a particular customer.

In its everyday meaning, the term ``thinking'' is often associated

with conscious thought. This is compatible with Terman's view of

intelligence as abstract thinking. It is also what the philosopher

ReneÂ Descartes had in mind when writing his famous statement

``Cogito ergo sum.'' Abstract thinking is perceived as especially

hard by most, and individuals with this ability often command

respect and admiration. This ability to think in abstractions is the

®rst one mentioned, almost universally, by most people when

asked to de®ne intelligence. Upon further re¯ection, they come up

with all sorts of additional conceptions. Let's look at some of them.

LEARNING AND MEMORY

Good students are usually perceived as the ones that learn easily.

We also say that they have a good memory. They study the words

once, for example, and they know them and they do not forget

them. Many people view learning as the core property of intelli-

gence. That learning per se does not make people intelligent, but

the capacity to learn, is also a popular view. So learning to learn

appears to be the key point.

Memory is considered equally important, in popular concep-

tions of intelligence, as capacity to learn. However, rote learning,

merely memorizing facts out of context, is generally judged a

pointless activity, basically a waste of time, requiring no intelli-

gence. Memory for useful knowledge is what counts. A doctor with

extensive experience who can remember all his patients and their

diseases and can apply this knowledge to treat new cases is con-

sidered intelligent. Transfer of knowledge is the point, not merely

storing it.

LANGUAGE

The capacity to communicate in natural language, as we know it

from humans, is often considered to be the hallmark of intel-

ligence. Clearly, natural language requires a high level of intelli-

gence. The ability to talk to one another, to read and write, is one
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of humans' distinguishing features. No animal species has abilities

even remotely resembling human natural language. Those who

speak multiple languages are often regarded as particularly intelli-

gent. Their ability is a combination of good learning, memory

capacity, and talent for languages.

INTUITION AND CREATIVITY

Einstein was creative; so were Beethoven and Picasso. They also

had a lot of intuition. Leaders and managers have intuition, too. In

fact, all (or most) people do. Intuition is often taken to mean arriv-

ing at conclusions without a train of logical thought that can be

traced to its origins. Likewise, creativity is a highly complex notion

that includes not only the individual but the society as whole. It

cannot be de®ned for an individual in isolation but must be dis-

cussed with respect a particular society's value criteria. Many

regard creativity as the highest form of human intelligence.

Both intuition and creativity seem in some ways to go beyond

thinking. Thinking can be executed in a ``cold'' manner, inde-

pendent of emotion, whereas intuition and creativity require the

engaging of emotions. Creating something new also has a some-

what mysterious ¯avor: How does the new thing come about? Can

creativity be learned?

CONSCIOUSNESS

Consciousness is often seen as an essential ingredient of intelli-

gence. Like creativity and language, it is a property that we can

attribute with certainty only to humans. And like creativity, there

is also something mysterious about consciousness: It is hard to

grasp, but considered essential for many other abilities. Thinking,

language, and creativity are understood as requiring conscious-

ness. Creativity, for example, is seen as the result of a combination

between conscious thought and unconscious processes. Because of

its subjectivity, consciousness is an elusive concept; it is hard to

know what it really is all about. Academic psychology has deliber-

ately tried to avoid dealing with consciousness at all, arguing ``that

the role of consciousness in mental life is very small, almost

frighteningly so. The aspects of mental life that require conscious-

ness have turned out to be a relatively minor fraction of the busi-

ness of the brain'' (Bridgeman 1990, cited in Rosen®eld 1992).

Although Bridgeman may indeed be right, consciousness is never-

theless seen as important for the study of intelligence by many

people.
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EMOTIONS

Humans have emotions. Like consciousness, they are something we

consider essential for humans. Moreover, most people think that

higher mammals, in particular apes and dolphins, but also dogs

and cats, have emotions. Whether emotions should be considered

an essential feature of intelligent beings, however, is debatable.

Recently, so-called emotional intelligence, introduced by Peter

Salovey and John Mayer (1990), has been the subject of much dis-

cussion. Emotional intelligence refers to the ability to recognize

emotions in others, using emotions to support thinking and actions,

understanding emotions, and regulating emotions. The general idea

is that if you recognize your own emotions, you are better able to

perceive the emotions in others and to react appropriately in social

situations (Goleman 1995). Apparently this ability can be improved

through appropriate practice. Pertinent seminars are already being

marketed worldwide.

It is generally agreed that the degree of sophistication of emo-

tions depends to a large degree on intelligence. Humans can be

jealous; they can be ashamed or feel guilty. We would normally not

attribute such emotions to ants. We would also not, for example,

ascribe guilt to a lion that has just killed a deer, whereas we would

certainly attribute guilt as a likely emotion for a human who has

killed another human.

SURVIVING IN A COMPLEX WORLD

Animals (and humans, for that matter) can survive in highly com-

plex environments, and they sometimes display astounding behav-

iors. Termites build fantastic towers, and bees dance and

communicate, in sophisticated ways, the location of food sources.

Other animals use tools in skilled ways. Certain vultures hurl a

stone at an ostrich egg to break it, Galapagos woodpecker ®nches

probe for insects in the bark of trees by holding a cactus spine in

their beaks, and chimpanzees use twigs to probe for termites. Pri-

mates exhibit sophisticated social behavior. We cannot help attrib-

uting some kind of intelligence to these creatures and those that

engage in similarly sophisticated survival behaviors.

PERCEPTUAL AND MOTOR ABILITIES

Most people don't consider perceptual and motor abilities essential

for intelligence. Presumably, seeing the things around us seems so

natural and works so automatically that we are not aware of the
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complexities involved. By contrast, science considers understand-

ing perception one of the most important research issues. Recog-

nizing complex objects in our environment, making out a face in a

crowd are amazing abilities to a scientist trying to explain them.

Medical doctors, experienced diagnosticians, can sometimes ®nd

out what's wrong with a person simply by looking at him. Such

perceptual competences are sometimes seen as intelligence. Motor

abilities, on the other hand, especially basic ones like walking, are

usually thought to require no intelligence. As the complexity of the

motor task increases, however, it becomes less and less clear to

what extent intelligence is required. Assembling a complex elec-

tronic device requires high sensory-motor skills, but does it call for

intelligence?

This discussion of commonsense notions of intelligence is, of

course, neither complete nor empirically sound. The aim was to

provide a sense of the variety of abilities and components involved

in what we, scientists and laypeople, think of as intelligence. As we

have seen, intelligence is multifaceted and not restricted to one

characteristic, like abstract thinking. We have also seen that, in

addition to humans, animals often exhibit impressive levels of

intelligence. Moreover, there seems to be agreement that intelli-

gence is a gradual rather than an absolute characteristic, though it

is not obvious how it should be measured. This is the task of intel-

ligence testing.

Intelligence Testing

Numerous tests for assessing intelligence have been developed. A

case in point are IQ tests. The general idea of an IQ test is to mea-

sure a capacity that is not dependent on particular knowledge but

is, in a sense, a ``general intelligence capacity'' or ``factor g,'' as it is

sometimes called.

The original IQ test was invented in 1905 by French psychologist

Alfred Binet, essentially to ®nd out whether children with certain

learning de®ciencies would be better off in a special school. German

psychologist William Stern in 1912 turned the test into a general

intelligence test for children, and David Wechsler in 1939 devel-

oped it into one for adults. He proposed a Gaussian distribution of

test results: two thirds should be between 85 and 115 (100 being the

mean), and only 2.3 percent above 130 and below 70. Figure 1.3

depicts a typical item on a modern IQ test.
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In 1904, English psychologist Charles Spearman, in a paper enti-

tled `` `General Intelligence' Objectively Determined and Measured''

(Spearman 1904), used factor analysis, a method he invented, to

support his claim that factor g indeed exists. Spearman based his

argument on the ®nding that there are positive correlations between

the different test items on an IQ test. According to Spearman, these

results suggest that an underlying factor is responsible for the cor-

relations. Although some psychologists still regard factor g as the

most fundamental measure of intelligence, others postulate multi-

ple intelligences, a view supported by recent evidence that more

than seventy different abilities can be distinguished by currently

available tests (Carroll 1993).

We can conclude that it is problematic to reduce a highly com-

plex phenomenon like intelligence to a single number. This is also

the essential point in Howard Gardner's theory of multiple intelli-

gences, or multiple competences. According to Gardner, there is

not one intelligence or factor g but multiple ones: linguistic intel-

ligence, musical intelligence, logical-mathematical intelligence,

spatial intelligence, bodily-kinesthetic intelligence, and personal

intelligences (for perceiving your own and other people's moods,

motives, and intentions). Gardner's list of intelligences suggests

that there is no simple mapping of intelligence onto one dimension,

one number (Gardner 1985). He also argues that some of these

competences cannot be measured using standard tests, hence the

German translation of Gardner's book has the title Abschied vom

IQ, which means ``Farewell, IQ.''

But before we dismiss IQ entirely, let us recall one of the de®-

nitions of intelligence provided by the experts in 1921, namely, the

Figure 1.3 Typical problem from an IQ test. One item from the panel on the right (A through F)
has to be chosen for the field with the question mark.
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ability to pro®t from your experience, to be successful in a partic-

ular environment. If we take as the environment an industrialized

society, it seems that IQ is a good predictor of success in school and

in professional life (e.g., Neisser et al. 1996). Recently, some have

suggested that emotional intelligence might be equally important

for a successful career (e.g., Goleman 1995). Because tests for emo-

tional intelligence (EQ tests) on the one hand are controversial and

on the other have only been around for a short period of time (at

least compared to IQ tests), it is unclear how exactly they relate to

IQ tests. To provide a feel for what these tests are like, we have

included an item from an EQ test in ®gure 1.4.

Testing to measure intelligence has raised the question of

whether intelligence is genetically predetermined and to what

extent it is in¯uenced by factors other than heredity. This has

sparked a heated debate that keeps reemerging periodically: the

nature-nurture debate.

The Nature-Nurture Debate

Generally speaking, the nature-nurture debate concerns the origins

of knowledge. Those in the nature camp think that development is

largely the expression of genetically predetermined factors. For

example, it has been suggested that children are born with innate

knowledge about basic principles of grammar (e.g., Pinker 1994),

physics (Spelke 1994), or mathematics (Wynn 1992). By contrast,

people in the nurture camp posit that most abilities are acquired

Figure 1.4 Example of a problem from an EQ test. EQ tests typically consist of four parts, one
for identifying emotions, one for using emotions, one for understanding emotions,
and one for regulating emotions. The figure shows test items from the test for
understanding emotions.
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during development and can be learned. The last violent eruption

of this debate was in 1994, when Herrnstein and Murrey published

their controversial book The Bell Curve, in which they claimed that

the decisive factor in whether we will be successful in life is not

our social environment, but intelligence as measured by IQ. They

also maintained that IQ is largely innate, genetically predeter-

mined. This position has, of course, far reaching consequences. For

example, it suggests that some social programs are useless because

the intended bene®ciaries cannot be helped because of their innate

limitations in intelligence, as expressed in low IQ scores. This view

has a number problems. (See Gould 1996 for an excellent discus-

sion of the main issues.) We mention only two. First, it assumes

that intelligence can be captured by a single number, the IQ. Given

our discussion of intelligence so far, this is clearly questionable.

Second, it is not clear what is meant by the claim that intelligence

is innate. Does it mean ``coded in the genes''? Genes interact with

their environment at all levels, so that ``there is virtually no inter-

esting aspect of development that is strictly `genetic' '' (Elman et al.

1996, p. 21). Although there is a certain truth to both extremes in

this debateÐthere are genetic factors in intelligence, and there are

strong environmental componentsÐthe ``solution'' presumably lies

somewhere in the middle, that is, that the origins of intelligence

are to be found in the interaction between nature (genetic factors)

and nurture (environmental factors). The problem then becomes

determining how development actually works; that is, how pre-

cisely genetic and environmental factors interact in the developing

organism. Computer simulations of how this interaction might be

achieved in very simple organisms are given in chapter 8. These

simulation studies lead to additional insights and new ways of

thinking about the nature-nurture debate. Meanwhile the nature-

nurture war continuous to be waged.

The nature-nurture debate is by no means the only controversy in

the study of intelligence. Let us look at another, the intelligence of

machines.

The Turing Test and the Chinese Room

So far we have dealt mostly with natural intelligence, because

people normally associate intelligence with natural creatures, in

particular humans. But what about machines? Can machines be

intelligent? This question has led to long, emotionally loaded, and
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generally nonproductive debates. Frustrated with discussions

about the nature of intelligence, in which it is impossible ever to

reach consensus because of the strongly subjective components

involved, the brilliant English mathematician Alan Turing pro-

posed an operationalization of the question whether machines

could be intelligent at all. In 1950, in a seminal paper entitled

``Computing Machinery and Intelligence (Turing 1950)'' he pro-

posed a procedure now widely known as the Turing test. The

refreshing point about the Turing test is that it is an experiment, not

speculation. Its results can be assessed objectively, and it does not

refer to any kind of thinking or mental processes.

The Turing test consists of an imitation game. Figure 1.5 shows

the basic setup. Let us quote Turing himself:

It (the imitation game) is played by three people, a man (A), a

woman (B), and an interrogator (C) who may be of either sex. The

interrogator stays in a room apart from the other two. The object of

the game for the interrogator is to determine which of the other two

is the man and which is the woman. He knows them by labels X

and Y, and at the end of the game he says either ``X is A and Y is B''

Figure 1.5 Basic setup of the Turing test. There are three participants, a man (A), a woman (B),
and an interrogator (C). The interrogator is in a separate room, connected to the
participants only via a computer terminal. His task is to find out who is the man and
who the woman. A's goal is to confuse C whereas B tries to help C make the correct
identification. The Turing test consists of replacing A by a computer: Can C then find
out which is a computer and which a human?
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or ``X is B and Y is A.'' The interrogator is allowed to put questions

to A and B thus:

C: Will X please tell me the length of his or her hair?

Now suppose X is actually A, then A must answer. It is A's object

in the game to try and cause C to make the wrong identi®cation.

His answers might therefore be:

``My hair is shingled, and the longest strands are about nine

inches long.'' (Turing 1950; reprinted in Feigenbaum and Feldman

1963, p. 11)

In order that tones of voice may not help the interrogator, the

answers should be written, or better still, typewritten. The ideal

arrangement is to have two computer terminals (at the time the

test was originated, teleprinters) communicating between the two

rooms. Alternatively the questions and answers could be repeated

by an intermediary. The object of the game for the third player (B)

is to help the interrogator. The best strategy for her is probably to

give truthful answers. She can add such things as ``I am the woman,

don't listen to him!'' to her answers, but that will be of no avail,

because the man can make similar remarks.

We now ask the question, ``What will happen when a machine

takes the part of A in this game? Will the interrogator decide

wrongly as often when the game is played like this as he does when

the game is played between a man and a woman?'' These ques-

tions replace our original, ``Can machines think?'' (Turing 1950;

reprinted in Feigenbaum and Feldman 1963, pp. 11±12)

The original Turing version of the test involves three parties (the

interrogator, one person trying to help the interrogator, and one

trying to confuse him), simpler versions have later been proposed

in which the interrogator is interacting with a system (human or

machine) and has to ®nd out whether the system is a human or a

machine.

There has been much discussion about whether the Turing test is

a good test of intelligence. Many criticisms have been voiced. One

often heard is that the test is constrained to measuring a particular

form of natural language communication. One of the prominent

critics of the Turing test, philosopher John Searle, has argued, in

essence, that observing behavior is not enough, because by merely

observing behavior we cannot ®nd out whether a system really

understands the questions it is given (Searle 1980). As a thought

experiment, he proposed the famous Chinese Room (®gure 1.6). In
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his original paper, the person locked in the Chinese Room was

Searle himself. The argument holds for anyone else, as long as he

doesn't speak Chinese. Initially Searle is given two large batches of

writing, one with Chinese characters and one written in English.

The batch with the Chinese characters represents a data base of

commonsense knowledge required to answer questions handed to

him through the opening on the left of the room. The second batch

consists of rules containing the instructions on how to ``process''

the questions, that is, they tell Searle how to produce an answer

from the questions written with Chinese characters. This is done by

comparing the characters of the question to the characters in the

commonsense knowledge base and by choosing certain characters

that will make up the answer. When this process is ®nished, the

answer is handed through the opening on the right of the room.

Note that the comparison of Chinese characters and the choice of

characters that make up the answer is done entirely on the basis of

their shapes, that is, on a purely formal or syntactic basis. Let us

now suppose that Searle keeps playing this game for a while and

gets really pro®cient at following the instructions for manipulating

the Chinese symbols. From an external point of view, that is from

Figure 1.6 Searle's Chinese Room experiment. Using the rules and the commonsense knowl-
edge, Searle is producing an answer to a question that is handed through a window
in the room. Even though he does not understand Chinese, he can produce mean-
ingful Chinese sentences.
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the point of view of somebody outside the Chinese Room, Searle's

answers to the questions are indistinguishable from those of native

Chinese speakers. Nobody looking at Searle's answers can tell that

he doesn't speak a word of Chinese. He has produced answers by

manipulating uninterpreted formal symbols.

Searle, quite in contrast to Turing, is not willing to accept a de®-

nition (or a test) of intelligence that relies entirely on behavior. It is

not suf®cient for him that a system produce the same output as a

human. He does not view the Turing test as a good means to judge

the intelligence of a system. For true understanding, true intelli-

genceÐin his viewÐsomething else is required. Many papers have

been written about the Chinese Room, and we cannot do justice to

the entire discussion. Instead of going into that debate, let us, just

for the fun of it, ask the following question: According to Searle, the

Chinese Room does not understand Chinese. Now, how do we

know Searle understands English? All we can do is say something,

observe Searle's behavior and what he says in a particular situa-

tion, and if that makes sense, we attribute understanding to him.

Just like the Chinese Room! But more probably, we know that

Searle is human, we are humans and we understand English, so we

simply assume that he also understands.

So far, in our description of the Chinese Room thought experi-

ment, we basically followed Searle's line of reasoning. However,

there is a serious problem with the argument. It suggests that there

could indeed be a set of rules capable of producing the appropriate

outputs based only on manipulation of meaningless characters.

Remember that to Searle, the Chinese characters, the symbols, are

entirely meaningless. If we interpret the rules as a computer pro-

gram, then he suggests that there could be a computer program

capable of producing the appropriate outputs (the answers) to the

inputs (the questions), based on purely syntactic manipulation of

some system of characters, the meaningless symbols. From half a

century of computer linguistics research, it is well known that this

does not work (e.g., Winograd and Flores 1986). At a minimum,

this casts doubt on the primary assumption of the thought experi-

ment (Clancey 1997).

To conclude this section on the Turing test, we mention one of its

major limitations. If we are willing to attribute at least some level of

intelligence to ants, rats, or elephants, the Turing test is obviously

out as a tool for assessing intelligence. It can be applied only

to systems capable of dealing with ``human'' natural language.
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Whether it is a good test for human intelligence is still subject to

debate (e.g., Crockett 1994; Epstein 1992).

The Common Denominator

We have now looked at various ways in which we can characterize

intelligence. Our ultimate goal is to understand all of them: abstract

thinking, learning and memory, natural language, medical diagno-

sis, surviving in the wild. But we have to start somewhere. If we

look at the various characterizations from an abstract perspective,

there seems to be one underlying common theme that involves

``coming up with something new.'' The ability to speak, for exam-

ple, implies generating new utterances appropriate to the situation.

``Appropriate'' means that the speaker gets some bene®t or value

from his utteranceÐotherwise he wouldn't say it. We would not

attribute the ability to speak, for example, to a person who always

utters the same ®ve sentences. Nor would we attribute intelligence

to a factory robot that only repeats the same movements over and

over again. The Turing test becomes interesting only when the

interrogator asks new questions, questions that he suspects could

not have been preprogrammed. When Terman talks about intelli-

gence as the ability to carry out abstract thinking, what he really

means is the ability to come up with something new, a solution to

an abstract problem, a mathematical proof, an answer to a hard

question, something that did not exist before. Surviving in the wild

means coping with novel situations which in turn implies behaving

in new ways. Or let us look at Pinter's characterization of intelli-

gence as the ability to adapt oneself adequately to new situations in

life. The term ``adapt'' often suggests something passive, conform-

ing to existing rules. This is exactly what most people do not mean

by intelligence. But there is another meaning to the term ``adapt'':

to exploit a situation in order to bene®t from it. For example, the

business world has changed dramatically in recent years. Computer

technology, electronic communication systems, in particular the

Internet, are by now everywhere. Companies that have adapted to

these changes by changing their business practices, by inventing

new ways of doing business, have survived; the others have largely

disappeared. Note that this innovation requires conforming to the

rules of information technology. Both components, conforming and

generating are always present. The key point is generation of di-
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versity while complying with the givens. We call this the diversity-

compliance trade-off.

And now we ask: What are the mechanisms enabling organisms

to adapt to, cope with, environmental changes? As we noted,

adaptation always contains two components: complying with

existing rules and generating new behavior; only if both compo-

nents are present do we speak of adaptivity. It then makes sense to

tie intelligence to adaptive behavior. The term ``rule'' has been

used in a very broad sense. It can refer to the rules of information

technology, social rules, the rules of grammar, the laws of nature

(e.g., physiology) and physics. This characterization of intelligence

as the capacity to adapt is independent of levels. It applies to a

mathematician carrying out abstract thinking, to a child talking to

his parents (using natural language), and just as much to an animal

escaping a predator or searching for food.

These dual meanings of adaptivity, the conservative component,

and the innovative component, can be found throughout the litera-

ture on intelligence. The famous Swiss psychologist Jean Piaget

coined the terms ``assimilation'' and ``accommodation'' to desig-

nate these two aspects of intelligence (e.g., Piaget 1952). In learning

theory, this has been called the stability-¯exibility trade-off (e.g.,

Carpenter and Grossberg 1988). We will encounter these concepts

in various guises throughout the book.

Before concluding this section, we should remark that the study

of intelligence often does not take interaction with the environment

explicitly into account, even though it may be implicitly present.

This aspect, which we call embodiment, emerges as one of the

key factors in understanding intelligence, and embodied cognitive

science capitalizes on it. The terms ``adaptation,'' ``behavior,'' and

``generation of behavioral diversity'' by their very nature imply the

existence of a body interacting with an environment.

1.2 Studying Intelligence: The Synthetic Approach

Now that we know what we want to investigate, we have to specify

how we are going to proceed. We can distinguish between analytic

and synthetic approaches, as shown in ®gure 1.7. The analytic

approach is universally applied in all empirical sciences. Typi-

cally, experiments are performed on an existing system, a human, a

desert ant, or a brain region, and the results are analyzed in various
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ways. Often the goal is to develop a model to predict the outcome

of future experiments. By contrast, the synthetic approach works by

creating an arti®cial system that reproduces certain aspects of a

natural system. This is another important function of models.

Rather than focusing on producing the correct experimental results,

that is, the correct output, we can try to reproduce the internal

mechanisms that have led to the particular results. In a memory

experiment, we could predict, say, the number of items recalled,

based on a statistical model. Alternatively we could try to model

the memory processes themselves. An ethologist may want to pre-

dict where an ant path will be formed. Again, he can use statistical

modeling, but he can also attempt to model the behavioral rules by

which the ants interact with the environment and with each other.

Such models are typically computer models that, when run, are

expected to reproduce the experimental results. The focus of inter-

est shifts from reproducing the results of an experiment, although

that is still an important aspect, to understanding why the results

come about. This kind of approach is called synthetic modeling and

is extremely productive. It is at the core of the discipline central to

this book, embodied cognitive science. Such an approach can be

characterized as ``understanding by building.'' In the study of in-

telligence, this approach has been championed by AI and cognitive

science and it is the approach that we have adopted in this book.

The analytic and the synthetic approaches are complementary,

however, not contradictory. In many sciences, the computational

empirical
sciences applications

general
principles of
intelligence

synthetic
modeling

biology
neurobiology
psychology

etc.

cognitive science
artificial intelligence

analytic synthetic

Figure 1.7 Overview of approaches to the study of intelligence. On the left, we have the empir-
ical sciences like biology, neurobiology, and psychology that mostly follow an ana-
lytic approach. On the right, we have the synthetic ones, namely cognitive science
and AI, which can either model natural agents (this is called synthetic modeling, the
shaded area) or alternatively can simply explore issues in the study of intelligence
without necessarily being concerned about natural systems. From this latter activity,
industrial applications can be developed.
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approach, an instance of the synthetic methodology, has become an

integrated part, complementing the experimental method.

Synthetic Modeling: AI and Cognitive Science

Traditional AI and cognitive science proceed by developing com-

puter models of mental functions. As a consequence, intelligence

in these disciplines is closely tied to computers. Very roughly, the

main idea is that intelligenceÐthinkingÐcan be understood in

terms of computer programs: Input is provided, the input is pro-

cessed, and ®nally an output is generated. By analogy, the human

brain is viewed in some sense as a very powerful computer. It

receives inputs from the outside world through sensors (e.g., eyes,

ears, skin). These inputs are processed: for example, stimulation

received through the eyes is mapped onto an internal representa-

tion or model, and you recognize a cup of coffee standing in front of

you. Depending on your internal state, your motivation, this per-

cept generates the intention or plan to drink coffee: the processing

phase. Finally, the action is executed: the output. In this view,

called the information processing metaphor, the brain is seen as the

``seat of intelligence,'' as illustrated in ®gure 1.8. Input-processing-

output in computers corresponds to sensing-thinking-acting in

intelligent agents such as humans or robots.

Like no other approach, this view of intelligence, together with

the synthetic methodology, has revived the study of the mind and

has provided major impulses to the ®eld. It was more than a lucky

coincidence that these types of computer models seemed almost

perfectly suited to the study of the mind. It has greatly inspired

many scientists, in particular psychologists and computer scien-

tists. It has generated a lot of exciting research and applications.

Moreover, this approach has strongly in¯uenced psychology and

has become known as information processing psychology. The

focus in this perspective is mostly on thinking, reasoning, and

abstract problem solving.

When researchers in AI started applying these ideas to building

robots, to developing systems that interact with the real world,

however, they found that it was simply not possible to build robots

that would do a good job in the real world with this view of intel-

ligence. It proved extremely dif®cult to get robots to do even simple

things like moving around, picking up objects, and bringing them

to a designated location. The problems were so serious that many
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Figure 1.8 The brain as the ``seat of intelligence.'' Sensory stimulation enters the brain, is pro-
cessed (perception), and is integrated into a model of the environment (modeling).
This model is used for planning and task execution, and finally a motor action
is performed. This is the ``inputÐprocessingÐoutput'' perspective. (From Uni
Magazin 1995, reprinted with permission.)
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started looking for alternatives. This resulted in the new ®eld of

embodied cognitive science.

Rodney Brooks, the director of the MIT Arti®cial Intelligence

Laboratory and one of the founders of this new ®eld, argued that

the traditional approach to AI was fundamentally ¯awed. He

maintained that all of AI's ideas concerning thinking, logic, and

problem solving were based on assumptions that come from our

own introspection, from how we see ourselves. He suggested that

we drop these assumptions, do away with thinking and reasoning,

and focus on the interaction with the real world. In a seminal paper

in 1986, Brooks proposed the so-called subsumption architecture.

He suggested that intelligent behavior could be achieved using a

large number of loosely coupled processes that function predomi-

nantly in a asynchronous, parallel way. He argued that only mini-

mal internal processing is required and that sensory signals should

be mapped relatively directly to motor signals. Such an architec-

ture leads to a tight system-environment coupling. Intelligence, in

this view, emerges from the interaction of an organism with its

environment, where the organism is equipped with a large number

of parallel processes connected only loosely to one another. Such a

conception of intelligence contrasts strongly with the information

processing view. Note that in this perspective, the agent has a body,

sensors, a motor system; in other words, it is embodied. Moreover,

it needs to be autonomous. Let us examine this in more detail.

Autonomous Agents

In traditional AI and cognitive science, computer models have been

the predominant tools. Synthetic methodology, however, can be

extended to include not only simulations, but also physical sys-

tems, arti®cial creatures, behaving in the real world. These systems

are called autonomous agents. The term ``autonomous'' designates

independence from human control. Typically, autonomous agents

have the form of mobile robots and can be used as models of bio-

logical systems, humans or animals. We now have a novel situa-

tion: The autonomous agents actually behave in the real world

without the intervention of a human: They have sensors to perceive

the environment, and they perform actions that change the envi-

ronment. These are the key properties of agents. They are behaving

systems in their own right. This is why they are also well suited to

explore issues in the study of intelligence in general, not only of
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biological systems. We can perform experiments with our robots as

we like, creating arti®cially intelligent systems. And because the

robots physically interact with the real world, they can also be used

for applications, to perform tasks that humans cannot or do not

want to do themselves. Thus we can pursue three potential goals

with the synthetic methodology: We can model biological systems,

we can explore principles of intelligence in general, and we can

develop applications.

It is highly instructive and productive to work with physical

robots. Depending on what we intend to study, it may even be

necessary. But often we can achieve the desired results in simula-

tion. We can simulate the behavior and environment of an animal

or robot, or we can produce creatures living in virtual worlds that

are not simulations of real systems. The latter is the business of the

®elds of virtual reality and arti®cial life. The essential point is to

have agentsÐphysical or virtual, because agents interact with their

environment on their own. This is why they represent the main

tool of embodied cognitive science.

Figure 1.9 provides an overview of different types of agents. Bio-

logical agents exist in natureÐwe don't have to build them. Of the

two categories of robotic agents, research agents and industrial

agents, we will primarily focus on research agents, because of our

focus on cognitive science. But we do believe, and discuss later,

that industrial agents have fascinating applications: This is the

business of engineering. Among computational agents, we have

simulated agents, those that simulate an animal or a robot, and

Figure 1.9 Classification of agents. The relevant category of agents for the study of intelligence
are the autonomous agents. They can be subdivided into biological agents, robotic
agents, and computational agents. Biological agents are naturally occurring. Robotic
agents are further divided into research agents and industrial agents. Research
agents are used to model natural agents, and to explore general principles of intelli-
gence. Industrial agents are used for practical applications. Computational agents
are subdivided into simulated agents (i.e., agents simulating a biological or robotic
agent), artificial life agents, and software agents.
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arti®cial life agents that do not necessarily simulate something but

are creatures of their own type, digital creatures. There has been

considerable hype about the last category of computational agents,

called software agents. In essence, software agents are computer

programs that perform a certain task and interact with real-world

software environments and humans by issuing commands and

interpreting the environment's feedback. Typical tasks are ®ltering

electronic mail, sending routine messages such as reminders for

meetings or announcements of seminars, collecting information on

the Internet, scheduling meetings, performing system maintenance

tasks like continuous intrusion detection, and assisting in pur-

chasing a car or ®nding an apartment. Especially with the advent of

the Internet, software agents have become enormously popular.

They come in many varieties (e.g., Riecken 1994), and it is some-

times hard to distinguish them from other kinds of computer

programs. Software agents have a great potential for application,

especially in a networked society. However, a detailed treatment

would be beyond the scope of this book.

Let us now look at the different ways in which autonomous

agents are used.

MODELING

One application of autonomous agents in cognitive science is to

model the behavior of biological agents. An example of the model-

ing approach is shown in ®gure 1.10, where an autonomous robot is

used to model the phonotactic behavior of a cricket (Webb, 1993,

1994). We designate as phonotaxis those processes by which

female crickets move towards a particular sound, the calling song

of a potential mate. This robot model can be used to generate (bio-

logical) hypotheses about cricket behavior; these hypotheses can be

tested in experiments with real (biological) crickets.

As a further example, assume that you want to replicate another

idea from nature, say, an arti®cial retina. Once you have developed

your conception of how the retina functions, you may very quickly

®nd that your hypothesis about the functioning of the (biological)

retina is ¯awed if you actually build and test it on a robot. Or let's

take an example from neurobiology. We know that the control

mechanisms of animals are based on neural structures. Biological

neural systems have inspired arti®cial neural network models.

Neural architectures, as it turns out, can be understood only in the

context of the physical system in which they are embedded. Intro-
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ducing mobile robotsÐthat is, real, behaving systemsÐbrings a

novel perspective to modern neuroscience.

Many researchers have capitalized on this fascinating interaction

between biology and autonomous agents research. Lambrinos et al.

(1997) have developed a robot that navigates according to the same

principles as the desert ant Cataglyphis. Ferrell (1994) and others

have developed walking robots, applying principles known from

insect walking as described by Cruse (1991). And some robots

move around using control circuitry just like that of the house¯y

(Franceschini et al. 1992). Robot modeling has also been success-

fully employed in the area of psychology. An example is the

humanoid robot Cog (Brooks and Stein 1993), used for develop-

ment studies of how human infants learn to reach for a ball or play

with toys, for example. There are also many attractive simulation

studies, such as walking insects (Beer 1990), ®sh learning to swim

in simulated water, for example, a shark preying on other ®sh

(Terzopoulos et al. 1994), and a humanoid robot used for devel-

opmental and social interaction studies (Kuniyoshi and Nagakubo

1997).

EXPLORING GENERAL PRINCIPLES OF INTELLIGENCE

A second application of autonomous agents in cognitive science is

to explore principles of intelligence. This approach draws inspira-

a b

Figure 1.10 Illustration of the synthetic methodology. The robot cricket (b) can be used to in-
vestigate the behavior of the real cricket (a). (Reprinted with permission.)
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tion from nature, but offers us more freedom than the modeling

approach. Experiments can be conducted using any type of sensor,

even sensors that do not exist in nature (like laser scanners, or

radio emitters-receivers). We can use wheels, magnets, and bat-

teries in our systems; we can exchange pieces of code, place

sensors in different positions, add another lens here and there; in

short, we can perform experiments. We can build systems that we

have invented using arti®cial devices. Developing systems different

from the ones we observe in nature is an extremely productive way

of doing research. By doing things differently from nature, we may

learn a great deal about how things might, in fact, function in

nature.

One of the main motivations to employ autonomous agents is the

idea of emergence. Autonomous agents, by de®nition, behave in

the real world without human intervention. One of the fascinating

features of autonomous agents is that they exhibit so-called emer-

gent behaviors, that is, behaviors not programmed into the agents

by the designer. Robots programmed only to follow a light start

helping each other, or they are cleaning up though programmed

only to avoid obstacles. Or a group of simulated birds are ¯ocking,

but were programmed only with local rules, that is, rules that make

reference only to their immediate neighbors.

In exploring principles of intelligence, the search for emergence

is an important motivation. We show many examples of this

approach throughout the book. To mention but a few: The famous

Braitenberg vehicles are used to explore how very simple mecha-

nisms can lead to truly amazing emergent behaviors; the robot

Polly, which used to give tours at the AI Laboratory at MIT, was

used to study principles of cheap visual navigation; ``boids,'' a kind

of arti®cial bird, were used to investigate how ¯ocking behavior

could emerge from local rules; and fantastic creatures, created by

Karl Sims, living in a virtual world of simulated physics were used

to explore the evolution of morphology and neural controllers.

The line between exploring principles of intelligence and

modeling can be fuzzy. Often agents used for modeling purposes

are modi®ed so that they deviate from the model. On the other

hand, a robot used to explore general principles might be applied

for modeling purposes because it develops interesting related be-

havior. SMC agents (which we discuss in detail in chapter 12)

were originally used to study neural architectures for sensory-

motor coordination. Then developmental psychologists became
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interested in using them to model category learning in human

babies. The insights thus gained can then be applied to develop

systems that perform useful tasks in the real world.

APPLICATIONS

To date, the enormous potential for applications of autonomous

agents technology has hardly been explored. Robots, for example,

can be used for marking the mines on a mine®eld with color, for

monitoring sewage systems for leakages, for cleaning up hazardous

waste sites, for distributing mail, and for surveilling an industrial

plant. Autonomous wheelchairs are another possible application.

Computational agents hold tremendous promise for applications,

especially in the areas of evolutionary robotics and arti®cial life.

Ideas from natural evolution are employed, for example, for opti-

mization problems and they have also been successfully applied to

industrial problems. Simulated agents are used widely in the ®eld

of computer graphics and the entertainment industry.

THE DESIGN PERSPECTIVE

The synthetic methodology is closely coupled with the notion of

design. Autonomous agents, whether robotic or computational, in

order to be built, must be designed. Although we normally think

about design as an activity for engineers, the design perspective has

proven extremely fruitful in cognitive science for studying natural

intelligence. Evolution can be viewed, in a sense, as a designer

(e.g., Dawkins 1988), perhaps a blind one, but nevertheless an

extremely effective one: Natural systems have truly impressive

capabilities. What we are asking is how we would design a system

that behaves in a particular way that we ®nd interesting? We devote

a great deal of effort in this book to exploring design. In fact, one of

our main goals is to elaborate a set of design principles for autono-

mous agents that, in a sense, constitute our understanding of the

nature of intelligence.

Issues to Think About

Issue 1.1: Is IQ Irrelevant for Intelligence?

We have argued, as most people these days do, that IQ is a poor

measure of intelligence because it tries to reduce a complex phe-
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nomenon to a single number. On the other hand, there is evidence

that IQ is a good predictor of some kinds of success. When dis-

cussing the nature-nurture debate, we concluded that intelligence

originates from a highly complex interaction between genetic and

environmental factors, the interaction between nature and nurture.

This consideration suggests a generally valid strategy for cognitive

science. Experience teaches us that studying an individual's devel-

opment, rather than the individual in its current appearance, often

leads to a better understanding of its behavior, because simply

inspecting the organism itself offers us only little insight into the

constraints, the history, the personal experiences, the interactions

of the individual with the environment. As many developmental

studies have shown, concepts, the ability to make distinctions, are

a direct consequence of sensory-motor behavior. Thus high intel-

lectual ability resulting in a high IQ score may well be due to a

complex mix of sensory-motor abilities that in turn depend on the

particular social environment. In other words, before an individual

is capable of solving the problems on an IQ test, he has to master

many other things including many that do not relate directly to

abstract thinking but to other notions of intelligence mentioned

above. The reason IQ is a good predictor for certain types of success

may eventually be explained on the basis of a developmental per-

spective, but it remains an open research question.

Issue 1.2: The Diversity-Compliance Trade-off: The Common Denominator?

We have argued that the common denominator underlying the

various notions of intelligence discussed in this chapter is the

diversity-compliance trade-off, in particular, that the two core

aspects of intelligent behavior are generation of diversity and com-

pliance with rules. In other words, there is always a trade-off

between generating new solutions, being ¯exible and innovative,

and complying with the existing rules, exploiting what is already

known. This characterization, we have argued, holds for a vast

range of agents, from companies that face new challenges in the

information age down to ants surviving in the desert. If this view is

correct, then it should be applicable to the reader. We would like

you, before you continue reading, to re¯ect for a few moments on

whether you feel your own behavior can be described in this way.

Think about how you usually solve a problem: Can your approach

be described in terms of the diversity-compliance trade-off? Or do

you think you behave according to different principles?
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Points to Remember
1 Intelligence is too complex a notion to be captured by a simple

de®nition. What people in general and even scientists mean by the

term varies greatly, and there is little hope that there will ever be

agreement. The key aspect, implicitly or explicitly present in many

conceptions of intelligence, is generation of behavioral diversity

while complying with the rules. This idea is independent of any

notion of levels of intelligence. It applies to abstract thinking just as

much as to an animal avoiding a predator. An organism that always

displays the same behavior is not intelligent.
1 IQ tests were originally invented to determine whether certain

children would be better off in a special school. Eventually, the IQ

test was turned into a general intelligence test, claiming to measure

a general intelligence factor g. It is now generally agreed that intel-

ligence is much too complex a phenomenon to be measured by a

test yielding one number.
1 Emotional intelligence has recently been proposed as being equally

relevant for success in life as the kind of abstract intelligence mea-

sured by IQ tests. EQ tests measuring emotional intelligence have

been suggested to complement IQ tests. It is still open to debate to

what extent and in what form the EQ will survive.
1 The nature-nurture debate concerns the extent to which knowledge

is inborn or can be acquired. The behaviors and capabilities of a

human result from a complex interaction of genetic and environ-

mental factors. Thus, the answer to the nature-nurture question can

only be that the origins of intelligence come from the interaction

between nature and nurture.
1 The Turing test was proposed to operationalize the notion of intel-

ligence by means of an empirical test. It is based on the idea

whether the (verbal) behavior of a computer can be distinguished

from that of a human. If it cannot be distinguished, the computer

can be said to have intelligence. Because the Turing test is based on

natural language, it is restricted to human intelligence. It is still an

open question whether it is a good test for human intelligence.
1 The Chinese Room is a thought experiment proposed by Searle. On

the basis of a set of rules a personÐSearleÐlocked in a room pro-

duces output sentences from input sentences, exclusively on the

basis of comparing the shapes of the Chinese characters which, to

the person, are just meaningless symbols.
1 There are analytic and synthetic approaches to the study of in-

telligence. The synthetic approach can be characterized as ``under-
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standing by building.'' In traditional AI and cognitive science, the

models are computer programs; in embodied cognitive science,

they are in the form of autonomous agents, either robotic agents or

simulated agents.
1 Autonomous agents exhibit emergent behaviors. Such behaviors

are not programmed into the agents by the designer but rather are a

result of the interaction of the agents with their environment.
1 Autonomous agents, robotic or computational, can be used in three

ways: as models of natural agents, to explore general principles of

intelligence, and for speci®c tasks and applications. There are large

areas of overlap among these three modes, especially between the

®rst two.
1 ``Synthetic'' implies design. The design perspective has turned out

to be particularly fruitful for studying natural intelligence. The

autonomous agents approach capitalizes on the design perspective.
1 Embodied cognitive science designates the research ®eld outlined

in this book. It employs a synthetic methodology based on autono-

mous agents.
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2 Foundations of Classical Arti®cial Intelligence and Cognitive Science

In the previous chapter we introduced various ways of looking at

intelligence. In this chapter we will brie¯y review classical AI and

cognitive science. It is important to understand the classical view

because it is still very popular. For example, if one peruses the

literature in cognitive psychology or computational linguistics, we

®nd that, for the most part, classical thinking still dominates.

Moreover, the classical perspective has much appeal and is com-

patible with most people's intuitions about intelligence. Although

some critics, most prominently Hubert Dreyfus (1979, 1992) pointed

out some of its weaknesses a long time ago, the problems with the

classical perspective have started to become clear only during

the last ten to ®fteen years in the AI community at large. With an

understanding of classical AI, the reasons for the embodied cogni-

tive science approach are much easier to see.

This chapter has deliberately been kept short because all that

is required here is the general context. For more extended reviews

of the ®eld, the reader's attention is directed to any of the many

excellent books on this topic, particularly those suggested in the

further readings at the end of the chapter. We begin by introducing

®rst cognitive science and the cognitivistic paradigm, Next, we

discuss what an architecture based on classical principles might

look like, which will also serve as an introduction to some impor-

tant issues in cognitive science such as perception, memory, and

planning. We conclude with an overview of the design principles

applied in the cognitivistic paradigm.

2.1 Cognitive Science: Preliminaries

A Short Historical Note

The roots of cognitive science are intimately linked to two scien-

ti®c meetings in 1956. At the Symposium on Information Theory,

held at MIT in September 1956, leading authorities in the informa-



tion and human sciences presented a number of seminal papers.

Allen Newell, a computer scientist, and Herbert A. Simon, a polit-

ical scientist and later a Nobel laureate in economics, reported on

the Logic Theory Machine, a program that could prove mathemati-

cal theorems from the Principia Mathematica, a classical treatise

on logic (e.g., Newell and Simon 1956). Newell and Simon claimed

to have developed the ®rst thinking machine. In ``Magic Number

Seven Plus or Minus Two,'' psychologist George Miller argued that

the storage capacity of human short-term memory is limited to

roughly seven items, or ``chunks'' (e.g., Miller 1956). Linguist

Noam Chomsky introduced a new theory of language based on lin-

guistic transformation whose most important contribution was in

showing that the essence of language could not be explained by

behaviorist concepts, that is, by only focusing on stimulus-response

relations (e.g., Chomsky 1959).1 As a result, linguists started to look

for a new language in which to theorize about language. They

found it in the theory of computers: the language of information

processing.

The other important meeting in 1956 was held at Dartmouth

College, New Hampshire. The goal of this meeting, now known

as the ``Dartmouth Conference,'' was to think about thinking

machines. Programs that could solve problems, recognize patterns,

play games, prove theorems, and reason logically were discussed.

Among the participants were the founding fathers of arti®cial

intelligence: John McCarthy, Marvin Minsky, Allen Newell, and

Herbert Simon. In the preceding decade, a number of important

scientists had argued that computers should be able to carry out

processes resembling human thinking. Work by Norbert Wiener,

John von Neumann, Alan Turing, and Warren McCulloch all

pointed toward the development of electronic computers that

could simulate functions normally associated with the human

brain.

The discussions at both conferences centered on what came to be

called arti®cial intelligence and information processing psychol-

ogy: the analogy between human thinking and processes taking

place in a computer. This early work was the beginning of the

1 Behaviorism was an important orientation in psychology during the ®rst half of this

century. It explains behavior in terms of stimulus-response relationships. The most

famous example is Pavlov's dog that initially only salivated (response) at the presentation

of food (stimulus); it was trained to salivate at the sound of a bell by repeatedly ringing a

bell at the presentation of food.
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so-called cognitive revolution in psychology: ``What began to

emerge in the 1950's was a new conception of the human being

as machine, and a new language in which to formulate theories

about cognitive processes. People could be described, it seemed, as

general-purpose computing devices, born with a certain hardware,

and programmed by experience and socialization to behave in

certain ways. The goal of psychology would be the speci®cation of

how human beings process information; the concepts of stimulus

and response would be replaced by the concepts of information

input and output, and theories about mediating s-r chains2 would

be replaced by theories about internal computations and computa-

tional states'' (Leahey 1994, p. 282). Broadbent (1957) proposed a

mechanical model of attention and memory in which he repre-

sented the input to the senses not as stimuli but as information.

Simon's claim that within ten years most theories in psychology

would take the form of computer programs (Dreyfus 1972, p. 164)

represented an extreme manifestation of this general trend. It

became natural to think of human beings as information processing

systems that receive input from the environment (perception), pro-

cess that information (thinking), and act upon the decision reached

(behavior). This corresponds to the so-called sense-think-act

cycle. Psychologists could now talk about ``encoding,'' ``search,''

``retrieval,'' ``matching,'' and other information processing oper-

ations. The hope was to establish a strong theoretical and formal

ground for conceptualizing human behavior that would replace

behaviorist psychology. It seemed that anything humans do could

be viewed in information processing terms: reading, remembering

facts, recognizing objects, drawing logical conclusions, solving dif-

®cult problems, playing chess, conducting a conversation, and so

forth. Moreover, models couched in information processing terms

were easy to formalize in terms of computer programs. In 1960, this

general trend was summarized in a book of fundamental impor-

tance for psychology: Plans and the Structure of Behavior, by the

already mentioned George Miller, Eugene Galanter, a psychologist

with strong roots in mathematics, and Karl Pribram, a neuroscien-

tist. Miller, Galanter, and Pribram argued that the re¯ex arc of

behaviorismÐthe coupling between stimulus and responseÐ

should be replaced by what they called a ``TOTE unit'' (for ``Test-

2 ``Mediating s-r chains'' are the processes by which sequences of s-r pairs (stimulus-

response pairs) are produced.
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Operate-Test-Exit''). TOTE units are high-level processes used to

establish plans and to control behavior. We describe this approach

in chapter 11.

In sum, the core idea that emerged from all this work was the

belief that complex processes are required for transforming the

stimulus (input) into the response (output). Unlike early behavior-

ists, such as Watson or Skinner, information processing psycholo-

gists were willing to infer central mental processes from observable

behavior, and they viewed these central processes as analogous to

the processes occurring in a computer: ``cognition as computation,''

where cognition is a vaguely de®ned term for those processes not

directly connected to sensory or motor systems. The information

processing metaphor has strongly in¯uenced much of modern

(cognitive) psychology. Thus, as they do in classical AI, nearly all

cognitive constructs in modern psychology describe information

processing mechanisms. In their often-cited book Cognitive Psy-

chology and Information Processing, Lachman, Lachman and

Butter®eld (1979) de®ned cognitive psychology in terms of the

computer metaphor: It is about ``how people take in information,

how they recode and remember it, how they make decisions, how

they transform their internal knowledge states, and how they

translate these states into behavioral outputs'' (p. 99). The cogni-

tivistic view also spread to other areas of psychology, including

social psychology, social learning theory, and even psychoanalysis

(e.g., Pfeifer and Leuzinger-Bohleber 1986).

The Interdisciplinary Study of the Mind

As pointed out in chapter 1, cognitive science is the interdisci-

plinary study of the mind (®gure 2.1). Cognitive science has

attracted many researchers from different disciplines concerned,

in one way or another, with human intelligence, mainly psycholo-

gists, neuroscientists, linguists, computer scientists, and philoso-

phers. More recently, engineers and some biologists have also

started joining in. Psychology has as its subject of investigation the

human being (including the mind, knowledge, and intelligence).

Linguistics has focused on particular capacities of the mindÐthe

internal processes by which we understand and produce language.

The neurosciences make an essential contribution, since the brain

is their substrate. The concept of information processing is central

to modern neuroscience, as book titles such as The Computational
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Brain (Churchland and Sejnowski 1992) suggest. Computer scien-

tists and AI researchers have traditionally pursued the goal of

developing intelligent computer programs. Philosophers have

always been strongly involved, especially those from the ®eld of

philosophy of mind. More recently, in particular with the advent

of robotics, interest has grown among engineers in learning

from natural systems, not only humans, but biological systems in

general. Biologists, in turn, got interested in interdisciplinary

endeavors, in particular ethologists (those working in animal

behavior).

One of the true challenges of interdisciplinary research is com-

munication among different disciplines, all of which employ dif-

ferent concepts and languages, different methodologies, different

formalisms, and different diagrams. In traditional cognitive science

and AI, the language of information processing kept the ®eld

together. It is in fact more than a mere language. It endorses basic

beliefs about the nature of intelligence. ``Computation'' and ``rep-

resentation'' are the key words that best characterize these beliefs.

2.2 The Cognitivistic Paradigm

The view of cognition as computation, computation as operating

on representations, has also been called the ``cognitivistic para-

digm,'' or ``functionalism.'' Let us brie¯y look at some of its basic

concepts.

Figure 2.1 The disciplines contributing to cognitive science. Originally, researchers were mostly
from psychology, computer science (in particular artificial intelligence), neuro-
science, linguistics, and philosophy; more recently, engineers and biologists have
joined the endeavor.
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Computation: Turing Machines and the Church-Turing Thesis

The idea of computation was formalized by Alan Turing (1936),

though in fact other mathematicians like Alonzo Church developed

similar ideas approximately around the same time. In our presen-

tation we follow Haugeland (1985).

A Turing machine is a theoretical model of a computer. Essen-

tially, it consists of two parts, a head and a tape (®gure 2.2). The

tape is just a passive storage medium: it is divided along its length

into squares, each of which can hold one character from some pre-

speci®ed alphabet that often consists of 0s and 1s but may contain

more characters. The number of tape squares available is unlimited

but only a ®nite segment of them is occupied at any one time; that

is, all of the remaining ones are empty or contain only a special

blank character. At any given step, the head reads the square that is

underneath its reading device. Also, at each step, the head itself is

in a particular internal state (from a prespeci®ed, ®nite repertoire of

states). This state typically changes from one step to the next. In a

special case, the head enters a ``halt'' state, in which case the

machine stops.

Two factors fully determine what the head does at any step

in time: the character it ®nds in the square it is scanning, and its

current internal state. The head's actions determined by these two

factors are:

1. what character to write on the square that is currently under the

head, replacing whatever was there before

2. whether to move the tape right or left, which determines which

square to scan next

3. what internal state is next, or whether the head should halt

 

Figure 2.2 The components of a Turing machine. A Turing machine consists of a read-write
head and a tape. The head reads a symbol from the tape. Depending on the head's
internal state, it then either moves the tape to the left or right and writes a symbol
onto the tape, or it stops. (Adapted from Haugeland 1985.)
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The entire functioning of a Turing machine can be speci®ed in a

single, two-dimensional chart containing one row for each charac-

ter and one column for each state. The matrix positions specify the

three actions. This is illustrated in table 2.1.

Corresponding to each state and symbol is either a three-character

entry in the chart or the word HALT. In the three-character entries,

the ®rst character is the character to be written; the second charac-

ter is an L or an R, for move left or move right; and the third char-

acter is the number of the next state. What will this Turing machine

do if it is started in state 1, scanning some square in the midst of a

string of As, Bs, and Cs? First, no matter which letter it encounters,

the head moves to the left and does not change the letter on the

tape. (Note that the machine never changes anything if it is in state

1; no matter which letter it encounters, it is instructed to write the

same letter.). When it gets to the left end of the string (and

encounters, for the ®rst time, a blank) it switches to state 2, and

begins moving right, converting all As to Bs and all Bs to As,

according to the instructions in state 2. Cs are not changed. At the

right of the string, it again encounters a blank square, and it stops,

as the instruction it encounters is HALT.

The Turing machine is an abstract machineÐits physical real-

ization is irrelevant, as are how much time one step takes and

how it is physically performed. What counts is only the steps the

machine executes. Turing machines were invented not because

they can do particular things, but because they can model or simu-

late any (abstract) computing machine whatsoever. Thus, Turing

machines are universal. This conclusion has inspired Turing to

speculate that Turing machines might in fact simulate human in-

telligence, a hypothesis now known as the Church-Turing thesis.

Several versions of the thesis appear in the literature, some

Table 2.1 Example of a Turing machine. The character ``Ð'' represents a blank square.

1 2

Ð _R2 HALT

A AL1 BR2

B BL1 AR2

C CL1 CR2
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stronger, some weaker. It can be broken down into two parts: ®rst,

that a problem that cannot be solved through any theoretical means

of computation, that is, a Turing machine, cannot be solved by

human thought either; second, that if humans can solve a problem

or engage in some intelligent activity, then machines can ultimately

be constructed to perform in the same way. This latter belief is

at the heart of much of AI research (for more detail, see Kurzweil

1990).

If we envision a Turing machine being physically realized and in

fact having an in®nitely long tape, dealing with this in®nitely long

tape may turn out to be a formidable engineering problem, possibly

even harder than the computational ones that have to be solved

by an abstract Turing machine. Consider the cartoon of a Turing

machine shown in ®gure 2.3. It illustrates that what in the abstract

sounds unproblematic, such as a potentially in®nitely long tape,

turns out to be a signi®cant problem when we think about its

physical implementation.

Functionalism and Physical Symbol Systems

For our purposes, functionalism and the cognitivistic paradigm are

largely synonymous. Functionalism, as proposed by Hillary Put-

nam (1975), means that thinking and other intelligent functions

need not be carried out by means of the same machinery in order to

re¯ect the same kinds of processes; in fact, the machinery could be

Figure 2.3 Turing machine involving a potentially infinite tape. Managing a tape of indefinite
length raises substantial technological problems. Thus there are good reasons why
the Turing machine is an abstract concept, rather than something to be physically
realized. (From Penrose 1989, p. 36, reprinted with permission.)
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made of Emmental cheese, so long as it can perform the functions

required. In other words, intelligence or cognition can be studied at

the level of algorithms or computational processes without having

to consider the underlying structure of the device on which the

algorithm is performed. From the functionalist position, it follows

that there is a distinction between hardware and software: What we

are interested in is the software or the program. If the machine is

universal and can carry out any computation, then we are inter-

ested not in the hardware but only in the programs that run on it.

The brains of Japanese and Swiss people are indistinguishable, but

the Japanese and Swiss do speak very different languages and have

developed very different social systems. This must be the result of

the ``software,'' not the hardware or ``wetware.'' Figure 2.4 illus-

trates the basic idea of functionalism as precisely the characteriza-

tion we have given of classical AI: Intelligence as computation. The

so-called Physical Symbol Systems Hypothesis, which character-

izes the research program of traditional AI, exempli®es the cogni-

tivistic paradigm.

The Physical Symbol Systems Hypothesis, ®rst presented by

Newell and Simon in a seminal Turing award lecture entitled

``Computer Science as Empirical Inquiry'' (Newell and Simon

1976), suggests an empirical rather than a theoretical approach

to the study of human intelligence. Intelligence, in Newell and

Simon's approach, is viewed as symbol manipulation. The Physical

Figure 2.4 Functionalism. Both the human and the computer produce the same result. What
matters are the algorithms, not the particular physical instantiation.
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Symbol Systems Hypothesis states, in essence, that a physical

symbol system is a necessary and suf®cient condition for general

intelligent action. The term ``physical'' refers to the idea that sym-

bol systems must be realized in some physical medium (paper,

computer, brain) but it is irrelevant how they are realized. Typical

examples of physical symbol systems are production systems (i.e.,

systems based on if-then rules) or general purpose programming

languages like LISP or C. ``Necessary'' means that any system

lacking this property cannot be intelligent, and ``suf®cient'' implies

that a system having this property has the potential for intelligent

action. In this view, since programming languages are physical

symbol systems, computers can potentially be made intelligent.

``General intelligent action'' means that the system should be able

to do not only one thing, like playing chess, but a number of things.

This property is extremely important, since agents in the real world

always have to do several things. At the very least, agents in the

real world, for example, animals, have to eat, drink, avoid being

hurt or falling prey to other animals, and reproduce. Although

these properties of general intelligence had been recognized early

on, in subsequent years they were almost entirely neglected.

Computational processes operate on representations, the symbol

structures. A (symbolic) ``representation'' (see ®gure 2.5) in the

sense that Newell and Simon mean it refers to a situation in the

outside world and obeys the ``law of representation,'' namely:

decode[encode(T)(encode(X1))] � T(X1),

where X1 is the original external situation and T is the external

transformation (Newell 1990, p. 59). There is an encoding as well

as a decoding function for establishing a mapping between the

outside world and the internal representation.

It is important to understand the meaning of a representation

as used here: Representations are structures that exist within the

individual and can be interpreted by the individual itself. This way

of looking at representation seems very natural. It is not without

problems, however, in particular if applied to humans or animals.

The Physical Symbol Systems Hypothesis can be viewed as the

research program of classical AI. Note that Newell and Simon did

not claim that intelligence equals symbol processing, but they sug-

gested it as a hypothesis to be tested empirically. The goal of AI

research is to explore to what extent the Physical Symbol Systems

Hypothesis is true.
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Many other researchers adhere, at least in essence, to the cogni-

tivistic paradigm. In psychology, similar views have been expressed

by Pylyshyn (1984); in linguistics, by Fodor (e.g., Fodor 1975) (see

Gardner 1987 for an overview). The cognitivistic paradigm has

strongly in¯uenced psychology, in particular cognitive psychology;

The result is known as information processing psychology.

The Use of Computers in Cognitive Science

Information processing psychology employs the metaphor of

human cognition as computation. The computer's operations

(storage, copying, matching, retrieval, logical operations) are taken

to be the underlying operations of human cognition. We target

precisely this analogy in our criticisms of information processing

psychology in the next chapter. We do not disapprove of the use of

Figure 2.5 The Law of Representation. The situation in the real world (X1)Ða table (Ta), on top
of which is a block (A), on top of which is another block (B)Ðis mapped onto an
internal representation (R1). the operator (T) that puts block B on the table is also
mapped onto the internal representation. If the operation (move block B from on top
of block A to the table) is performed in the real world and on the internal represen-
tation, and the result (R2) is mapped back from the internal representation onto the
real world via the decode function, the two situationsÐthe one generated through
the real-world operation T, and the one generated via the internal representationÐ
should be identical. In other words, if R1 is an internal representation of X1, opera-
tion T should produce the same real-world result (X2), whether performed in the real
world or on the internal representation, then decoded.
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Focus 2.1: Topics in Classical AI

Over the years, AI has split into many different subfields. Topic areas include
knowledge representation (how to represent knowledge about the world in the
computer), natural language processing (how to get a computer to understand
spoken and written human language), problem solving and reasoning (how to
have computers solve problems and draw conclusions for us), expert systems
(how to make human expertise available to nonexperts by automating expert
behavior), qualitative reasoning about physical processes (how to get
computers to infer the right things about the physical world), theorem proving
(how to have computers automatically prove theorems in logical formalisms),
and machine learning (how to get computers to acquire knowledge that has
not been programmed into them). Throughout the history of AI there have
been efforts in robot building and computer vision. Table 2.2 provides
complete overview of topics, taken from Russell and Norvig's (1995) popular
textbook in AI. 2.2. it is perhaps interesting to note that the questions being

Table 2.2 Topics in classical AI. (Adapted from Russell and Norvig 1995.)

Topic area Topic

Problem solving . Solving problems by searching
. Informed search methods
. Game playing

Knowledge and reasoning . Agents that reason logically
. First-order logic
. Building a knowledge base
. Inference in ®rst-order logic
. Logical reasoning systems

Acting logically . Planning
. Practical planning
. Planning and acting

Uncertain knowledge and reasoning . Uncertainty
. Probabilistic reasoning systems
. Making simple decisions
. Making complex decisions

Learning . Learning from observations
. Learning in neural and belief networks
. Reinforcement learning
. Knowledge in learning

Communicating, perceiving,
and acting

. Agents that communicate

. Practical natural language processing

. Perception

. Robotics

Chapter 2 46



computers to study human cognition; computers can be used to

simulate virtually any natural process, including brain processes,

muscle contractions, limb and body movements, and vibrations of

the vocal chords. As a simulation device, the computer is not used

as a metaphor for intelligence but only as a formal toolÐlike

mathematics. This is not intended to comment about the quality

of these simulations, that is, about how closely these simulations

re¯ect the actual physical processes. (As it turns out, even for

seemingly simple physical processes, like those of a basic infrared

sensor, achieving a realistic level of similarity is highly demand-

ing.) Nor are we, when criticizing information processing psychol-

ogy, criticizing the mathematical discipline of information theory:

Information theoretic concepts may be bene®cially applied, for

example, to the investigation of brain processes. In fact, in chapter

13, we present complexity measures that capitalize on information

theory. What we do criticize is the analogy between human think-

ing and processes running in a computer, that is, information

processing as the manipulation of symbols. We leave the actual

criticism of this analogy, however, to chapter 3. For now, let us turn

to an illustration of the classical AI approach.

2.3 An Architecture for an Intelligent Agent

Now that we have given an overview of the ideas underlying clas-

sical AI and cognitive science, let us illustrate some of them. Rather

than simply go through the list of topics of AI research presented in

the focus 2.1, we look at how an agent might be designed from the

classical AI perspective, because we are interested in autonomous

agents, rather than in developing AI systems for specialized pur-

poses (like playing chess or proving theorems). We also use this

case study to introduce some important conceptual issues in the

study of intelligence, for example, on perception and memory. As

we mentioned earlier, you will ®nd this way of proceeding very

Focus 2.1 (continued)

investigated in AI are related to the underlying convictions about the nature of
intelligence, with a focus on topics relating to abstract thinking. Topics
relating to the real world have a more prominent place, however, in this listing
as compared to those of earlier textbooks. (This is also illustrated by the agent
perspective that has been adopted in Russell and Norvig's book.)
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natural. Nonetheless, as we show later, in spite of this approach's

apparent naturalness, there are problems that necessitate a different

approach, especially if your interest is in autonomous agents.

The most important reason for undertaking such an illustration

here is to exemplify the cognitivistic paradigm. Our presentation is

inspired by The Computer and the Mind by prominent psycholo-

gist and linguist Phil Johnson-Laird (1988). Like many others,

Johnson-Laird is interested in psychological explanation. In his

view, the underlying concept that has the most explanatory power

is that of computation or symbol processing.

Johnson-Laird starts from the assumption that the following are

the mind's main tasks:

1 to perceive the world
1 to learn, to remember, and to control actions
1 to think and to create new ideas
1 to control communication with others
1 to create the experience of feelings, intentions, and self-awareness

For each of these tasks, Johnson-Laird's book gives a computational

account. Johnson-Laird argues that theories of the mind should be

expressed in a form that can be modeled in a computer program,

that is, in computational terms, since a working computer program

places a minimal reliance on intuition: ``the theory it embodies

may be false, but at least it is coherent, and does not assume too

much'' (Johnson-Laird 1988, p. 52). Thus an agent must be

equipped with computer programs to perform the tasks listed

above. Let us call the robot that we are designing here ``JL'' (for

Johnson-Laird's Robot). JL has never been builtÐit is a thought ex-

periment that we consider here for the purpose of illustrating de-

sign principles from the classical AI perspective. (A famous robot

that has actually been built and that implements some of these

principles, Shakey, is described in chapter 11.)

Before we start, however, a short note is in order. The topics

covered below (vision, learning and memory, control of actions,

thinking, etc.) are in themselves entire research areas. We choose to

consider only those aspects that we will reconsider later from the

perspective of embodied cognitive science.

Perceiving the World: Vision

There are many ways to perceive the world, namely through seeing,

hearing, feeling, or smelling. One of the most powerful ways to
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perceive is seeing. Thus, it is a good idea to equip JL with vision,

the only sensory modality that we discuss in this chapter. The

history of the investigation of vision shows that it is easy for the

brain to do but dif®cult for us to understand. Normally, things are

seen and recognized automatically and without effort. This makes

it especially hard for cognitive scientists to understand vision.

Rather than delve into the problems associated with vision in

detail, we defer to the extensive literature about this ®eld, and here

merely outline some of the basic issues. (For more details, see,

e.g., Horn 1986), leaving a more extensive treatment of vision for

chapter 12.

One of the most in¯uential theories of vision has been developed

by David Marr (1982). In Marr's information-processing approach

the goal of vision is to reconstruct a three-dimensional repre-

sentation of the external world from the patterns of light falling on

the robot's (or the human's) retina. In other words, the focus of

his research is to provide a computational explanation of how

people can make sense of what they see in the world. More pre-

cisely, he attempts to explain how it is possible to recognize three-

dimensional objects from two-dimensional raw images. In essence,

he suggests that there are a number of stages in which the original

raw image is successively transformed until a three-dimensional

representation of the world is found (i.e., the objects have been

recognized). Note that in Marr's conception vision is viewed as

purely computational and does not take the interaction with the

environment into account.

Alternative approaches that take this interaction into account are

``animate vision,'' championed by Dana Ballard and his colleagues

(Ballard 1991), or the Gibsonian perspective (e.g., Turvey and

Carello 1986).3 We describe these approaches in chapter 12, where

we also present embodied cognitive science's view of perception.

Learning, Memory, and Action

LEARNING

The essence of learning is that the agent can use its own experience

to improve its behavior. An important aspect of learning is gener-

3 Both Ballard and Turvey consider motion to be an essential ingredient of vision. In

particular, they consider perception and action as one system, not as separate entities.
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alization, the transfer of experience to novel situations. Thus, JL

has been equipped with a learning system. Learning, in the cogni-

tivistic paradigm, is again a computational process: algorithms

operate on certain data structures. For example, a system that often

encounters two properties of an object simultaneously might form a

new concept: if the properties ``apple,'' ``ripe,'' and ``green'' fre-

quently co-occur, the learning algorithm might combine them into

the concept ``G0127,'' which most people know as ``Granny

Smith.'' Other learning algorithms generate rules, decision trees, or

logical descriptions from a set of examples. The rich literature on

machine learning focuses, almost by de®nition, on the computa-

tional aspects.

MEMORY

Learning is closely tied to the notion of memory. JL is equipped

with a memory system consisting essentially of three types of

components: sensory buffers (registers) and short-term and long-

term memory (®gure 2.6). The higher-level cognitive functions

like reasoning, planning, and language operate on the short-term

memory. The task of a computational theory of memory is to

describe how the information transfer among these various systems

functions and how such transfers are controlled by the memory sys-

tem. This clearly corresponds to the metaphor of input-processing-

output: Sensory stimulation is transmitted via sensory registers

to a short-term store (STS) where the processingÐthe higher-level

cognitive functionsÐtakes place. During this processing, STS

interacts with the long-term store (LTS). Finally a response is

generated. Figure 2.6 can be seen as a kind of overall architecture

of an agent. It is not just any memory model but the landmark

model of information processing psychology ``from which virtually

all later accounts of information processing descend'' (Leahey 1994,

p. 307).

One of the central questions is in what sort of format the infor-

mation in the various modules is represented. JL's memory content

is represented as stored structures. At some point, these structures

are encoded, stored, and later retrieved, depending on the agent's

current needs. A well-known example that illustrates this concept

is the so-called script (Schank and Abelson 1977; ®gure 2.7). Natu-

ral as it may seem, this conceptualization of memory leads to sig-

ni®cant theoretical and practical problems. Chapter 15, devoted

entirely to memory, discusses in detail the issues involved.

Chapter 2 50



Figure 2.6 The flow of information through memory. Input from the environment passes
through the sensory registers and enters the short-term store. Depending on the
control processes currently active, the information is stored in the long-term store or
results in a response output. Information can also be retrieved from the long-term
store. (Adapted from Atkinson and Shiffrin 1968.)
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CONTROLLING ACTIONSÐPLANS

According to Miller, Galanter, and Pribram (1960), whom we

introduced above in our discussion of cognitive science's early

history, a plan is required to control the order in which a sequence

of operations is to be performed. Planning is at the core of classical

AI. Imagine that JL is trying to get from San Francisco to New York

in order to visit the Museum of Modern Art. How does it pro-

ceed? As a traditional AI agent, it uses the goal-directed principle,

according to which behavior results from a comparison of a repre-

sentation of the goal state (being at the Museum of Modern Art) and

the current state (being in San Francisco). Based on this compari-

son, a plan is constructed for moving the agent from the current to

the goal state. A popular planning strategy has been means-end

analysis (Newell and Simon 1972). Means-end analysis requires a

measure of distance between current state and goal state. Operators

are then chosen on the basis of an evaluation of how much their

application will reduce the distance to the goal state. But before a

particular operator can be applied, it has to be tested to see whether

certain preconditions attached to that operator are ful®lled. For

example, if JL ®nds an operator that will bring it much closer to its

goal, like taking a plane to New York, it must meet a precondition

before it can apply that operator: It has to be at the airport ®rst. To

Figure 2.7 Illustration of a memory structure. The restaurant script is a representation of what
typically happens in a restaurant. ``Roles'' describes the various participants,
``Props'' the relevant objects, ``Preconditions'' the prerequisites for going to a res-
taurant, and ``Result'' the effect a visit to a restaurant has on the participants and the
situation. A sequence of scenes then represents the events occurring during a res-
taurant visit.
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ful®ll this precondition, the planning system considers this a new

subgoal and applies the same procedure again: it looks for an oper-

ator that will bring JL close to the airport in San Francisco, tests for

preconditions, and so forth. This kind of hierarchical planning has

been employed in many AI systems. Examples of well-known early

systems are GPS and STRIPS. GPS, the General Problem Solver (e.g.,

Newell and Simon 1963) is a program intended to solve a large

variety of planning problems. STRIPS, the Stanford Research Insti-

tute Problem Solver (e.g., Fikes and Nilsson 1971), is a variation on

the hierarchial planning principle. It has been used on real robots

like Shakey. These planning methods seem intuitively plausible,

but they are subject to combinatorial explosion. For example, if

there are 10 branching points in a plan and at each branching point

there are two possibilitiesÐfor example, the choice between taking

a car or taking a train to the airportÐthere will be 210 or roughly

1,000 different plans. Such hierarchical planning systems have

therefore not been very successful on real robots. We return to this

topic in chapter 11.

Other Tasks

JL is equipped with so-called higher-level functions, with the ability

to ``think'': It can manipulate representations, make logical infer-

ences, draw conclusions, and solve problems as, for example, is

done in expert systems. It can also perform induction and develop

new concepts like ``Granny Smith.'' JL also has the capacity for

creation: Producing diversity is an important aspect of intelligence.

We do not discuss how creativity is achieved in computational

models; the reader interested in computational issues of creativity

is referred to Margaret Boden's Creative Mind: Myths and Mecha-

nisms (1996).

If JL is to be intelligent, it must have the capacity to communicate

with other agents, that is, with other robots and humans. What

comes to mind immediately is that it must be able to speak and

hear, since natural language is one of the main means of commu-

nication between humans. Thus, JL must be equipped with a

facility for natural language. Research in computational linguistics

conducted over half a century has shown that this is an extremely

demanding task. Although their performance is sometimes impres-

sive, most natural language systems currently still lack ¯exibility

and robustness.
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Summary

JL is a representative of how an agent might be conceived in the

classical paradigm. The underlying design principles can be sum-

marized as shown in table 2.3. Principle c1 states that the computer

metaphor has high explanatory power for psychological phenom-

ena, which is why the models of choice are computer programs.

Principle c2 states that agents should be designed with goals and

knowledge on how to achieve those goals. Goals are typically

organized into hierarchical structures. From these goal structures,

plans are derived. This principle is closely related to principle c3,

which states that agents should be designed to obey the principle of

rationality (further elaborated in chapter 9). Principle c4 asserts

that intelligent systems consist of various modules, for perception,

learning, memory, language, and so forth, a view championed by

Jerry Fodor in The Modularity of Mind (1983). The assumption is

also made that individual modules can be designed and built

separately. Principle c5 states that an agent's actions are based on

what it perceives, which is further processed, resulting in a deci-

sion as to what action should be taken. Principle c6 suggests that

an architecture like the one outlined in ®gure 2.6 should be used.

Principle c7 is derived from Newell's concept of ``levels'' dia-

grammed in his seminal paper on the ``knowledge level'' (Newell

1982). There are three levels: a knowledge level, a logical level, and

an implementation level. The knowledge level is a characterization

of an agent in terms of goals and knowledge of how these goals can

be achieved. For example, JL can be characterized in terms of the

goal to visit the Museum of Modern art and the knowledge of how

to get there. The logical level is a formalization of how the knowl-

edge level speci®cation is to be achieved (independent of imple-

mentation), and the implementation level is the actual program that

implements the logical level. Design proceeds from the top down

through these stages, from knowledge level, to logical level, to

implementation level.

The intention underlying table 2.3 is not so much to provide a

comprehensive summary of all ingredients in classical design, but

rather to ferret out its essence. In practice, designers, even if they

would consider themselves ``classical'' in the sense discussed in

this chapter, would clearly have different views on some of the

points. For example, many designers have started to build robots

rather than designing computer programs only, with the accom-

panying need to address the agent-environment interaction. Many
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Table 2.3 Overview of design principles in classical cognitive science. The ``c'' in front of the
numbers indicates that they are classical design principles.

Number Name of design

principle Description

c1 Model as computer
program

assumption that good theories are expressed in
information processing terms

c2 Goal-based designs the actions of an agent should be derived from goals
and knowledge on how to achieve the goals; from
goals, plans are generated that can be executed; goals
are organized in hierarchies

c3 Rational agents if a rational agent has a goal and it knows that a
particular action will bring the agent closer to the goal,
it will choose that action for execution

c4 Modularity models should be built in modular ways
modules include:
. perception (further subdivided into modules for the

different modalities, i.e., visual, auditory, olfactory,
tactile, taste)

. learning

. memory

. planning

. problem solving and reasoning

. plan execution (acting)

. language

. communication

c5 Sense-think-act cycle the operating principle is as follows: ®rst the
environment is sensed and mapped onto an internal
representation; this information is processed (e.g., by
applying heuristic search), leading to a plan for an
action; then the action is executed

c6 Central information
processing architecture

information from various sensors must be integrated
into a central representational structure in STS; this
integration requires information from LTS; memory
consists of structures that are stored and later
retrieved

c7 Top-down design design procedure:
specify the knowledge level (speci®cation of what the
agent should be able to do); derive the logical level
(formalization of how the initial speci®cation is to be
achieved); implementation level (produce the actual
code)
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designers therefore no longer adhere to the levels described by

Newell (1982), and many have moved to less hierarchical and more

reactive approaches. Still, the cognitivistic paradigm has by no

means disappeared. On the contrary, as we pointed out at the be-

ginning of the chapter, many cognitive scientists still adhere to it.

Issues to Think About

Issue 2.1: The Sense-Think-Act Cycle

Throughout this book we challenge the idea that intelligent behav-

ior is based on a senseÐthinkÐact cycle. Recall that the basic idea

is that ®rst, you perceive something (sense), then you process what

you have perceived (think) and ®nally, you execute an action (act).

Does this conceptualization of intelligent behavior seem plausible

to you? Do you think it might hold more in certain situations, such

as math classes, and less in others, such as tennis games? We

would like you to think of alternatives to the senseÐthinkÐact

cycle before we will present the ones developed in embodied cog-

nitive science.

Issue 2.2: Perception and Memory: Computational Phenomena?

As we have seen, in the classical view, perception and memory are

two separate modules that interact with one another. For example,

during perception, memory structures are consulted. Moreover, the

goal of visual perception is taken to be the reconstruction of a

three-dimensional representation of the world. Memory is a system

consisting of several separate storage devices. Do you think you can

accommodate your personal experiences with memory within this

framework? For example, assume you meet a friend you haven't

seen for a while. You immediately recognize him. What image have

you actually ``retrieved''? Is it a retrieval process in the ®rst place?

What does the image show? Your friend riding a bicycle, or sitting

in an easy chair?

Points to Remember
1 The cognitive revolution had its beginnings in the 1950s as a

new conception of the human being as a machine began to emerge.

Chapter 2 56



The language of information processing was suggested as a suit-

able means for describing mental phenomena such as language,

perception, and thinking. The goal of seeking explanations in

terms of information processing replaced the goal of explaining

human behavior in terms of stimulus-response relationships (as in

behaviorism).
1 Cognitive science is the interdisciplinary study of cognition. It

involves disciplines such as philosophy, psychology, computer

science, AI, linguistics, neuroscience, and more recently, engi-

neering and biology. In the classical paradigm, the ``glue'' that

kept cognitive science together was the notion of information

processing.
1 According to the cognitivistic paradigm, intelligence can be

studied at the level of algorithms. This is also called the function-

alist position, which states that the physical substrate on which the

algorithms are performed is irrelevant so long as a useable result is

achieved.
1 ComputationÐin the sense of Turing machinesÐand representa-

tion are the fundamental ingredients in classical cognitive science

and AI. The slogan ``cognition as computation'' characterizes this

position.
1 Turing machines are universal in the sense that they can simulate

any other Turing machine.
1 The Physical Symbol Systems Hypothesis, an empirical hypothesis

about the nature of intelligence, states that a physical symbol

system is a necessary and suf®cient condition for a general intelli-

gent system.
1 The notion of information processing has been instrumental in

modern cognitive psychology and in the neurosciences. Infor-

mation processing is an extremely powerful notion. Cognitive

psychology is de®ned by ``how people take in information, how

they recode and remember it, how they make decisions, how they

transform their internal knowledge states, and how they translate

these states into behavioral outputs'' (Lachman, Lachman, and

Butter®eld 1979).
1 The concept of information processing as used here implies that

concepts of computation, such as storage, matching, retrieval, and

logical operations, are applied to human thinking. This use of the

term is to be distinguished from its use in information theory, and

any objections we express to the information processing view are to

the former use, not to the latter.
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1 JL is an agent designed on the basis of the cognitivistic paradigm. It

embodies a number of important design principles (summarized in

table 2.3).
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3 The Fundamental Problems of Classical Arti®cial Intelligence and

Cognitive Science

So far we have looked at the nature of intelligence and discussed

the cognitivistic paradigm, which still by far dominates scienti®c

and everyday thinking about intelligence. In a number of places,

however, we have alluded to potential problems with this para-

digm. In this chapter, we inspect more closely what these prob-

lems really are and why they have arisen in the ®rst place. As we

argue, the cognitivistic paradigm's neglect of the fact that intelli-

gent agents, humans, animals, and robots are embodied agents

that live in a real physical world leads to signi®cant shortcomings

in explaining intelligence.

Outlining the cognitivistic paradigm's problems and under-

standing their origins helps us, on the one hand, to avoid making

the same mistakes again; on the other hand, it provides us with

inspiration about what needs to be done differently. The chapter

is relatively short. Most of the issues it raises have been discussed

at length in the literature (e.g., Brooks 1991a,b; Clancey 1997;

Franklin 1995; Hendriks-Jansen 1996; Winograd and Flores 1986),

and an overview of those issues is suf®cient here without repeating

the details of the arguments. The goal is to outline the main prob-

lems that historically have led researchers to reconsider their

approach to the study of intelligence.

We proceed as follows in the chapter: ®rst, we work out the main

distinctive characteristics of real and virtual worlds. We then

present an overview of some of the well-known problems of tradi-

tional systems, followed by an inspection of some of the fundamen-

tal issues involved. We conclude with a number of suggestions as

to what might be to be done in order to overcome these problems.

3.1 Real Worlds versus Virtual Worlds

Classical models, that is, models developed within the cognitivistic

paradigm, focus on high-level processes like problem solving, rea-

soning, making inferences, and playing chess. Much progress has

been made, as we have seen, for example, in the case of chess, with



computers able to play well enough to defeat world champions. In

other areas, progress has been less rapid; for example, in computer

vision. It has turned out to be far more involved than expected to

extract information from camera images, typically in the form of a

pixel array, and map them onto internal representations of the

world. The main reason for these dif®cultiesÐand the reason for

the fundamental problems of AI in generalÐis that the models do

not take the real world suf®ciently into account. Much work in

classical AI has been devoted to abstract, virtual worlds with pre-

cisely de®ned states and operations, quite unlike the real world.

To illustrate our argument, let us return to the game of chess

(®gure 3.1a). Chess is a formal game. It represents a virtual world

with discrete, clearly de®ned states, board positions, operations,

and legal moves. It is also a game involving complete information:

If you know the board position, it is possible to know all you need

to know to play the game, because given a certain board position,

the possible moves are precisely de®ned and ®nite in number. Even

though you may not know the particular move your opponent will

make, you know that he will make a legal move; if he did not, he

would cease to be playing chess any longer. (Breaking the chess

board over the opponent's head is not part of the game itself.) Chess

is also a static game, in the sense that if no one makes a move,

nothing changes. Moreover, the types of possible moves do not

change over time.

By contrast, consider soccer (®gure 3.1b). Soccer is clearly a

nonformal game. It takes place in the real world, where there are no

uniquely de®ned states. The world of soccerÐthe real worldÐis

continuous. As humans, we can make a model of a soccer game,

and that model may have states, but not the soccer game as such.

Having no uniquely de®ned states also implies that two situations

in the real world are never identical. Moreover, in contrast to

virtual worlds, the available information an agent can acquire

about the real world is always incomplete. A soccer player cannot

know about the activities of all other players at the same time, and

those activities are drawn from a nearly in®nite range of possi-

bilities. In fact, it is not even de®ned what ``complete'' information

means where a game like soccer is concerned. Completeness can be

de®ned only within a closed, formal world. Since completeness is

not de®ned, it is better to talk in terms of limited information. A

soccer player has only limited information about the overall situa-

tion. In fact, information that can be acquired about the real world
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is always limited because of embodiment: the ®eld of view is

restricted, the range of the sensors is limited, and the sensory and

motor systems take time to operate. Moreover, in the real world

there is time pressure: things happen even if we do not do any-

thing, and they happen in real time. If we want to avoid getting hit

by cars, we may have to run away quickly. If we are jumping off

a wall, the laws of physics act on the body (gravity), and we have

to react quickly in order not to get hurt. Other laws of physics are

also relevant: Friction is required for locomotion, motion requires

a

b

Figure 3.1 Real worlds and virtual words. (a) Chess is a formal game. It represents a virtual
world with precisely defined states, board positions, and operations, that is, the legal
moves. (b) Soccer is an example of a nonformal game. There are no precisely de-
fined states and operations. In contrast to chess, two situations in soccer are never
exactly identical.
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energy, and physical organisms all have a certain metabolism that

also needs energy. These are physical phenomena. They do not

have to be represented somehow in order to function. They are

simply there.

In the real world, any physical device is subject to noise, dis-

turbances, and malfunctions. This point holds in principle for any

sensory or motor system. In other words, information gathered from

the sensors is therefore always subject to errors. Finally, the real

world is inde®nitely rich: there is always more to be known about

it. More precisely, since acquisition of information takes time, one

has to restrict oneself to knowledge about a certain part of the

real world. This point also holds in principle. It does not de-

pend, say, on the sensory system's sophistication. Given these

properties of the real world and the limitations of any kind of

physical agent, it follows that the real world is only partially

knowable, and this in turn implies that it is predictable only to a

limited extent.

Let us conclude our comparison of real and virtual worlds with a

note on terminology. We have used the term ``virtual'' to designate

closed, formal worlds such as chess. The term ``virtual world'' or

``simulated world'' is often used in a different sense in the areas of

arti®cial life (e.g., Langton 1995) and virtual reality (Kalawsky

1993). Video games are a case in point; another example are Karl

Sims's simulated physical worlds, in which arti®cial creatures

evolve under various conditions, for example, on land or in the

water (Sims 1994a,b). In these worlds, one can de®ne new physical

laws, new laws of nature, which is one of the things that makes

them so fascinating. For example, if gravity is simulated in a virtual

world, one can adjust g, the constant of gravity, and one can observe

the change in the behavior of the (simulated) organisms that inhabit

this world. From the perspective of the agents that live in such a

virtual world, this virtual world does have some of the character-

istics that we pointed out for real worlds. For example, unexpected

and novel things happenÐfrom the point of view of the agent!

Often, new kinds of enemies emerge who have unknown powers.

However, from the point of view of the programmer who created

the virtual world, the very same events are neither new nor un-

expected: he designed them into the system.

In summary, real worlds differ signi®cantly from virtual ones.

The problems of classical AI and cognitive science have their origin

largely in a neglect of these differences.
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3.2 Some Well-Known Problems with Classical Systems

In what follows we summarize some of the better-known problems

with classical AI systems. Throughout the discussion we use the

term classical AI systems to denote pure symbolic systems such as

expert systems or traditional planning systems like STRIPS. The

goal in this section is to describe the issues and problems that his-

torically have motivated researchers to look for alternatives. There

seems to be consensus within a large part of the research commu-

nity in AI that classical systems, lack robustness and generalization

capabilities, and cannot perform in real time. This makes them

poorly suited for behaving in the real world. Moreover, they are, in

essence, sequential; that is, they perform one operation after an-

other. They also run on sequential machines, whereas the human

brain is massively parallel in its processing. Let us brie¯y examine

each of these points.

Robustness and Generalization: Traditional AI systems often lack

robustness, which means that they lack tolerance of noise and

fault tolerance and cannot behave appropriately in new situations.

A system has noise tolerance if it functions appropriately when the

data contain noise i.e. there are random ¯uctuations in the data.

Sensors are always noisy, because they are physical devices, and

motor acts are always imprecise, because they arise from physical

devices. A system has fault tolerance if it performs adequately

when some of its components break down. Standard symbol pro-

cessing models are neither noise nor fault tolerant unless their

programming explicitly provides for noise and particular types of

faults. The most important de®ciency of traditional AI systems in

terms of robustness, however, is their inability to perform appro-

priately in novel situations, that is, their lack of generalization

capacity. If a situation arises that has not been prede®ned in its

programming, a traditional system breaks down or stops operating.

Generalization ability is especially important in the real world,

where no two situations are ever exactly the same.

Real-Time Processing: Because the real world has its own

dynamics, systems must be able to react quickly in order to survive

and perform their tasks. Systems based on the classical paradigm

embedded in real robots are typically slow, because they process

information centrally. Recall our overview of JL in chapter 2, in

which a central information processing module was postulated (see

principle c6 in table 2.3), and the discussion in chapter 1 of the
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view that the brain is the ``seat of intelligence''. If all sensor signals

have to be transmitted to a central device for processing (integra-

tion with other sensory signals, mapping onto internal representa-

tions, planning of action sequences) and ®nally generation of motor

signals, real-time response can hardly be achieved.

Sequential Nature of Programs: The architecture of today's AI

programs is essentially sequential, and they work on a step-by-step

basis. By contrast, the human brain's processing is massively par-

allel, with activity occurring in many parts of the brain at all

times. This problem arises from the fact that current computer

technology is largely based on architectures of the von Neumann

type which are, at the information processing level, sequential

machines. As an aside, note that at the physical level a von Neu-

mann machine is also massively parallel, just like any other system

in nature.

Other Problems: Additional criticisms have been that classical

systems are goal-based, are hierarchically organized, and process

information centrally. The problems with goal-based systems are

discussed in Monte®ore and Noble 1989; the latter two problems

are considered in chapter 11.

The criticisms of AI models presented so far are well-known and

long-standing. Since the mid-1980s a number of additional ones

have been raised pertaining to fundamental issues. Speci®cally, it

has been argued that traditional AI models suffer from the frame

problem and the problem of symbol grounding, and that they lack

the properties of embodiment and situatedness.

3.3 The Fundamental Problems

In section 3.1 we pointed out that one of the problems with classi-

cal AI is that it did not give the real world suf®cient consideration.

In fact, all the fundamental problems of classical AI concern the

relation of an agent and the real world, in particular its interaction

with it. Chapter 4 outlines a systematic way of dealing with these

relations. In this section, we discuss some speci®c problems: the

frame problem, the symbol-grounding problem, and lack of em-

bodiment and situatedness are treated in detail, and we brie¯y dis-

cuss the homunculus problem and the problem of the substrate

required for intelligence.
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The Frame Problem

The frame problem was originally pointed out by McCarthy and

Hayes (1969) and has more recently attracted a lot of interest (e.g.,

Pylyshyn 1987). It comes in several variations and lacks one single,

overriding interpretation. The central point concerns how to model

change (Janlert 1987): How can a model of a continuously changing

environment be kept in tune with the real world? Assuming that

the model consists of a set of logical propositions (which essentially

holds for any representation), any proposition can change at any

point in time. Let us explain the frame problem using an example

given by Daniel Dennett (1987), who has been working in the ®eld

of philosophy of the mind for many years. The initial situation

described in Dennett's example is illustrated in ®gure 3.2, depict-

ing a robot employing a propositional representation. It consists

of a set of propositions like INSIDE(R1,ROOM), ON(BATTERY,

WAGON), and so forth.

Once upon a time there was a robot, named R1 by its creators. Its

only task was to fend for itself. One day its designers arranged for it

to learn that its spare battery, its precious energy supply, was

locked in a room with a time bomb set to go off soon. R1 located the

room, and the key to the door, and formulated a plan to rescue its

battery. There was a wagon in the room, and the battery was on the

wagon, and R1 hypothesized that a certain action which it called

PULLOUT(WAGON, ROOM) would result in the battery removed

from the room. Straightaway it acted, and did succeed in getting

the battery out of the room before the bomb went off. Unfortunately,

however, the bomb was also on the wagon. R1 knew that the bomb

was on the wagon in the room, but didn't realize that pulling the

wagon would bring the bomb out along with the battery. Poor R1

had missed that obvious implication of its planned act.

Back to the drawing board. ``The solution is obvious,'' said the

designers. ``Our next robot must be made to recognize not just the

intended implications of its acts, but also the implications about

their side-effects, by deducing these implications from the descrip-

tions it uses in formulating its plans.'' They called their next

model, the robot-deducer, R1D1. They placed R1D1, in much the

same predicament that R1 had succumbed to, and as it too hit

upon the idea of PULLOUT(WAGON, ROOM) it began, as designed,

to consider the implications of such a course of action. It had just

®nished deducing that pulling the wagon out of the room would not

change the colour of the room's walls, and was embarking on a
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proof of the further implication that pulling the wagon out would

cause its wheels to turn more revolutions than there were wheels on

the wagonÐwhen the bomb exploded.

Back to the drawing board. ``We must teach it the difference be-

tween relevant implications and irrelevant implications,'' said the

designers, ``and teach it to ignore the irrelevant ones.'' So they

developed a method of tagging implications as either relevant or

irrelevant to the project at hand, and installed the method in their

next model, the robot-relevant-deducer, R2D1 for short. When they

subjected R2D1 to the test that had so unequivocally selected

its ancestors for extinction, they were surprised to see it sitting,

Hamlet-like, outside the room containing the ticking bomb, the

native hue of its resolution sicklied o'er with the pale case of

thought, as Shakespeare (and more recently Fodor) has aptly put it.

``Do something!'' they yelled at it. ``I am,'' it retorted. ``I'm busily

ignoring some thousands of implications I have determined to be

irrelevant. Just as soon as I ®nd an irrelevant implication, I put it

on the list of those I must ignore, and . . .'' the bomb went off. (pp.

41±42)

Let us brie¯y summarize the essential points of Dennett's example.

1. Assume that the symbolic description of the situation given in

®gure 3.2 is stored in R1's memory. It then has the problem of

Figure 3.2 The frame problem. The robot R1/R1D1/R2D1 (R1 stands for robot, R1D1 for robot-
deducer, and R2D1 robot-relevant-deducer) is standing near the wagon with a bat-
tery and a bomb. R1/R1D1/R2D1 uses a symbolic representation of the situation to
draw inferences and guide its behavior.
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determining the implications of an action. In this particular situa-

tion, the action of moving the wagon has the side effect that the

bomb is also moving, since it is sitting on the wagon. Unfortu-

nately, the robot does not know that this is relevant. What is

obvious to a human observer has to be made explicit for R1.

2. R1D1 tries to take a vast number of potential side effects into

account. Assessing all of these potential side effects takes a lot of

time, and most are entirely irrelevant. For example, the fact that

moving the cart does not change the color of the room is totally

irrelevant in the current situation.

3. R2D1 tries to distinguish between relevant and irrelevant infer-

ences. But in order to do this it has to consider all of them anyhow,

which implies that R2D1 has no signi®cant advantage over R1D1.

There have been a number of proposals for resolving the frame

problem. One is the ``sleeping dog strategy,'' in which the robot is

programmed to assume that if something is not explicitly changed,

it has not changed at all. Physical objects normally do not cease

to exist if nothing happens to them, or they do not start to ¯y

without reason, or the color of the room does not change signi®-

cantly in a short period of time unless it is painted, and so forth.

The robot then relies on this assumption in planning its course

of action. However, ice cubes can melt, that is, they can cease to

exist without an explicit manipulation of them. The bomb on the

wagon changes its position if the wagon is moved. Either this

fact must be represented explicitly, which would imply that there

are very many relations of this kind, requiring signi®cant mem-

ory space, collectively, for their representation, or the robot has

to infer that the bomb will also move. As we have seen, however,

there are typically a very large number of possible inferences

that can be drawn and determining the relevance alone does not

help (as poor R2D1 found). While the sleeping dog strategy is often

useful, it does not completely resolve the frame problem. For exam-

ple, it does not solve the problem of ®nding a way for the robot to

determine the relevance of relations without having to check all

the inferences.

Minsky (1975) and Schank and Abelson (1977) suggested that the

robot's attention be focused on the relevant inferences by employ-

ing frames (or scripts). (Figure 2.7 offered an example of a script

that focuses the attention on things happening in restaurants.)

McCarthy (1980) suggested circumscription, which is also a

way to restrict the number of inferences. All of these suggested
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solutions try to tackle the problem at the logical level, in a sense, on

the inside. The problem, however, is really about the system-

environment interaction: how models of a changing environment

can be kept in tune with the environment. This is not a problem of

logic, but rather one of modeling the world.

Another problem arises when modeling the real world that is

related to the frame problem. R1D1 represents the situation shown

on the right in ®gure 3.3 by means of a number of propositions. If

R1D1 moves around the table, many of the propositions in the

model R1D1 uses have to be updated, even though only the posi-

tion of R1D1 is changing. In the real world it is not necessary for us

to build a representation of the situation in the ®rst place: We can

simply look at it, which relieves us of the need for cumbersome

updating processes. Moreover we can point to things when talking

about them. As a robot, R1D1 could also take advantage of these

possibilitiesÐif designed properly.

Figure 3.3 The frame problem and situatedness. R1/R1D1/R2D1 is standing in front of a table.
From its current perspective, the cup is behind the ball, and this relationship is re-
flected in the symbolic description it uses to represent its environment. If R1/R1D1/
R2D1 moves to the other side of the table, the symbolic description has to be up-
dated, from the robot's perspective, the ball is now behind the cup. If a robot has a
large set of such descriptions, many of them, but not all, may have to be updated as
it moves around. Finding the right ones is a fundamental problem. For example, if
R1/R1D1/R2D1 moves to the other side of the table, the relative position of the ball
and the cup change, but the ball and the cup are still in exactly the same place. In the
symbolic approach a way must therefore be found to reflect the change in the posi-
tion of the objects relative to the robot without altering the robot's representation of
their absolute positions. A situated agent can merely ``look at'' the situation.
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According to Janlert (1987) the frame problem has two aspects.

Our robots R1, R1D1, and R2D1 were suffering from one, the pre-

diction problem, which has to do with determining what is rele-

vant. The other, called the quali®cation problem, is equally nasty:

It involves the preconditions under which an action can be applied.

For example, if you are getting into a car, you have to assume that

there is no bomb in the car, that nobody put sugar into the gas tank,

that nobody has taken out the engine, that no skunk is in the car,

that no lion is in the car, that the clutch is still in the same place,

and so forth almost in®nitely. Another example is that when sitting

down on a chair, you do not explicitly assume that it will not break.

You do not have to do that because you can be con®dent that if

there were a problem you would recognize it. (But note that this

strategy may occasionally fail, and you might indeed land on your

behind on the ¯oor.) Humans certainly do not explicitly assume

that these preconditions are given. Because we are ``grounded'' in

our environment, we know the things we have to check. To func-

tion properly in a changing environment, a robot must somehow be

provided with the same capacity.

The frame problem is a fundamental one, and it is intrinsic to any

world modeling approach whatsoever. Any model of a changing

environment presents a frame problem; the more sophisticated and

elaborate the model, the more the frame problem shows up. Thus,

we see that the frame problem exists not only for traditional AI

models but for models in general. An important goal of intelligent

systems design is to minimize the implications of the frame prob-

lem. Embodied cognitive science's approach is to minimize the

amount of world modeling in the ®rst place.

The Symbol-Grounding Problem

The symbol-grounding problem, which refers to how symbols

relate to the real world, was ®rst discussed by Steven Harnad

(1990). In traditional AI, symbols are typically de®ned in a purely

syntactic way by how they relate to other symbols and how they are

processed by some interpreter (Newell and Simon 1976; Quillian

1968); the relation of the symbols to the outside world is rarely

discussed explicitly. In other words, we are dealing with closed

systems, not only in AI but in computer science in general. Except

in real-time applications, the relation of symbols (e.g., in database

applications) to the outside world is never discussed; it is assumed
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as somehow given, with the (typically implicit) assumption that

designers and potential users know what the symbols mean (e.g.,

the price of a product). This idea is also predominant in linguistics:

it is taken for granted that the symbols or sentences correspond in

some way with the outside world. The study of meaning then

relates to the translation of sentences into some kind of logic-based

representation whose semantics are clearly de®ned (Winograd and

Flores 1986, p. 18).

Using symbols in a computer system is no problem as long as

there is a human interpreter who can be safely expected to be

capable of establishing the appropriate relations to some outside

world: the mapping is ``grounded'' in the human's experience of his

or her interaction with the real world. However, once we remove

the human interpreter from the loop, as in the case of autonomous

agents, we have to take into account that the system needs to inter-

act with the environment on its own. Thus, the meaning of the

symbols must be grounded in the system's own interaction with

the real world, as ®gure 3.4 illustrates. Symbol systems, such as

computer programs, in which symbols refer only to other symbols

are not grounded because they do not connect the symbols they

employ to the outside world. The symbols have meaning only to a

designer or a user, not to the system itself. The robot in ®gure 3.4 is

Figure 3.4 The symbol-grounding problem. The scientist has no difficulty associating the cup in
the real world with the symbol ``cup'' on the screen standing on top of the robot. But
if the robot is programmed with symbols representing objects and has to interact
with its environment on its own, it has to be able to map the sensory stimulation
(from the cup itself) onto its internal symbolic representation (the word ``cup'')Ð
a very hard problem.
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in trouble because it is trying to map a sensory stimulation, a cup,

onto an internal symbol, the word ``cup.'' Providing the robot with

this capacity is very hard to do, even in simple cases, let alone

for more complex ones. But this mapping will always have to be

present if there are symbols in the system. (As we argue later, the

symbol grounding problem is really an artifact of symbolic systems

and ``disappears'' if a different approach is used. Speci®cally, in

chapter 12 we show how ``concepts'' can evolve in the interaction

of an autonomous agent with its environment, without the need for

introducing symbols of any sort within the agent. We put ``con-

cepts'' in quotes to indicate that we do not mean symbolic con-

cepts.) For a long time, the symbol-grounding problem attracted

little attention in AI or cognitive science, and it has never been an

issue in computer science in general. Only with the renewed inter-

est in autonomous robots has it reemerged.

The Problems of Embodiment and Situatedness

The problem of embodiment refers to the fact that abstract algo-

rithms do not interact with the real world. Rodney Brooks force-

fully argued that intelligence requires a body (Brooks 1991a,b).

Only if a system is embodied do we know for sure that it is able to

deal with the real world. Moreover, systems that are not embodied

all suffer from the symbol-grounding problem. Their connection to

the outside world requires a human interpreter in the loop.

Many researchers in AI have recognized this problem. For ex-

ample, Margaret Boden noted, in Arti®cial Intelligence and Natural

Man (1977):

In everyday life you usually remember your ``place'' largely

because the external world is there to remind you what you have or

haven't done. For instance, you can check up on whether you have

already added the vanilla essence by snif®ng or tasting the mixture,

or perhaps by referring to the pencil and paper representation of

the culinary task that you have drawn up for this mnemonic pur-

pose. A computational system that solves its problems ``in its

head'' rather than by perceiving and acting in the real world, or

pencil and paper models of it, has to have all its memory aids in

the form of internal representations. (p. 373)

At the time the importance of real-world interaction in control-

ling behavior was fully recognized, however, the implicationsÐ
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embodimentÐhad not been further elaborated; they were fully

understood only when people started to use robots for the study of

intelligence. As embodied systems, robots have the potential to

``solve'' the symbol-grounding problem, but this requires them to

have ``situatedness.''

An agent is ``situated'' if it can acquire information about the

current situation through its sensors in interaction with the envi-

ronment. A situated agent interacts with the world on its own,

without an intervening human. To illustrate this point, let us look

at an example of a system entirely lacking situatedness. Imagine

a remote-controlled device without sensors, such as a remote-

controlled toy car. The toy car is controlled only by information

from the operator; it has no information about the current situation

from its own perspective. A situated agent has the potential to

acquire its own history, if equipped with appropriate mechanisms.

To understand situatedness and to design situated agents, we have

to adopt the agent's perspective, rather than the observer's. For

understanding situated agents (e.g., animals), it is important to

realize that the world may look very different from the perspective

of the animal than from our own. Ants, for example, have com-

pletely different eyes so what they see is not what we see. In

designing situated agents, adopting the agent's perspective is

important because the programs that control the agent's actions are

based on the sensor data the robot gets. Since the relation between

observer and agent is of fundamental importance, we discuss it in

more detail in chapter 4. It turns out that situated agents, that is,

agents having the property of situatedness, are much better at per-

forming in real time because they exploit the system-environment

interaction and therefore minimize the amount of world modeling

required.

Note that embodiment does not automatically imply situated-

ness. Agents can be equipped with detailed models of their envi-

ronment to be used in the planning processes. If these plans are

employed signi®cantly in controlling the agent's behavior, it will

not be situated. Moreover, as we saw in the last chapter when dis-

cussing, plan-based systems quickly run into combinatorial prob-

lems (cf. also Chapman 1987). If the real world changes, one of the

main problems is keeping the models in tune with the environ-

ment. Inspection of the problem of behaving in the real world

shows that it is neither necessary nor desirable to develop very

comprehensive and detailed models (e.g., Brooks 1991a; Suchman
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1987; Winograd and Flores 1986): the more comprehensive and the

more detailed the models, the more strongly the agent is going to

be affected by the frame problem. Typically only a small part of

an agent's environment is relevant for its behavior. In addition,

instead of performing extensive inference operations on internal

models or representations, the situated agent can interact with the

current situation: The real world is, in a sense, part of the ``knowl-

edge''1 the agent needs to behave appropriately. It can merely ``look

at it'' through the sensors. In a sense, the world is its own best

model. Figure 3.3 illustrates this point.

The concept of situatedness has recently attracted a lot of interest

and led to heated debates about the nature of intelligence and the

place of symbol-processing systems in studying intelligence. For

example, a complete issue of the journal Cognitive Science in 1993

was dedicated to the role of situatedness in cognitive science (see

also Clancey 1997).

Other Fundamental Problems

A number of other problems with classical systems can be found in

the literature, for example, the homunculus problem and the prob-

lem of the underlying substrate. ``Homunculus'' literally means

``little man''; as used here, it designates a ``little man in the head.''

The homunculus problem, or the homunculus fallacy, as it is also

called, refers to circular accounts of psychological processes. These

processes are circular because they ascribe to some internal mech-

anism (the homunculus) the very psychological properties being

investigated in the ®rst place. For example, a theory of vision might

postulate that there is within the brain a mechanism that scans,

views, or inspects images on the retina. Such a theory would be

vacuous, however, since scanning, viewing, and inspecting are all

instances of the very visual processes the theory was supposed to

illuminate in the ®rst place (Gregory 1987, p. 313). In other words,

the theory has assumed the very things it set out to explain. When

used to criticize AI systems, the term ``homunculus'' designates a

subsystem that executes a function speci®ed in purely formal terms

(as in the cognitivistic paradigm). In a sense, a homunculus is

required to perform the function that the formal system is intended

1 We put ``knowledge'' within quotation marks to indicate that this is not the standard way

of using knowledge in AI. The standard way refers to knowledge structures that are rep-

resented internally.
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to explain. For example, we saw that the robot R2D1 was lacking a

means to determine the relevant inferences. With respect to the

homunculus problem, the real problem is that it is not possible to

determine the relevance of an inference on a purely formal basis

(i.e., by inspecting only its database of symbolic representations

and drawing inferences): a link to the environment and thus to the

meaning of the representation is required. In other words, the

homunculus problem and the symbol grounding problem are

closely related: a system containing ungrounded symbols will

always require a homunculus giving meaning to them. We do not

explore the subtleties of this argument, any further (for a more com-

prehensive discussion, see, e.g., Edelman 1992 or Bursen 1980).

To bring our review of some fundamental problems to an end let

us mention one which is still fairly prominent, the problem of the

underlying substrate. There is a folklore that true intelligence

requires a biological substrate as a basis. Only natural brains can, in

this folklore, exhibit ``true intelligence.'' Note that this issue does

not only apply to classical AI, but rather concerns any endeavor to

build intelligent systems. As far as we can tell there is to date no

evidence demonstrating the in-principle impossibility of having

intelligence based on substrates other than natural brains. But even

if it turned out to be true that a biological substrate were required,

we could still use computers and robots to build models.

3.4 Remedies and Alternatives

In this ®nal section, we brie¯y examine a number of possible ways

to deal with the problems we have raised. Again, the overview is

very short and the ®eld is very large. Because we want to leave

room to present embodied cognitive science, we cannot possibly

do justice to all the research that has been done. We have labeled

the various positions we present ``pessimist,'' ``traditionalist,''

``pragmatist,'' and ``optimist.'' These labels are not to be taken too

seriously.

The Pessimist: Giving Up. The pessimist knows the fundamental

problems of traditional approaches to AI, believes these criticisms

to be universally valid, and strongly doubts that there are viable

alternatives. For him, the only solution is to give up on the endea-

vor to build intelligent systems. An example of this position can be

seen in the implications of Winograd and Flores' Understanding

Computers and Cognition (1986), which represents a fundamental
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criticism of traditional AI and the traditional understanding of

intelligence, in particular, natural language. Winograd and Flores'

suggestion is to build computer systems that support human activ-

ity, in order to support and enhance human intelligence, rather

than trying to build computer systems that are themselves in-

telligent, which is, in their opinion, a futile effort. This view is

maintained by a relatively strong group in the area of software

engineering that capitalizes on ``designing for humans.'' Green-

baum and Kyng (1991) offer an interesting overview of this ®eld.

The Traditionalist: Improving Classical Methods. Many research-

ers in traditional AI and psychology have realized the problems

with classical approaches. Clearly, there is a lot of room for im-

provement. Such researchers have pursued solutions intended to

overcome the problems classical approaches present. Problems

with generalization and robustness, for example, can largely be

overcome with neural networks. Neural networks are also mas-

sively parallel and thus less subject to the criticism of being

sequential. Then, there is a large ®eld dealing with situated plan-

ning where high-level plans are used but they are no longer

employed to tightly control behavior, but as resources that can be

accessed whenever required (For reviews of this approach, see, e.g.,

Hasemann 1995; Wolfe and Chun 1992). Methods in computational

vision have also been improved signi®cantly. The processors have

become so fast that real-time issues become less and less of a

problem. This list could still be extended considerably.

The Pragmatist: Working Toward Practical Applications. The

pragmatist is not worried about the foundations: His goal is to get

things to work. For him, the ultimate test of whether a solution

works is if it can be deployed and routinely used in everyday

working environments. Whether a program is labeled ``expert

system,'' ``decision support system,'' or ``intelligent agent'' is

entirely irrelevant to the pragmatistÐexcept insofar as it might

help sales. The pragmatist is also free to combine various tech-

niques and approaches. For example, neural networks have wonder-

ful properties: They can learn and are adaptive. They are ideal for

taking care of low-level sensory-motor control. Rule-based systems

have the advantage that they can be quickly built and are easy to

understand. Moreover, they can be connected to symbolic plan-

ning systems, with the idea that neural networks connect the low-

level sensory-motor systems to the high-level symbolic layers.

The presence of a symbolic layer has the advantage of facilitating

The Fundamental Problems of Classical AI and Cognitive Science 75



communication between the human and the robot. The pragma-

tist's point is, Does it work? Do people think they are getting their

money's worth? This is a perfectly acceptable position, but not the

one adopted in this book. It is our conviction that ultimately, the

pragmatist will bene®t from the research described here.

The Optimist: Embodied Cognitive Science. In spite of the

improvements achieved by the traditionalist we feel that a radically

different approach is required. We now embark on this endeavor.

Issues to Think About

Issue 3.1: Prerequisites for Intelligence

In our discussion of the fundamental problems of classical AI, we

brie¯y mentioned the problem of the underlying substrate, the view

that a biological substrate is a prerequisite for intelligence. The

implication is that there can in principle be no arti®cial systems

that exhibit intelligent behavior. The remainder of this book, how-

ever, is for the better part concerned with such synthetic agents.

Before reading on, we would like you to re¯ect for a moment on

your own view on this topic. Do you think that, indeed, a biological

brain and body is needed for intelligent behavior to emerge, or are

you willing to ascribe intelligence to arti®cial agents? In the latter

case, what would agents have to do in order for you to describe

their behavior as intelligent?

Issue 3.2: The Symbol-Grounding Problem

Take a concept from your everyday life, for example, ``drinking.''

Now try to make explicit what ``drinking'' means to you. You may

be surprised how tightly concepts are tied to the body, are

grounded in sensory-motor experiences. Just to get you started,

here are a few points. Drinking relates to liquids; liquids are kept in

particular containers like cups or glasses. They can be hot or cold;

if they are hot you can get burned. If you grasp the coffee cup, you

move it to your mouth slowly. Why? Because you know that liquids

spill when you move the cup fast. You then move it close to your

lips until it touches them, which you can feel both on your lips and

from the feedback from your arm muscles. You then tilt the cup

and move your lower lip forward so the liquid can drop into your
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mouth. You are applying the physical law that the surface of the

liquid stays horizontal as the container moves. Then you sense the

liquid and its temperature in your mouth, on your lips, and per-

haps in your throat and stomach. You also recognize various liq-

uids by their speci®c re¯ective properties, viscosity, and so forth.

This is what sensory-motor grounding is all about. Now try to do

the same thing with an object like a newspaper. How about with

more abstract concepts, like ``responsibility''?

Points to Remember
1 Classical AI systems have been criticized on various grounds: that

they lack robustness and generalization capabilities, and cannot

perform in real time. Moreover, they are sequential and run on

sequential machines. Additional points of criticism have been that

they are goal based and organized hierarchically, and that their

processing is done centrally.
1 Real worlds differ signi®cantly from virtual ones. Virtual worlds

have states, there is complete information about them, the possible

operators within them are given, and they are static. The real

world is quite different. In particular, the real world has its own

dynamics, which force the agents to act in real time.
1 The frame problem concerns how models of parts of the real world

can be kept in tune with the real world as it is changing. It is espe-

cially hard to determine which changes in the world are relevant to

a given situation without having to test all possible changes. The

frame problem has two aspects, a prediction problem and a quali-

®cation problem.
. The symbol-grounding problem concerns how symbols relate to the

real world. The symbol-grounding problem becomes obvious if the

human observer is taken out of the loop and the system must

interact on its own with the environment. It is a characteristic

of symbolic approaches; nonsymbolic approaches do not have a

symbol-grounding problem.
1 An agent is situated if it acquires information about its environ-

ment only through its sensors in interaction with the environment.

A situated agent interacts with the world on its own, without an

intervening human. It has the potential to acquire its own history if

equipped with appropriate mechanisms.
1 Although there have been many suggestions for resolving the fun-

damental problems with classical systems, we think that the solu-
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tion can be achieved only through a new approach that capitalizes

on an agent's interaction with the world. This is the major concern

of embodied cognitive science.
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II A Framework for Embodied Cognitive Science

In part I, we outlined the general topic area and the methods of

investigating intelligence. In addition, we reviewed what we call

the classical view of intelligence: the information-processing para-

digm. We inspected the implications and underlying problems of

this paradigmÐrecall, for example, the frame problem and the

symbol-grounding problem. We also introduced the notion of syn-

thetic modeling and stated that the agents of interest are the so-

called autonomous agents. In fact, we are interested in a special

breed of autonomous agents, the so-called complete agents. It is our

task in part II to characterize complete agents so as to furnish a

framework for designing such agents. By doing this, we provide the

groundwork for embodied cognitive science.

This characterization requires that the reader understand

many theoretical concepts like adaptivity, ecological niche, self-

suf®ciency, autonomy, situatedness, and embodiment, some of

which we introduced brie¯y in part I. But we do not want only to

characterize agents, we want to build them. Building is the essence

of a synthetic methodology, and embodied cognitive science is by

de®nition synthetic. Working with a synthetic methodology has

important consequences, one being that we have to take the frame-

of-reference problem (not to be confused with the frame problem)

into account, which in turn implies that we have to design for

``emergence'', a term that we explain in detail. Designing for emer-

gence in turn requires a ``basis'' for emergence, which is to be

found in the designer's speci®cations of the agent.

Design efforts are always performed in the context of an overall

goal. Goals can be of various types, like understanding biological

systems, exploring general principles of intelligence, or developing

an application. Depending on the goal, the methodology differs.

Also, explanations of natural systems can be given from various

perspectives, another topic to be discussed in part II.

But the framework we present is not only theoretical: it also

contains concrete suggestions on how to proceed when conducting

agent experiments. Moreover, chapter 5 provides an introduction to



the appropriate formalism for implementing internal mechanisms:

arti®cial neural networks. In particular, we focus on how to apply

neural networks in the context of complete agents, on how to design

neural networks for adaptivity. Neural networks, because of their

desirable properties, are used widely in the ®eld of embodied cog-

nitive science. This discussion also helps us clarify some issues

concerning ontologies and designer commitments; that is, where

and at what level designer commitments should be made. Equipped

with this background knowledge, we can then embark on a tour of

the major lines of thoughts and approaches in the ®eld of embodied

cognitive science.
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4 Embodied Cognitive Science: Basic Concepts

In this chapter, we introduce the concepts that we need later on

when exploring the various approaches. Moreover, we need such a

framework if we actually want to build agents. One important con-

cept that we discuss is that of the complete agent. Complete agents

are inspired by natural agents, animals and humans, which areÐ

quite obviouslyÐcapable of surviving in the real world. They are

``complete'' because they incorporate everything required to per-

form actual behavior. (Standard computer programs, for example,

are not complete because they cannot behave in the real world.) We

argue that it is such complete agents that we want study and syn-

thesize. We provide a characterization of what we mean by com-

plete agents, and we show that if we want to model, to synthesize

such agents, we must take into account some special considerations

relating to the idea of emergence, that is, to the fact that behavior

emerges from the agent-environment interaction. Emergence is in

turn a consequence of the frame-of-reference problem, which con-

ceptualizes the relationships among those involved in the design

process, namely the designer (who is often also the observer), the

natural agent (if we are doing modeling work), the agent to be

designed, and the environment. One important implication of

frame-of-reference considerations is that behavior cannot be

reduced to an internal mechanism. This in turn necessitates a new

design methodology, which is this chapter's central topic.

We begin the chapter with a characterization of complete agents

and discuss a number of basic concepts like adaptivity, autonomy,

self-suf®ciency, embodiment, and situatedness. We then turn to

agentsÐboth simulated and real robotsÐand discuss how they can

be used as modeling tools. We examine the pros and cons of work-

ing with real robots and with agent simulations. We also compare

this new kind of agent simulation with more traditional forms of

simulation. We then outline the framework for design that focuses

on emergence, including a description of the frame-of-reference

problem. Finally, we discuss what we mean by a good explanation



and how we can ®nd explanations of agent behavior by running

experiments.

This chapter is dif®cult and covers a lot of ground. This is un-

avoidable. At ®rst reading, all the points may not become immedi-

ately clear. All the issues raised here, however, will be illustrated

in greater detail later on. The reader may ®nd it helpful to return to

this chapter after having read through some of the subsequent

chapters.

4.1 Complete Autonomous Agents

Biological agents have to perform a number of tasks: searching for

food, eating and drinking, grooming, reproducing, and caring for

their offspring. The term ``task'' is normally used in a design con-

text to designate something the agent needs to get done. Typical

tasks for autonomous robots, for example, are marking all the mines

in a mine ®eld with color, or mowing the lawn of a soccer ®eld.

Note that the task of mowing the lawn implies certain desired

behaviors on the part of the agent. What is really meant is that the

agent's task is to keep the grass short. And because the designer

can't think of any other way to accomplish the job, he simply

equates the task with the method, that is, with the behavior by

which the task is to be achieved, namely mowing. Note that ani-

mals don't have tasks. Rather, a task is an observer-based attribu-

tion summarizing the effect of certain behaviors of the animals. In

the ®eld of embodied cognitive science, researchers often talk

about tasks of animals. What they mean is either the behavior

involvedÐcollecting foodÐitself or the effect of the behavior, that

is, the fact that if the animals behave in a particular way, the food

ends up in the nest. What is important is that we observe the frame-

of-reference problem: There need be no internal representation of

the task within the agent. Often, the distinction is not so relevant:

Both task and desired behaviors can be used to specify what an

agent should do.

The ability to survive in complex environments is a given for all

biological systems. Achieving this ability in arti®cial agents turns

out to be an extremely hard problem. Complete autonomous agents

are physical systems that are able to resolve these issues. For fun

and for historical reasons we also call these complete autonomous

systems ``Fungus Eaters.'' Let us brie¯y look at the story of these
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``Fungus Eaters.'' They illustrate the main intuitions underlying the

embodied cognitive science framework.

In 1961 the Japanese psychologist Masanao Toda1 proposed to

study ``Fungus Eaters'' as an alternative to the traditional methods

of academic psychology (Toda 1982, chap. 7). Rather than per-

forming ever more restricted and well-controlled experiments on

isolated faculties (memory, language, learning, perception, emo-

tion, etc.) and narrow tasks (memorizing lists of nonsense syllables,

letter perception on degraded stimuli, etc.), we should study

``complete'' systems, though perhaps simple ones. ``Complete'' in

this context means that the systems are capable of behaving auton-

omously in an environment without a human intermediary. Such

systems have to incorporate capabilities for classi®cation, for navi-

gation, for object manipulation, and for deciding what to do. The

integration of these competences into a system capable of behaving

on its own, according to Toda's argument, will yield more insights

into the nature of intelligence than looking at fragments of the

complex human mind.

The ``Solitary Fungus Eater'' is a creatureÐin our terminology,

an autonomous agentÐsent to a distant planet to collect uranium

ore (see ®gure 4.1). The more ore it collects, the more reward it will

get. If feeds on a certain type of fungus that grows on this planet.

The ``Fungus Eater'' has a fungus store, means of locomotion (e.g.,

legs or wheels), and means for decision making (a brain) and col-

lection (e.g., arms). Any kind of activity, including thinking,

requires energy, if the level of fungus in its fungus store drops to

zero, the Fungus Eater dies. The Fungus Eater is also equipped with

sensors, one for vision and one for detecting uranium ore (e.g., a

Geiger counter).

The scenario Toda describes is interesting in a number of

respects. Fungus Eaters must be autonomous: They are simply too

far away to be controlled remotely. This autonomy in turn implies

situatedness: Because they cannot be remote controlled, they have

to view the world from their own perspective; that is, the only

information the agent has available is acquired through the sensors

in interaction with the environment. Fungus Eaters must be self-

suf®cient, because there are no humans to exchange their batteries

and to repair them. They must be embodied, otherwise they would

not be able to collect anything in the ®rst place. All this implies

1 This is our own interpretation of his paper; Toda may not agree with it.
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that they must be adaptive, because the territory in which they

have to function is largely unknown. These concepts are funda-

mental to embodied cognitive science, and we now discuss each in

turn.

Before we do so, however, let us ®rst examine another reason

why Fungus Eaters are of particular interest for the study of intel-

ligence, one that relates to evolutionary considerations. Nature

has always produced Fungus Eaters, that is, creatures capable of

surviving in the real world. There are, for example, the single-cell

entities that emerged from the primordial soup 3.5 billion years

ago. Only 550 million years ago, the ®rst ®sh and vertebrates

arrived, insects 450 million years ago. Reptiles came 370 million

years ago, dinosaurs 330, and mammals 250 million years ago. Pri-

Figure 4.1 Toda's Fungus Eater, a complete autonomous agent. The robot is operating on a
distant planet. Its task is to collect uranium ore. It feeds on a certain type of fungus.
It is autonomous (too far away for remote control), self-sufficient (it must take care
of its own energy supply which, in this case, is a particular type of fungus that grows
on this planet, thus the name Fungus Eater), embodied (it exists as a physical sys-
tem), and situated (its knowledge about the environment is acquired through its own
sensory system). In the figure, it is in the process of devouring fungus.
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mates appeared 120 million years ago, the great apes 18 million

years ago, man in its present form only 2.5 million years ago.

Writing was invented less than 5,000 years ago. Based on these

considerations, Brooks (1991a) argues that the really hard part for

nature was to get to the level where creatures could move around

and had sensory abilities. Once that was in place, things became

much simpler. If we do not understand this sensory-motor basis,

we have no chance of ever understanding intelligence. This is

another fundamental reason why we must study Fungus Eaters,

that is, complete autonomous systems.

Self-Suf®ciency

MULTIPLE TASKS AND BEHAVIORS

Self-suf®ciency means an agent's ability to sustain itself over

extended periods of time. This implies that the agent must main-

tain its energy supply. A biological agent must eat and drink.

Moreover, it has to eat and drink the right combination of foods. A

prerequisite of eating and drinking is that the food and drink be

there: Humans have to go to the grocery store or a restaurant; an

animal typically has to look for food in the environment, an activity

called foraging. An agent must also take care of itself; that is, it has

to stay suf®ciently clean, and it has to try not to get hurt. In other

words, it also has to avoid predators. Moreover, it has to get enough

sleep. If these conditions are ful®lled, the biological agent can

engage in activities leading to reproduction. (Note that this de-

scription in terms of tasks is our description as observers. It has

nothing to do with what is going on inside the animal.)

Similar considerations apply to arti®cial systems. A robot, for

instance, has to maintain its battery level, or if it is fuel driven, it

has to maintain a suf®cient fuel supply. To be considered self-

suf®cient, the robot should be able to maintain its energy supply

without external human intervention. Thus, a robot running off a

power cable is not self-suf®cient. A robot should also maintain a

certain operating temperature. If it gets too hot or too cold, it might

be damaged. Moreover, it should not bump into things, and it

should avoid perils. In addition, robots are always designed for a

particular task, or several tasks. They have to clean a factory ¯oor,

vacuum a carpet, mow a lawn, deliver mail in an of®ce, collect soda

cans, give tours of a university institute, and so on. Hence, agents
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in the real world, be they animals or robots, always have to engage

in multiple behaviors. From an observer's perspective, we can say

that they are able to perform multiple tasks.

TRADE-OFFS AND DEFICITS

In the real world, there are always trade-offs. If a robot is collecting

soda cans or food or cleaning a park, it always expends energy. So

at some point, it must replenish its energy resources; that is, it must

go to the charging station and plug itself into an outlet. While doing

that, it cannot collect soda cans: It must remain at the charging

station until its energy supply is suf®ciently high again. So there is

a trade-off: Doing one thing implies not being able to do another.

Note that losing energy while collecting soda cans or mowing a

lawn is a given, determined by the physics of the agent: It will

happen without the agent's knowing about it. If a cleaning robot is

recharging, the of®ce space gets cluttered with soda cans or the

grass keeps growing without the robot's doing anything about it:

Remember, the real world has its own dynamics. If it remains at the

charging station for a long time, enough soda cans might have

accumulated so that it is no longer possible for the robot ever to

collect all of them again. Or, to put it differently, it has incurred an

irrecoverable de®cit. Another way of de®ning self-suf®ciency, then,

is as follows: An agent is self-suf®cient if it can avoid irrecoverable

de®cits. In nature, evolution has ``solved'' this problem, but robot

designers must explicitly deal with it. Figure 4.2 shows a robot that

has incurred an irrecoverable de®cit.

CIRCADIAN CYCLES

Natural environments have circadian cycles: environmental con-

ditions that change over one day, such as lighting conditions, tem-

perature, or humidity. Similarly arti®cial environments often

have cycles: day-night cycles, or cycles in the frequency of people

attending a place (coffee rooms are attended more during day time

than at night), and so forth. Conditions for certain types of tasks are

usually better during one segment of the cycle than during another.

For example, an agent equipped with vision is better off during the

day, whereas one with infrared (IR) sensors is better off at night, for

the following reason. IR sensors are active sensors: They send out

an IR signal and measure the intensity of the re¯ected IR light, a

process that works well in the dark. By contrast, a robot equipped

only with IR sensors has trouble during the day. Daylight contains
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a certain amount of IR light, which may cause interference with

the re¯ected IR light. For the robot in ®gure 4.2, soda cans typi-

cally accumulate more quickly during the day. The target for a self-

suf®cient agent is always based on a circadian cycle: It should not

incur a de®cit over one cycle. If it does, then the de®cit is likely to

increase inde®nitely, because the following day will typically bring

an additional de®cit. The concept of circadian cycles has not been

widely used in embodied cognitive science and will not be further

elaborated.

THE PROBLEM OF BEHAVIOR CONTROL

Complete systems always have several behaviors in which they

must engage. Some of the behaviors will be compatible, others

mutually exclusive. Because not all behaviors are compatible, a

decision must be made as to which behaviors to engage in at each

point in time. This is the problem of behavior control.

The most straightforward solution to this problem is to assume

that there is an internal module or representation for each observed

behavior category. For example, if we observe that a rat (or a robot)

is following a wall, we might postulate that it has an internal mod-

ule or a representation for wall following. Such a representation is

often called an action. Because there are always multiple actions an

agent has to engage in, to control behavior under this assumption,

Figure 4.2 Robot incurring an irrecoverable deficit. Because the robot has been sitting at the
charging station for too long, the soda cans have piled up in the meantime to a level
where the robot is no longer capable of removing them all, even if it were to spend all
of its ``spare time,'' that is, all of the time it has available when not at the charging
station, on can collecting. This robot is not self-sufficient.
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you need a mechanism for deciding which action to choose for

execution at any given point in time, that is, which internal module

to excute. In other words, you have to solve the action selection

problem.

The problem with this approach to behavior control is that the

assumption of a straightforward, one-to-one mapping from a spe-

ci®c behavior to a speci®c internal action does not re¯ect what

actually occurs in natural systems. (Even the concept of an internal

action represents an assumption.) To illustrate this point, let us

look at an example. Assume that you are sitting in the cafeteria

talking to a friend. Your friend has to attend a class and you are

trying to describe his behavior. He gets up and starts moving

toward the exit, avoiding chairs, tables, and people who stand

around. To describe his behavior, you may want to use terms like

``avoiding a chair,'' ``going toward the exit,'' or ``going to class,''

implying that you somehow carve up your friend's behavior into

distinct segments. There are two issues of which to be aware: First,

the segmentation of an agent's behavior is observer-based and

largely arbitrary. For example, you could also choose a more ®ne-

grained segmentation such as ``getting up from chair,'' ``moving left

leg forward,'' ``moving right leg forward,'' and so forth. Not sur-

prisingly, segmentation of behavior is a notorious problem in psy-

chology and ethology. For empirical purposes such a segmentation

obviously has to be made, but we need then to make explicit that

we are talking about purely observer-based categories. Second, it is

not appropriate to conclude that for each of these behavioral seg-

ments there is an internal module.

There are mechanisms for behavior control, however, that do not

require the existence of internal actions. Chapter 6 discusses an

example, Braitenberg vehicles. In fact, we think that the problem of

behavior control should be approached differently than described

above. This follows from one of our design principles, the principle

of loosely coupled, parallel processes (see chapters 10 and 11).

Autonomy and Situatedness

We have been using terms like ``autonomous agents'' and ``autono-

mous mobile robots.'' In this context, autonomy generally means

freedom from external control. Autonomy is not an all-or-nothing

issue, but a matter of degree. Complete, total autonomy does not

exist; no agent is totally autonomous. It always depends to some
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degree on external factors, factors beyond the agent's control. There

are two aspects of autonomy here: dependence on the environment

and dependence on other agents. Organisms depend on the envi-

ronment for food, drink, oxygen, building materials, and the like. If

agents are not capable of acquiring these resources on their own,

they depend on other agentsÐthey are less autonomous.

The main difference between dependence on the environment

and dependence on other agents is that we do not attribute inten-

tions to an environment, whereas an agent may want another agent

to do certain things. Most parents want their children to do their

homework and to perform well in school. We know, however, that

parents have only a limited in¯uence on their children: The latter

have some degree of autonomy. The same holds for animals. We

can get horses to do certain things we want them to do. But as

the saying goes, ``You can lead a horse to the water but you can't

make him drink,'' again implying that the horse does have a certain

degree of autonomy. So, in general, agents can be in¯uenced, and

they depend on others, but they are not completely controllable, as

®gure 4.3 illustrates.

From this discussion it becomes clear that when we use the term

``autonomous agent,'' we mean an agent that has a certain degree of

autonomy. It is not the case that an agent is either fully autonomous

or not at all. From our discussion of self-suf®ciency, it should be

evident that self-suf®ciency increases an agent's degree of auton-

Figure 4.3 A horseback rider trying to control his horse. He is trying to force his horse to drink,
not very successfully. The rider does exert some influence on the horse, and the
horse is dependent on the rider for some things, but the horse is also to some
degree autonomous. This is why the adage that ``you can lead a horse to the water
but you can't make him drink'' has the ring of truth to it.
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omy, because a self-suf®cient agent does not depend on another

agent for its energy supply. The extent to which one agent can

control another depends on the controlling agent's knowledge of

the state and the internal mechanism of the agent to be controlled.

The more precisely parents know what their children feel and

think, the better they can in¯uence them toward desired behaviors.

One important reason that humans have only a very limited degree

of controllability is that they have their own history, which is not,

or is only indirectly and to a very limited extent, accessible to

others.

Controllability and the capability of acquiring one's own history

are correlated: The more an agent can have its own history, the less

controllable it will be. The less parents know what their children

do and what sorts of experiences they have, the less they know

about what they feel and think. If they knew everything about them

(including their reaction to all types of events)Ðwhich, of course,

is impossibleÐthey could easily make them do whatever they

wanted, simply by manipulating the consequences of the children's

actions according to what they knew the children's reactions would

be. Because parents actually have only limited knowledge of their

children's reactions, they have only limited control over them.

Abstractly speaking, if the controlling agent (A) has access to the

controlled agent's (B) internal state, and if he knows the laws by

which the state of B can be in¯uenced, A can control B completely,

that is, A can get B into whatever state A wants B to be in. The less

knowledge A has about B's internal state, the less A can control B.

Thus, autonomy is not so much a property of an agent as a property

of the relationship between agents (i.e., what one agent knows

about the other). Stated differently, B has a certain amount of

autonomy relative to A, and the amount of B's autonomy isÐ

qualitatively speakingÐinversely proportional to the amount of

knowledge A has about B's internal state.

This property can be translated to robots. If a robot is equipped

with a learning system, it can have its own experiences; that is, it

can acquire its own knowledge over time. Note that this requires

the agent to be situated. Recall the notion of situatedness from

chapter 3: An agent is situated if it acquires information about its

environment only through its sensors in interaction with the envi-

ronment. A situated agent interacts with the world on its own,

without an intervening human. It has the potential to acquire its

own history if it is equipped with the appropriate learning mecha-
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nisms. Such an agent is potentially more autonomous than its

preprogrammed, purely reactive counterpart. One implication of

learning is that if the agent, after learning, encounters the same sit-

uation it has previously encountered, it will react differently than

earlier on. Thus the more the agent has learned in the meantime,

the more experiences of its own it has had, the less it will do the

same as before, and thus, the less another agent will be able to

control it, because its internal state will have changed, and the

second agent will now have less knowledge of its internal state

than it did previously. From this we can conclude that if we are

interested in building autonomous agents, we must design them

with learning components, because the capacity to learn increases

an agent's autonomy. An agent's degree of autonomy can, in prin-

ciple, be further increased by applying evolutionary methods

(described in chapter 8). If he designs a robot not directly but via an

additional evolutionary process, the designer has less control over

how the robot will work and how it will behave in a particular sit-

uation. Applying evolutionary techniques often makes it dif®cult

for designersÐand for other agents in generalÐto understand why

the agent is doing what it is doing; as the agent evolves and

acquires its own history, it is progressively more dif®cult for the

designers to understand (and manipulate) its behavior. Evolution

makes the agent more independent of designers, and therefore

evolved agents have the potential for higher levels of autonomy.

Embodiment

Autonomous agents are real physical agents; in other words, they

are embodied. Because we have talked so far exclusively about

biological agents (humans or animals) or about robots, it has been

implicit that the agents of interest have to be embodied. Embodi-

ment has proven to be an essential characteristic whose impor-

tance can hardly be overemphasized. A fundamental consequence

of embodiment is that embodied agents must interact with their

environments. To understand this interaction, we have to study, for

example, how organisms acquire experience: knowledge about

the environment obtained by interacting with it. This is one of the

hardest problems in the study of intelligence. The vast research

®eld of perception is devoted to elucidating the underlying mech-

anisms and processes.

Embodiment implies that the agent is continuously subjected to

physical forces, to energy dissipation, to damage, in general to any
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in¯uence in the environment. On the one hand, this complicates

matters considerably. On the other, this often leads to substantial

simpli®cations, because advantage can be taken of the physics

involved. It has been demonstrated, for example, that walking

robots can be built that require no electronic control: They are

entirely brainless machines, their actions governed totally by the

laws of physics.

The focus on embodied agents often leads to surprising insights,

and throughout the book, we provide examples of such insights.

We discuss embodied perspectives on learning, categorization,

perception, memory, and sensory-motor processing. As the name

of the ®eld indicates, embodiment is at the core of embodied cog-

nitive science. It is one of the central constituents in Brooks's

(1991a,b) approach, which he called ``embodied intelligence.'' The

idea that intelligence can emerge only from embodied agents is one

of the fundamental assumptions of embodied cognitive science.

(For other perspectives on embodiment see, for example, Lakoff

1987 and Varela, Thompson, and Rosch 1991).

Adaptivity

CHARACTERIZATION AND DEFINITION

Adaptivity is really a consequence of self-suf®ciency. If an agent is

to sustain itself over extended periods of time in a continuously

changing, unpredictable environment, it must be adaptive. Re-

member that several of the de®nitions of intelligence given in

chapter 1 alluded, in one way or another, to the concept of adap-

tivity, that is, the ability to adjust oneself to the environment. Thus,

adaptivity and intelligence are directly related.

By adaptation, we mean that some structure is maintained in

changing environmental conditions. Ashby (1960) used the term

``homeostasis,'' meaning that certain variables, the essential vari-

ables, remain within given limits (®gure 4.4). Within those limits the

organism can function and stay alive. This is called the ``viability

zone'' (Meyer and Guillot 1990).

KINDS OF ADAPTATION

The term ``adaptation'' has various meanings and is used in dif-

ferent ways by different people. In our discussion, we follow

McFarland (1991):
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Biologists usually distinguish between (1) evolutionary adaptation,

which concerns the ways in which species adjust genetically to

change in environmental conditions in the very long term; (2)

physiological adaptation, which has to do with the physiological

processes involved in the adjustment by the individual to climatic

changes, changes in food quality, etc.; (3) sensory adaptation, by

which the sense organs adjust to changes in the strength of the

particular stimulation which they are designed to detect; and (4)

adaptation by learning, which is the process by which animals are

able to adjust to a wide variety of different types of environmental

change.'' (p. 22)

Here are a few illustrations of the types of adaptation McFarland

discusses (see also McFarland 1991):

1. Evolutionary Adaptation: An illustration of evolutionary adapta-

tion is the peppered moth (Biston betularia). Originally these

moths were light in color, which made them well camou¯aged

against lichen-covered, light-colored trunks of trees. In regions that

became industrialized, industrial smoke darkened the tree trunks.

Gradually the peppered moth population in industrial areas became

predominantly composed of a dark variety, which was well cam-

ou¯aged against the dark trees.

2. Physiological Adaptation: Many species can adapt to changes in

environmental temperature: sweating, in man, is an example of

adapting to heat changes.

Figure 4.4 Adaptivity. The figure shows the viability zone (enclosed area) between two variables
V1 and V2 (e.g., level of blood sugar and body fluid). Within this zone, the agent can
stay alive and function. The solid arrow marks the agent's trajectory, that is, the de-
velopment of the two variables over time. At point B, there is a danger that the agent
might leave the viability zone (marked by the broken line) if it does not act. The agent
is adaptive because it takes corrective action to prevent itself from leaving the via-
bility zone. (Adapted from Meyer and Guillot 1991.)
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3. Sensory Adaptation: If we are in a dark room and then the light is

turned on, the eye adjusts to the change in a sensory stimulus, light

intensity, by changing the diameter of the pupil.

4. Adaptation by Learning: This is a very general form of adaptation

and is exploited in many ways. Animals can learn which food is

most nutritious, where food can be found, which place gives the

most shelter, and so forth.

Note that these different kinds of adaptations work on different

timescales. Typically, sensory adaptation is the quickest, whereas

evolutionary adaptation takes many generations. In this book, we

focus mainly on adaptation by learning and through evolution.

Ecological Niches and Universality

DEFINITION

If we look at biological agentsÐanimalsÐwe ®nd that they require

a particular kind of environment for survival that is suited to satisfy

their needs. Such an environment is called an animal's ``ecological

niche''. Wilson (1975) de®nes ``ecological niche'' as follows: ``The

range of each environmental variable such as temperature, humid-

ity, and food items, within which a species can exist and repro-

duce'' (p. 317). It should be added to this de®nition that niche

occupancy by a particular species usually implies competition.

Different occupants of the niche compete for the same resources

like food and space.

In nature, there is no such thing as a ``universal animal.'' Ani-

mals (and humans) are always ``designed'' by evolution for a par-

ticular niche. (We put the term ``designed'' between quotation

marks to indicate that it is meant metaphorically: Evolution does

not have a particular design goal.) Agents behave in the real world.

As we pointed out, they always require certain conditions for their

survival. A robot always requires some kind of energy source. It

must be equipped with sensors and effectors in order to perform its

task in a particular environment, or more precisely, in a particular

ecological niche. To take the earlier example, if the robot has to

work at night, it may be better to equip it with IR devices rather

than with vision sensors. So, the idea of an ecological niche holds

for robots as well (focus 4.1). It follows that there can be no uni-

versal robot, because the robot must perform in the real world,

which consists of many varied environments to which a particular
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Focus 4.1: A Market View of Robot Adaptation

David McFarland (1991), a leading ethologist and head of the animal robotics
group at Oxford University, proposed an enjoyable analogy between ecological
niche in animals and market niche in robots: ``Niche occupancy usually
implies competition. When animals of different species use the same
resources or have certain preferences or tolerance ranges in common, niche
overlap occurs. This leads to competition between species, especially when
resources are in short supply'' (p. 24). Just as animals occupy biological
niches, robots occupy market niches: they are toys, cleaning robots, or
whatever. A cleaning robot has to compete with human cleaners and other
cleaning machines. The customer evaluates the performance of the robots and
selects the ones that best fill his or her needs. This induces selective
pressures which, in the end, determine whether a robot will ``survive'' in the
marketplace. Table 4.1 provides an overview of the analogy between animals
and robots (adapted from McFarland 1991, p. 24).

Table 4.1 Analogies between animal and robotic life cycles (from McFarland, 1991, p. 24).

Biology (Animal) Market (Robotic)

Return on investments Number of offspring Gross sales income assuming
no failures

Reproductive probability Chance of juvenile
surviving to breed

Chance of product reaching
the market

Development period Age at breeding Development cost

Design success
(Rate of return)

Net rate of increase
of genes (Fitness)

Net rate of increase of money
invested in design
( Instantaneous interest rate)
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Figure 4.5 A robot designed for a particular ecological niche: (a) The desert ant Cataglyphis,
(b) its niche, and (c) its navigation behaviorÐsearching for food in a winding path,
returning to the nest in a straight line; (d) the entire robot; and (e) the polarized light
sensor module it uses for navigation. The Sahabot II (for Sahara Robot II) has to
operate in the Sahara Desert. Because its ecological niche is the desert, this robot is
equipped with polarized light sensors and an onmidirectional camera (see figure
16.1). The robot is used for experiments to investigate the navigation behavior of
CataglyphisÐmore specifically, to evaluate different models of acquiring compass
information from the polarized light pattern of the sky, and to test different models
of visual landmark navigation. (Figures a, b, c by RuÈdiger Wehner; reprinted with
permission.)
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robot may or may not be suited. Figure 4.5d shows an example of

a robot, called the Sahabot (for Sahara Robot) designed for a

very special ecological niche, the Sahara desert (®gure 4.5b). The

Sahabot was developed to investigate the navigation behavior of

the desert ant Cataglyphis (®gures 4.5a and 4.5c).

This nonuniversality is quite in contrast to computation. As dis-

cussed earlier, computation is universal: Turing machines are the

only machines that need to be studied. This is, of course, only

possible because computation, by de®nition, takes place in a vir-

tual world. And universality holds only in this virtual world.

Computers are sometimes said to be universal, universal in the

world of computation. If we look at computers as real machines,

they depend very much on their environments. They need a con-

tinuous supply of electricity, they must be handled by their users

with care, they must not be exposed to too much heat, and so forth.

In that sense, computers, just like any other artifact, are designed

for a particular ecological niche. Of course, some robots can exist in

more different types of environments than others, so their niche is

broader, but it is still there.

The fact that agents in the real world are not universal but have

to function in a particular niche sounds like a severe restriction.

But there is a lot of leverage to be gained by it, too. The fact that the

ecological niche is restricted and has its own laws and character-

istics, its types of objects, its types of agents, its temperature pro®le

(i.e., how temperature changes over time), its lighting conditions,

and so forth, can be exploited. Assume, for example, that in a par-

ticular niche only large objects are relevant. Then there is no need

for a high-resolution sensor for distinguishing really small objects.

If the niche is ¯at, wheels are suf®cient. Often, learning problems

that seem intractable at the purely computational level converge in

real time if the constraints of the ecological niche are exploited. For

example, if all objects of interest have a bilateral symmetry, as

many living beings, this implies that learning can be restricted to

one side, cutting computational costs in half. However, as always,

there is a trade-off: The more constraints we exploit in our designs,

the less universal the agent is. We return to this issue in chapter 13

when we discuss the principle of cheap design.

CHARACTERIZING NICHES

If we want to exploit the constraints of an ecological niche system-

atically, we also need a systematic characterization of niches, a
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kind of taxonomy. Coming up with such a taxonomy, as it turns

out, is not nearly the trivial matter it would ®rst appear, because

such chacterizations have to be made with respect to a particular

agent, to its sensors and its motor system. Only those properties of

environments matter that are behaviorally relevant. For example, to

an ant, small pebbles, twigs, and puddles are behaviorally relevant

Ðit can sense them and avoid themÐwhereas to an elephant, they

are notÐits sensory-motor system is not suf®ciently ®ne-grained.

Intuitively, one important distinction is whether the environment

is static or contains objects that move on their own, such as other

agents. Another concerns the size of objects, the distribution of

food, circadian cycles, the roughness of the terrain, and so forth.

Although such a taxonomy would clearly be important, it has so

far resisted efforts to create it. Only a very few papers have even

ventured into this topic area. One approach is to de®ne environ-

ments by the constraints they satisfy. Horswill (1992) identi®ed a

number of ``habitat constraints.'' One example is what he de®ned

as the ``background texture constraint.'' If the carpets or ¯oors in

a building have only ®ne-scale texture, from a distance, the ¯oor

appears uniform. If the illumination is uniform, then the areas of

a camera image that correspond to the ¯oor should have uniform

brightness. Any deviation from this uniformity must therefore be

an object. Horswill also de®ned the ``ground plane constraint.'' An

environment satis®es the ground plane constraint if all objects

in the environment, including the agent, rest on a single planar

surface. Obviously, exploiting these constraints enormously sim-

pli®es vision processing. Of®ce environments usually satisfy both

of these constraints, as do some home environments, though some

will have more textured grounds. We return to these constraints in

chapter 10.

Another approach to classifying niches is to de®ne environments

by the predictability of the results of actions within the environ-

ment. Certain environments are more predictable than others; the

less predictable an environment, the harder it is to design an agent

for it. Thus, it would clearly be desirable, from the agent's point of

view, to be able to characterize environments in terms of their pre-

dictability. (For more detail on this approach, see Wilson 1991.)

The important factor in characterizing an environment is that it be

done not in isolation, but with respect to an agent's complexity. We

have more to say about this topic in chapter 13, where we discuss a

particular measure of complexity.
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In sum, for our purposes we use the terms ``complete agent'' and

``Fungus Eater'' to mean autonomous, self-suf®cient, situated,

embodied, agents designed for a particular ecological niche.

4.2 Biological and Arti®cial Agents

From our characterization of complete agents, it should be obvious

that biological agents, animals and humans, ful®ll all the criteria we

set out: They are self-suf®cient, autonomous, situated, embodied,

and they are designed for a particular ecological niche. This is not

surprising: The characterization was developed to explain natural

intelligence. If creatures, including humans, had not met these cri-

teria, they would not have survived in the ®rst place.

Every psychologist, every biologist, in fact everyone in cognitive

science, recognizes that in the best case, one would investigate

complete agents and all their behaviors. However, from a method-

ological perspective it is not possible to study, for example,

humans in all their intricacies. Thus, we must cut the problem

down into manageable chunks. So even if we endorse a complete-

agent view, we must make simpli®cations. The question, therefore,

is not whether to make simpli®cations, but how to make them. In

contrast to the classical way of modeling, in the embodied

approach, the agents are ``cut up'' in a different way. An excellent

illustration is the subsumption architecture that we discuss in

chapter 7. The important point to be made here is that whatever

aspect of intelligence we investigate, we must keep the entire agent

in mind. This is not always easy to do, but it represents an essen-

tial design principle. It is summarized as design principle 1, the

complete-agent principle, in chapter 10.

Our methodology for studying naturally intelligent systems is

synthetic, meaning that we have to build arti®cial agents to mimic

natural ones. The remainder of this chapter develops a basic

framework for designing arti®cial agents.

Arti®cial Agents

In chapter 1 we mentioned three goals that we may want to pursue

when building arti®cial agents:

1. building an agent for a particular task or a set of tasks

2. studying general principles of intelligence
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3. modeling certain aspects of natural systems, that is, humans or

animals

Goal (1) is from the engineering perspective, goals (2) and (3) per-

tain to cognitive science. All three goals are intimately related. In

particular, goals (1) and (3) contribute to goal (2). We discuss these

goals in more detail in chapters 16 and 17 when we discuss how to

design and evaluate the agents we have built. For now we simply

provide, as a very cursory review, a few examples illustrating goals

(1) and (3), with the intention of providing an idea of what agent

models can be used for.

The arti®cial agents we will design and study are of two types,

robotic agents and simulated agents. Both are important tools.

Some researchers have a preference for robots, others for simula-

tion. We argue that both are needed, depending on the particular

purpose of investigation.

ROBOTIC AGENTS

We now discuss a number of robots developed for various pur-

poses. Let us ®rst look at an example that illustrates the goal (1)

above, the Mars Sojourner. Even though it was developed for a

particular set of tasks (conducting experiments and collecting data

on Mars), it nicely illustrates some of the fundamental issues such

as autonomy, self-suf®ciency (goal 2). We then turn to a few exam-

ples from biology to illustrate goal (3): cricket phonotaxis and

human development and cognition.

Mars Sojourner

The Mars Sojourner has recently received a lot of attention in the

media. Though today's robotic agents, in contrast to biological

agents, do not ful®ll all the criteria for complete agents that we set

forth in section 4.1, the Sojourner comes relatively close. It is

obviously embodied: It is a physical robot equipped with sensors

and means of locomontion (wheels). It is self-suf®cient, that is, it

has to worry about its own energy supply: There is no human to

exchange its batteries. It is also situated: The only means it has for

acquiring information about its environment is its own sensory

system. Further, it has a certain degree of autonomy, at least during

real-time operation, though its autonomy is very limited, because

most of its decisions are made by the mission control staff in the Jet

Propulsion Lab in Pasadena. For instance, the ground staff decides
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on what task the Sojourner is to execute next, what area it has to

explore, what data it has to collect, and what pictures it should

take. Focus 4.2 discusses the Mars Sojourner in more detail.

Cricket Phonotaxis

In chapter 1 we mentioned a robot built to model the phonotactic

behavior of crickets (®gure 1.10). Remember that by phonotaxis we

mean those processes by which animals move toward a sound

source, in this case the calling song of a potential mate. Our

description here is short, just suf®cient to make our point. (For

details, see Webb 1993, 1994). Male crickets produce a particular

sound by rubbing one wing against the other. Females can ®nd a

male by this cue over distances of 20 meters through rough vegeta-

tion. One would think that the cricket would need mechanisms for

distinguishing the sound from the songs of other species and for

analyzing the direction from which the sound is coming. It turns

out that this is unnecessary because of the way phonotaxis works

(Webb 1993). Instead of using a neural mechanism for recognizing

the male's calling song, or an information process, the cricket uses a

physical mechanism. Through this physical mechanism the irrele-

vant parts of all the sounds present in the environment are ®ltered

out, so that only the ones concerning the calling song of the mate

are registered by the cricket. Thus, without ``analyzing'' the sound,

the cricket reacts only to the appropriate songs. This is an example

of what biologists call ``matched ®lters.''

Webb's robot that models this phonotactic process in crickets has

no legs and but two wheels. From this example it becomes clear

that however close one tries to mimic a natural system, abstractions

will always have to be made. This statement is generally true of

models of any sort. Whether one considers Webb's model a valid

one is a matter of the criteria to be applied and what one is inter-

ested in. Webb was particularly interested in the sensory-motor

coupling and the theoretical question of the inseparability of per-

ception from action. (We discuss how to evaluate models in

chapter 17.)

Other examples of how robots are used to investigate biological

agents are Franceschini's house¯y navigation robot (Franceschini

et al. 1992), and Lambrinos's ant navigation robot (Lambrinos et al.

1997; ®gure 4.5). Like Webb, these researchers have also made sig-

ni®cant abstractions in constructing their robot models. For exam-

ple, their robots are wheeled and much bigger than real insects.
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Focus 4.2: SojournerÐThe Mars Microrover

On December 4, 1996, NASA launched the Mars Pathfinder spacecraft from
Kennedy Space Center. The spacecraft landed on Mars on July 4, 1997, and
released Sojourner (figure 4.6), the first robotic roving vehicle to be sent to
Mars. Sojourner is named after Sojourner Truth, an African-American
reformist who lived during the Civil War; the name was chosen because it
means ``traveler.'' Sojourner was built at the Jet Propulsion Laboratory of the
California Institute of Technology in the southern California city of Pasadena.
Sojourner's main function is to demonstrate that small mobile robots can
actually operate on Mars. Sojourner is designed to conduct various science
and technology experiments. For example, its cameras were used to take
images from which a map of the landing site was constructed. Sojourner is
unique not only because it is the first robot sent to Mars, but also because its
total cost of development was only 25 million, a very low cost compared to
that of previous interplanetary spacecraft, and also because its total
development time was only three years.

Sojourner weighs 11 kg on earth and is 630 mm long and 480 mm wide.
The ecological niche on Mars is a very rocky, uneven surface, and one major
task of the NASA engineers was to equip the robot with means to operate in
such a difficult environment: The robot therefore has six wheels instead of
four: Six-wheeled robots can overcome obstacles three times larger that those
that can be crossed by four-wheeled robots. Sojourner moves on its six

Figure 4.6 A picture of the Mars Sojourner (credit: NASA/JPL/CALTECH).
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Focus 4.2 (continued)

wheels in a radius of about 10 meters around the spacecraft at speeds up to
0.6 meters per minute. Moreover, Sojourner's wheels and suspension system
are built in such a way that the robot can tip up to 45 degrees as it climbs over
rocks without falling over. Sojourner is equipped with a large number of
sensors for detecting obstacles and hazards. Onboard sensors include simple
bumper sensors for collision detection; cameras for imaging, distance
calculations, and identification of target objects; accelerometers for hazard
detection; and devices for measuring the speeds of the wheels (wheel
encoders) that are used for estimating distance traveled.

Communication with the microrover, which is the general name for a robot
of Sojourner's type, is accomplished via a radio communications system. The
robot operates in a kind of supervised autonomous control. It receives remote
commands from engineers on Earth instructing it where to go next.
Commands are generated as follows: The camera system on the Pathfinder
takes images of the robot. These images, together with additional images from
the robot's cameras, are displayed on a computer at the control station on
Earth. The engineers can designate goal locations on these displayed images.
The robot then receives commands in the form ``Go . . . ,'' which it executes
autonomously while simultaneously avoiding obstacles and hazards.
Communication with the robot does not occur in real time because it takes
about 11 minutes for a signal to travel from Earth to Mars. This means that
after the engineers have sent the instructions for the next goal location, the
robot navigates there autonomously, that is, without human intervention. But
it still has a very limited autonomy.

Like that of every other robot, Sojourner's equipmentÐcomputers, motors,
communication system, sensorsÐrequires power. The robot generates most
of its power by means of a solar array that provides about 16 watts of power
at noon on Mars, allowing the robot to perform most of its required tasks. In
addition to this solar array, the robot is equipped with batteries that are
needed when there is insufficient sunlight for the solar array to provide
adequate power. Once depleted, these batteries cannot be recharged. Thus,
redundancy has been built into the robot's power system: Should either the
batteries or the solar array fail, the robot can still complete its tasks using the
other power source. As discussed in Chapters 10 and 13, redundancy in
design is very important. More detail on the Mars Sojourner can be found in
Matijevic 1996 and Stone 1996.
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Human Development and Cognition

Whereas some people would agree that robots can be used to model

aspects of insect behavior, there is general skepticism that this

can be done for human intelligence. However, a number of recent

projects are highly promising. An ambitious approach is the Cog

project at the MIT Arti®cial Intelligence Laboratory (e.g., Brooks

and Stein 1993). The main goal of the Cog project is to study devel-

opmental processes from the very beginning by focusing on the

sensory-motor aspects of intelligence using a complex humanoid

robot. (Details of the project are given in chapter 7.) Experiments

by Scheier and Pfeifer (Scheier and Pfeifer 1995; Pfeifer and

Scheier 1997) demonstrate category-learning capabilities on robots

interacting with the real world. Scheier and Pfeifer's working hy-

pothesis is that ``high-level cognition'' can be achieved by having

many, largely peripheral processes working simultaneously with-

out central integrating mechanisms. This strategy is now pursued

by a number of research labs around the world. (These experi-

ments will be discussed in greater detail in chapter 12.) Yasuo

Kuniyoshi, a leading robotics researcher at the Electrotechnical

Laboratory in Tsukuba, Japan, near Tokyo, ventured to build a full-

featured humanoid robot to conduct experiments on human devel-

opment. The project is in its initial stages but holds great promise

(e.g., Kuniyoshi and Nagakubo 1997). The point here is that just

as it is possible to use robots to model insect behavior, we can

use them to model human behavior. But the simpli®cations and

abstractions are of a different nature (see chapters 16 and 17 for

more detail).

Conclusions

None of the robots discussed in this section ful®lls the criteria of a

complete agent as discussed in section 4.1. The Mars Sojourner

comes closest, but the Sojourner's autonomy is extremely limited:

It is, in fact, deliberately kept within limits to minimize risk. Still,

all the robots discussed in this section are, by the very fact that they

are robots, embodied. They are also situated, in the sense that they

interpret their environments from their own perspective. Some do

have a certain level of autonomy: They are equipped with learning

mechanisms that enable them to acquire their own history. They

are not entirely preprogrammed. Their behavior depends on the

situations they have encountered in the past. Finally, they are self-

suf®cient; only to a very limited extent. We believe that all the

robot studies mentioned are highly valuable and provide impor-
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tant insights, but we also see a need to investigate more complete

agents.

SIMULATED AGENTS

It is, in principle, possible to simulate any physical process on a

computer. As a consequence, it is possible to simulate any physical

robot whatsoever: There are no restrictions. Let us look at some

examples of such simulated agents.

Insect Walking

Randy Beer, a computer scientist with a strong interest in biology,

developed a model of insect walking in simulation (Beer 1995) and

used arti®cial evolution to study what sorts of gaits would evolve.

He made many simpli®cations in his model. For example, the legs

he employed were sticks without mass; that is, they had only one

joint. Elasticity in the joints, friction, energy dissipation, and the

like were ignored. In spite of these simpli®cations, Beer's simulated

insect evolved to the point that it walked with very natural gaits

that can be found in biological insects. Other agent simulation

studies on insect walking have been conducted by prominent

German biologist and neuroethologist Holk Cruse at the Center for

Interdisciplinary Research in Bielefeld (e.g., Cruse et al. 1996).

Ant Navigation

Not only insect locomotion has been studied, but also insect navi-

gation: how insects ®nd their way to a food source and back. A

famous example of simulation that took into account the situated

character of the agent is the ``snapshot model'' by Cartwright and

Collett (1983). The hypothesis to be tested in the models is that the

insects, as they leave the nest, take some sort of image, a snapshot

of their environment, to be used on their way back. The image is

called a snapshot because it is thought to be relatively unprocessed.

This idea is currently being vigorously debated.

Locomotion in Fish

Demetri Terzopoulos and his research group of the University of

Toronto were interested in complex computer animations that

would feature lifelike animals, such as, for example, ®sh. To

achieve natural-looking movement, they decided to simulate not

only the movements of the ®sh itself, but its physical interaction

with the environment, the ¯uid dynamics as the ®sh is moving its

body and its ®ns (Terzopoulos, Tu, and Grzesczuk 1994). More-

over, they modeled visual perception from an entirely situated
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perspective. The movements achieved in this way look remarkably

natural (see chapter 8). In the ®eld of arti®cial life, agent simu-

lations are very common.

Humanoid Interaction

The humanoid robot of Kuniyoshi mentioned earlier not only is

being built as a physical robot, but is also being tested in simulation

before the robot is constructed. This combined philosophy is used

in many projects and is highly productive. Kuniyoshi and his

colleagues have made a great effort to capture the dynamics (i.e.,

the physical forces) and not only the geometry (Kuniyoshi and

Nagakubo 1997) of movement. Many simulations of robotic systems

neglect dynamics or do not take them suf®ciently into account.

Arti®cial Creatures

Simulated agents from the class of arti®cial life agents are used

in studies of goal (2) discussed above, that is, to investigate prin-

ciples of intelligence. Karl Sims has created a number of fasci-

nating arti®cial organisms (Sims 1994a, 1994b). Not intended to

mimic speci®c natural organisms. Sims' creatures ``live'' in a

simulated physical environment: There is gravity, so the creatures

have a certain weight, and there is friction. Moreover, similar to

Terzopoulos's ®sh, ¯uid dynamics is modeled for creatures living

in water. This environment is independent of the creatures them-

selves, which gives the simulation the strong ¯avor of real agent-

environment interaction. This kind of simulation is becoming

increasingly popular in virtual reality settings. We give a detail

account of Sims' creatures in chapter 8, on evolution.

Real-World Robotic Agents and Simulated Agents

Our main interest in building autonomous agents is ultimately to

improve our understanding of intelligence. There is an ongoing

debate whether in order to achieve this goal, one can work with

simulations or whether it is necessary to build real robots. To pro-

vide a short answer: Both are needed. The pros and cons are listed

in table 4.2. At ®rst sight, it seems best to use simulation because

simulation is fast, cheap, and ¯exible. Closer inspection, however,

reveals that a physically realistic simulation, which is often

required, for example, when the results are to be tested on a real

robot, is extremely hard to develop. Let us illustrate this point with

two examples.
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Table 4.2 Comparison of real robotic and simulated agents.

Criterion Robotic agents Simulated agents

PHYSICAL SYSTEM

Agent Must be physically built and
run; great potential for
breakdowns, slow, cannot be
run in the absence of
experimenter

Arbitrary number of copies
can be produced; well-suited
for systems involving many
agents and arti®cial
evolution; functions reliably
even in the absence of the
experimenter

Physical environment Given; environment has its
own dynamics

Everything must be taken
into account by programmer;
often hard to simulate;
realistic simulations
computationally expensive

Sensors Given; no idealizations, no
``cheating''; often
unanticipated effects occur
(interference, re¯ectory
properties of surfaces,
drastic changes in intensity)

Sensors hard to simulate
realistically; idealized
sensors common, e.g.,
distance, object or agent
recognition

Motor system Dynamics given; complex
ones hard to build and hard
to control; imprecisions

Dynamics hard to simulate
realistically

Dynamics in general Given; exploitation of
dynamics necessary and
natural (cf. the passive
dynamic walker, chapter 13)

Hard to simulate; often
ignored in simulations;
dynamics often not exploited

RESEARCH

Emergent phenomena Inde®nite richness of
physical environment offers
great potential for emergence

Emergent phenomena
frequent, but limited to basic
speci®cation present in
simulation

Effort required Can be considerable;
experiments take a long time;
experimenter must be
present; debugging is hard

Effort to develop physically
realistic simulations
considerable; experiments
can be run easily; presence
of experimenter not required;
changes quickly realizable

Gaining insights (heuristic
value)

Highly productive Highly productive
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First, IR sensors are often used to measure proximity (nearness)

to an object. But in fact, IR sensors yield an accurate measure of

proximity only under unrealistic conditions: IR sensor are active

sensors, that is, they send out an IR signal and measure the inten-

sity of the re¯ected IR light. This creates several problems. First,

the amount of light re¯ected depends on the properties of the

materials in the environment. Second, a particular IR sensor cannot

distinguish between its own IR signal and those coming from other

sensors. And third, sunlight and arti®cial light contain IR light,

which the sensor also measures.

Second, physical robots have mass, and gravity acts on them

automatically as it does on any object in the real world (®gure 4.7).

If we want our simulated robot to have mass and weight (i.e.,

gravity acting on it), we must explicitly introduce it into the simu-

lator. If a robot has the task of moving around in an of®ce space

without getting stuck, one strategy for accomplishing this is to

exploit its own inertia to get out of impasses. By rushing into

objects with relatively high speed, the robot bounces off, slides

around and, very often by chance, faces in a direction in which it

can move forward again. This process, which in the real world

simply happens, would be extremely hard to capture formally in a

simulation.

Table 4.2 (continued)

Criterion Robotic agents Simulated agents

Abstractions Signi®cant and obvious Signi®cant but less obvious

Scaling to more complex
systems

Sensory systems are
relatively easily made more
complex; motor systems are
much harder

Highly complex robotic
systems are often not
simulated; rather,
abstractions are introduced
(e.g., a grasp operation as a
given elementary action)

Arti®cial evolution Only possible for control
architecture, not for
complete robots

Simulation currently the only
possibility; many surprising
effects

Agent societies Currently signi®cant effort
to build multiple robots
(restricted to small
numbers); all sensor
processing based on real
sensory inputs

Easy to simulate; duplication
of agents trivial; idealized
sensors (e.g., for object
recognition) easily
introduced

Chapter 4 108



Abstractions

Let us stop and summarize what we have said so far in this section.

Whenever we are making a model, robot, or simulation, we have to

make abstractions. As pointed out above, the insect robots, that is,

the cricket and the ant robots, have wheels instead of legs, have

electrical motors instead of a carbon-based physiology, and are

much bigger and heavier than real insects; the ant robot only has

three polarization elements (rather than about 200, as the real ant).

Still, the claim is that the robot models reproduce interesting

aspects of insect navigation. In building a model, we have to choose

a level of abstraction, a level at which we are comparing the bio-

logical system and the robot model. Note that the robot model is not

only a model, but a behaving system itself that can be studied in its

own right. Beer's walking insect, for example, has six massless

sticks as legsÐa potential source of error.

Implicitly, we are assuming, when we build robot models of

insects, that the navigation mechanisms of the insects are not

in¯uenced by the means of locomotion, the size, and the body

weight, to mention just a few of the assumptions we make. We have

to be aware of the fact that these may turn out to be blatantly false.

On the other hand, we have fully embodied and situated systems:

all the information about the environment is acquired through

the models' sensory systems in the interaction with their envi-

ronments. The models do have a certain level of autonomy: The

Sahabot can acquire some information about the environment, and

Figure 4.7 Comparison of real world and simulation. In both cases, gravity has not been pro-
grammed into the system. In the real world (a), the robot drops to the ground any-
wayÐgravity is part of the real world and does not have to be programmed. In the
virtual world (b), the robot moves off the edge of the table and does not fall, making
the simulation a poor representation of real-world events in this case.
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its later behavior depends on this information. However, this

autonomy is limited. The last property, self-suf®ciency, is not

characteristic of any of the models. Thus, we are excluding an

important consideration from our models.

Another assumption in creating these insect models is that the

insects' navigational mechanisms are independent of energy

supply. This, once more, may turn out to be false. Although we

consider this to be unlikely, we have to keep it in mind and be

prepared for it.

Agent Simulation versus Classical Simulation

So far we have been talking about agent simulation, which is con-

cerned with the simulation of a complete agent with as many of its

essential characteristics as possible (embodiment, self-suf®ciency,

situatedness, autonomy). This contrasts with the more classical

style of simulation, in which certain aspects of an agent's behavior

are simulated in isolation. The differences are best illustrated with

an example.

In psychology, connectionist models have become very popular.

A prominent example is the ALCOVE model of categorization

(Kruschke 1992), explained in more detail in chapter 12. Here

we focus on the differences between this model and agent-based

models. The point is not to critize this particular modelÐwhich in

fact explains the results of many psychological experimentsÐbut

rather to point out the limitations, from an embodied cognitive

science perspective, of connectionist models in general. The

schematic overview in ®gure 4.8 shows the essential differences

between connectionist and agent models.

Figure 4.8 The principle of operation of the ALCOVE model. The model receives its input data
from a file prepared by an experimenter (illustrated by the diskette). This input is
used for learning. The model has no real interaction with the environment. A human
(illustrated by the magnifying glass) must interpret the meanings, of the bit strings
produced by the network.
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In the ALCOVE model, there is an input, an intermediate, and an

output layer (the category layer). The data are provided by the

model designer: the model reads one input vector after another and

processes it. In contrast to agent simulations, the model has no

direct interaction with its environment. One important implica-

tion is that the model's output has to be interpreted by the designer

and does not lead automatically to the next input. In agent-based

models, the loop from input to output to input is closed; so there is

no human intermediary in the loop. This characteristic is highly

constrainingÐerrors in the output lead to subsequent erroneous

input patterns; the model has to be consistent with respect to its

own outputsÐand can be exploited in various ways. (In fact, we

devote chapter 12 to mechanisms that allow an agent to structure

its own input by interacting appropriately with the world.) Finally,

the ALCOVE model processes all data it receives; it does not have

to determine which of the data are relevant. In agent models, one of

the hard tasks is to determine which of the continously changing

input data should be considered relevant by the agent, for example,

for learning. This book focuses on agent simulation and, of course,

real-world physical agents.

We have looked at the kinds of agents that we want to build.

Let us now look at how to go about designing agents and how to

conduct experiments using the synthetic methodology.

4.3 Designing for EmergenceÐLogic-Based and Embodied Systems

This entire book is about design. In this chapter, we lay out some of

the groundwork for design. The considerations outlined in this

section are fundamental to every design effort, and getting them

right from the beginning can help you avoid a lot of confusion and

fundamental problems later on. The kinds of considerations rele-

vant for agent design and design of classical systems are very dif-

ferent, as we will see shortly. In this section we use examples from

two areas, medical diagnosis and agent design, to illustrate both

so-called domain ontologies and low-level speci®cations. We also

use the term ``high-level ontologies'' to clearly distinguish these

from low-level designer commitments.

The section proceeds as follows. We ®rst discuss classical design,

starting with high-level concepts. We then introduce agents and

show that the commitments involved in designing agents must be

made at a different, lower level: What we are really interested in is

adaptivity, which requires diversity and emergence. The art of
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agent design is design for emergence, as Luc Steels (1991) has

called it: Make design commitments that leave room for emergence

of behaviors as the agent interacts with its environment. Through-

out the book, we refer to emergence, a concept that we have already

introduced and brie¯y discuss again below.

The Frame-of-Reference Problem in Autonomous Agent Design

Whenever we are involved in designing an intelligent system, we

have to be aware of the frame-of-reference problem. As we dis-

cussed in chapter 3, the frame-of-reference problem concerns the

relation between the observer, the designer (or the modeler), the

artifact, the environment, and the observed agent. The artifacts

that we study in embodied cognitive science are autonomous

agents, but the argument holds for computer programs as well.

Again we emphasize, because we can hardly overstress it, the

importance of getting this problem straight from the very start. Our

outline of the problem is based on Clancey's (1991a) extensive

treatment. The frame-of-reference problem has three main aspects:

1. Perspective issue: We have to distinguish between the perspective

of an observer looking at an agent and the perspective of the agent

itself. In particular, descriptions of behavior from an observer's

perspective must not be taken as the internal mechanisms under-

lying the described behavior.

2. Behavior-versus-mechanism issue: The behavior of an agent is

always the result of a system-environment interaction. It cannot be

explained on the basis of internal mechanisms only.

3. Complexity issue: The complexity we observe in a particular

behavior does not always indicate accurately the complexity of the

underlying mechanisms.

Let us brie¯y illustrate these points with a famous example,

Simon's ant on the beach.

SIMON'S ANT ON THE BEACH

Simon (1969) has used the metaphor of an ant to illustrate some

basic principles of behavior; here we use his metaphor to illustrate

the three aspects of the frame-of-reference problem. Let us assume

that an ant starts on the right and its nest is somewhere on the left.

So it travels roughly from right to left. Figure 4.9 shows a typical

path the ant might take. From the perspective of the observer, the

path is seen as a trajectory on the beach between pebbles, rocks,
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puddles, and other obstacles. From the perspective of the ant, the

world looks completely different because of its entirely different

embodiment (different sensors, different brain, different body): To

the ant, there are no pebbles, rocks, and puddles as we see them.

This illustrates the perspective issue.

What the observer sees as a complex path is the result of the ant's

behavior, that is, of the interaction of the ant with its environment.

How does this behavior come about? It would be a mistake to

assume that the entire path of the ant is stored in the ant's brain

and then used to guide its behavior. More likely, the mechanisms

driving the ant's behavior are actually very simple, implementing

``rules'' that we could describe as follows: ``if obstacle sensor on left

is activated, turn right (and vice versa).'' (These rules are, of course,

implemented in the ant's neural structures). This illustrates the

behavior-versus-mechanism issue: behavior must be clearly distin-

guish from internal mechanism.

The behavior-versus-mechanism issue is directly related to the

complexity issue: The trajectory, the result of the ant's behavior,

looks complex to an outside observer, but in fact it came about by

applying simple rules.

The point is that the complexity of the ant's trajectory emerges

from the interaction of the ant with its environment, not from the

internal mechanisms alone. Therefore, the complexity of the envi-

ronment is a prerequisite for the complexity of the ant's behavior.

To further illustrate this point, let us assume that we increase the

size of the ant, say, by a factor of 100, and let it start in the same

Figure 4.9 Simon's ant on the beach. Herbert A. Simon suggested that an ant walking on the
beach illustrates that behavior that looks complex to an outside observer may in fact
come about by very simple mechanisms.
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location with exactly the same behavioral rules as before, it would

go more or less in a straight line! What appeared to the normal ant

as obstacles would no longer be obstacles for the giant ant, whose

sensors would not be suf®ciently ®ne grained even to detect the

irregularities of the beach. Thus in order to fully explain the ant's

behavior, we need to take the internal mechanisms, the environ-

ment and their interaction into account. Behavior cannot be

reduced to internal mechanisms, i.e. it cannot be explained on the

basis of internal rules alone. We must take the agent's body into

account; Changing the body leads to different behavior.

An example from robotics that also demonstrates the dependence

of the behavior on the embodiment concerns the position of the

sensors. Figure 4.10a shows a Didabot, a very simple kind of

robot used for classwork exercises. In this experiment, only two IR

sensors are used. The position of the sensors is shown in ®gure

4.10b. The control architecture consists of a very simple neural

network that implements the rules of Simon's ant on the beach: If

sensory stimulation on left, turn right; if sensory stimulation on

right, turn left. This leads to obstacle avoidance behavior. However,

if the robot encounters an object head-on, it pushes it, because it

gets no stimulation from its sensors. If we now change the position

of one of the sensors by moving it to the front (®gure 4.10c), the

pushing behavior disappears, (the robot will either turn left or

right) even though exactly the same neural network was used. This

illustrates the general point that the neural substrate of any agent

can be understood only in the context of its embodiment.

BUILDING A MODEL OF THE ANT'S BEHAVIOR

Let us further illustrate the frame-of-reference problem by looking

at how a biologist might go about understanding the behavior of

Simon's ant on the beach. Assume the biologist employs a synthetic

approach; that is, he tries to understand the ant's behavior by

building a model capable of reproducing certain aspects of its

behavior.

The most straightforward approach he could take would be to

suppose that the trajectory of the ant is stored in its head, repre-

sented, for example, as some kind of network structure (®gure

4.11a). This trajectory can be used as a plan for generating be-

havior: To ®nd its nest, the ant simply replays the trajectory. Note

that the biologist is making a category error: He is confounding a

description of behavior (the trajectory) with the internal mecha-

nism. To test the model, he now wants to use it to control a robot.
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Figure 4.10 Illustration of embodiment. (a) The Didabot. (b) Sensor configuration 1. (c) Sensor
configuration 2. Sensor configuration 1 leads to pushing and obstacle avoidance
behavior, whereas sensor configuration 2 leads to obstacle avoidance only. Both
configurations use the same internal neural control mechanism.
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Figure 4.11 A biologist trying to understand the behavior of an ant. (a) First, he develops a model
that directly maps the behavior onto an internal model. This illustrates the perspec-
tive issue. (b) Then he tries to use this model to control a walking robot. He dis-
covers that it does not work wellÐthe robot does not move. In other words, the
model he hypothesized in (a) does not lead to the desired behavior. This illustrates
the behavior-versus-mechanism issue. (c) Next, he realizes that a much simpler
network will lead to the desired behavior. This illustrates the complexity issue.
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This does not work very well (®gure 4.11b) because of the category

error. Because behavior is the result of a system-environment

interaction, it is of little use to record past behavior and employ it

to generate future behavior. If there is even the slightest of changes

in the environment, the plan no longer works. This illustrates

the behavior versus mechanism issue and the perspective issue.

Behavior is something different from internal mechanism; it can be

observed by an outside observer, whereas the mechanism is inter-

nal to the agent. Because of these considerations, the biologist

realizes that a different kind of mechanism is required, and to his

delight he ®nds that it is much simpler than the previous one

(®gure 4.11c).

We have deliberately chosen to illustrate the frame-of-reference

problem with two somewhat whimsical examples, the ant on the

beach, and the hypothetical biologist building a model of the ant's

behavior. Here we only wanted to provide an intuition of the issues

involved; the application of the problem to the scienti®c study of

intelligence follows later.

High-Level Domain Ontologies and Low-Level Speci®cations

The title of this section may sound a bit cryptic but the basic idea is

actually very simple. Whenever we design a system, we have to

de®ne the basic concepts or components, the primitives, that the

system will use. For classical systems, databases, or AI systems, a

high-level ontology or domain ontology has to be designed. It con-

tains items such as, for a database system, a personnel record (with

®elds for name, age, sex, salary, department, projects, address, etc.),

or for a medical system, symptoms and diseases. When designing

an agent that has to interact with the real world, however, this no

longer works. Designer commitments can no longer be made at this

levelÐotherwise the designer runs into all sorts of problems, such

as the symbol-grounding problem, to mention only one particularly

thorny one. For an agent in the real world, design commitments

have to be at a lower level, concerned with the agent's physical

setup, its body, sensory, and motor systems. Whatever the agent

learns about its environment should then result from the agent's

interaction with the environment. We call these designer commit-

ments a low-level speci®cation.2

2 We prefer the term ``low-level speci®cation'' to ``low-level ontology'' because ontology

triggers associations with logic-based systems.
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HIGH-LEVEL ONTOLOGIES

Let us now be a bit more precise with some de®nitions. We use the

term ontology very simply, in the standard way of the arti®cial

intelligence literature (e.g., Russell and Norvig 1995, p. 222). A

domain (or high-level ) ontology has three essential characteristics:

1. It designates the basic vocabulary, the primitives, that are going to

be used in designing the system. These are the only components

that can be used: Everything in the system is built on top of these

basic elements.

2. The meaning of these primitives is assumed to be given and shared

by those involved, that is, the designers and the users.

3. The domain ontology remains constant for an extended period of

time, often for the entire life of the system.

Thus, a domain ontology is a systematic accountÐa listÐof all the

basic concepts (i.e., the objects, relations, and operations) that are

needed in a particular domain. The primitives have to be de®ned

for any system whatsoever, be it a database system, a communica-

tion system, an expert system, a system for understanding natural

language, or a robot. However, the kinds of primitives employed

for computational systems and robots differ considerably. In a

medical expert systemÐa computational systemÐthey might

include symptoms (red spots on skin, fever, diarrhea), patient

characteristics (age, race, history), diagnoses (organisms, diseases),

medical procedures to be applied (tests, treatments, therapeutic

programs), and medical knowledge combining the concepts (bac-

terial meningitis is a subclass of meningitis). For each of the

attributes within the primitives, all possible values have to be

given. For example, for the attribute ``red spots,'' the values could

be ``absent,'' ``present,'' ``strongly present.'' Table 4.3 offers a highly

simpli®ed sample domain ontology for a medical system.

All that the system to be designed will be able to do springs from

and depends on this set of primitives initially speci®ed by the

designer. A state is a description of the current situation in terms of

the primitives of the domain ontology. By means of the rules of

inference, states are transformed into other states. For example, the

state described by high fever, muscle pain, and high sensitivity to

light, might be transformed into a new state called ``¯u.'' In this

perspective, learningÐthat is, the formation of new conceptsÐ

consists only of combining basic components or compound con-

cepts in different ways. As an example, recall the robot JL that we

designed in chapter 2. It combined the basic concepts ``green,''
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``ripe,'' and ``apple'' to form the compound concept ``Granny

Smith.'' Here is another example: If we want to develop a natural

language processing system that understands stories about restau-

rants (e.g., Schank and Abelson 1977), we must have an ontology

that includes, for example, the components used in the restaurant

script shown in ®gure 2.7, either as part of the ontology itself, or as

concepts accessible by combining more basic parts. An ontology

for a restaurant would have to contain elements like glasses, cups,

tea, coffee, beer, serving, checks, eating, and so forth, again either

as elements, or as compound concepts made up of more basic

components.

Ontologies at the computational level are well de®ned because

they have their origin in logic. The situation is much messier in the

case of robots, in which we have to de®ne low-level speci®cations.

LOW-LEVEL SPECIFICATIONS

Above we de®ned a domain ontology as the vocabulary, the primi-

tives that will be used in the design of the actual system. For clas-

Table 4.3 A simpli®ed high-level domain ontology for a medical expert system. (To keep the
example simple, the ontology here is based entirely on intuition and should not be
taken seriously from a medical point of view.) Realistic medical systems can contain
hundreds and even thousands of components in their domain ontologies.

Category Attributes

Symptoms . Red spots on skin (absent, weakly present,
strongly present)

. Fever (none, weak, strong; alternatively: �C)

. Diarrhea (absent, present, strongly present)

Characteristics of patient . Age (a number)
. Race (Caucasian, Indo-European, Pan-Asian,

Semitic, etc.)
. Weight (a number)
. History (medical history)

Diagnoses . Organisms (bacteria, viruses)
. Diseases (in¯uenza, pneumonia)

Medical procedures . Tests (blood tests, growing cultures, urine tests)
. Treatments and therapeutic programs (cures,

diets, operations, physical therapy,
psychotherapy, medication, radiation, etc.)

Relations, medical knowledge,
problem solving methods

. Bacterial meningitis is a subclass of meningitis

. Heuristic classi®cation

. Hypothesize and test
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sical systems, it is fairly easy to decide at what level to designate

the domain ontology. It is much less clear, however, at what level

these primitives should be designated in the case of a robot. Obvi-

ously the robot's body, its sensory system, and its motor system

have to be designed. Moreover, the individual components have to

be connected in appropriate ways. Table 4.4 provides an overview

of the components for a low-level speci®cation of robots. The

table's second column provides an abstract characterization in

terms of states; the third suggests possible implementations.

As an example of a component in a low-level speci®cation, let

us take a standard vision sensor which is normally realized as a

camera. What are its basic characteristics? It contains a number of

light-sensitive cells. These cells can be in various states that are

determined by physical processes, that is, the intensity of light

registered at the cell. The output of the cell, that is, the signal pro-

duced by it (to be further processed), is roughly proportional to the

light intensity. In other words, the interpretation of the signals from

the light-sensitive cells is straightforward.

By contrast, attributes of high-level ontologies are often open to a

great deal of interpretation. For example, what does ``red spots

(weakly present)'' really mean? When do we talk about red spots?

How red do they have to be? How big do they have to be? How

dense is ``weakly present''? As a consequence of the great room

a b

Figure 4.12 Comparison of high-level ontologies and low-level specifications. For the robot (a),
there is no ambuiguity about the amount of stimulation at the sensory level, whereas
the doctor (b) has a lot of room for interpreting whether red spots are present in the
patient.
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Table 4.4 A simpli®ed low-level speci®cation for a robot. The second column provides
an abstract characterization in terms of states; the third suggests possible
implementations.

System Component Characterization

Typical

implementations

Body body (without sensor
and motor system
components)

shape, weight, size,
rigidity
points of attachment
for sensory and motor
components

rigid frames (wheeled
robots)
multisegment ¯exible
(humanoid robots)

Sensory system visual sensors light-sensitive cells
(states: on-off,
grayscale, color)

camera

proximity/distance sensor readings
related to distance
(states: number of
different readings)

IR, ultrasound, or
laser range-®nder
sensor

touch requires physical
contact (states:
on-off )

microswitch;
saturation of IR
sensor; skin sensors

speed sensors sensor stimulation
related to speed
(states: number of
different readings)

wheel encoders
(wheel turns); optical
¯ow

Motor system wheel drive system speed and direction of
wheels (states:
speeds, steering
angles)

wheels driven
individually by
electrical motors

leg locomotion system (states: joint angles,
forces)

forces supplied by
electrical motors

arm (states: joint angles,
forces)

forces supplied by
electrical motors

body motion system (states: joint angles,
forces)

forces supplied by
electrical motors

Interactions
among
components

mechanical type of connection
between mechanical
parts

mechanical
connections always
(implicitly) given

electrical types of signals that
can be exchanged
within the robot

bus system connected
via a microprocessor;
separate physical
connnections possible

electromagnetic components interact
without a wire
connection

given by physical
system; not
deliberately designed

thermal interactions through
materials surrounding
a component

given by physical
system; not
deliberately designed

environment not explicit given by
system-environment
interaction
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for interpretation, such systems always require a human for their

operation; in fact, they require a human expert, as ®gure 4.12

illustrates.

Many more sensors could be added to table 4.4 (torque sensors in

the joints, position sensors, ¯ow sensors, temperature sensors, etc.).

The particular choice of sensors depends on what the designer

intends to use. The position of the sensors on the robot is also an

essential part of the low-level speci®cation.

Let us now look at the motor system for a moment. Just as on the

sensory side, the ways in which motor systems can be designed are

virtually unlimited. Take a legged robot. Its legs have joints that can

assume different angles, and various forces can be applied to them.

Depending on the angles and the forces, the robot will be in differ-

ent positions and behave in different ways. Further, the legs have

connections to one another and to other elements. The details of

how the various elements are connected are not important for

here, but it is important to note that these connections are often not

made explicit in the speci®cation, though they are essential for the

robot's performance. If a six-legged robot lifts one of its legs, this

changes the forces on all the other legs instantaneously, even

though no explicit connection needs to be speci®ed. The con-

nections are implicit: They are enforced through the environment,

because of the robot's weight, the stiffness of its body, and the

surface on which in stands. Although these connections are ele-

mentaryÐand the robot's behavior builds on themÐthey are not

explicit in the low-level speci®cations, although they could be

made explicit and included if the designer wished. Connections

may exist between elementary components that we don't even

realize. Electronic components may interact via electromagnetic

®elds that the designer is not aware of. What is normally explicitly

designed are wire or data bus connections. So we see once again

that because robots, bodies, sensor systems, and motor systems are

real physical entities, it is not possible to de®ne neatly what

belongs into a low-level speci®cation, certainly not as neatly as we

can de®ne the components of a high-level ontology. Moreover, the

agent has a body with a particular shape, and it is not clear how

shapes should be generally described.

We mentioned that the communication between the legs of a

robot can be implicit. As a general rule, much more is implicit in a

low-level speci®cation than in a high-level ontology, simply because

the physical world is always a given and it has its own properties,
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irrespective of whether a designer is fully aware of them. Here we

are encountering a fundamental implication of simulated agents

versus real agents: In simulated agents, only what is made explicit

exists, whereas in the real world, many forces exist and properties

obtain, even if the designer does not explicitly represent them.

The Sensory Space, the Motor Space, and the Sensory-Motor Space

The notion of sensory space denotes all possible con®gurations of

the sensory states. If we have a black-and-white camera with only

two intensity levels (activation or no activation) and a 100� 100

image, that yields a sensory space with 210000 possible states. (There

are 10,000 sensors, each having two possible states.) Remember

that 210 is roughly 1,000, so we have approximately 1030 different

states. If instead of just these two intensity levels, we have 256 dif-

ferent gray levels, this yields an incredibly large number of states.

We do not discuss the implications of this here, but simply point

out that this very large number of possible states is a prerequisite

for the generation of diversity (in other words, for adaptivity).

Similarly to the sensory space, the motor space can be de®ned as

the ensemble of possible states the motor system can assume, given

a particular low-level speci®cation. In this book we rarely look at

sensory and motor systems in isolation: we normally consider the

entire sensory-motor space, which denotes the entire range of

possible con®gurations of sensory and motor states together. Logic-

based systems, such as expert systems or natural language pro-

cessing systems for written text (in electronic form), have no sensory

space in the same sense robotic systems do, simply because they

lack sensors. Nevertheless, we can de®ne the sensory space for

logic-based systems as the set of potentially different inputs the

system can accept. This is precisely given by the domain ontology.

Anything not prede®ned in the ontology (or not combinable from

the elements of the ontology) cannot be presented as input to the

system. De®ned in this way, the sensory space (or better, the input

space) is typically much smaller for an expert system: there are

only the prede®ned concepts, and the values they can assume

are restricted (e.g., the concept ``red spots'' can have the values

``absent,'' ``weak,'' ``clearly present,'' or ``strongly present''). More-

over, the number of basic concepts in such an input space is com-

paratively small, on the order of a few hundred. The input space

can still be of considerable size, leading sometimes to combinato-

rial problems, but it is normally considerably less than 210000 (and
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that's a very simple case). Complexity in expert systems (and logic-

based systems in general) is therefore computationally manageable.

From this discussion it follows that a system always communi-

cates with its environmentÐincluding other agentsÐthrough its

primitives. If we want to put a request to a database system, we can

do this only by using terms that are already de®ned in the system,

that is, terms either contained in the basic domain ontology or

combinations of the latter. The same holds for the output of the

system. If we want to interact with a robot, it has to be via compo-

nents of the low-level speci®cation.

Emergence

Our goal is to design agents that display emergent behaviors. The

term emergent is used mainly in three different ways. First, it is

often applied to situations, agent behaviors, that are surprising and

not fully understood. Second, it refers to a property of a system that

is not contained in any one of its parts. This is the typical usage in

the ®eld of arti®cial life, dynamical systems, and neural networks

for phenomena of self-organization. Third, it concerns behavior

resulting from the agent-environment interaction whenever the

behavior is not preprogrammed. It is thus not common to use the

term if the behavior is entirely prespeci®ed like a trajectory of a

hand that has been precalculated by a planner. Agents designed

using high-level ontologies have no room for emergence, for novel

behaviors. High-level ontologies are therefore used whenever we

know precisely in what environments the systems will be used, as

for traditional computational systems (like an accounts payable±

accounts receivable program) as well as for factory robot systems.

In unknown environments, a better strategy is to de®ne the low-

level ontology, introduce redundancyÐand there is a lot in the sen-

sory systems, for exampleÐand leave room for self-organization.

The following question immediately arises: Given a set of desired

behaviors, how do we design the agent so that these behaviors will

be emergent? How does design for emergence work? Chapter 16

discusses these topics; in chapters 11 through 13, we show con-

crete examples of how we can actually design for emergence.

Novel Situations and Novel Actions

In chapter 1, we saw that one of the important aspects of intelligent

systems is adaptivity, that is, the ability to perform in novel situ-
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ations. This implies on the one hand recognizing that a situation or

environment is novel, and on the other generating new behavior

appropriate to the now-changed situation. Let's investigate this

point a little further.

``Computers can act only in situations that have been prede®ned

by humans!'' computer skeptics often assert, ``and this is why

computers cannot be used in environments in which there may be

potentially novel situations.'' Computer enthusiasts reply: ``No

problem. If a situation is encountered that has not been prede®ned,

the computer simply displays a message on the screen saying

something like `no information available,' in which case the human

operator can handle the situation.'' We can use the idea of domain

ontologies to de®ne more precisely what is meant by ``prede®ned''

and ``novel.''

Take our medical expert system. If the system encounters a

patient with a combination of symptoms, say red spots, fever, liver

pain, and a broken leg, and there is no rule that covers that partic-

ular symptom pattern, the system might display the message ``no

information available,'' and the physician could take over. Such a

case presents no problem. All the symptoms involved have been

prede®ned; certain combinations have not been foreseen, but such

cases are covered by the domain ontology: In these cases, a perti-

nent message can be displayed. However, if a symptom is not pre-

de®ned, the system does not even recognize that it is faced with

something new, and that does present a problem. Another example

is a system for some type of process control: If there is no temper-

ature sensor, the systemÐquite obviouslyÐcannot sense tempera-

ture. So if the temperature rises above an unacceptable level (a

novel situation), the system does not even know that it is a new

situation because it does not ``know'' anything about temperature.

Note that precisely the same point holds for robots, and for animals

and humans, for that matter. Anything they can learn is constrained

by the basic primitives, the low-level speci®cations. The reason

humans can recognize truly novel situations is because of the large

redundancy contained in their sensory systems. This point is of

fundamental importance, and is incorporated as a design principle,

the redundancy principle (see chapters 10 and 13).

A Hybrid Speci®cation

We have discussed high-level ontologies and low-level speci®ca-

tions. We have also said that agents should ®rst be designed by
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de®ning the low-level speci®cations and then use mechanisms of

self-organization. But why not have both a low-level speci®cation

and a high-level ontology on top?

Assume that you have the task of developing a robot to serve

tea in a restaurant, like the Japanese robot in ®gure 4.13. Because

you have to design a robot, you need a low-level speci®cation

that lists your commitments about the robot's physical setup and

the potential connections between the components. Moreover, the

robot needs to know about tea, teacups, saucers, properties of

liquids, and serving, so you may want to include those concepts in

its domain ontology. If you do this, you are de®ning a high-level

ontology that implies a designer-based categorization of the real

world. So there are now two levels at which you, as a designer, are

making commitments. This introduces a new problem: the two

levels have to be compatible. Achieving this compatibility has

turned out to be extremely dif®cult, as the problems with model-

based computer vision show (e.g., Tistarelli 1995). Moreover,

de®ning a high-level ontology on top of a low-level one entails the

symbol-grounding problem that we discussed in chapter 3. Thus, if

the agent is to be situated and adaptive, it must learn about the

environment as it is interacting with it, thus it is nonstatic. This

Figure 4.13 A Japanese robot serving tea (from Kurzweil 1990, p. 319). The robot has to know
about tea, teacups, saucers, the properties of liquids, and serving. But it also has to
recognize and manipulate them through its sensory-motor system, its hardware.
(Picture by Georg Fischer; reprinted with permission.)
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nonstatic bottom-up component must then match the high-level

concepts. This is a notoriously hard problem to solve, because if

implies solving the symbol grounding problem. But what should

we do then, if we want to design a tea-serving robot? This is a fun-

damental research issue, and the interested reader is referred to

issue 4.1 at the end of the chapter.

To conclude, the idea of this section has not been so much to

map out a general low-level speci®cation for robot design. From

what we have said so far, it should be clear that it is not possible to

de®ne low-level speci®cations as clearly as high-level ontologies.

Instead, the section has stressed the distinction between high-level

and low-level design decisions. Low-level speci®cations make no

mention of high-level categories corresponding to what we, as

observers, would call objects (coffee cup, saucer, tea, beer, etc.). As

we argue later, if concepts are going to be grounded, they have to

emerge from this low-level speci®cation, and the way of proceeding

that we suggest does not work with high-level ontologies.

What we have said about design of agents so far must be em-

bedded into the context of conducting agent experiments. We dis-

cuss this topic next.

4.4 Explaining Behavior

In placing our discussion of design of agents into the context of

conducting agent experiments, we must ®rst ask ourselves what the

goal of these experiments is. The main goal of doing experiments

within a synthetic approach is explaining behavior, as we have

said. This can be the behavior of a natural agent, or of an arti®cial

one. Before describing the experimental steps that need to be fol-

lowed, let us highlight some core aspects of explaining behavior.

Time Perspectives for Explanations

Given that our stated goal in conducing agent experiments is to

®nd mechanisms that underlie behavior, we can examine in more

detail the kinds of explanations we are looking for. Again, what we

regard as good or interesting explanations strongly depends on our

research goals. Our general goal is to understand the phenomena

reviewed in chapter 1. To do so, we must discuss intelligence at

three different levels or time perspectives: short-term, ontogenetic,
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and phylogenetic. One might add a fourth perspective concerned

with what purpose a behavior serves.

1. The short-term perspective explains why a particular behavior is

displayed by an agent based on its current internal and sensory-

motor state. It is concerned with the immediate causes of behavior.

We used the short-term perspective when we explained the behav-

ior of Simon's ant on the beach. In that case, we referred to the ant's

current sensory states: If stimulation on right, then turn left, and

vice versa. Figure 4.14 shows how short-term explanations can be

found in a robotic setup. The robot's behavior is shown in the lower

right corner. Its internal state is displayed (sensors, activation

levels, and weights of the neural network) in the other windows,

and we can use this information to explain the behavior we are

seeing. For example, we can explain why the robot has turned away

from an obstacle based on its internal state, that is, the values of

sensor signals, activation levels, and perhaps motor speeds. This

setup has the advantage of enabling us to record anything we

would like about the robot's internal state, an option we do not

have for living beings like animals and humans. Clearly, if we do

not have a short-term explanation of an agent's behavior, we simply

do not understand how it works.

2. The ontogenetic perspective resorts not only to current internal and

sensory-motor state but also to some events in the more distant past

in order to explain current behavior. The ontogenetic perspective is

also called the learning and development perspective. Explana-

tions from the ontogenic perspective are almost universally used in

the study of intelligence. The entire ®eld of instructional sciences

is based on it. When we say a student has done well on a test

because he studied a lot, we reference a sequence of events in

the past: the student reviewing the materials for the test repeatedly.

If a robot initially crashes into obstacles but over time starts avoid-

ing them, it has learned a behavior. Both of these explanations of

the student's and the robot's behavior are framed in an ontogenic

perspective.

3. The phylogenetic perspective asks how the behavior evolved dur-

ing the history of the species. Finally, this perspective puts the

agent into the context of an evolutionary process, a timescale in the

very long term. An illustration of this has already been discussed:

The ``peppered moth'' that changed its color from light to dark

because the tree trunks had changed from light to dark as a result

of industrialization.
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Figure 4.14 Setup for generating short-term explanations. Short-term explanations can best be
made by displaying both the robot's internal state and its behavior on the screen. The
robot's behavior is recorded via a video camera mounted over the experimental area.
From this video information, the trajectory and other behavioral data (like the direc-
tion the robot is facing, its speed, and its direction of motion, which does not have to
coincide with its direction of movement) can be extracted. The information extracted
from the videotape is synchronized with the data about internal state (such as battery
level, activation levels, and weights of neural networksÐsee chapter 5) and a time
series file containing all this information is created. If this recording is performed
over extended periods, behavior changes over timeÐthat is, learning behaviorÐcan
be studied.
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Throughout this book, different theoretical positions we examine

attribute different weights to the three perspectives: dynamical

systems place emphasis on the short-term perspective (chapter 9),

connectionism and neural networks place it on the ontogenic, spe-

ci®cally learning (and partly developmentÐchapter 5), and evolu-

tionary approaches place it on the phylogenetic (chapter 8). All

three kinds of explanations contribute in important ways to our

understanding of intelligence. None can replace all the others.

4. One could add a fourth perspective that is not a temporal one: One

can ask what a particular behavior is for; that is, how it contributes

to the agent's overall ®tness, a concept we elaborate on in chapter

8. In biology, this is called the ultimate or functional perspective.

This question can only be answered if ®tness has been de®ned.

Except in the ®eld of arti®cial evolution, this is generally not the

case for autonomous agents. Moreover, in many cases, it is not

obvious how a particular behavior contributes to ®tness. We return

to this point in chapter 8. In this book, we focus on perspectives (1),

(2), and (3).

These perspectives can perhaps be best illustrated with an

example. Suppose we ask why drivers stop their cars at red traf®c

lights. One answer would be that a speci®c visual stimulus, the red

light, reliably leads to speci®c behaviors like changing gear and

applying the brakes: This would be an explanation in the short

term. A different answer is that individual drivers learn this rule

from books, television, and driving instructors: This would be an

explanation in terms of ontogenesis, learning, or development. An

evolutionary explanation would deal with the historical process

whereby a red light came to be used in many countries as a way of

stopping traf®c at road junctions. A functional explanation would

be that drivers who do not stop at traf®c lights are liable to have an

accident, or at least be stopped by the police. (Example adapted

from Martin and Bateson 1993.)

These perspectives closely resemble what is called ``the four

whys'' in biology (e.g., Huxley 1942; Tinbergen 1963). What we

have called the short-term perspective is also called a proximate

explanation by biologists. What we have called the ontogenetic

perspective is similar to its use in biology, but we have a stronger

focus on learning. Our use of the phylogenetic perspective is iden-

tical to that in biology.
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Conducting Experiments with Complete Agents

We have pointed out three main purposes for which one might

pursue building complete agents: modeling certain aspects of

natural agents, studying general principles of intelligence, and

building agents for a particular task (or tasks). We have also

described and compared two types of arti®cial, complete agents:

simulated and robotic agents. In this section we summarize the

guidelines to conduct scienti®c experiments with complete agents.

An overview is provided in table 4.5. We give only a short de-

scription here; details are left for chapter 16.

Before we start conducting experiments, we have to know what

research issues we want to investigate. Normally this should be

fairly obvious: navigation behavior of desert ants, for example,

or phonotactic behavior of crickets, category learning in human

infants, cooperation in primate societies, or data collection on

Mars. The next things to decide upon are the tasks or the desired

Table 4.5 Guidelines for conducting agent experiments. Note that this is the basic scheme and
is more like a checklist rather than a step-by-step procedure.

Step Description Chapters

0. Decide on research goal. 16

1. De®ne the tasks/desired behaviors and the ecological niche,
i.e., the task environment.

16

2. De®ne the low-level speci®cations. 5, 16

3. Choose a platform. 16

4. De®ne the control architecture. 11±14, 16

5. De®ne the concrete experimental setup and the experiments
to be run.

17

6. Before running the experiments, formulate predictions and
hypotheses and provide the rationale for them. Think about
how the agent's performance is to be evaluated.

17

7. Perform the experiments; collect data about 17
. agent behavior
. internal state of the agent
. sensory-motor state.

8. Describe the agent's behavior and perform various kinds of
statistical analyses.

4, 17

9. Formulate explanations of the agent's behavior. Analyze the
model's limitations. Report on failures.

4, 17
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behaviors of the agent and its ecological niche. Because behavior

always takes place in a particular environment, we use the term

task environment to designate the two together. The task of the

Sojourner, for example, is to collect data on the planet Mars, and its

ecological niche is the surface of Mars. We have also discussed the

robot cricket built by Webb (e.g., 1993). The desired behaviors of

Webb's robot cricket (e.g., 1993), which we discussed earlier, are to

approach a sound source from various initial positions according to

principles observed in the real cricket. Then, the low-level speci®-

cation needs to be de®ned. In other words, a decision must be

madeÐgiven the agent's task and ecological nicheÐas to what the

agent should be able to sense, what its body should look like, how

it should interact with its environment, and so on. The Sojourner,

for example, has to navigate on the surface of Mars while avoiding

obstacles. Thus, it needs an appropriate set of sensors. On the

Sojourner, cameras, bumper sensors, and proximity sensors were

used to provide this ability. Its body and motor system had to be

built to enable it to overcome obstacles of considerable height,

which is why six wheels were incorporated, rather than four.

Similar considerations apply for the robot cricket, which needs

means of detecting sounds of particular wavelengths and of navi-

gating toward the sound source.

Then, a platform has to be chosen; that is, how should the low-

level speci®cation be realized (implemented)? Among other things,

a decision must be made whether to use simulation or a real robot.

For the Soujorner, this choice was obvious: A simulation on Earth

cannot produce measurements on Mars. It may not have been so

obvious in the case of the robot cricket. If the designer opts for a

robot, the choice is between buying a platform off the shelf or

building one. The decision strongly depends on resources and

know-how already available (see also chapter 16).

The next step involves de®ning the control architecture, which

essentially speci®es how the various parts of the low-level speci®-

cation, the primitives, should be connected to produce the desired

behavior. In the case of the robot cricket, this was in fact the main

research issue: How can the robot cricket be ``wired up'' or pro-

grammed so that it produces a behavior comparable to the one

observed in the real cricket? The control architectureÐappropri-

ately embedded in the robot cricketÐthus implements hypotheses

about the mechanisms underlying the real cricket's behavior. The

Sojourner robot's purpose was not to understand natural intelli-
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gence, but rather to achieve a particular task: Biological or psycho-

logical considerations were irrelevant. The particular control ar-

chitecture chosen for an agent crucially depends on the purpose for

which the robot is being designed. If the goal in building the robot

is to model natural intelligence, the main considerations are bio-

logical or psychological plausibility, whereas if it is to ful®ll some

task, the control architecture must be chosen to implement ef®cient

task-related behaviors.

The ®nal step before the actual experiments can be run entails

formulating predictions (hypotheses) about what is going to hap-

pen, given the agent's platform, control architecture, low-level

speci®cation, ecological niche, and task. In addition, decisions

about the evaluation of the robot's performance have to be made. It

is not effective research design simply to run a large number of

experiments, collect data, then think about evaluation at the very

end. One should be clear before any experiments are run about

what types of data one wants to collect and how one wants to

analyze that data, for example, in terms of statistical analyses. Of

course, this can be an iterative process whereby preliminary experi-

ments reveal what kinds of data are most relevant, but as a general

rule of thumb, it is good practice thinking about these issues

beforehand. The case of the Sojourner robot makes the point very

clearly: Imagine what would have happened if evaluation criteria

had been derived only after the robot had been sent to Mars! The

same case could be made about the robot cricket. In any case, from

a purely scienti®c perspective, hypotheses always have to be

formulated before the experiments are actually performed.

When running the actual experiments you need to collect data

about all relevant aspects of the robot's behavior. This includes the

behavior as seen by an outside observer and the robot's internal

state, for example, the sensor data and data on the neural network

dynamics and motor states. The setup from ®gure 4.14 can be

used to record behavior and internal states automatically. Finally,

once you have all the data you need, you can start describing the

robot's behavior and analyzing these data. There are many ways to

describe behavior, and the descriptions can be made on very dif-

ferent levels. For example, we can give verbal descriptions, or we

can draw the trajectories exhibited, preferably automatically. We

can approach this more quantitatively and do various kinds of

statistical analyses. Statistics often lend themselves most readily to

interpretation if they are represented graphically. We can also
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describe agent behavior in terms of mathematical models (e.g., dif-

ferential equations). Additional methods can be found in any text-

book on general experimental methodology. Note that a description

of behavior implies a segmentation of behavior: The behavior has

to be cut up into meaningful pieces, the segments, to be described

effectively. For example, saying that someone is eating, drinking,

getting up, and leaving the table represents a segmentation of

the behavior ``eating dinner.'' In the robotic domain, examples of

behavior segments would be turning toward a light source, picking

up a peg, following a wall, or recharging its batteries. In addition to

a description of its behavior, the robot's performance needs to be

evaluated. Experiments can be evaluated in many ways. We leave

providing a detailed overview to chapter 17 but present examples

of experiment evaluation as we go along.

Issues to Think About

Issue 4.1: Hybrid Speci®cationsÐChoice of Tasks

Earlier in the chapter, we made a preliminary try at designing a

robot to serve tea in a restaurant. On the one hand, such a robot

has to know about its environment: about restaurants, objects, and

procedures in the restaurant. On the other, it has to act physically

in the restaurant: It must actually bring the tea to customers. We

argued that if you start by designing the high-level ontology and the

low-level speci®cation using a design in which concepts emerge

through agent-environment interaction, there will be incompati-

bilities between the two. If that is so, how do we design a tea-

serving robot in a principled way? We honestly don't know. You

will ®nd, as you read through this book, that the kinds of behaviors

we can engender through emergent designs are, though interesting,

not suf®cient to produce such complex behaviors as those required

in a restaurant. The object recognition problems are enormous, the

object manipulation skills, considerable. Just think of preparing a

cup of tea, putting it on a small tray, and carrying it to theÐrightÐ

customer. It is also implied that the robot would need some way of

communicating with the customers. We could probably produce

a ``hack'': We could try to introduce physical constraints in the

environment: For example, we could specify that the cups are

always found in exactly the same location, we could put identi®ers
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on the tables and the different kinds of tea, and we could arrange

for smooth grounds so the robot could use wheels. We could also

scale down the robot's task by not having it manipulate the tea cups

themselves: Personnel could put them on the robot, and the cus-

tomers could pick them up themselves once the robot has arrived at

their tables. But what would we then learn about the principles of

intelligence? Presumably not too much. So the conclusion seems to

be that it may be premature to actually try to build a tea serving

robot. But we might be able to make a compromise. We could make

some simpli®cations, changes to the environment, and try to cause

at least some of the behaviors to emerge. If these changes were

done right, the robot might actually be able to learn to look out for

cluttered tables with no customers, for example, and recharge its

battery on its own, if required. Alas, this kind of study has not been

widely attempted. One project that moves in this direction, how-

ever, is the sewage system robot project that we outline in chapter

18. As we see later on, the choice of appropriate tasks is crucial to

the success of an agent experiment. Try to apply these consid-

erations to an application of your choice.

Issue 4.2: Limitation by Low-Level Speci®cation

We have stressed the limitations imposed by high-level ontologies.

But robots, and humans for that matter, are also constrained. Any-

thing for which our sensory system makes no provision, we can

simply not sense. Our visual system can detect electromagnetic

waves only within a certain limited range. Anything outside is

simply not accessible to the visual system. (We function as well as

we do because of the redundancy built into our sensory system that

enables us to detect events beyond the capacity of a sensor. For

example, although our eyes can't measure temperature, we can

often ``see'' whether objects are really hot or really cold.) Try to

think of other limitations of our sensory system to get an idea of

what our own ``low-level speci®cation'' is and how it constrains

our potential interactions with the real world.

Points to Remember
1 The agents of highest interest for our purposes are complete agents.

They are autonomous, self-suf®cient, embodied, and situated. They

have been given the name ``Fungus Eaters.''
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1 Self-suf®cient agents can perform multiple tasks, can exhibit

multiple behaviors in the real world over extended periods of

time; that is, they do not incur an irrecoverable de®cit in any of

their resources. Self-suf®ciency implies adaptivity.
1 Self-suf®ciency always pertains to a particular ecological niche. An

ecological niche is the range of environmental variables within

which a species, or an autonomous agent, can exist. Agents are

always designed (by an engineer or by evolution) for a particular

ecological niche: There is no universal agent in the real world. If

the speci®c properties of the ecological niche are exploited, scal-

ability of learning algorithms can often be achieved.
1 Because self-suf®cient agents always have many tasks, they have

to solve the problem of behavior control: loosely speaking, the

problem of doing the right thing at the right time. Action selection

designates the problem of choosing an action in a particular situa-

tion from a given set of actions. The problem with the action-

selection approach is that in general there is no straightforward

mapping of desired behaviors to internal actions.
1 Autonomy means independence of control. This characterization

implies that autonomy is a property of the relation between two

agents, in the case of robotics, of the relations between the designer

and the autonomous robot. Self-suf®ciency, situatedness, learning

or development, and evolution increase an agent's degree of

autonomy.
1 A situated agent acquires all information about the environment

from its own perspective through its sensory system.
1 Embodiment means existing as a physical entity in the real world,

that is, as a robot. Embodied agents can also be simulated, as is

often done in virtual reality environments. The positioning of the

sensors on the agent must be speci®ed because where the sensors

are positioned affects system-environment interaction. Moreover,

how the control architecture is embedded in the agent must also be

de®ned.
1 There are four kinds of adaptation: evolutionary, physiological,

sensory, and adaptation by learning. All operate on different

timescales.
1 There are three potential goals when building an arti®cial agent: (1)

building an agent for a particular task or a set of tasks, (2) studying

general principles of intelligence, and (3) modeling certain aspects

of natural systems, that is, humans or animals.
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1 Standard simulations differ from agent simulations in that a simu-

lated agent interacts with a simulated environment through its own

sensory-motor system, whereas in a standard simulation, the agent

does not interact with the environment at all.
1 The frame-of-reference problem conceptualizes the relation be-

tween the designer, the observed agent, the artifact to be designed,

and the environment. There are three issues: perspective, behavior-

versus-mechanism, and complexity.
1 A high-level domain ontology is a systematic account of the basic

components, the primitives, that will be used in the system. Any-

thing the system will be able to do builds on this ontology. This

holds also for the communication with the environment.
1 A low-level speci®cation is the equivalent of a domain ontology

for a robot: It includes the body, the sensory and motor systems,

and potential connections. Robots should be speci®ed in terms of

low-level speci®cations rather than high-level ontologies. Hybrid

speci®cations should be avoided.
1 Sensor spaces typically have very large numbers of states. To make

them manageable, we need to exploit constraints that we get from

interaction with the environment.
1 The term ``emergence'' is used primarily in three different ways: (1)

something surprising and not fully understood, (2) a property of a

system not contained in any one of its parts, and (3) behavior that is

not preprogrammed that arises from agent-environment interaction.

De®nition (2) is the meaning intended in the self-organization and

arti®cial life communities, and (3) is the one in the autonomous

agents ®eld. Our goal in building autonomous agents is to design

for emergence.
1 When conducting agent experiments, the following steps must be

taken (though not necessarily in this order): decide on research

goal; de®ne tasks or desired behaviors and ecological niche; de®ne

low-level speci®cations; de®ne control architecture; choose a plat-

form; de®ne concrete experimental setup and experiments to be

run; formulate predictions; run experiments and collect data;

describe agent's behavior; and formulate explanations.
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emergence, evolution, and human thought. Cambridge, MA: MIT Press (A Bradford

Book). (A philosophical treatment of the entire ®eld of embodied cognitive science.

The idea of emergence is given extensive treatment. Contains many examples
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McFarland, D. (1995). Autonomy and self-suf®ciency in robots. In L. Steels and R. Brooks

(Eds.), The arti®cial life route to arti®cial intelligence: Building embodied, situated

agents (pp. 287±309). Hillsdale, NJ: Lawrence Erlbaum. (A comprehensive discussion

of the concepts of autonomy and self-suf®ciency in the context of the behavioral

economics approach.)

Toda, M. (1982). Man, robot, and society. The Hague The Netherlands: Nijhoff. (An

entertaining and intelligent discussion of many fundamental problems in cognitive

psychology and the psychology of emotion. Masanao Toda is one of the leading

psychologists in Japan who for many years has been working on developing a com-

prehesive theory of emotions.)
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5 Neural Networks for Adaptive Behavior

In this chapter we discuss some tools for building agents and

examples of speci®c classes of agents. We start with neural net-

works, which we work with throughout the book, so it is important

that we develop an intuitive understanding of how they function.

There are various reasons for using neural networks. First, they

have a number of wonderful properties: They are fault and noise

tolerant, they are intrinsically learning systems, and they can gen-

eralize; in short, they are robust. Second, because they are inspired

by natural brains, it is relatively straightforward to implement in

them ideas from neurobiology. One such idea is the parallel nature

of the neural systems. Neural systems typically consist of a very

large number of neurons that can be active and process information

simultaneously. A signi®cant advantage of parallelism is that it

makes a great deal of processing possible even if individual com-

ponents are relatively slow, as natural neurons are. Parallelism also

implies robustness: If, for example, a few neurons cease to operate,

there are still enough others to perform the desired function. Paral-

lelism has anotherÐsomewhat surprisingÐimplication: It requires

learning. If there are, say, a million connections between units in a

network, we can no longer by analysis or by trial and error ®nd out

what the connection strengths have to be. They must be adjusted

through a learning process. Modeling some of the properties of

natural brains is an important factor in understanding and con-

structing intelligent systems. Thus, even if it were possible to build

more ef®cient agents using other formalisms such as fuzzy logic or

control theory, it is more sensible to employ neural networks from

the perspective of understanding natural intelligence.

A third reason for using neural networks is that they can be

embedded into physical robots in natural ways. Using neural net-

works for robot control has an interesting theoretical implication.

As we have seen, the brain is normally considered to be the ``seat

of intelligence.'' Modern neuroscience has focused on the brain's

information-processing capacity (e.g., Churchland and Sejnowski

1992). When using neural networks in robots, we are immediately



alerted to the fact that we can understand the functioning of the

network only if we know how it is connected to the sensors and

effectors (electrical motors in robots, muscles in animals and

humans), how they work, and where they are physically located on

the robot. These considerations imply that if we are to understand

the functioning of a neural substrate, we must extend our investi-

gation beyond its information processing (or algorithmic) prop-

erties and focus on its embodiment. For the study of intelligence,

this implies that the seat of intelligence is not the brain but rather

the organism as a whole.

We start our investigation by motivating neural networks from

biological neurons. We show how we can arrive at abstract, mathe-

matically describable models of the messy world of real biological

neurons. This leads us to generally known and widely used neural

networks, sometimes called arti®cial neural networks (ANNs) to

distinguish them from biological ones. We then introduce the

basics of neural networks and illustrate them with an example of an

autonomous agent. Readers already familiar with neural networks

may skip the basics and move directly to this example (section 5.3).

At the end of the chapter, we present a somewhat polemic argu-

ment for the need to work with physically embodied systems. In

the course of this argument, we also demonstrate that using neural

networks alone is not suf®cient to build genuine intelligence,

because neural networks in isolation, like any other computational

model, only process information.

Before we begin, a short note on terminology: we use the term

connectionism synonymously with neural networks in the context

of embodied cognitive science. Neural network researchers focus-

ing on modeling cognitive science±related phenomena are called

connectionists. We ®nd many connectionists in psychology and

natural language processing. The ®eld of neural networks is much

wider, however, and includes applications in physics, optimiza-

tion, control, time series analysis, ®nance, signal processing, and

pattern recognition. A short historical review of connectionism is

provided in focus box 5.1.

5.1 From Biological to Arti®cial Neural Networks

There are literally hundreds of textbooks on neural networks, and

we have no intention whatsoever of reproducing another such

textbook here. What we would like to do is point out those types of
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neural networks that are essential for modeling intelligent behav-

ior, in particular those relevant for autonomous agents. The goal of

this chapter is to provide an intuition about neural networks rather

than develop them in a lot of technical detail.

The human brain consists of roughly 1011 neurons. They are

highly interconnected, each neuron making up to 10,000 con-

nections, or synapses, with other neurons. This yields roughly 1014

synapses. These speci®cs are not the focus here; we would simply

like to communicate a sense of the brain's awesome complexity.

The human brain is, in fact, the most complex known structure in

the universe.

Figure 5.1a shows a model of a biological neuron in the brain.

(For our purposes here, we can ignore the details of the physio-

logical processes involved. The interested reader is referred to the

excellent textbooks in the ®eld, such as Churchland and Sejnowski

a

b

w1

w2

w3

w4

Inputs
(analog, digital)

Outputs
(analog, digital)

combination
function

activation
function

output
function

Figure 5.1 Natural and artificial neurons: (a) a biological neuron, (b) an artificial neuron. The
dendrites in the natural neuron correspond to the connections between the cells in
the artificial one, the synapses to the weights, the axons to the outputs. Computation
is done in the cell body.
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1992 and Kandell, Schwartz, and Jessell 1991.) The main compo-

nents of a biological neuron are the dendrites, the cell body, the

axon, and the synapses. The dendrites have the task of transmitting

activation from other neurons to the cell body of the neuron, which

in turn has the task of summing incoming activation; there is also

the axon, which transmits information, depending on the state of

the cell body, to other neurons by means of a spike, that is, an

action potential that quickly propagates along an axon. The axon

thus makes connections to other neurons via synapses. Synapses

can be excitatory, which means that they increase the activation

level of a neuron, or they can be inhibitory, in which case they

potentially decrease a neuron's activity. The impulses reaching the

cell body (soma) from the dendrites arrive asynchronously at any

point in time. If enough excitatory impulses arrive within a certain

small time interval, the axon sends out signals in the form of

spikes.

Of course, this description of neuron structure and function is

drastically simpli®ed; individual neurons are highly complex in

themselves, and additional properties are discovered almost every

day. If we want to develop models of even some small part of the

brain, however, we have to make signi®cant abstractions. We now

discuss some of these abstractions (®gure 5.1b). One abstraction

typically made is that there is some kind of a clock that synchro-

nizes all the activity in the network which means that the entire

neural network is updated at each time step. In this abstraction,

inputs to an (arti®cial) neuron can simply be summed (the combi-

nation function) and passed through an activation function to yield

a level of activation. The output of an arti®cial neuron is normally

taken to be its activation level (or it is passed through an output

function). By contrast, to model a real biological system, one would

have to take the precise arrival times of the incoming signals into

account or assume a statistical distribution of arrival times. More-

over, the spikes are not modeled individually in the arti®cial neu-

ron, only their average ®ring rate. The ®ring rate is the number of

spikes per second the neuron produces. It is given by one simple

output value. An important aspect that many ANN models neglect

is the amount of time it takes for a signal to travel along the axon.

Some architectures consider such delays explicitely (e.g., Ritz,

Gerstner, and van Hemmen 1994; Rieke, Warland, de Ruyter van

Steveninck, and Bialek 1997). Nevertheless, it is amazing how much

can be achieved by employing the very abstract model. Table 5.1
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shows the correspondences between the respective properties of

real biological neurons in the nervous system and abstract neural

networks.

Given these properties of real biological neural networks we have

to ask ourselves, how the brain achieves its impressive levels of

performance on so many different types of tasks. How can we

achieve anything using such models as a basis for our endeavors?

Since we are used to traditional sequential programming this is by

no means obvious. In what follows we demonstrate how one might

want to proceed.

Before going into the details of neural network models, let us

make just one point concerning the level of abstraction. There are a

large number of different types of neurons and many different ways

for neuron-to-neuron communication. (e.g., Kandell, Schwartz, and

Jessell 1991; Reeke et al. 1989). Figure 5.2 shows, different types

of neurons in the human brain. Moreover, the spike is only one

way in which information is transmitted from one neuron to the

next, although it is a very important one. Just as natural systems

employ many different kinds of neurons and ways of communi-

cating, there are a great variety of abstract neurons in the neural

network literature.

5.2 The Four or Five Basics

For every arti®cial neural network we create, we have to specify the

following fourÐor ®ve, if we are designing an autonomous agentÐ

elements:

Table 5.1 Comparison of natural and arti®cial neurons.

Nervous system Arti®cial neural network

Neuron Processing element, node, model neuron, abstract neuron

Dendrites Incoming connections

Cell body Activation level, activation function, transfer function, output function

Spike Output of a node

Axon Connection to other neurons

Synapses Connection strengths and weights

Spike propagation Propagation rule
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Figure 5.2 Different types of neurons. Natural brains, especially the human brain, contain many
different types of neurons (from Churchland and Sejnowski 1992, p. 42). The great
number of different types of networks in the neural modeling literature reflects the
great variety of neurons in natural systems. (From Kuffler, Nicholls, and Martin
(1984), From neuron to brain. Second Edition. Sunderland, MA: Sinaur Associates.
Reprinted with permission.)
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Focus 5.1: The History of Connectionism

During the 1980s, a new kind of modeling technique or modeling paradigm
emerged, connectionism. We already mentioned that the term ``connection-
ism'' is used to designate the field that applies neural networks to modeling
phenomena from cognitive science. By neural networks, we mean a particular
type of computational model consisting of many relatively simple, inter-
connected units working in parallel. Because of the problems inherent in
classical approaches to AI and cognitive science, many researchers warmly
welcomed connectionism. It soon had a profound impact on cognitive
psychology and large portions of the AI community. Actually, connectionism
was not really new at the time; it would be better to speak of a renaissance.
Connectionist models have been around since the 1950s, when Rosenblatt
(1958) published his seminal paper on the perceptron, illustrated in figure 5.3.

Even though all the basic ideas were there, perceptron research never really
took off. One reason was the publication of Minsky and Papert's seminal book
Perceptrons in 1969, in which they proved mathematically some intrinsic
limitations of certain types of neural networks. These limitations seemed so
restrictive that, as a result, the symbolic approach began to look much more
attractive. Many researchers then chose to pursue the symbolic route, and the
symbolic approach dominated the scene until the early 1980s; then problems
with the symbolic approach started to emerge.

Figure 5.3 Rosenblatt's perceptron. Stimuli impinge on a retina of sensory units (left). Impulses
are then transmitted (from the retina to a set of association cells, also called the
projection area. (This projection area may be omitted in some models.) The cells in
the projection area each receive a number of connections from the sensory units.
These cells are binary threshold units. Between the projection area and the associa-
tion area, connections are assumed to be random. The responses Ri are cells that
receive input typically from a large number of cells in the association area. Whereas
the previous connections were feedforward only, the ones between the association
area and the response cells work in both directions. They are either excitatory,
feeding back to the cells from which they originated, or inhibitory to the comple-
mentary cells (the ones from which they do not receive signals). Although there are
clear similarities to what is called a perceptron in today's neural network literature,
the feedback connections between the response cells and the association area are
normally missing (see section 5.4).
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1. The characteristics of the node: We use the terms nodes, units,

processing elements, neurons, and model neurons synonymously.

We have to de®ne the way in which the node sums the inputs, how

they are transformed into a level of activation, how this level of

activation is updated, and how it is transformed into an output that

is transmitted along the axon.

2. The connectivity: We must specify which nodes are connected to

which and in what direction.

3. The propagation rule: We must specify how a given activation

traveling along an axon is transmitted to the neurons to which the

axon is connected.

4. The learning rule: We must specify how the strengths of the

connections between the neurons change over time.

Focus 5.1 (continued)

The period between 1985 and 1990 was really the heyday of connectionism.
There was an enormous excitment and a general belief that through
connectionism enormous progress in our understanding of intelligence had
been made. What the researchers and the public at large seemed most
fascinated with were essentially two properties: First, neural networks are
learning systems, and second they have emergent properties. Recall the three
conceptions of emergence we introduced in the previous chapter. In this
context, the notion of emergent properties refers to behaviors a neural
network (or any system) exhibits that have not been programmed into the
system. These behaviors result from an interaction among various
components (and of the system into which the neural network is embedded
with the environment, as we show later). A famous example of an emergent
phenomenon has been found in the NETTalk model, a neural network that
learns to pronounce English text. (NETTalk is discussed in more detail below).
After some learning, the network starts to behave as if it had learned the rules
of English pronunciation, even though there were no rules in the network.
So for the first time, computer models were available that could do things
the programmer had not directly programmed into them. The models had
acquired their own history! This is why connectionism, that is, neural network
modeling in cognitive science, is still surrounded by a somewhat mystical
aura.

Neural networks are now widely used beyond the field of cognitive science.
Applications abound in areas like physics, optimization, control, time series
analysis, finance, signal processing, pattern recognition, and of course
neurobiology. Moreover, since the mid 1980s when they started becoming
popular, many of their properties have been proven mathematically. An
important one is their computational universality (Hornik, Stinchcombe, and
White 1989). Another is their close link to statistical models (e.g., Poggio and
Girosi 1990). These results perhaps make neural networks somewhat less
mystical and less exotic, but no less useful and fascinating.
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5. Embedding the network in the agent: If we are interested in neural

networks for autonomous agents, we must always specify, in addi-

tion to the ®rst four elements, how the network is embedded in the

agent.

The neural network literature depicts thousands of different kinds

of network types and algorithms. All, in essence, are variations on

these basic properties.

The First Basic: Node Characteristics

We have to specify in an ANN how the incoming activation is

summed and processed to yield level of activation and how output

is generated: that is, we must specify the node characteristics (see

®gure 5.1b and 5.4). The standard way of calculating a neuron's

level of activation is

ai � g
Xn

j�1

wijoj

 !
� g�hi�; �5:1�

where ai is the level of activation of neuron i, oj the output of other

neurons, g the activation function, and hi the summed activation.

Normally we have oi � f �ai� � ai, that is, the output is taken to be

the level of activation. In this case, oi can be replaced by ai in

equation (5.1). The activation is updated at each time step. If we

want to make this explicit, we can rewrite equation (5.1) as:

ai�t � 1� � g
Xn

j�1

wijaj�t�
 !

: �5:2�

hi ai oi

w in

wi2

w
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…
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Figure 5.4 Node characteristics: hi : summed weighted input into the node (from other nodes or
from sensors, indicated by x1), ai : activation level, oi : output of node (often identical
with ai ), wij : weights connecting nodes j to node i. Moreover, the following items are
associated with each node: an activation function g, transforming the summed input
hi into the activation level, and a threshold, indicating the level of summed input
required for the neuron to become active.
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The explicit reference to the time steps is frequently omitted

because it is evident.

Figure 5.5 shows the most widely used activation functions. The

linear function simply sums the inputs (®gure 5.5a). The step

function sums the inputs and the neuron is silent until the thresh-

old y is reached, at which point the neuron becomes active (®gure

5.5b). Units employing the step function are often called linear

threshold units. The third activation function to be discussed here

is the sigmoid or logistic function (®gure 5.5c). The sigmoid func-

tion is, in essence, a smooth version of a step function. Its value is

zero (or ÿ1) for low input. At some point, it starts rising rapidly and

then, at even higher levels of input, it saturates. This saturation

property can be observed in nature, where, for example, biological

factors limit the ®ring rates of neurons. The slope (also called gain)

of the sigmoid function can be changed.

The Second Basic: Connectivity

The second property to be speci®ed for any neural network is its

connectivity, that is, how the individual nodes are connected to

one another. This can be shown by means of a directed graph with

nodes and arcs (arrows). Connections are assumed to be in only one

direction; if they are bidirectional, this must be explicitly indicated

by two arrows. Figure 5.6 shows a simple neural net. Nodes 1 and 2

are input nodes; they receive activation from outside the network.

Node 1 is connected to nodes 3, 4, and 5, whereas node 3 is con-

nected to node 1. Nodes 3, 4, and 5 are output nodes. They could be

connected, for example, to a motor system, where node 3 might

a. linear

hi

g

b. linear threshold

hi

g

1

0 Θ

c. sigmoid, logistic

hi

g

+1

-1

Figure 5.5 Most widely used activation functions: (a) linear function, (b) step function, (c) sig-
moid function. The variable hi is the summed input, g, the activation function. The
sigmoid function varies between ÿ1 and �1 or between 0 and 1.
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stand for ``turn left,'' node 4 for ``straight,'' and node 5 for ``turn

right.'' Note that nodes 1 and 3 are connected in both directions,

whereas between nodes 1 and 4 the connection runs only one way.

Connections in both directions can be used to implement some

kind of memory. Networks having connections in both directions

are also called recurrent networks. Nodes that have similar charac-

teristics and are connected to other nodes in similar ways are

called a layer. Nodes 1 and 2 receive input from outside the

network; they are called the input layer, whereas nodes 3, 4, and 5

form the output layer.

For larger networks, graph notation gets cumbersome, and it is

better to use matrices. The idea is to list all the nodes horizontally

and vertically. The matrix elements represent the connection

strengths. They are denoted wij , meaning that node j is connected

to node i with a particular connection strength, or weight, w. (note

that this is intuitively the ``wrong'' direction, but it is just a nota-

tional convention.) Such a matrix is called the connectivity matrix.

It represents, in a sense, the ``knowledge'' of the network. In virtu-

ally all types of neural networks, the learning algorithms work

through modifying the weight matrix. Matrix notation, illustrated

in table 5.2, is used throughout the ®eld of neural networks. Node

1 is not connected to itself �w11 � 0�, but it is connected to nodes

3, 4, and 5 (with different strengths w31, w41, w51). The connection

strength determines how much activation is transferred from one

node to the next. Positive connections are excitatory, negative ones

inhibitory. (The numbers in this example are chosen arbitrarily.)

Zeroes mean that there is no connection between two nodes. By

analogy to biological neural networks, the connection strengths are

sometimes also called synaptic strengths. The weights are typically

adjusted gradually by means of a learning rule until the network

is capable of performing a particular task (see below). As in linear

w31

w13

w52

w42

1
3

4

5

w32w41

w51

1

2

Figure 5.6 Graph representation of a neural network. The connections are denoted wij , meaning
that a particular connection links node j to node i with weight wij . Table 5.2 shows
the matrix representation for this network.
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algebra, the term vector is often used in neural network jargon. The

values of the input nodes are called the input vector. In the current

example, the input vector might be (0.6 0.2) (the numbers have

again been arbitrarily chosen). Similarly, the list of activation

values of the output layer is called the output vector.

Neural networks are often classi®ed with respect to their con-

nectivity. If the connectivity matrix has all 0s in and above the

diagonal, we have a feedforward network, since in this case there

are only forward connections, that is, connections in one direction

(no loops). A network with several layers connected in a forward

way is called a multilayer feedforward network or multilayer per-

ceptron. The network in ®gure 5.6 is mostly feedforward (con-

nections only in one direction), but it contains one loop (between

nodes 1 and 3), that is, two nodes both connected to one another in

both directions. Loops are important for the network's dynamic

properties. If all the nodes from one layer are connected to all the

nodes of another layer, we say that the two layers are fully con-

nected. Networks in which all nodes are connected to each other in

both directions are called Hop®eld nets.

The Third Basic: The Propagation Rule

The propagation rule determines how activation is propagated

through the network. Normally, a weighted sum is assumed in

determining propagation. For example, if we call the summed

imput to node 4 h4, we have h4 � a1 �w41 � a2 � w42, or generally

hi �
Xn

j�1

wijaj ; �5:3�

Table 5.2 Connectivity matrix.

Node 1 Node 2 Node 3 Node 4 Node 5

Node 1 0 0 0.8 0 0

Node 2 0 0 0 0 0

Node 3 0.7 0.4 0 0 0

Node 4 1.0 ÿ0.5 0 0 0

Node 5 0.6 0.9 0 0 0
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where n is the number of nodes in the network, hi the summed

input to node i. The variable hi is sometimes also called the local

®eld of node i. To be precise, we would have to use oj instead of aj ,

but because a node's output is nearly always taken to be its level of

activation, this amounts to the same thing. This propagation rule is

in fact so common and taken so for granted that it is often not even

mentioned. (Note that there is an underlying assumption here, that

activation transfer across the links takes exactly one unit of time).

We want to make the propagation rule explicit because ifÐat some

pointÐwe intend to model neurons more realistically, we have to

take the temporal properties of the propagation process, such as

delays, into account.

The Fourth Basic: The Learning Rule

Learning rules are required in neural networks to modify the

weights. Let us consider an example that we use again later on. In

1949 physiologist Donald Hebb proposed that if two neurons are

active at the same time, the connection between them is strength-

ened. Hebb's own formulation is somewhat different, a bit more

precise, but states essentially the same fact: ``When an axon of cell

A is near enough to excite a cell B and repeatedly or persistently

takes part in ®ring it, some growth process or metabolic change

takes place in one or both cells such that A's ef®ciency, as one of

the cells ®ring B, is increased'' (Hebb, 1949, p. 50). Mathematically

we can write

Dwij � h � oj � ai; �5:4�
where h is the so-called learning rate, oj the output of node j, and ai

the activation of node i. If we again assume that oi � ai, we have

Dwij � h � aj � ai: �5:5�
The learning rate h determines how quickly the weight changes. It

should be neither too small, because then learning would be too

slow, nor too large, because in that case the network would react

too strongly to ¯uctuations in the environment and would not sta-

bilize easily. The weights are changed (updated) as follows:

wij�t � 1� � wij�t� � Dwij ; �5:6�
where t represents time. As in the case of activation update, we

have now introduced time explicitly to indicate that the weight at

time t � 1 is calculated from the weight at time t.
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Hebbian learning comes in many variations. The representation

here is just one very simple form. One problem that must be resolved

is that with this simple rule, the weights can only increase:

Mechanisms must also be de®ned for reducing the weights (e.g.,

Hertz, Krogh, and Palmer 1991). An example of how this can be

done is shown in section 5.3.

There are many other learning rules, and we will discuss some of

them as we go along. Hebbian learning has the advantage of being

simple and based only on local communication between neurons:

No central control is required.

The Fifth Basic: Embedding the Network in the Agent

If we want to use a neural network for controlling an autonomous

agent, it is quite obvious that we have to connect it to the robot. We

have to specify how the sensory signals are going to in¯uence the

network and how the computations of the network are going to in-

¯uence the robot's behavior. In other words, we must know about

the physics of the sensors and the motor system. Signals originating

from a video camera have a completely different meaning than

those coming from a touch sensor. Similarly, motor signals for a

speech generator have an entirely different impact on the robot's

behavior than signals going to a wheel motor. Thus if we want to

understand the network's behavior, we must know how it is

embedded in the robot, and we must know about the physics of the

sensory and motor systems. To make matters more concrete, let us

look at an example from the ®eld of autonomous agents.

5.3 Distributed Adaptive Control

We want to develop a neural network architecture for an autono-

mous agent that should be able to move about in an environment

without hitting obstacles (Pfeifer and Verschure 1992; Verschure,

KroÈse, and Pfeifer 1992). The speci®c network architecture has

been derived from a general model of conditioning (Verschure and

Coolen 1991), but that is not of much importance here. What does

matter is that we have to ®nd a solution to the hard problem of

processing continuously changing sensory stimulation: As the

agent moves, the stimulation changes, depending on the agent's

behavior. What patterns should the agent react to? Surely, not

everythingÐthat would make no sense. What patterns should be
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learned? In standard neural network applications the network

designer carefully prepares the data to train and test the network. In

contrast, if neural networks are used to control mobile robots, there

are no neatly prepared training and test sets. Thus out of this con-

tinuous stream of sensory stimulation, the agent must select the

relevant patterns itself. Distributed Adaptive Control provides such

a selection mechanism.

Task and Ecological Niche

The ®rst thing we have to do in developing our neural network is

de®ne the task and the ecological niche (see table 4.5). The robot's

ecological niche will be a simple closed environment with obsta-

cles and light sources. We call the light sources ``targets,'' because

the robot will have a tendency, because of its light-triggered

re¯exes, to move towards targets: If there is stimulation of the light

sensor on the right, it will turn toward the right (and vice versa for

the left light sensor). The robot's ``task'' is to move toward targets

while avoiding obstacles. We put ``task'' within quotation marks

because there is no representation of the ``task'' inside the robot.

Figure 5.7 shows a schematic representation of the setup.

Figure 5.7 Basic setup for the experiments with Distributed Adaptive Control. The ecological
niche is very simple: a closed environment with obstacles and light sources (only
one light source shown). The light sources are placed along the walls. The direction
of the robot's motion is indicated with a triangular arrow in the center of the robot.
The large circle depicts the range at which the robot can detect light sources. In the
situation shown, the robot does not sense the light source because it is outside the
robot's range. The small circle indicates the range of the proximity sensors. (Outside
of this range, the sensors deliver no activation.)
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A Generic Agent Architecture

Throughout the book, we present various examples of autonomous

agents implemented on different types of robots. Figure 5.8 shows

examples of such robots. These robots all implementÐin one way

or anotherÐthe following generic scheme (®gure 5.9): They all

have a left-right symmetry, a number of proximity or distance

sensors (e.g., IR sensors, ultrasound sensors), collision sensors,

and two wheels that can be individually driven. This scheme in its

essence is used in all the examples presented throughout this book.

Proximity sensors ringing the robot (medium shading in the ®gure)

yield a measure of ``nearness'' to an obstacle: the nearer to the

obstacle the robot is the higher the activation level. If the obstacle is

far away, activation will be 0 (except for noise). A number of colli-

sion sensors (darkest shading) transmit a signal when the robot hits

an obstacle. In addition, the robot has light sensors (lightest shad-

ing). The robot's two wheels are individually driven by electrical

motors. If both motors turn at equal speeds, the robot moves

straight; if the right wheel is stopped and only the left one moves,

the robot turns right; and if the left wheel moves forward and the

right one backward with equal speed, the robot turns on the spot.

This architecture represents a generic low-level speci®cation for

a particular simple class of robots and is used to implement the

Distributed Adaptive Control architecture.

Network Architecture and Agent Behavior

In the Distributed Adaptive Control example, only the following

sensors from the generic setup are used: The collision and proxim-

ity sensors on the front half of the robot and the leftmost and

rightmost light sensors. The sensors on the back of the robot are

not used.

We now de®ne the control architecture. The robot has a number

of built-in re¯exes. If it hits an obstacle, activating a collision sen-

sor on the right, it backs up a little and turns to the left (and vice

versa). Whenever it is sensing light on one side, it turns toward that

side. If it senses no obstacles and no lights, it simply moves for-

ward. How can we control this robot with a neural network? Figure

5.10 shows how a neural network can be embedded in the robot.

(For reasons of simplicity, we omit the light sensors for the moment.)

Each sensor on the robot is connected to a node in the neural net-

work: the collision sensors to nodes in the collision layer, the
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Figure 5.8 Different types of robots: (a) Khepera, (b) Didabot, (c) B21 from Real-World Inter-
face. The Khepera robot is a widely used robot platform in the field of autonomous
agents. It is especially convenient because of its small size. Khepera can be used by
people who have only a superficial knowledge of robots. The Didabot is similar to the
Khepera robot in basic functionality, but it is bigger, which makes it easier for the
designer to add his or her own sensors. It can be built by students under
supervision in a few days. B21 is, in a sense, the Rolls Royce of mobile robots. It
comes equipped with, among many other things, sensory systems, including a
stereo vision system. There are considerable differences in cost between the different
platforms.

Figure 5.9 Generic agent scheme. The triangular arrow indicates the direction the robot is fac-
ing. The sensors (proximity, light, collision) are distributed along the front half of the
robot, and two are in the back. There are two wheels, each with one motor. This is
the generic agent scheme that we employ most of the time in this book. There are
many variations, for example, cameras and arms or grippers can be added.
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proximity sensors to nodes in the proximity layer. The collision

nodes are binary threshold; that is, if their summed input hi is

above a certain threshold, their activation value is set to 1, other-

wise it is 0. Proximity nodes are continuous. Their value depends

on the strength of the signal they get from the sensor. In ®gure 5.10,

the nodes in the proximity layer show varying levels of activation

(the darker the shading of a circle, the stronger its activation),

whereas the nodes in the collision layer are inactive (0 activation)

because the robot is not hitting anything (i.e., none of the collision

sensors is turned on).

The proximity layer is fully connected to the collision layer in

one direction. (The arrows are omitted here because the ®gure

would be overloaded otherwise.) If the proximity layer has six

nodes and the collision layer six, as in ®gure 5.10, there are 6 con-

nections. The nodes in the collision layer are in turn connected to a

motor output layer; these connections implement the basic re¯exes.

The arrangement is exactly analogous for the light sensors, so there

Figure 5.10 Neural network embedded in a robot. There are three layers of nodes, a proximity
layer, a collision layer, and a motor action layer. Each proximity sensor is connected
to a node in the proximity layer. Similarly, each collision sensor is connected to a
node in the collision layer. Proximity nodes have continuous activation levels and
sigmoid activation functions; collision nodes are binary threshold. The proximity
layer is fully connected in one direction (feedforward) by modifiable connections to
the collision layer. Modification is achieved by a certain type of Hebbian learning. The
collision layer is hard-wired to the motor action layer to implement the basic reflexes
that don't change over time. The levels of gray in the proximity layer indicate the
strength of the activation: the darker the shade of gray, the higher the level of
activation.
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is also a layer of nodes (in this case only two), one for each light

sensor (because we are only using the leftmost and rightmost light

sensors).

In ®gure 5.10, the robot is moving straight and nothing happens.

If it keeps moving, it will eventually hit an obstacle. When it does

so, (®gure 5.11), the corresponding node in the collision layer is

turned on (i.e., its activation is set to 1). As there now is activation

in a collision node and simultaneously in several proximity nodes,

the corresponding connections between the proximity nodes and

the active collision node are strengthened through Hebbian learn-

ing. Figure 5.12 shows in more detail how this works. The proxim-

ity sensor starts becoming active at around step 14 (®gure 5.12b);

at step 24 there is a collision (®gure 5.12a), at which point Hebbian

learning sets in and the weights are strengthened (®gure 5.12c).

This strengthening of the connections means that next time

around, in a similar situation more activation from the proximity

layer will be propagated to the collision layer. Assume now that the

robot hits obstacles on the left several times. Every time it hits, the

corresponding node in the collision layer becomes active and there

is a pattern of activation in the proximity layer. The latter will be

similar every time, thus the same connections will be reinforced

each time. Because the collision nodes are binary threshold, the

activation originating from the proximity layer will at some point

be strong enough to raise the activation level in the collision node

Figure 5.11 The robot making a collision. Because of the collision, the corresponding node in the
collision layer is turned on. At the same time, there is an activation pattern in the
proximity layer. The connections between the active nodes in the proximity layer and
the active nodes in the collision layer are reinforced by Hebbian learning.
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Figure 5.12 Hebbian learning. The data were taken from an implementation of the Distributive
Adaptive Control architecture in a Khepera robot. (a) Activation of a collision node.
Around time step 24, the robot collides with an obstacle. (b) Activation of a proximity
node connected to the collision node shown in (a). The collision is reflected in the
proximity node's activation pattern. (c) Weight of the connection between the prox-
imity node and the collision node. The weight increases because both nodes are
active (Hebbian learning).

Chapter 5 158



above threshold without an actual collision. When this happens,

the robot has learned to avoid obstacles: In the future it should no

longer hit obstacles but take corrective action before hitting them,

as ®gure 5.13 illustrates.

The robot continues to learn. Over time, it starts turning away

from the object earlier and earlier. This is because two activation

patterns in the proximity sensor, taken within a short time interval,

are similar when the robot is moving toward an obstacle. Therefore,

as the robot encounters more and more obstacles as it moves

around, it continues to learn, even if it no longer hits anything.

Figure 5.14a illustrates this behavior change.

We can now look at the weight patterns underlying this behavior.

Figure 5.15 shows the evolution of the connection weights between

the collision and the proximity layer as the robot interacts with the

environment. Dark areas indicate large, and light areas indicate

small weights. At the beginning of the experiment (®gure 5.15a),

the weights are randomly distributed: There is no clear structure

in the connectivity between the proximity and the collision layer.

After the robot has collided 10 times, this randomness has dis-

appeared, and we begin to see a structured connectivity pattern

(®gure 5.15b). This pattern already makes the robot avoid walls. We

said earlier that learning does not stop even when the robot suc-

cessfully avoids the walls. Figure 5.15c shows this: The connec-

tivity pattern now has a clear diagonal structure re¯ecting the fact

that the proximity and collision nodes are simultaneously active.

This structure emerged because the collision and the proximity

sensors are based on different physical processes but are located

next to each other on the robot's body, thus yielding correlated

signals. For example, whenever the robot has had a collision on

the left, the proximity nodes on the left have been highly active.

Similarily, whenever the robot has had a collision in the front, the

corresponding collision and proximity sensors have been activated.

This correlation has then been picked up by the Hebbian learning

mechanism, resulting in the diagonal weight pattern shown in

®gure 5.15c. Finally, note that the correlation implies a certain

amount of redundancy: the information the agent gets from one

sensor overlaps to a certain degree with the information it gets from

the other. This overlap, that is, the correlations between proximity

and collision sensors, is the basis for learning in the Distribute

Adaptive Control architecture. This is a fundamental point in the

study of intelligence. It is an instance of the redundancy principle,
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Figure 5.13 Robot learning to avoid obstacles. Initially, the robot is approaching (a), hitting (b),
and moving away from the obstacle (c). After a number of collisions, the robot ap-
proaches the obstacle (d) and turns away from it without hitting (e) and (f).
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one of the design principles of embodied cognitive science we

discuss later (chapters 10 and 13). Let us now look more closely at

how the various activations are calculated, and how the Hebbian

learning mechanism is implemented.

Mathematically, the input to the node i in the collision layer can

be written as

hi � ci �
XN

j�1

wij � pj ; �5:7�

where pj is the activation of node j in the proximity layer, ci

the activation resulting from the collision sensor, wij the weight

between node j in the proximity layer and node i in the collision

layer, and hi the summed activation at collision node i. The value

of ci is either 1 or 0, depending on whether there is a collision; pj

has a value between 0 and 1, depending on the stimulation of the

proximity sensor j (high stimulation entails a high value, and vice

versa). N is the number of nodes in the proximity layer. Let us call

ai the activation of node i in the collision layer. Node i is, among

others, responsible for the motor control of the agent. ai is calcu-

lated from hi by means of a threshold function g:

ai � g�hi� �
�

0 : hi < Y

1 : hi VY
: �5:8�

The weight change is

Dwij � 1

N
�h � ai � pj ÿ e � a � wij�; �5:9�

where h is the learning rate, N the number of units in the proximity

layer as above, a the average activation in the collision layer, and e

the forgetting rate. (Forgetting is required because otherwise the

Figure 5.14 Development of robot behavior over time. (a) Obstacle avoidance behavior. Initially,
the robot hits obstacles. Over time, it starts turning away before hitting. (b) Wall-
following behavior. When light sources are found along walls, wall-following behav-
ior emerges over time.
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Figure 5.15 Evolution of weight patterns of connections between proximity and collision layers.
The data were taken from the run described in figure 5.12. Dark areas indicate strong
weights, light areas indicate weak weights. There are six collision and proximity
sensors, corresponding to the IR sensors of the Khepera robot. (a) Weight pattern at
the beginning of the trial. There is no apparent structure; the weights are randomly
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weights would become too large over time.) Note that in the for-

getting term we have a, the average activation in the collision layer.

This implies that forgetting takes place only when something is

learned, that is, when there is activation in the collision layer (see

®gure 5.12). This is also called active forgetting. The factor 1/N is

used to normalize the weight change.

Figure 5.16 shows the complete Distributed Adaptive Control

architecture. A target layer (T) associated with light sensors has

been added whose operation is analogous to that of the collision

layer (C). Assume that there are a number of light sources near

the wall. As a result of its built-in re¯ex, the robot turns toward a

light source. As it gets close to the wall, it turns away from the wall

(because it has learned to avoid obstacles). Now the turn-toward-

target re¯ex becomes active again, and the robot wiggles its way

along the wall, as ®gure 5.14b illustrates. Whenever the robot is

near the wall, its proximity layer receives stimulation. Over time, it

c

Figure 5.15 (continued)
distributed. (b) Weight pattern after the robot has collided 10 times. A diagonal
pattern begins to emerge. (c) Weight pattern after the robot has encountered (not
necessarily collided with) a wall another 10 times. The diagonal structure is now very
clear and robust. The robot no longer collides with walls. (To get a better intuition of
the changes in the weight matrix, the resolution has been increased and the gray-
level values have been calculated by interpolation.)
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comes to associate light with lateral stimulation in the proximity

sensor (lateral meaning ``on the side''). In other words, it begins to

display the behavior in ®gure 5.14b even if there is no longer a light

source near the wall.

Let us, for the sake of the argument, assume that light represents

food. We could say that the robot has learned that food is normally

located along walls. Because it has this knowledge, it follows the

walls: It hopes to ®nd food, even if it currently does not sense any.

This is another instantiation of the perspectives issue in the frame-

of-reference problem. We have given our interpretation of the

robot's behavior as observers. All that has happened within the

robot is a change of weights in the neural network.

Finally, the Distributive Control Architecture includes an

inhibitory element (I). Roughly speaking, it is a sluggish element

designed to inhibit the target layer's output if the agent hits obsta-

cles too often. With this element, the robot can get itself out of

impasses.

So far we have described our planned neural network's ecologi-

cal niche and task as well as its low-level speci®cation. We have

Figure 5.16 Complete Distributed Adaptive Control architecture. In addition to the collision layer
(C) there is a target layer (T). The network processes operating between the prox-
imity layer and the target layer are entirely analogous to the ones between the prox-
imity layer and the collision layer. The connections shown by solid arrows are hard-
wired (they don't change over time), whereas those shown by broken arrows are
modified by Hebbian learning. There is also an inhibitory element (I) whose purpose
is to inhibit the output of the target layer if the agent hits obstacles too often. This
happens if the robot is, for example, attracted to a light source in a corner. It hits the
walls frequently, which activates the inhibitory element. If I is sufficiently active, it
inhibits the output of the target layer, which implies that the robot isÐfor a short
timeÐno longer attracted to the light. I is not essential, but it often helps the robot
get out of impasses.
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also introduced the control architecture that will govern it. We have

formulated some hypotheses about our robot's behavior. If we go

back to table 4.5 we see that we are still missing a number of ele-

ments. For example, we have yet to choose a robot platform (or a

simulator), we have to de®ne the actual experiments (number,

shape, and position of obstacles and light sources, starting position

of the robot, duration of experiment, evaluation criteria). Then we

actually have to run the experiments. During the runs, if possible,

data should be collected about the robot's behavior and internal

state. Then, various ways of describing the behavior should be

applied. In our formulation of the hypotheses about the robot

behavior, we have used mostly verbal descriptions, interspersed

with a few graphic ones (e.g., ®gure 5.14). Finally, we need to

generate explanations, which the next section does. Often, these

explanations correspond to the rationale underlying the predic-

tions. (For those interested in acquiring practical experience with

these matters, we suggest doing the programming example ``Dis-

tributed Adaptive Control,'' on our web page).

Conclusions

Here are some important points illustrated by this example of a

neural network:

1. Distributed Adaptive Control provides a solution to the problem of

selecting the relevant data for learning. Whenever a motor signal is

generated that is associated with a basic re¯ex, Hebbian learning

automatically takes place. The intuition behind this mechanism is

that something should be learned when something relevant hap-

pens. This is the case when the robot's motor system is activated.

2. The agent learns to generalize. It starts avoiding obstacles and

®nally ends up ``anticipating'' them as a result of an appropriate

process of generalization. (We put ``anticipating'' in quotation

marks to indicate that this is an attribution by an observer.) As

pointed out above, the activation patterns in the proximity layer are

very similar, because the agent is facing the same obstacle, if the

distance to the obstacle differs only by a small amount. The every-

day meaning of anticipation implies that the agent has an explicit

expectation about a future situation that may or may not materi-

alize. As observers, we could argue that the agent anticipates that it

will hit the obstacle if it continues in a straight line, which is why it
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is turning away. In this example, we know that there is no internal

representation of a future situation: This ``anticipation'' comes

about through simple associative learning. The range of ``anticipa-

tion,'' that is, how far away from an object the robot starts turning,

is limited by two factors: First, the range of the proximity sensors is

restricted. Second, the forgetting term in equation 5.9 prevents

overgeneralization; that is, it prevents the network from reacting to

weak stimulation.

3. Collision sensors and proximity sensors operate on different phys-

ical processes. The patterns of activation in these sensors are cor-

related, implying that there is a certain amount of redundancy: The

information the agent gets from one type of sensor overlaps to a

certain degree with the information it gets from the other. For

example, whenever there is a collision, there is high activation in

the corresponding region of the proximity sensor. Note that the

correlation between the patterns comes about as a result of the

agent's physical interaction with the environment. This correlation

cannot be explained by looking at the neural network alone. Cor-

relations thus generated are the basis for learning (see ®gure 5.15).

This is an instance of the redundancy principle.

4. Learning is completely integrated and takes place continuously.

There is no distinction between a learning and a performance

phase, in contrast to many standard neural network paradigms.

5. The agent not only learns, but also forgets. One problem of (algo-

rithmic) Hebbian learning is that the weights can potentially get

very large. The model here corrects for this by active forgetting:

Whenever the robot learns something, it forgets a little bit of what it

``knew'' before. The idea behind this mechanism is that the current

situation is a bit more important than the earlier ones. The forget-

ting mechanism keeps the weights low, and learning can go on

forever. If the environment does not change, the weight matrix

converges to an equilibrium state.

6. Because of the way the network is embedded in the agent, its

behavior is robust. If one of the sensors does not work properly, as

often happens, the network still functions. This is because there is

redundancy in the system: On the one hand, nodes associated with

neighboring sensors have learned similar associations (e.g., ®gure

5.11), and on the other, neighboring sensors are likely to have sim-

ilar levels of activation. Thus if one sensor is broken, signals from

adjacent sensors are suf®cient to perform the function (such as ob-

stacle avoidance).
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In the neural network literature there is a classi®cation of the

different types of networks. The kind of network presented here

belongs to the category of nonsupervised models. The classi®cation

scheme is based on the kind of learning that is incorporated in the

network. Let us brie¯y examine the various types.

5.4 Types of Neural Networks

Nonsupervised Networks

Neural networks that require no teacher are said to be non-

supervised. The Distributed Adaptive Control architecture employs

a nonsupervised network based on Hebbian learning: learning

simply takes place when the nodes on both sides of the connection

are simultaneously active (or both active within a given time inter-

val). In neural network terminology, the activation of the node from

which the connection originates is said to be presynaptic and the

activation of the node into which the connection leads (or projects),

postsynaptic (see ®gure 5.1). Thus, Hebbian learning reinforces the

synaptic strength between two neurons if presynaptic and post-

synaptic activation occur simultaneously, or within some small

time interval. Hebbian learning comes in many variations and is

used widely in the ®eld of embodied cognitive science for several

reasons: First, Hebbian learning is unsupervised (as already men-

tioned). Second, it is simple and thus requires little computation.

Third, it is purely local, meaning that for learning, only the neuron

itself and its neighbors need to be considered: There is no need for

some kind of global control structure. And fourth, Hebbian learning

is biologically plausible. The neuroscience literature describes

variations on Hebbian learning (e.g., Churchland and Sejnowski

1992; Edelman 1987).

Another important category of nonsupervised networks is the

so-called topology-preserving feature maps, or simply Kohonen

maps (named after their inventor, Kohonen, 1988a). Kohonen maps

are widely used in many application areas. In the ®eld of robotics,

they are often used for motor control (e.g., arm control) and for

navigation purposes. Like most of the common neural network

schemes, they come in many variations. Figure 5.17 shows their

basic architecture. The input layer is fully connected to the map

layer. In the map layer, lateral connections are excitatory for close
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neighbors, inhibitory for those further away, and neutral for the

ones still further out. (Connections are called lateral if they link

nodes within a layer, rather than between layers.) Patterns are pre-

sented to the model at the input layer, and depending on the

particular architecture and choice of parameters, the system will

eventually learn a particular categorization of the input space. The

details of the algorithm are of little signi®cance here; what does

matter is the basic principle that there is no need for the system to

be given a classi®cation of input patterns by the designer (which is

why this is called nonsupervised).

An example of a Kohonen map is the ``neural phonetic type-

writer'' (Kohonen 1988b). Inputs to the typewriter are spectral

patterns corresponding to preprocessed speech signals, and the

classes which are formed in the map layer can be interpreted as

phonemes. More precisely, they are ``pseudophonemes,'' which are

like phonemes but have a shorter duration (10 ms rather than 40

to 400 ms). But this detail is not essential to the points to be made

here.

The popularity of Kohonen maps derives from several factors.

First, the Kohonen algorithm can be used if the categories in a data

set are unknown: the algorithm ®nds categories (clusters) by itself.

In the phonetic typewriter example, the algorithm ®nds the pho-

nemes by itself, given the spectral speech data as input. Second, the

Kohonen algorithm can be used to map high-dimensional spaces

onto low-dimensional ones while preserving the topology; that is,

neighboring points in the input space are mapped onto neighboring

points in the output space. In the typewriter example, close points

in frequencey space (from the speech spectrum) are mapped onto

neighboring phonemes (which sound similar to humans). And

Figure 5.17 Basic architecture of a Kohonen network. The input layer is fully connected to the
map layer. The map layer has lateral connections that are excitatory for close neigh-
bors, inhibitory for those further away, and neutral for the ones still further away. In
the map layer, clustering of input patterns takes place.
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third, as does Hebbian learning, Kohonen maps have certain neu-

robiological plausibility (e.g., Kohonen 1988a).

Supervised Networks

Another large and important class of neural networks are the

so-called supervised networks. The term supervised is used both in

a very general and a narrow technical sense. In the narrow techni-

cal sense, supervised means that if, for a certain input, the corre-

sponding output is known, the network is to learn the mapping

from inputs to outputs. In supervised learning applications, the

correct output must be known and provided to the learning algo-

rithm. The task of the network is to ®nd the mapping. The weights

change depending on the magnitude of the error that the network

produces at the output layer: the larger the error, that is, the larger

the discrepancy between the output that the network produces and

the correct output value, the more the weights change. The most

frequently used algorithm is back-propagation. It is extremely

powerful. There are literally hundreds of variations of backpropa-

gation, and the potential for applications is enormous.

Supervised networks have been used in many different areas.

A prominent example is in the recognition of handwritten zip

codes, which can be applied to sorting mail automatically in a

post of®ce. In chapter 4, we discussed the ALCOVE model, which

captures psychological data from category learning experiments.

Other application areas include optimization, control, time series

analysis, ®nance (e.g., stock market prediction), signal processing,

and pattern recognition.

To illustrate the main ideas involved in supervised networks,

let us look at a famous example, NETTalk. NETTalk, now mostly

of historical interest, is a connectionist model that translates

English text into speech. It uses a multilayer, feedforward, back-

propagation network model (Sejnowski and Rosenberg 1987).

Figure 5.18 illustrates the architecture involved, which consists of

an input layer, an intermediate layer, called hidden layer, and an

output layer. Whereas the function of the input and output layers is

clear, a hidden layer is frequently added because it signi®cantly

augments the learning capacity of the neural network by introduc-

ing many additional weights. Text is presented at the input layer,

which has a window of seven slots representing seven letters. This

window is needed because the pronunciation of a letter in English
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depends strongly on the context in which it occurs. In each slot,

one letter is encoded. For each letter of the alphabet (including

space and punctuation) there is one node in each slot, which means

that the input layer has 7 � 29 nodes. Input nodes are binary on-off

nodes. Therefore, an input pattern, or input vector, consists of

seven active nodes (all others are off). The nodes in the hidden

layer have continuous activation levels. The output nodes are

similar to the nodes in the hidden layer; they encode the phonemes

by means of a set of phoneme features. Phonemes are encoded in

terms of phoneme features that can be fed into a speech generator,

which can then produce the actual sounds. For each letter pre-

sented at the center of the input windowÐ``e'' in the example

shown in ®gure 5.18Ðthe correct phoneme is encoded. By ``cor-

rect,'' we mean the one that linguists have encoded earlier.1

1 In one experiment, a tape recording from a child was transcribed into English text,

and for each letter the linguists worked out the phoneme encoding as pronounced

by the child. In a different experiment, the prescribed pronunciation was taken from a

dictionary.

Figure 5.18 Architecture of the NETTalk model. The text shown in the window is contained in the
phrase ``then we waited.'' The input layer contains about 200 nodes (seven slots of
29 symbols each, consisting of the letters of the alphabet, space, and punctuation).
The input layer is fully connected to the hidden layer (containing 80 notes), which is
in turn fully connected to the output layer (26 nodes). At the input layer a letter is
encoded by setting the activation of 1 of the 29 nodes representing the slot in the
window to 1 and all the others to 0. Each position encodes one letter. At the output
layer, the phonemes are encoded in terms of phoneme features.
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The model starts with small random connection weights. It

propagates each input pattern to the output layer, compares the

pattern in the output layer with the correct one, and adjusts the

weights according to the back-propagation learning algorithm.

After presentation of many patterns (thousands), the weights con-

verge, that is, the network picks up the correct pronunciation.

NETTalk is robust: that is, superimposing random distortions on

the weights, removing certain connections in the architecture, and

making errors in the encodings do not signi®cantly in¯uence the

network's behavior. Moreover, NETTalk can handleÐthat is, pro-

nounce correctlyÐwords it has not encountered before: It can gen-

eralize. The network behaves ``as if'' it had acquired the rules of

English pronunciation. We say ``as if'' because there are no rules in

the network, yet its behavior is rulelike. Learning is an intrinsic

property of the model. One of the model's most exciting properties

is that at the hidden layer, certain nodes start distinguishing

between vowels and consonants. In other words, they are on when

there is a vowel at the input, otherwise they are off. Because this

consonant-vowel distinction has not been preprogrammed, it is

emergent.

At the beginning of this section we mentioned that there is both a

technical and a nontechnical use of the word ``supervised.'' So far

we have described its technical use. In a nontechnical sense,

supervised means that the learning, say of children, is done under

the supervision of a teacher who provides them with some guid-

ance. This use of the term is very vague and hard to translate into

concrete neural network algorithms.

Neural Networks with Reinforcement Learning

We now introduce a third large class of neural network: reinforce-

ment neural networks. If a teacher tells a student only whether her

answer is correct or not, but leaves the task of determining why the

answer is correct or incorrect to the student, what occurs is an

instance of reinforcement learning. The problem of attributing the

error (or the success) to the right cause is called the credit assign-

ment or blame assignment problem, and it is fundamental to many

learning theories. The term ``reinforcement learning'' also has a

more technical meaning as it is used in the neural network litera-

ture: It is used to designate learning in which a particular behavior

is to be reinforced. Typically, the robot receives a positive rein-

forcement signal if the result it has produced was successful, no
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reinforcement or a negative reinforcement signal if it was unsuc-

cessful. If the robot has managed to pick up an object, has found its

way through a maze, or has managed to shoot the ball into the goal,

it gets a positive reinforcement. Chapter 14 provides an overview of

reinforcement learning. From a cognitive science perspective, we

are mostly interested in unsupervised and reinforcement schemes.

Reinforcement learning is not tied to neural networks: There are

many reinforcement learning algorithms in the ®eld of machine

learning in general.

5.5 Beyond Information Processing: A Polemic Digression

We now digress a bit to make a point. We start with an example of

supervised learning and show that the supervised-learning model

is almost as symbolic as the traditional ones and that it can thus not

solve the symbol-grounding problem. We also show that what

seems to be novel in the behavior of the model, that is, what the

model has actually learned, is in fact built into the model by the

designer. We then look at nonsupervised learning.

Let us examine NETTalk, the example of supervised learning we

discussed above. We are interested in whether NETTalk actually

resolves the symbol-grounding problem. We inspect the frame-of-

reference issue ®rst. Each input node in the NETTalk model corre-

sponds to a letter. Letters are symbols; that is, the encoding at the

input layer is in terms of symbolic categories. Phoneme features are

designer-de®ned categories, and thus the respective sound encod-

ings are also symbolic. Therefore, even though the model processes

patterns of activation rather than symbols, it still has a strongly

symbolic character. This leads us to two points. First, the system is

not coupled to the environment. The interpretation of input and

output is entirely determined by humans, who have to interpret the

symbols at both the input and the output. That the output is fed

into a speech generator is irrelevant, since this has no effect on the

model. The purpose of the speech generator is only to make intui-

tively accessible to an observer how effectively the network does

what it is set up to do. Therefore, NETTalk, just like any traditional

model in AI, suffers from the symbol-grounding problem. Second,

the consonant-vowel distinction that the hidden layer acquires

the ability to make is not really emergent, butÐin a senseÐ

precoded. Of those phoneme features used to encode vowels, only

about 5 percent are also used to encode consonants, and vice versa

(Verschure 1992). In other words, the ability to distinguish vowels
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from consonants is not really acquired by the system but rather

(indirectly) preprogrammed by the way the examples are encoded

in a symbolic way. Again, this distinction acquired is not grounded

in the model's experience but is based implicitly on designer

knowledge.

From this discussion, we can conclude that supervised learning

does not solve a certain class of problems. The problems it solves

are, in a sense, internal and pertain mostly to algorithmic aspects.

For example, NETTalk does learn a mapping from inputs to out-

puts; that is, over time, it does learn to produce the correct pro-

nunciation. But because the interaction with the environment is

mediated by a designer-based, high-level domain ontology, the

symbol-grounding issue remains.

Although many would probably agree that supervised models in

essence pick up the ontology prede®ned by the designer and

therefore do not resolve the symbol-grounding problem, there is

likely disagreement about nonsupervised models. In other words,

some researchers would claim that by applying nonsupervised

learning methods, meanings of symbols can indeed be acquired.

We ®nd that this, again, is not automatically the case.

As an example of nonsupervised learning, let us examine the

neural phonetic typewriter mentioned in the last section. Just as in

the case of supervised networks, the designer has carefully pre-

selected the patterns presented to this model. This does not imply

that the designer determines the individual patterns to be pre-

sented, but he does determine the types of patterns that the system

should be able to process. In other words, the designer, as in NET-

Talk, makes a preclassi®cation of the world in terms of what is

meaningful to the system. In the phonetic typewriter model, speech

samples have been selected to cover the space of possible pho-

nemes and then appropriately preprocessed. The neural network

generates a classi®cation of the input patterns at the map layer.

This classi®cation, again, has to be interpreted by a human. Inter-

preting the output of the neural network as phonemes is a function

of the observer: The network itself knows nothing about phonemes;

it simply processes the input patterns and forms clusters. More-

over, the output has no effect whatsoever on the behavior of the

network itself. Nonsupervised learning is clearly an important step

toward a solution because, within the preselected set of patterns,

the system ®nds its own categories. Because the human designer is

still mediating the interaction with the environment, however, it

still does not resolve the symbol-grounding problem.
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So far we have argued that neither supervised networks nor un-

supervised ones are the solution to the symbol-grounding problem.

What is the solution, then? To approach this issue, let us return to

the Distributed Adaptive Control architecture. In contrast to what

was done with NETTalk, we de®ned only a low-level speci®cation

for the robot in which we placed this architecture. Thus we

avoided having to de®ne a high-level ontology, which then would

have to be mapped onto the input space. Because NETTalk is not

directly connected to the outside world, there are many problems it

does not have to solve; they have already been solved by the net-

work designer. These problems include interpreting sensory data,

determining relevance of input patterns, continuous learning, and

effect of the model's behavior (the output) on the environment and

on its input, among others. In contrast to NETTalk, the Distributed

Adaptive Control architecture is embedded in a physical robot. The

sensory stimulation, and thus the input to the system, are the

results of physical processes occurring in the robot's interaction

with its environment. The robot's own movements have a strong

effect on the sensory stimulation to which it is exposed. The out-

puts correspond to the robot's movements. In this sense, the out-

puts have meaning directly to the robot: They affect its behavior.

The robot selects the meaningful patterns from its own perspective.

Meaningful patterns are the ones that cause the robot to change its

behavior; examples are activation patterns that get the robot to turn.

Note that in order to learn something new the robot has to moveÐit

has to interact physically with its environment. Physical processes

are required, not only informational ones, as in NETTalk and the

neural phonetic typewriter. In other words, if we want to make

progress in resolving the fundamental issues, we have to move be-

yond pure information processing. Neural networks are informa-

tion processors, but if they are embedded in physical robots they

canÐat least potentiallyÐturn robots into intelligent autonomous

agents (see Pfeifer 1996a).

Issues to Think About

Issue 5.1: Neural Networks as Modeling Tools

We have argued that we are interested in the biological plausibility

of neural networks because we want to incorporate insights from
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biology into our designs. We also noted that neural networks, as we

use them in our robots, are highly simpli®ed and therefore not very

good models of biological neurons. There is a trade-off between

biological veracity and algorithmic simplicity: The more bio-

logically plausible the models, the more computational resources

are required for their simulation. What is open to debate is whether

we are making the right kinds of abstractions. It is possible that in

simplifying, we are losing the very properties that account for the

incredible intelligence of natural systems, the properties that we

wish to study in the ®rst place. We have no ®nal answer to this

question. We must make compromises if we are interested in

building complete agents that function in real time in the real

world. Why then use neural networks in the ®rst place, and not

other formalisms like production rules, fuzzy logic, or direct pro-

gramming? Why the ``detour'' through neural networks? We have

seen that even if arti®cial neural networks represent signi®cant

abstractions from biological neurons, they nevertheless possess

important properties that resemble those of biological systems:

capability for generalization, robustness, and parallelism. More-

over, it is relatively straightforward to include biological consider-

ation in these networks: no central control, no external supervision

by a teacher, connections in one direction only, and incremental

algorithms (i.e., algorithms that function continuously).

Issue 5.2: Understanding Neural Networks

One of the fundamental advantages of the synthetic methodology is

that we build the systems ourselves; thus, we know exactly what is

inside them. One of our main modeling tools is arti®cial neural

networks. It turns out that it is a nontrivial enterprise to determine

how neural networks really function, what is really happening,

why they produce a certain output, and so forth. This is especially

true if the networks learn. We can look at activation patterns

given a certain input, or we can analyze the weight matrices.

Feedforward networks have simple dynamicsÐinputs are simply

propagated to the outputs. Recurrent networks are much harder to

understand. There are currently no systematic ways of analyzing

large, complex, recurrent neural networks. Nevertheless, compared

to natural neural systems and the dif®culties in understanding

them, arti®cial neural networks have the advantage of allowing one

repeatedly to manipulate and analyze every single component.
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Points to Remember
1 Neural networks have proven extremely useful for control archi-

tectures of autonomous agents because they are robust and are

excellent learning and generalization models. They are inspired by

natural neural systems, but they are abstract modeling tools, and do

not mimic biology very closely.
1 For each neural network, we have to specify (a) the node charac-

teristics, (b) the propagation rule, (c) the connectivity, (d) the

learning rule, and, in the case of autonomous agents, (e) the

embedding into the agent. Different types of neural networks all

incorporate variations of these basic properties.
1 The function of a neural network (natural or arti®cial) can be

appropriately understood only if it is also understood how they are

embedded in a physical agent, how the sensors and effectors work,

and how they are positioned on the robot. This goes beyond the

pure information-processing capabilities of neural networks.
1 There is a distinction between supervised, nonsupervised, and

reinforcement learning. From a cognitive science perspective, only

nonsupervised and reinforcement schemes are of interest. Super-

vised systems (in the technical neural network sense of the term)

do not exist in nature: They are neither biologically nor psycho-

logically plausible.
1 The correlation between sensory patterns generated as the agent

interacts with the environment (originating from different sensors

based on distinct physical processes) is a fundamental requirement

for learning to take place.
1 The fact that autonomous agents move around in the real world

de®nes completely new requirements for neural network models

employed in these agents: They must be able to process a con-

tinuously changing stream of signals delivered to the network.

Among other things, this implies determining the relevance of a

particular set of signals. In traditional applications, whether super-

vised or unsupervised, the designer who determines the training

and the test sets also determines the relevance.
1 If a robot has to remain adaptive over time, learning must be con-

tinuous. There must be no distinction between a training and a

performance phase.
1 Neural networks by themselves do not resolve the symbol-

grounding problem. Most neural network approaches start from

designer-de®ned, high-level ontologies. What is important in terms
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of resolving the symbol-grounding problem is the appropriate

embedding of the neural network in an agent architecture.
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III Approaches and Agent Examples

So far we have been constructing the foundations of embodied

cognitive science. In part III, we review a number of important

approaches to the study of intelligence. All contribute in interest-

ing ways to our understanding of intelligence. A wide gamut of

approaches and agent architectures have been proposed in the past.

The goal of part III is ®rst to provide an intuitive understanding of

autonomous agents by means of examples and case studies, second

to illustrate some of the theoretical concepts introduced in chapters

4 and 5, and third to derive principles that characterize designs

resulting in intelligent behavior. We discuss agent types that

include Braitenberg vehicles (chapter 6), impressive in how well

they illustrate that intelligent behavior can be seen very differently,

subsumption-based agents (chapter 7), which, so to speak, got

the entire ®eld started, and agents designed using evolutionary

methods (chapter 8), which hold great promise, especially for gen-

erating diversity of behavior. Closely related to arti®cial evolution

is the ®eld of arti®cial life, from which we can also draw a lot of

inspiration; the two are discussed alongside one another. We might

also want to call ``collective behavior'' an approach: The philoso-

phy is to solve problems by having many agentsÐperhaps simple

onesÐwork on the same problem. This approach shows up in a

number of places in the book. We round up our tour by sum-

marizing a number of additional approaches to agent design in

chapter 9, in particular dynamical systems, behavioral economics,

and schema-based approaches. We think that the selection of ap-

proaches presented here is representative of the ®eld of embodied

cognitive science. But others, of course, could have been included.



Table III.1 Overview of approaches and agent examples.

Approach Main characteristics Examples Chapters

Braitenberg Bottom-up: starting with
simple sensory-motor
couplings; getting
increasingly complex

fourteen vehicles 6

Subsumption Layered architecture of
sensory-motor couplings
with little internal
processing; layers largely
autonomous;

Brooks's Ghengis;
Horswill's Polly; Myrmix

7, 11

Arti®cial evolution Inspired by natural
evolution: simulation of
development, selection,
and reproduction

Evolutionary DAC; Beer's
walking insect;
Eggenberger's AES;
Sims's virtual creatures

8

Arti®cial life Local rules; bottom up;
emergent behaviors

Didabots; Sims's virtual
creatures; Terzopoulos's
®sh; Hemelrijk's emergent
hierarchies

8, 14

Dynamical systems Unifying nature; attractive
metaphors; mostly
analytic; synthesis hard

Beer's walking insect
(analysis); Steinhage and
SchoÈner (design)

8, 9

Behavioral economics Applies principles of
micro-economics to
animal/robot behavior

MacFarland and BoÈsser's
approach

9

Schema-based Focus on the organization
of sensory-motor
behaviors

Arbib; Arkin 9

Collective behavior Focus on emergence;
local interactions

Craig Reynolds's Boids,
Didabots; Mataric's
¯ocking robots

6, 8, 11,
14
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6 Braitenberg Vehicles

In this chapter we look at a famous kind of agent, the Braitenberg

vehicles, named after their inventor, neuroscientist Valentino

Braitenberg. Braitenberg vehicles are ideally suited for illustrat-

ing some fundamental theoretical points, such as the frame-of-

reference problem. They also provide an interesting perspective on

the problems of behavior segmentation and action selection. More-

over, the principles employed by Braitenberg vehicles have been

extended to address the design of autonomous agents in general.

Not surprisingly, this approach is called Extended Braitenberg

Architecture (EBA). Braitenberg vehicles are instantiations of a

synthetic methodology. Braitenberg proposed studying principles

of intelligence by building successively more complex agents. The

original Braitenberg vehicles were meant to be thought experi-

ments. However, some of them can easily be implemented in

physical robots, and we will discussed one such example, the

``timid'' vehicle, in this chapter. After a short discussion of

Braitenberg's motivation, his vehicles are introduced along with

an additional example. We conclude with a note on segmentation

of behavior and extensions of Braitenberg's approach.

6.1 Motivation

Michael Arbib, one of the inventors of computational neuro-

ethologyÐthe discipline studying the neural systems underlying

behaviorÐwrote in his preface to Valentino Braitenberg's seminal

book Vehicles: Experiments in Synthetic Psychology (1984): ``[The

book] is serious fun and will help many people, specialists and

layman alike, gain broad insights into the ways in which intelli-

gence evolved to guide interaction with a complex world'' (p. x).

Particularly relevant for our purposes is Arbib's reference to inter-

action with a complex world. We have seen in chapter 5 that

focusing on brain structures alone is insuf®cient for really under-

standing their operationsÐthey must be looked at within a behav-

ioral context. Although this is a very hard thing to do in real brains,



it is both possible and important in arti®cial ones. Braitenberg

vehicles demonstrate that often even extremely simple brains can

show behaviors that look remarkably sophisticated to outside

observers. The ®eld of autonomous agents draws a lot of inspiration

from the study of these vehicles: Everyone interested in intelli-

gence, natural or arti®cial, should know about them. Braitenberg

vehicles can teach us much about the interplay between brain and

behavior, or in embodied cognitive science terms, between mecha-

nism and behavior.

Braitenberg is a well-known brain researcher. Rather than

explaining a lot of technical detail on neuroanatomy and neuro-

physiology, though, he discusses a series of thought experiments,

conducted not on real brains but on toy brains. Many of the

important ideas on autonomous agents have been discussed by

Braitenberg in a highly entertaining way.

The design of Braitenberg vehicles has a strong biological

motivation based on many years of in-depth brain research. It is

interesting to see at what level a connection is made between neu-

robiology and vehicles or, in our terminology, autonomous agents.

Clearly, no biological creatures have wheels. Nevertheless, even

though equipped with wheels, Braitenberg vehicles have a de®nite

biological appeal.

6.2 The Fourteen Vehicles

Braitenberg vehicles represent a series of agents of increasing com-

plexity. Although some are purely reactive, others include learning

mechanisms, and thus have their own history.

In the simplest vehicles, it is quite obvious what they do. As

matters get slightly more involved, predicting their behavior turns

out to be very dif®cult, even in purely reactive systems, because the

mechanisms generating the vehicles' behavior interact in interest-

ing ways. Even if we have complete knowledge of the vehicle's

insides, it still proves dif®cult to control it. Its interaction with

its environment adds complexity, which leads to some degree of

unpredictability, even if the driving mechanisms are entirely

deterministicÐin physics, there are always ¯uctuations. Taking up

on our discussion of autonomy in chapter 4, we can conclude that

even the simplest vehicles have a certain degree of autonomy.

Let us examine the Braitenberg vehicles one by one. As always,

we pay attention to the frame-of-reference problem. In examining

Chapter 6 182



this series of vehicles, it is always a good idea to imagine how they

move around under various conditions. This process of imagina-

tion is best complemented with computer simulations or with

experiments on real robots.

Vehicle 1: Getting Around

As shown in ®gure 6.1, the ®rst Braitenberg vehicle has one sensor,

for one particular quality, and one motor. The sensor and the motor

are connected very simply: The more there is of the quality to

which the sensor is tuned, the faster the motor goes. If this quality

is temperature, it will move fast in hot regions and slow down in

cold regions. An observer might get the impression that such a

vehicle likes cold and tries to avoid heat. The precise nature of

this quality does not matter; it can be concentration of chemicals,

temperature, light, noise level, or any other of a number of qualities.

The vehicle always moves in the direction in which it happens to

be pointing.

If we introduce friction into the vehicle's environment, its be-

havior gets interesting, because friction is always a bit asymmetric.

The vehicle eventually deviates from its straight course, and in the

long run, is seen to move in a complicated trajectory, curving one

way or another without apparent (to the observer!) good reason.

Perturbations other than friction that will force the vehicle from its

straight course are, for example in water, streams, waves, ®sh, and

other obstacles.

Figure 6.1 Braitenberg vehicle 1. A sensor controls the speed of the motor. Motion is always
forward, in the direction of the arrow, except in the presence of perturbations, like
friction.
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Vehicle 2: Approach and Avoidance

Vehicle 2 is very similar to vehicle 1, except that it has two sensors,

one on each side, and two motors, right and left (®gure 6.2). There

are three possibilities for connecting the sensors to the motors, as

the ®gure shows. Case (c) in which both sensors are connected in

the same way to the motors, is essentially the same as vehicle 1, so

we consider only (a) and (b). The resulting behaviors are shown in

Figure 6.3, in which the sensors are tuned to a light source. Because

the right sensor of vehicle 2a is closer to the light source than

the left, it gets more stimulation and thus the right motor turns

faster than the left. As outside observers, we might characterize

the vehicles as follows: Vehicle (a) is a coward, whereas vehicle

(b) is aggressive: Vehicle (a) avoids the source, whereas (b) moves

towards it and will hit it, possibly even destroying it.

a b c

Figure 6.2 Vehicle 2. This vehicle has two motors and two sensors; otherwise it is like vehicle 1.
Only the connections differ in (a), (b), and (c). 7.8

Figure 6.3 Vehicle 2a and 2b in the vicinity of a light source. Vehicle 2b orients itself toward the
source, vehicle 2a away from it.
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Focus 6.1: Helping Behavior

Let us look at an experiment involving a group of robots, each a Braitenberg
vehicle 2b, which turns toward a light source. For this particular experiment,
the generic robot scheme as introduced in chapter 4 was extended with a light
mounted on top of the robot. The experiments have also been performed with
the Didabot platform. Two Didabots are frequently observed to get stuck along
a wall because they follow each other and because a white wall reflects the
light very well. This following behavior is also generated by the Braitenberg
architecture: One vehicle following another squeezes the one in front of it
toward the wall (figure 6.4). A third robot comes from quite a distance and
hits one of the robots in an effort to free it from being stuck. If it does not
succeed in doing so, it turns back and hits the other agent again until all can
get away from the wall. Of course, describing the robots' behavior in these
terms attributes to them ``motivations'' they could not possibly possess. We
can go to any level of anthropomorphization, actually, and there is nothing
wrong with such descriptions, as long as we make no claims about the

a b

c

Figure 6.4 Helping behavior. (a) Two vehicles are stuck along the wall. A third vehicle is
approaching. (b) The third vehicle hits the one pushing the other against the wall.
Observers say ``it comes to the rescue'' of the two that are stuck. (c) Cartoon illus-
tration of the same phenomenon.
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The ``brains'' of these vehicles are very simple. They consist

merely of two neurons connecting the sensors to the motors.

Note, however, that seemingly complex interactions among these

vehicles can emerge. Focus 6.1 describes one example, ``helping''

behavior.

Vehicle 3: Attraction

The ®rst two Braitenberg vehicles have only excitation: the more

stimulation at the sensors, the more the motors are powered. Let

us now introduce inhibition: the more stimulation, the less power

is delivered to the motors. This principle is incorporated in

Braitenberg vehicle 3 (®gure 6.5).

The behaviors involved are fairly obvious. Vehicle 3a ends up

facing, say, a light source, whereas vehicle 3b turns away from it

but also remains near the source, unless there is a disturbance, like

another source. Additional sensors can also be introduced, and

each stimulus can be connected either to the motor on the same or

the opposite side, and can be excitatory or inhibitory (see ®gure

6.6). Stimuli to which the sensors are attuned could be light,

oxygen concentration, temperature, concentration of organic mole-

cules (food), or similar things. The vehicle has a tendency to stay

longer in certain areas than in others because when its sensors are

Focus 6.1: (continued)

internal mechanisms based on such descriptions. In this case, we know that
the internal mechanism is a simple Braitenberg architecture, in fact almost the
simplest one. Nevertheless, the behavior looks surprisingly intelligent to an
observer.

We have reproduced this phenomenon a number of times, so it is more than
purely accidental. Why does it happen? One explanation is as follows: The
robots are very sensitive to light. They move toward the brightest light source
within their ``visual'' range. Two robots stuck along the wall have two lights
relatively close together. Two lights are brighter than one. The ``helper'' is thus
attracted to this double light source. Because it is simple Braitenberg, it runs
into the other two vehicles. If it is ``successful,'' that is, if it breaks their
deadlock, the two robots get away from the wall. If not, they stay there, and
they continue to be the brightest light source in the ``helper's'' environment,
so it returns and hit them again, repeating this pattern until they are freed. But
nowhere is there any intention to ``help'' represented in the vehicle; it is simply
acting as it has been programmed to do.
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activated by the presence of a stimulus, its motors and thus its

movement are inhibited. We cannot help admitting that the vehicle

appears to have a set of ``values'' and that it incorporates them in

some way that we would want to call ``knowledge.'' ``Knowledge''

in this context does not mean ``stored representations;'' that is, it is

notÐas in the classical AI viewÐstored in an explicit form to be

manipulated by the agent (the vehicle) itself. Rather, it is attributed

to the vehicle as a whole by an outside observer. Attributing

``knowledge'' to an agent is a way of describing its behaviorÐit has

nothing to do with the agent's internal structure.

Figure 6.5 Vehicle 3. The vehicle's sensors exert an inhibitory influence on the motors. Vehicle
3a, turns toward the light source and stops, when it is close enough to the light
source, i.e. as soon as the light stimulation is large enough to exert sufficient in-
hibitory activation. Vehicle 3b is similarly inhibited, but it moves away from the
source.

Figure 6.6 A multisensorial vehicle of type 3c. Sensors for various qualities have either positive
or negative connections to the motors.
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Vehicle 4: Values and Special Tastes

We can introduce a further complication by making the motors'

dependency on the sensors nonlinear. Figure 6.7 depicts a few

alternatives. Sensory stimulation may ®rst increase, and then, at

higher levels of stimulation, decrease the motor speed, for example.

This would cause a vehicle to approach a distant source ®rst

slowly, then faster as it draws closer, and, as it gets still closer,

it would slow down again. A vehicle of this sort is said to be of

Braitenberg type 4a. If we allow thresholds, for example, a motor

gets powered only if the stimulation of the corresponding sensor

exceeds a certain threshold, we then have a vehicle of Braitenberg

type 4b. The variety of such vehicles is enormous, and their

behavior is very exciting. For example, a vehicle may sit still and,

at some point, all of a sudden, start moving again. Or it may start

describing patterns as shown in ®gure 6.8. As an observer, we

might be tempted to say that these agents in fact ``ponder'' their

decisions. Their behavior can be quite involved and dif®cult to

understand.

Vehicle 4 is a purely reactive system: it does not have its own

history; that is, it does not change over time. Nevertheless, it looks

very much like an autonomous agent. If it has many sensors and

they are connected in complex ways to the motors, it would in fact

be very dif®cult to control the agent's behavior.

In chapter 4, we pointed out that neural networks are ideally

suited to building agents capable of learning. We equated learning

with changes of the weights in the connections within the neural

network. As an aside, note that changes in the network are not

output

intensity

(a)

(b)

Figure 6.7 Nonlinear dependencies of motor output on intensity of sensory stimulation. Graph
(a) shows a curve for a type 4a vehicle, graph (b) for a type 4b vehicle.
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the only ``experiences'' a vehicle can have. It can also be damaged

in some ways, receive a dent in the fender, suffer from a drained

battery, or incur a broken sensor or motor. When experiencing

these changes, the vehicle may behave quite differently, even if the

internal control architecture remains the same. Thus, changes can

occur without learning. This is another illustration of the implica-

tions of embodiment.

Vehicle 5: Adding ``Brain Power''

We can now add arbitrary complexity by introducing threshold

devices. In chapter 5 we called these ``devices'' nodes or model

neurons. The kinds of nodes suggested here are of the linear

threshold variety, but they could also be of the sigmoid type. They

can either be interposed between sensors and motors or connected

to each other in various ways. A vehicle possessing these devices is

of Braitenberg type 5.

Figure 6.8 Trajectories of vehicles of type 4a around or between sources.
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Threshold units can also be used to implement some kind of

memory by introducing recurrent connections or loops. Imagine a

threshold node connected to a sensor for red light. When activated

by a red light, the sensor activates the threshold node, which then

activates another threshold node connected to the ®rst. Thus, once

one of the nodes is turned on by a red light, the two nodes will keep

activating themselves forever through mutual feedback. If a wire is

attached to one of the two nodes and connected to a bell, the ring-

ing of the bell signals that at some point in the past, this particular

vehicle encountered a red light.

Vehicle 6: Evolution

Suppose we put a number of vehicles that we have built on a table

containing light sources, sounds, smells, and so forth and let them

move around. We pick out one vehicle, the model, make a copy of

it, and put both the model and the copy back on the table. We pick

out another, and repeat the process inde®nitely. Of course, we do

not choose vehicles that have fallen on the ¯oor, because they are

obviously incapable of coping with this particular environment.

We produce vehicles at a pace that roughly matches the rate at

which vehicles fall off the table.

If we play this game in a hurry, we are likely to make mistakes

now and then. A well-tested vehicle might still fall off the table.

Particularly shrewd variations might also be introduced unwit-

tingly into the pattern of connections with the result that our copy

survives, whereas the original may turn out to be un®t for survival

after all. If the imperfect copying results simply from sloppiness,

the chances that something interesting will emerge because of the

mistakes in copying are small. However, a ``better'' sort of error

would involve creating new combinations of partial mechanisms,

and structures such as IR sensors, cameras, motors, or wheels, each

of which has not been disrupted in its own well-tested function-

ality. Such errors have a much greater chance of transcending the

intelligence of the original plan. If these ``lucky'' incidents live

forever, they will have many descendants, because they and their

descendants will frequently be chosen for copying simply because

they stay on the table all the time.

This is, of course, a model of Darwinian evolution. It reminds

us of the metaphor of the blind watchmaker, created by Richard

Dawkins (1988) to describe evolution. Vehicles created in such a
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scenario are said to be Braitenberg type 6. We may, by accident,

create vehicles whose behavior is extraordinary without under-

standing why they behave as they do, because building something

that works is typically much easier than analysis: Braitenberg

called this the ``law of uphill analysis and downhill invention.''

Indeed in evolutionary approaches you can quite often get the

agents to do what they should do, but it is usually hard to under-

stand why they do what they do. (Evolutionary methods are dis-

cussed in detail in chapter 8.)

Other Vehicles

We discuss the remaining vehicles 7 to 14 only brie¯y, because for

our purposes, the simple vehicles are more interesting: They illus-

trate the sensory-motor couplings and how they lead to remarkable

behavior. The later ones, especially vehicles 7 and above, have a

cognitivistic ¯avor and are therefore bound to run into the problems

discussed in chapter 3.

For the sake of completeness, let us brie¯y summarize the

remaining vehicles. The general idea is to augment existing vehi-

cles by more sophisticated types of neural networks. For example, a

vehicle of type 5 can be turned into one of type 7 by adding more

network nodes, connecting them and using Hebbian learning to

form associations between the nodes whenever they are simulta-

neously active. As we discussed in the previous chapter, associa-

tions can be formed in this way. In the Distributed Adaptive

Control architecture, the presence of light has been associated with

stimulation of IR sensors on the side of the robot. We could say,

from our perspective of observers, that the robot has learned the

concept ``light along walls.'' Such concepts can be used to guide

the agents' behavior: if light corresponds to food, then it is a good

idea to follow walls to ®nd food. These associations can become

more complicated if more sensors and larger neural networks are

involved.

Further improvements of the vehicles include mechanisms for

shape detection (e.g., for squares and circles), for detection of tem-

poral order (strong stimulation in proximity sensor, activation of

collision sensor), for prediction (strong sensory stimulation in the

proximity sensors is a predictor for an impending impact), and for

something like short-term memory (it is important to keep track of
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what has happened in the recent past in order to decide what to do

next).

Let us now turn to a ®nal example of a Braitenberg type vehicle:

the timid vehicle.

The Timid Vehicle

The ``timid'' vehicle is one of a number of vehicles that Hogg,

Martin, and Resnik (1991) have introduced. They describe 12

vehicles they have built with electronic bricks. Electronic bricks

are specially modi®ed LEGO bricks with simple electronic circuits

inside. Braitenberg vehicles of various types can be constructed

using these bricks. Among others, one can build ``paranoid,''

``dogged,'' ``insecure,'' or ``frantic'' vehicles with these bricks. We

focus on the ``timid'' vehicle, which is an instantiation of vehicle

2a discussed earlier: The more sensor stimulation it receives, the

faster it moves. When it receives no stimulation, it does not move at

all. We have implemented this vehicle in a Khepera robot. Figure

6.9 shows its basic behavior. The vehicle seems to be ``timid'':

Whenever an object comes in its vicinity, it avoids contact with the

object by powering its motors appropriately. In the implementation

shown in the ®gure, all IR sensors of the Khepera robot were con-

nected to the motors, so the vehicle avoids obstacles coming from

any direction.

More interesting is an experiment that shows how even such

simple vehicles can show rather complex behavior. Let us add a

bias toward moving forward to the ``timid'' vehicle just described.

By adding, at each time step, a small constant to both motors. Now

in addition to turning away from objects it approaches, the vehicle

also moves forward a speci®ed, constant distance for each unit of

time (say, a second). Figure 6.10 shows the resulting behavior: The

``timid'' vehicle can drive through mazes without hitting the walls!

This occurs because the vehicle is ``timid''Ðit avoids all wallsÐ

and because it also has a bias to move forward. As a result, it avoids

the walls, but still drives through the maze. If a biologist showed

us such a trajectory that he recorded from, say, a rat, we might

be inclined to postulate some kind of sequence generator in the

animal. We therefore have to be careful with such speculations

about internal mechanisms that generate a given trajectory. The

maze-following behavior of the ``timid'' vehicle illustrates beauti-

fully that coherent, sequential behavior can emerge out of a number
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Figure 6.9 Basic behavior of the timid vehicle. When an object approaches the vehicle from the
right (panels a, b, c) or left (panels d, e, f ), it moves away.
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of simple processes that operate in parallel. Similar to Simon's ant

on the beach, the complexity arises from the interaction with the

environment (beach, maze) and not from the agent alone.

Conclusions

Braitenberg vehicles are great fun to work with. They also provide

deep insights into the nature of intelligence. For example, they

beautifully illustrate the ``frame-of-reference'' problem: Even very

simple designs can lead to surprisingly interesting kinds of behav-

ior, especially if several vehicles are involved. They also demon-

strate nicely that the neural substrate is by no means the only thing

that governs the vehicles' behavior. It is just as important what

sorts of sensors are on the vehicle, how they function, and where

they are positioned.

An interesting point relates to the vehicles' autonomy. Braiten-

berg vehicles are hard to control. Although fairly accurate pre-

dictions can be made about the general quality of the behavior of

certain vehicles, it is next to impossible to make more precise

forecasts. In other words, Braitenberg vehicles have a certain

degree of autonomy: Getting them to do exactly what you want is

dif®cult. This is true even for vehicles with no learning.

For our purposes in this book, the simple Braitenberg vehicles

are the most interesting, because they illustrate sensory-motor

couplings and how they lead to remarkable behavior. In vehicles 7

through 14, in essence, the sophistication of the ``brain'' is pro-

gressively increased with each subsequent vehicle built. Although

this is useful to some extent, it cannot be continued inde®nitely,

Figure 6.10 Maze-following behavior of the ``timid'' vehicle. When a simple default speed is
added to the motors, the ``timid'' vehicle can be made to drive through mazes.
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unless the sensory-motor complexity is also increased. Take, for

example, vehicle 1. If we increase the complexity of the vehicle's

brain, not much will change in the behavior of the agent, because

its sensory-motor system is so simple: Increasing its brain power

doesn't have any real effect on the simple behaviors it is set up to

perform, because the original brain power was already more than

suf®cient for the simple tasks. However, if we add additional

sensors and motor capabilities, we get more interesting behaviors

very easily.

These vehicles illustrate an additional fundamental point: the

segmentation of behavior. From these considerations, we can

derive important principles for control architectures. This requires

some elaboration.

6.3 Segmentation of Behavior and the Extended Braitenberg Architecture

Assume that you have a Braitenberg vehicle of type 3. It has no

internal ``actions,'' in the sense of separate internal modules, only

internal processes connecting sensors, via some intermediate

mechanisms, to effectors. So it is not possible to list the actions

in which the agent is involved. It is obvious that in this case any

segmentation of behavior is purely observer based, and it is very

dif®cult to come up with a consistent rating between different

observers. Consider now a vehicle of type 3c, as shown in ®gure

6.11. There is a light process with a positive connection, meaning

that the vehicle is attracted to the light. There is a proximity pro-

cess (high proximity means high activation) that makes the vehicle

turn away from close objects. If we consider the potential trajec-

tory, the vehicle will initially turn toward the light source (be-

cause of the light process), then slowly begin to turn away as it

approaches it (because of the proximity process). What action is it

involved in, ``turning toward the light'' or ``turning away from the

obstacle''? We cannot say, because there are no internal actions,

only processes feeding onto the two state variables, namely the

speeds of the motors.

How could we then sensibly segment the agent's behavior? What

the agent really does is engage in behavior that is emergent from

the dynamics of its internal variables (the intensity of the sensor

stimulation and the motor speeds) in the interaction with the envi-

ronment. We can extend this architecture to any number of internal

variables, some of which, like the speed variables, will directly
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in¯uence the vehicle's behavior. Such an architecture is called an

Extended Braitenberg Architecture. For natural systems, this kind

of architecture has high explanatory power, and it demonstrates

nicely why the segmentation of behavior is notoriously dif®cult.

The Extended Braitenberg Architecture is illustrated with a number

of examples in chapter 11.

Issues to Think About

Issue 6.1: Sensory-Motor Coupling and Brains

Braitenberg vehicles 1 through 6 capitalize on system-environment

interaction. Their behavior control is based largely on direct

sensory-motor couplings with relatively little internal processing.

In this sense, they represent the epitome of embodied cognitive

science. As we mentioned above, vehicles 7 through 14 have a

strongly cognitivistic ¯avor. Remember the thought experiment we

suggested with vehicle 1: We simply increased its brain power.

Now, what on earth is this more powerful brain going to do? What

functions could it have? As it turns out, it is hard to think of any

Figure 6.11 A vehicle of type 3c. The vehicle has two light sensors and two proximity sensors.
The closer to an object the agent comes, the higher its activation. Because of its
wiring, this vehicle turns towards a light source, but if the weights are chosen
appropriately, it will turn away from the light source, when it is close enough.
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sensible task for this brain. Thus, it becomes obvious that increas-

ing brain power alone does not make sense: The sensory and the

motor systems have to be improved as well. This is an important

design principle that we will discuss more later. As we said in

chapter 1, we feel that AI and psychology have focused too much

on the brain itself (see ®gure 1.4: the brain as the ``seat of intelli-

gence''). From this perspective, vehicles 7 to 14 are less attractive.

In vehicle 10, for example, the idea of a coin with two faces should

evolve through the observation of someone repeatedly turning a

coin. However, from the mechanisms described, it is not clear how

that could come about. Just think of the awesome complexity a per-

ceptual system would have to have to make sense of a coin-¯ipping

situation. Neglecting the coupling to the real world in this way is

typical of approaches focusing on so-called higher-level processes

and on brains. A better approach is to start from the working

hypothesis that we have simple sensory-motor processes with little

intermediate processing that form the substrate of intelligence.

How far we can get with this assumption is an open question.

Because of the fundamental importance, this issue is discussed in a

number of places throughout the book. Think of other examples of

tasks that look very simple in the abstract but get enormously

complex as you add the interaction with the environment.

Issue 6.2: Uphill Analysis and Downhill Invention

Intuitively, we would think that it is easier to analyze some-

thing that already exists than to build something new. The law of

uphill analysis and downhill invention suggests the exact opposite.

Indeed, experience shows that it is surprisingly simple to build

Braitenberg-style vehicles and to increase their complexity step by

step. Even for relatively simple vehicles, however, it is very hard

to understand what precisely is going on as they exhibit various

behaviors. Their interaction with the environment is largely

unpredictable in detail. This is somewhat counterintuitive, because

we built the systems ourselvesÐbut we still have a hard time

understanding their behavior. This holds in particular for neural

networks, and Braitenberg architectures are speci®c instances of

neural networks. In spite of these dif®culties, they are highly pro-

ductive tools. We consider the synthetic approach to cognitive

science to be the most successful one currently.
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Points to Remember
1 Braitenberg vehicles are a set of fourteen types of vehicles designed

to explore, in a bottom-up fashion, principles of intelligence. They

are ideally suited to studying the relationship between behavior

and mechanism.
1 Often, even very simple Braitenberg vehicles display, because of

their interaction with the environment, surprisingly sophisticated

kinds of behavior. This is especially true if other vehicles are pres-

ent in their environment.
1 Braitenberg vehicles consist of parallel processes connecting sen-

sory stimulation to actuators via some intermediate mechanisms.

The values of the motor variables determine what the agent does.

There are no internal actions.
1 The Braitenberg approach can be extended to agent design in

general. This is called the Extended Braitenberg Architecture.
1 Braitenberg vehicles explain why the problem of segmentation

of behavior is notoriously hard to solve. The vehicles have no

internal actions corresponding to speci®c observer-based behav-

ioral categories.
1 The mechanisms implemented in Braitenberg vehicles are entirely

deterministic. Nevertheless, it is virtually impossible to predict the

vehicles' behavior.
1 The Braitenberg approach is appealing, since it is biologically

motivated and has high explanatory power.

Further Reading
Braitenberg, V. (1984). Vehicles: Experiments in synthetic psychology. Cambridge, MA:

MIT Press. (A must for anyone interested in cognitive science and autonomous

agents. Beautifully written, simply a seminal book.)

Hogg, D. W., Martin, F. M., and Resnick, M. (1991). Braitenberg creatures. MIT Media

Laboratory, Cambridge, MA. (Available online at http://les.www.media.mit.edu/

people/fredm/papers/vehicles/). (Describes how various Braitenberg vehicles can be

constructed using simple electronic bricks. Strongly suggested for those interested in

actually building Braitenberg vehicles.)
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7 The Subsumption Architecture

In the last chapter, we focused on the cognitive science aspects of

autonomous agentsÐthe synthetic methodology was very explicit.

In this chapter, we continue in our series of important types of

agents. We now discuss an approach that, in contrast to the cogni-

tive science±oriented Braitenberg vehicles, has more of an engi-

neering ¯avor; the subsumption architecture, ®rst introduced by

Rodney Brooks of the MIT Arti®cial Intelligence Laboratory in

1986. Brooks's intention was to create a methodology that would

make it easy to design robots that pursue multiple goals and

respond to multiple sensors, that perform robustly, and that are

incrementally extendable. This last factor, incremental extend-

ability, has largely been responsible for the subsumption archi-

tecture's popularity. You start by building a basic module or layer,

say for obstacle avoidance. Once you ®nish that module, you can

build the other modules on top of itÐyou do not need to change

what you have already built.

Although the subsumption architecture has a de®nite engineer-

ing bias, it also has a number of important cognitive science

aspects. First, it is conceived to re¯ect aspects of natural evolu-

tionary theory. The idea of having layers that need not be changed

once they have been created is a case in point. To make a parallel

with nature, once the eye had been ``invented'' by evolution, it

would not be changed any more (at least not in fundamental

ways), but reused. Second, the subsumption architecture is based

on the same notion of simple, sensor-action couplings with little

internal processing that we encountered in the last chapter. Having

relatively direct couplings from sensors to actuators leads to better

real-time behavior, because it makes time-consuming modeling

operations and higher-level processes such as planning activities

largely unnecessary. (We deal with potential objections to this

design philosophy at the end of the chapter.) Third, the sub-

sumption architecture does not consider intelligence to be some-

thing centralized in a brainlike entity; rather, behaviors that we

consider interesting or requiring intelligence emerge in the sub-



sumption architecture from a large number of loosely coupled

processes. This is, of course, an empirical hypothesis, but it has a

lot of appeal, and we take it up again when discussing the design

principles for autonomous agents in chapter 10.

Before discussing the subsumption architecture in greater detail,

a few remarks about terminology are in order. The ®rst comment is

about the term ``behavior.'' Behavior, as we introduced the concept

earlier, is by de®nition the result of a system-environment interac-

tion. The subsumption architecture literature uses the term in two

ways, an informal use and a more technical one. The informal sense

corresponds to our own usage, that is, behavior as the result of a

system-environment interaction. In the technical sense, ``behavior''

refers to internal structures, namely the particular layers or modules

designed to generate particular behaviors (in the everyday sense).

We point this out to avoid confusion later. It is unfortunate that

Brooks uses the term ``behavior'' or ``task-achieving behavior'' for

internal structures. We use the terms ``layer'' and ``module'' instead

whenever referring to an internal structure. The term ``subsump-

tion'' is also used in logic to designate a particular relation between

two clauses, namely that one clause has no more literals than the

other. Quite obviously, there is no relation between these two

notions of subsumption. A ®nal point about terminology pertains to

the use of the terms ``behavior-based approach'' or ``behavior-based

robotics'' (see section 7.1). In the narrow sense, these terms refer to

subsumption-based approaches. But it has become customary to

simply use these terms to refer to the whole ®eld of embodied cog-

nitive science, not all of which depends on the use of the sub-

sumption architecture. ``Behavior-based'' in this latter sense is to be

seen as meaning ``non-information-processing-based'': It is used in

contradistinction to classical ``knowledge-based'' approaches.

The discussion in this chapter picks up from our discussion

in chapter 1 of the transition from classical AI, that is, physical-

symbol systems, to embodied cognitive science. In addition, it

provides some technical detail and introduces the subsumption

terminology. We begin by outlining the behavior-based approach,

of which subsumption is the most important representative. We

then outline a couple of design principles we need later on. Next,

we show how to develop subsumption-based systems with two

examples: Myrmix and Ghengis. We end the chapter with a few

re¯ections on the subsumption architecture.
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7.1 Behavior-Based Robotics

Brooks's subsumption architecture was the ®rst approach toward a

new paradigm in the study of intelligence which he called ``behavior-

based robotics'' (see also Arkin 1998); we refer to the ®eld as it

presents itself today as ``embodied cognitive science.'' Subsump-

tion is a method of decomposing a robot's control architecture of a

robot into a set of task-achieving behaviors or competences. The

usual approach to building control architectures for mobile robots

is functional decomposition: First, there is sensing and perception.

In this step, information from different sensory systems (vision,

auditory, tactile) is integrated into a central representation. Then

internal processing takes place. This includes building or updating

a model of the environment (often called a ``world model''), plan-

ning the next actions, and deciding which action plans to actually

execute (decision making). Finally some actions are executed in the

real world (e.g., moving forward, grasping an object). Functional

decomposition of a robot's task thus leads to the sense-think-act

cycle of the traditional information processing approach. Because

the cycle involves modeling and planning, it is sometimes called

the sense-model-plan-action (SPMA) cycle (Brooks 1991a,b). The

``thinking'' is split into a modeling and a planning activity. Figure

7.1a depicts this way of conecptualizing an agent.

In contrast to the traditional approach, the subsumption ar-

chitecture builds control architectures by incrementally adding

task-achieving behaviors on top of each other (®gure 7.1b). Imple-

mentations of such behaviors are called layers. Higher-level layers

(e.g., explore) build and rely on lower-level ones (e.g., avoid

objects). Explore means that the robot is moving around in the

environment in order, for example, to ®nd food or the location of

light sources or of other robots. Higher layers can subsume lower

layers (see section 7.2). Instead of having a single sequence-of-

information ¯owÐfrom perception to world modeling to actionÐ

there are multiple paths, the layers, that are active in parallel. Each

of these paths is concerned only with a small subtask of the robot's

overall task, such as avoiding walls, circling around targets, or

moving to a charging station. Each of these layers can function

relatively independently. They do not have to await instructions or

results produced by other layers. Thus control is not hierarchical in

the traditional sense of the term. In short, the subsumption ap-

proach realizes the direct couplings between sensors and actuators,
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with only limited internal processing, that we mentioned in the

introduction to the chapter.

The subsumption architecture comes in several varieties (e.g.,

Brooks 1986; Connell 1990; Ferrell 1994). The differences among

the various approaches are not of central relevance to our discus-

sion here. In essence, we follow the outline of Brooks. The termi-

nology in the literature is not consistent. We have taken care to take

into account the frame-of-reference problem, always distinguishing

behavior from internal mechanism.

7.2 Designing a Subsumption-Based Robot

Levels of Competence

The starting point of the subsumption approach is de®ning levels of

competence (see ®gure 7.2). A level of competence is the informal

speci®cation of a class of desired (external) behaviors that the robot

should be able to perform in the environments in which it will have

Figure 7.1 Different ways of decomposing an agent. (a) Traditional (functional) decomposition:
In the traditional view, the control architecture is decomposed into a sequence of
functional modules, all of which have to be activated in order to generate behavior.
(b) Modern (subsumption-based) decomposition: In the subsumption perspective,
the control architecture is decomposed into modules called ``task-achieving behav-
iors'' (adapted from Brooks 1986, p. 14).
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to operate. Implementations of the behaviors that are grouped into

levels of competence are sometimes called task-achieving (internal)

behaviors, because they are designed to achieve some small task on

their own. We have added the quali®cations (external, internal) in

order to do justice to the frame-of-reference problem.

One of the elementary things a mobile robot should be able to do

is not to bump into objects, or stated a little differently, to avoid

objects. Hence, it should be equipped with the competence to avoid

obstacles. Therefore, we ®rst need an avoid obstacle compe-

tence. It is designated level 0 because it is the most basic one. Next

there could be a wander around (level 1) competence, an explore

(level 2) competence, or any sort of more complex competence like

collect objects.

The key point of having levels of competence is as follows: Each

level of competence is implemented as a layer of the control archi-

tecture. These layers can be built incrementally. This naturally

leads to extendable designs in which new competences can simply

be added to the already existing and functioning control system.

There is another essential element in this organization: At each

level, there are sensory inputs and motor outputs. In other words,

higher levels, just like lower ones, can directly interact with the

environment, without the need to go through lower levels.

Layers of Control

In designing a subsumption-based robot, we ®rst have to design a

layer that implements the level 0 competence. Proceeding in this

way has the advantage of making the robot functional solely with

this level 0 competence: We do not have to wait until all the layers

have been designed and can be put together to deploy the robot.

Moreover, this layer does not have to await instructions from a

Level 0

Level 1

Level 2

…

Sensors Motors

Figure 7.2 Levels of competence. This kind of conceptual diagram represents an informal
specification of the robot's desired behaviors: It specifies what the to-be-designed
robot should be able to do.
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higher layer or from a central controller (because there is no central

controller). In a sense, we already have a functioning robot, but the

minimal things it can do are perhaps not yet so interesting. The

robot's functionality strictly within level 0 also makes it easy to

debug the layer for the level 0 competence on its own. Even if there

are higher-level layers of control above this one, the lower-level

layers continue to function independently. Thus if not inhibited,

the robot will avoid obstacles, whatever else it may be involved

in doing: searching for the charging station, mowing a lawn, or

collecting soda cans.

Once each layer has been built and debugged, it never has to be

changed again. Higher-level layers build and rely on lower-level

layers (the evolutionary idea). They are able to examine data from

lower levels. Moreover, they are permitted to send data to the lower

levels, suppressing the normal data ¯ow. This may be necessary,

for example, if the robot is to push chairs into a corner. Obviously,

in this case, it should not avoid the chairs but move up to them and

touch them. The lower levels continue to run, but in a sense are

``unaware'' of the higher ones. As we see, the statement that the

layers, once tested, never have to be changed is not quite true: We

sometimes have to add links between layers to inhibit certain

behaviors. A chair-pushing robot has to stop avoiding obstacles

when it has to push a chair.

Structure of Layers: Modules

Once they have been de®ned, how are the layers implemented?

Each layer consists of a set of modules that asynchronously send

messages to each other over connecting wires (see ®gure 7.3). Each

module is an augmented ®nite state machine (see below). Input to

modules can be suppressed and outputs can be inhibited by wires

from other modules. Metaphorically speaking, we can say that

through this mechanism, higher-level layers can subsume lower-

level onesÐthus the term subsumption. This implies a certain

amount of interaction between the modules. The idea is that this

interaction should be minimized to facilitate the design process, to

achieve maximum ``incrementality'' and emergence.

In summary, designing a subsumption architecture involves

the following steps: First, the designer decides which behaviors

the robot should be able to perform. These behaviors are then

organized into levels of competences (e.g., level 0 for obstacle
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avoidance, level 1 for exploration, level 2 for collecting objects).

Note that at this stage of the design process, we can draw concep-

tual diagrams like the one in ®gure 7.2. These conceptual diagrams

usually show which and how many levels of competences a par-

ticular control architecture contains. Conceptual diagrams specify

behavior; they have to be distinguished from the technical dia-

grams, like ®gure 7.3, which illustrate the result of the next design

step, the actual implementations of each level of competence in

terms of augmented ®nite state machines. We now examine in

greater detail the techniques used in this step. Note that the litera-

ture offers several different approaches toward the implementation

of the subsumption architecture. In what follows, we present the

original proposal by Brooks (1986, 1990a).

Layers are implemented as collections of modules, as mentioned

above. Each module is implemented as an augmented ®nite state

machine. A ®nite state machine (FSM) is a simple computational

device that changes its state depending on the current state and

input. A ®nite state machine can assume a ®nite number of differ-

ent states, and it changes from one state to another according to

prede®ned rules. An example is a turnstile (®gure 7.4). If the

turnstile is locked (state 1) and a token is inserted, the machine

changes to state 2 (corresponding to unlocked). Then, if the input is

``person,'' that is, someone is turning the turnstile, the machine

changes back to state 1, meaning that the turnstile is now locked

again. If it is unlocked, and a token is inserted, the machine

remains in state 2. If it is locked (state 1) and the input is ``person,''

it remains locked. Augmented ®nite state machines (AFSMs) are,

Module

Suppression Inhibition

Le
ve

l 1
Le

ve
l 0

Module

Module

Module

…

Figure 7.3 Structure of layers. Each layer contains several modules connected by wires.
Modules can suppress inputs to or inhibit outputs of other modules through sup-
pression and inhibition links. The modules are implemented as augmented finite
state machines.
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as the name implies, ®nite state machines to which some sort of

mechanism or facility has been added. The augmented ®nite state

machines are relatively simple ®nite state machines to which a

number of facilities have been added (like registers for program

code and timing mechanisms that enable state changes after a

certain period of time, for example, when hitting an obstacle on the

left, the robot should turn right for a second or so). A programming

language, the Behavioral Language, has been developed speci®-

cally to implement these augmented ®nite state machines (Brooks

1990b).

The details of the internal structure of modules need not concern

us here too much. (The interested reader is referred to the literature

on this topic: Brooks 1986; Connell 1990; Ferrell 1994.) Augmented

®nite state machines represent one particular formalism Brooks has

chosen to use, but the speci®c formalism used is not essential to the

idea of the subsumption architecture. Often, the modules are sim-

ply implemented as computer programs. The next section presents

several examples of control architectures that have been built with

the subsumption architecture.

7.3 Examples of Subsumption-Based Architectures

Many robots have been built using variations on the subsumption

architecture. Examples are Myrmix, Ghengis, Herbert (Connell

1990), and Hannibal (Ferrell 1994).

Myrmix

Following the outline of table 4.5, we ®rst have to specify the

agent's ecological niche and the task. In the case of the robot

Figure 7.4 A finite state machine: a turnstile. (a) Representation as a transition table. (b) Rep-
resentation as a transition graph. Adding a register for maintaining a state for a
particular period of time would turn this into an augmented finite state machine.
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Myrmix, its task is to ®nd objects and to collect them. In the par-

ticular example presented here, the robot collects objects by grasp-

ing, ``eating,'' and ``digesting'' them, rather than by bringing them

to a home base. Of course, robots don't really eat, so we have to

specify what we mean by ``eating.'' Whenever Myrmix detects a

target, it turns toward the target, stops in front of it, and turns on its

light: It is ``eating'' the object. After a certain amount of time, the

robot turns away and starts moving straight ahead again. It takes

Myrmix a certain time to ``digest'' its food items, and during the

``digestion period'' it simply avoids all objects it encounters. (The

light remains on to indicate this.) As soon as the target has been

entirely ``digested,'' it switches off the light and engages in ``eating''

behavior again. Figure 7.5 provides an overview of the situation;

Myrmix's low-level speci®cation is a variation on the generic robot

introduced earlier. It has no light sensors, but a light on top of the

robot can be controlled by the robot itself.

The next step, according to the outline, is to specify the control

architecture. This is subsumption's main focus. Myrmix has

three basic competences: safe-forward, avoid-obstacle, and

collect. Figure 7.6a diagrams these levels of competences con-

ceptually, and ®gure 7.6b shows Myrmix's layers, which consist

of modules, connected by wires, and inhibition and suppression

links. The modules are implemented as augmented ®nite state

machines. Let us examine the robot's three layers in more detail.

Figure 7.5 Setup for Myrmix experiments: Myrmix's ecological niche consists of a closed envi-
ronment with a number of objects representing ``food'' for the robot. The robot is to
find food items and ``eat'' them. Eating means turning toward an object, switching a
light on for a few moments, and switching the light off again. A schema of the robot
used in the experiments, a variation on the generic robot introduced earlier, is shown
on the left. The robot has no light sensors, but there is a programmable light on top
of the robot.
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THE safe-forward LAYER

The lowest layer of control, safe-forward, causes the robot to

move straight ahead and, at the same time, makes sure that the

robot does not collide with obstacles. It contains two modules:

``Move Forward'' and ``Move Backward.'' Myrmix usually starts

an experiment in the ``Move Forward'' state. The ``Move Forward''

module ®rst sets the two motor speeds to a prede®ned value, which

causes the robot to move forward at that speed. Before the robot

actually starts moving forward, however, a number of other steps

have to be performed involving potential obstacles in the robot's

path. First, the front IR sensor is read to check whether there is an

a

b

Figure 7.6 Control architecture of Myrmix. (a) Conceptual diagram of Myrmix: Myrmix has three
levels of competence: safe-forward, avoid-obstacle, and collect.
(b) The layers of Myrmix: Myrmix's layers consist of modules, connected by wires,
and inhibition and suppression links. The modules are implemented as augmented
finite state machines. The safe-forward layer consists of two AFSMs: ``Move
Forward'' and ``Move Backward.'' The avoid-obstacle layer consists of three
AFSMs: ``Detect Obstacle,'' ``Turn Left,'' and ``Turn Right.'' The collect layer
consists of four AFSMs: ``Detect Food,'' ``Grasp,'' ``Eat,'' and ``Digest.''
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obstacle in the robot's way. If this is indeed the caseÐindicated by

an IR sensor value larger than some threshold, the system switches

to ``Move Backward,'' otherwise it remains in the same mode

(``Move Forward''). If the system switches to ``Move Backward,''

that module ®rst sets the motor speeds to some negative value

causing the robot to move backward for a certain amount of time.

Next, the back IR sensor is read to test for collisions. If there is a

collision in the back or the time period for moving back has

expired, the system switches to the ``Move Forward'' module. The

main result is that the robot can move forward but does not crash

into objects: whenever it detects an obstacle in the front, it moves

backward, thereby testing whether it collides with an object in the

back. Once it has moved backward for a suf®cient amount of time,

it starts moving forward again. It becomes clear that we need an

additional layer that makes the robot not only move backward, but

actually turn away from the object. This is the task of the next layer,

the avoid-obstacle layer.

THE avoid-obstacle LAYER

The avoid-obstacle layer consists of three modules, ``Detect

Obstacle,'' ``Turn Left,'' and ``Turn Right.'' The principles are

similar to the ones used in the safe-forward layer. ``Detect

Obstacle'' ®rst calculates the sensor input on the right and the

left side of the robot by summing over the respective IR sensor

activations. If an obstacle is detectedÐthat is, if at least one of the

summed sensor activations has a larger value than a prede®ned

thresholdÐthe robot turns left if the total sensor activations was

larger on the right side than on the left side, and turns right if the

total sensor activation was larger on the left side than on the right

side of the robot. By the output of the ``Detect-Obstacle'' module,

either the ``Turn Left'' or the ``Turn Right'' module is activated.

Depending on the sensor activations. The ``Turn Left'' and ``Turn

Right'' modules ®rst set the speed of the robot to values that

cause the robot to turn in the respective direction (left or right). The

robot turns in the respective direction for a prede®ned amount of

time and then the ``Detect Obstacle'' module checks if there are

still any obstacles present. The safe-forward and the avoid-

obstacles layers enable the robot to move around in its environ-

ment without crashing into objects. The next layer we have to

implement to make Myrmix actually collect objects is the collect

layer.
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THE collect LAYER

There are four modules in the collect layer: ``Detect Food,''

``Grasp,'' ``Eat,'' and ``Digest.'' The ``Detect Food'' module ®rst

reads each of the frontmost three IR sensors and determines

whether its activation value is larger than a prede®ned threshold.

``Food'' items are small objects, so if the adjacent sensors on both

sides of the active sensor are below some (smaller) threshold, the

robot is likely to be detecting a potential ``food'' item. In this

case, the ``Detect Food'' module inhibits the sensory input of the

safe-forward layer as well as the inputs to the ``Turn Left'' and

``Turn Right'' modules in the avoid-obstacle layer by setting

them to 0. If the potential ``food'' was detected not directly in front

but somewhat to the side, it also sets the variable grasping to

some positive or negative value, according to the side on which the

``food'' was detected, and the ``Grasp'' module becomes active. In

the ``Grasp'' module, the safe-forward layer as well as the

avoid-obstacle layer are still inhibited while the robot is turn-

ing left or right, depending on the sign of the variable grasping,

thereby decrementing it (or incrementing it, if it is negative). If the

variable grasping equals 0, the robot checks again whether there

is something now exactly in the front that could be ``food.'' If so,

the ``Eat'' module becomes active; but if the object in front does not

look like ``food,'' the ``Detect Food'' module becomes active again.

When the ``Eat'' module is active, the system turns on the light,

indicating that the robot is actually eating, stops the motors, and

inhibits the avoid-obstacle layer (otherwise the robot would

back away from the ``food'' item). The ``Eat'' module stays active

for a prede®ned amount of time and then the ``Digest'' module

becomes active. The ``Digest'' module no longer inhibits the

avoid-obstacle layer, that is, the robot now moves away from

the ``food,'' at the same time avoiding all other objects including

other potential ``food'' items, since the ``Detect Food'' module is

not active. After a prede®ned amount of time has elapsed, the

``Detect Food'' module becomes active again and the whole cycle

restarts.

Our description of this process suggests that its implementation

is straightforward, and in general it is. One problem needs to be

dealt with, however: recognizing objects in the environment, as

illustrated in ®gure 7.7. ``Detect Food'' and ``Grasp'' check whether

there is a target in front of the robot. If the targets consist of small

isolated objects, as in our example, only one IR sensor has high
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activation (®gure 7.7a). But if the modules assume that targets cor-

respond to high IR activation in one sensor and lower activities in

the neighboring sensors, the robot will not recognize targets near a

wall, because the wall will activate several sensors (®gure 7.7b). If

there are several small targets close to each other, the robot will

no longer be able to distinguish them from obstacles (®gure 7.7c),

because the ``Detect Obstacle'' module will detect suf®cient acti-

vation in the robot's various sensors (those detecting the numerous

small targets the robot is simultaneously encountering) to arrive at

a summed value larger than the threshold value that indicates an

obstacle in the robot's path. There are no perfect universal solu-

tions to this problem, but good compromises have to be found in

each case. We will return to this important problem in chapter 12.

According to table 4.5, we now have to de®ne the concrete

experiments to be run, choose a robot platform, make predictions

about the robot's behavior, then run the experiments. The pre-

dictions in this case are fairly obvious. The robot should behave as

it was designed: It should ®nd targets, turn toward them, switch the

light on, and so forth through the sequence. Once the experiments

have been run, the robot's actual behavior should be described.

Examples of how this might be done are drawing the trajectories it

follows, generating simple statistics (number of targets ``eaten'' per

minute), or writing verbal descriptions. Figure 7.8 provides an

example description of Myrmix's behavior. Figure 7.8a offers a

bird's-eye view on parts of the robot's environment (recorded by a

camera mounted on the top of the environment). The robot's tra-

a b c

Figure 7.7 Problems in recognizing targets. (a) A small target. Small targets in isolated posi-
tions can easily be recognized. (b) A small target near a wall. A small target near a
wall activates several sensors and thus cannot be recognized. (c) Several targets
close to each other. Clusters of targets also activate several sensors and can thus not
be recognized.
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a

b

Figure 7.8 Results for a typical run of Myrmix. (a) Bird's-eye view of Myrmix's environment.
There are two objects, indicated as white cubes. The black line indicates the robot's
trajectory. The numbers in the white circles are pointers to the table shown in (b);
they indicate different time steps in the robot's trajectory. (b) Table indicating the
states of the nine different modules between the nine different time steps in the
run. The first two, ``Move Forward'' and Move Backward,'' belong to the safe-
forward layer; ``Detect Obstacle,'' ``Turn Left,'' and ``Turn Right'' belong to
the avoid-obstacle layer, and ``Detect Food,'' ``Grasp,'' ``Eat,'' and ``Digest''
belong to the collect layer. Each row indicates whether it was active ���,
inactive �ÿ�, or surpressed (s) between each of the 10 different positions. For
example, ``Move Forward'' was active between positions 0 and 1 (0±1), and 1 and 2
(1±2), then was supressed at positions 2 and 3, and was inactive between positions
3 and 4 (3±4), and so forth.
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jectory is shown, together with numbers indicating different time

steps during the robot's run; the same numbers are used in the

table in ®gure 7.8b, which shows which modules were active,

which inactive, and which supressed at various points during the

recorded time period. Let us brie¯y reconstruct the robot's behav-

ior, using the data of ®gure 7.8. Between time steps 0 and 1 (column

``0±1'' in ®gure 7.8b), the robot was moving forward, and, as it

approached the object on the left, it detected an obstacle and food.

In the next interval (1±2), the robot continued to move forward, but

since is had detected food, the output of the ``Detect Obstacle''

module, as well as the outputs of the ``Turn Left'' and ``Turn

Right'' modules, were supressed (indicated by an ``s''). At time step

2, the robot grasped the object. During grasping, the outputs of

``Move Forward,'' ``Move Backward,'' ``Detect Obstacle,'' ``Turn

Left,'' and ``Turn Right'' were suppressed. The output of the

``Move Forward'' module was still suppressed at time step 3,

because the robot was eating the food item it had just grasped. After

it had eaten the food item, the robot ``digested,'' and at the same

time detected an obstacle and started to move backward until, in

the interval between time steps 4 and 5, it started to move forward

again because it no longer detected any obstacles. The robot kept

moving forward at time step 6, moving to the other object in the

environment, which it avoided by turning left. It did not grasp and

``eat'' this object because it was still ``digesting.'' The same states

were active as the robot approached the object it had ®rst encoun-

tered. It also avoided this object by turning left: It was still

``digesting,'' and thus did not grasp and ``eat'' the object. Finally,

between time steps 8 and 9, it had ®nished ``digesting'' and started

to look for food again; that is, the ``Detect Food'' module was

activated.

To gain more insights about Myrmix and to learn about it in

greater detail, the interested reader is encouraged to work through

programming example ``Myrmix,'' on the internet page.

Ghengis

We now turn to a different robot, Ghengis (®gure 7.9). Ghengis is

challenging, because it has many sensors and motors to control and

to coordinate. Ghengis is a hexapod (six-legged) robot built at MIT

(Brooks 1989). It is a by-now classic example of how the sub-

sumption architecture can be used to control a robot's behavior.
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An important goal of the Ghengis project was to demonstrate that

coherent behavior can be achieved using a distributed architecture

without central control. Moreover, Ghengis is an example of how

an architecture can be built incrementally by designing one layer of

competence, testing and debugging it, and then adding new layers

on top of those already functioning. Each of the robot's six legs has

two degrees of freedom (lift and shoulder, that is, up-down and

forward-backward). It has 12 motors, 12 force sensors (to measure

forces on the joints of the legs), 6 pyroelectric sensors (to mea-

sure heat), an inclinometer (to measure the angle between the

robot's body and the horizontal plane) and 2 whiskers (to measure

touch).

Ghengis was designed to walk over rough terrain and to follow

people. Its control architecture has been implemented using the

subsumption approach. It has 8 layers of competence, with a total

of 57 augmented ®nite state machines controlling its walking

behavior. We restrict our discussion here of the control architecture

underlying Ghengis to the two layers that together make the robot

walk in a simple way. The remaining six layers essentially improve

the robustness of this walking behavior. (For a discussion of the

complete architecture, the reader is referred to Brooks 1989.) Here

Figure 7.9 The six-legged walking robot Ghengis, built at the MIT AI Lab. Each of Ghengis's 6
legs has two degrees of freedom (up-down, forward-backward). It has 12 model
airplane servo motors, 12 force sensors (2 for each leg), 6 pyroelectric infrared
sensors (to measure heat), 2 inclinometers (to measure the angle between the body
and the horizontal plane), and 2 front whiskers (to measure touch). It is about 35 cm
long, has a leg span of 25 cm, and weighs about 1 kg. Four onboard micro-
processors are linked by a 62.5K-baud token ring. The robot has 1 Kbyte of RAM and
10 Kbytes of EPROM. It is powered by three batteries (from Brooks 1989, p. 257,
reprinted with permission).
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we focus on the main principles underlying the subsumption

approach. Figure 7.10 shows the network of AFSMs that imple-

ment the ®rst two layers, standup and simple-walk. We refer to

the motors on each of Ghengis's legs as either an alpha motor (for

advance) or an beta motor (for balance). Alpha motors swing the

legs back and forth; beta motors lift the legs up and down. In other

words, the alpha and beta motors implement the two degrees of

freedom of each leg referred to above.

Two layers of competence enable the robot to walk: the standup

layer and the simple-walk layer.

THE standup LAYER

The standup layer is implemented with two AFSMs per leg,

``Alpha Pos'' and ``Beta Pos.'' These two machines store the

desired positions for the alpha and beta motors, respectively, and

ensure that the motors actually receive instructions to assume those

positions. When the robot is started up, the values stored in the

``Alpha Pos'' and ``Beta Pos'' AFSMs make the robot assume a

stance position.

Figure 7.10 Part of Ghengis's control layers. The figure shows the network of AFSMs that to-
gether produce the robot's walking behavior. Only twoÐstandup and simple-
walkÐout of the eight layers of competence underlying the complete control ar-
chitecture are shown. There are a total of 32 AFSMs, 30 of which implement 6
identical copies, 1 for each leg, of a network of 5 AFSMs. The remaining 2 state
machines implement the global coordination enabling the robot to walk: the ``Alpha-
Balance'' machine tries to keep the sum of the leg swing angles (angles of the alpha
motors) to zero, and the `Walk'' machine sequences the lifting of the individual legs.
Note that there are different types of AFSMs, indicated by boxes without a band on
top, with a solid band, and with a filled triangle in their bottom right corner. The
AFSMs without bands are used for each leg, that is, they are repeated six times. The
AFSMs with solid bands are unique, and the AFSMs with a filled triangle in their
bottom right corner control the actuators (alpha and beta motors) of the robot
(adapted from Brooks 1989, p. 259).
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THE simple-walk LAYER

Simple walking behavior is achieved by adding additional AFSMs

to the already functioning standup layer. Together, this additional

network of machines constitutes the second layer of competence,

the simple-walk layer. This layer is implemented by means a

number of state machines: Six ``Leg Down'' machines, one for each

leg, read the up-down position of the legs. Whenever a leg is not in

the down position, the respective ``Leg Down'' machine tries to set

the leg down by writing the appropriate commands to the ``Beta

Pos'' machine. Next, a global ``Alpha Balance'' machine is added

that notices the alpha position (forward swing) of each of the six

legs. It sums the six position values, treating a straight-out position

of a leg as 0, a forward position as positive, and a backward posi-

tion as negative. ``Alpha Balance'' then sends the same message to

all six ``Alpha Pos'' machines that increments, decrements, or

leaves unchanged each leg's current alpha position, depending on

the sum ``Alpha Balance'' computes. The main result is that if one

leg moves forward, all other legs are instructed to move backward

slightly.

Then six ``Alpha Advance'' machines are added, one for each

leg, to monitor the output of the ``Beta Pos'' machine. Each time

an ``Alpha Advance'' machine notices that the corresponding leg is

raised, it makes that leg move forward by supressing the signal

coming from the global ``Alpha Balance'' machine. This effectively

means that if a leg is raised, that leg moves forward, while all

other legs swing backward slightly to compensate. This illustrates

the subsumption mechanism: The forward-swinging leg does not

receive the instruction to move backward issued by the ``Alpha

Balance'' machine, because the ``Alpha Advance'' machine sup-

presses it. Next an ``Up Leg Trigger'' machine is added, again one

each for all six legs. An ``Up Leg Trigger'' machine lifts the corre-

sponding leg by suppressing the messages from the ``Leg Down''

machine and writing the appropriate commands to the ``Beta Pos''

machine.

Finally, a ``walk'' machine is added. This global machine co-

ordinates the robot's walking behavior by sending appropriate

trigger messages to each of the six ``Up Leg Trigger'' machines. If

an ``Up Leg Trigger'' machine receives such a trigger message, it

lifts its associated leg. This in turn triggers a re¯ex to swing the leg

forward (via the ``Alpha Advance'' machine), and then the appro-

priate ``Leg Down'' machine forces the leg to move to the down
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position. At the same time all other legs currently not moving

forward, that is, all legs still on the ground, move backward, thus

moving the robot forward. The ``walk'' machine can be used to

implement different walking patterns, also called gaits. Brooks

himself has experimented with two types of gaits. One gait,

the alternating, tripod gait, is implemented by simultaneously

instructing three out of the six legs to lift. This is achieved by

sending the appropriate trigger messages to the ``Up Leg Trigger''

machine of each of the legs to be lifted. The other gait produces a

back to front ripple gait by sending a trigger message to a different

leg every 0.4 seconds.

In sum, the standup and simple-walk layers enable Ghengis to

walk. Note, however, the architecture that drives Ghengis makes

no provision for feedback. The robot is thus insensitive to the par-

ticular terrain over which it walks, resulting in signi®cant roll-and-

pitch behavior as the robot walks over obstacles. To compensate

for this effect, Brooks has added additional layers that compensate

for rough terrain. In essence, these layers use sensory feedback

from the legs to adjust the gait (walking) pattern. For example, the

force-balancing layer (not shown in ®gure 7.10) monitors the

force on each leg and causes a leg to back off if that force rises

beyond a predetermined threshold. Finally, layers have been added

that enable the robot to walk only when something is moving

nearby (the prowling layer), and to follow moving objects such

as a slow-walking person (the steered-prowling layer). It is

important to note that these additional behaviors have been imple-

mented by adding only a very few AFSMs to the original architec-

ture described above. For example, the steered-prowling layer

was implemented by means of one single AFSM. The important

point is that there is no need to represent different behaviors

explicitly in the robot: Rather, coherent behavior such as fol-

lowing can emerge from many independent microbehaviors. More-

over, there is very little centralized control; the greater part of the

walking behavior is implemented by means of local asynchronous

state machines. As chapter 11 shows, the subsumption approach

is an instantiation of the principle of parallel, loosely coupled pro-

cesses.

One of the fascinating results to emerge from experiments

involving the subsumption-equipped robot Ghengis is that coher-

ent, robust real-time behavior can be achieved by having relatively

independent layers working in parallel. Ghengis and Myrmix
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are very simple robots. The question that immediately arises is

whether the subsumption approach also works for more complex

robots. Toward this end, let us examine a highly complex robot,

Cog.

Cog: Subsumption and Beyond

Cog is a humanoid robot developed over the last few years at the

MIT Arti®cial Intelligence Laboratory, again by Rodney Brooks and

his collaborators (Brooks 1994, in press; Brooks and Stein 1993).

``Humanoid'' simply means anthropomorphic, ``like a human.'' The

goal of the Cog project is to study human-level intelligence. Two

important hypotheses underlie the Cog philosophy. First, human-

like intelligence requires humanlike interactions with the world.

A large part of what it means to be human is to have interactions

with other humans. Such interactions require a humanlike body.

Second, high levels of intelligence can be achieved with the prin-

ciples outlined in the subsumption architecture. This amounts to

saying that intelligence is emergent from many, relatively inde-

pendent processes, and moreover, that these processes are based on

sensory-motor couplings with only little internal processing. We

discuss this important design principle in more detail in chapters

10 and 11. For now, let us point out the reason for the project's

name: Obviously, ``Cog'' stands for ``Cognition,'' but it also stands

for the little cogs on a cog wheel such as those you ®nd in watches

and transmission boxes. Translated, this means that intelligence

can be achieved by many very simple processes. How far Brooks

and his colleagues will get with this approach is an empirical

question. We return to this issue in various places throughout the

book.

Let us now scrutinize the Cog project to allow us to inspect the

subsumption architecture further. As originally proposed, the sub-

sumption architecture did not include learning. It was applied

mainly to comparatively simple robots. As a consequence, some of

the hard problems of building autonomous agents had not really

emerged in working with this architecture, including complex

sensor and actuator processing, extending the architecture by

building on top of many already existing layers, and behavior con-

trol. Because it had been applied only to relatively simple robots,

there was always the question of whether it would scale to more

complex robots and ultimately to human-level intelligence. Cog is
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an attempt at answering at least some of these problems. Let us look

at each in turn.

Cog has many degrees of freedom. Figure 7.11 depicts the robot

and provides a short description of these degrees of freedom. It has

arms and hands capable of complex motor behavior. Moreover, it

has a complex visual system. The eyes, consisting of two cameras

each, can move in ways and at speeds comparable to those of

human eyes. Thus, the question arises of whether simple sensor-

motor couplings will be suf®cient to control the robot or whether

more complex internal processing will be required in order to

achieve high levels of intelligence. As it turns out, if physics is

exploited in the right way, often simple sensory-motor couplings

can achieve surprisingly sophisticated behaviors (see also chap-

ter 13). Marjanovic, Scassellati, and Williamson (1996), three of

Brooks's collaborators, have successfully applied simple neural

networks for sensory-motor control. In complex systems like Cog,

and even in simpler ones like Ghengis, it has become clear that

when additional layers have to be added on top of existing ones,

the latter may have to be modi®ed with additional suppression and

inhibition links. Thus, the principle that once in place, layers do

not need to be changed, cannot be strictly maintained.

Despite the surprisingly sophisticated behaviors achieved

through sensory-motor couplings, it has turned out to be necessary

to include learning in Cog to achieve coherent behavior. According

to Brooks and Stein (1993), behavior control is achieved by ``. . .

many pathways between sensors and actuators . . . each one con-

tributing to some aspect of the resulting behavior of the system''

(p. 126). Note that this view contrasts sharply with existing cen-

tralized notions of behavior control. The jury is still out on whether

this principle can be maintained for highly complex systems. More

work on complex robots like Cog will shed light on this issue.

7.4 Conclusions: The Subsumption Approach to Designing Intelligent Systems

Let us now summarize what we can learn about the subsumption

architecture from our three examples.

Engineering and Cognitive Science

The subsumption architecture encompasses a set of engineering

principles, outlined in section 7.2, about how to build robots. They
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Figure 7.11 The humanoid robot Cog. It is designed as an anthropomorph, that is, it should be
similar to a human in shape and size. Cog has many degrees of freedom that make it
difficult to achieve coherent behavior. (a) Overview of the robot. (b) Cog's torso has
six degrees of freedom: the waist bends side to side and front to back, the ``spine''
can twist, and the neck tilts side to side and front to back and twists left to right.
(c) Cog's visual system consists of four cameras, two for each eye: one for periph-
eral vision, the other for foveal vision in the center of the visual field. Each eye can
rotate up, down, and sideways at speeds comparable to those of humans. (d) Cog's
arms and shoulders move with six degrees of freedom, two each at the shoulder, the
elbow, and the wrist. Cog also has many sensors, for example, for measuring the
forces at the joints. In addition, it has an auditory system, and there are plans to
cover the robot with skin sensors. For those interested in technical detail, Cog is
controlled by an offboard computer, that is, the computer does not sit in Cog's head.
It is an MIMD computer consisting of up to 239 processor nodes (only a small por-
tion of which are currently in operation). The nodes, consisting of Motorola 68332
microprocessors, are connected to one another in a network. The distributed nature
of Cog's computer system is conducive to distributed implementation of the layers of
control in the manner of subsumption architecture (reprinted with permission).
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include specifying levels of competence and designing layers of

control using augmented ®nite state machines. All the layers in a

subsumption architecture receive signals from the sensors and can

directly in¯uence the motor system without passing through other

layers. Each layer has a certain autonomy and functions indepen-

dently (except for suppression and inhibition links). The lower levels

are designed ®rst, leading to a fully functioning robot. Higher layers

are built on top of the lower ones incrementally. The layers imple-

ment direct sensor-motor couplings with relatively little internal

processing. This philosophy leads to robust real-time behavior in

the real world.

Subsumption is sometimes criticized as being an engineering

principle that bears little relationship to designing intelligent

systems. However, if we look at the underlying principles more

closely, we ®nd that they implement important cognitive science

principles. First and most important, subsumption represents a

radical departure from functional decomposition as depicted in

®gure 7.1. This new way of thinking leads to different questions

being asked. Rather than asking how to integrate and process

sensory information centrally, the questions are about the sensory-

motor couplings. There is a change in focus from the brain, from

thinking and high-level processes, to the interaction with the envi-

ronment. We have argued this point all along. The subsumption

architecture was the starting point for this change in focus, and it

is therefore of historical importance for the ®eld of embodied cog-

nitive science. Second, the subsumption architecture is strongly

coupled with the notion of embodiment. As we saw in chapter 4,

when we have an embodied system, we must concern ourselves

with how to embed the control architecture into the agent.

Whenever there is a physical system, we can potentially exploit

its physics. For example, in a real, walking robot, we can exploit

the friction generated because gravity is acting on the robot auto-

matically. Third, subsumption outlines a different way to achieve

behavior control, a fundamental issue in the study of intelli-

gence. Having many independent processes is very different from

having centralized control processes (see chapter 11). Fourth and

®nally, subsumption combines robot design with evolutionary

principles. The idea that once a particular competence is in place

it should no longer be changed is motivated from evolutionary

considerations.
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Design Method or Design Philosophy

One way of looking at subsumption is as a particular design meth-

odology (as described in a number of examples in this chapter). The

other is as a synonym for the whole ®eld of behavior-based ro-

botics. Whereas in very simple cases, subsumption can be applied

very much in its ``pure,'' original form, in more complex cases, its

rather rigid principles give way to more ¯exible ideas. For example,

in Cog, neural networks have been used for motor control. Thus,

the formalism of augmented ®nite state machines in not really

essential to the subsumption architecture. The concept of an ``aug-

mented'' ®nite state machine implies that one does not have to

adhere very strictly to a particular formalism. It is an interesting

observation that the farther away we move from 1986, when the

original paper on the subsumption architecture was published, the

less the papers employ the term ``subsumption.'' From this we

should not conclude that the general design philosophy of sub-

sumption has become obsolete, but rather that we should not

adhere to literally to the technical details of the design method. In

this sense, the design principles that we introduce in chapter 10 are

all compatible with the subsumption architecture.

One of the main problems in the literature on subsumption is a

terminological rather than a conceptual one. As we already indi-

cated, the term ``behavior'' should be used to describe system-

environment interaction; it is inappropriate to use it for an internal

structure, for a module. An additional problem pointed out in the

literature is that the suppression and inhibition links must be pre-

wired at design time. This is how behavior control is implemented.

If the agent has the task of pushing chairs into a corner, appropriate

suppression and inhibition links have to account for this: The robot

sometimes has to avoid obstacles, but when those obstacles happen

to be chairs, it has to push them. But even the restriction that sup-

pression and inhibition links have to be prewired can be relaxed

without sacri®cing the basic philosophy.

Issues to Think About

Issue 7.1: From Earwigs to Humans?

Rodney Brooks's (1986) seminal paper on the subsumption archi-

tecture is probably the most quoted paper in embodied cognitive
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science. It is, in a sense, the idea with which the ®eld embodied

cognitive science started. When a scienti®c ®eld undergoes a para-

digm shift, critics will always try to salvage the existing positions.

Most often, researchers endorsing the old paradigm acknowledge

that the new ideas have interesting aspects, but also have some

intrinsic limitations that will prevent them from replacing the

existing ones entirely. This is precisely what David Kirsh (1991)

tried to do in ``Today the Earwig, Tomorrow Man?'' His reply to

Brooks's 1986 paper. Kirsh acknowledges that, indeed, Brooks

points to serious problems in traditional thinking and suggests an

interesting alternative. He then argues that this approach is viable

only for simple systems: For human-level intelligence, concepts

and symbolic computation will be required. We might summarize

his conclusion as follows: ``Today the earwig?''Ðyes, no problem;

``tomorrow man?''Ðno, never. In a later paper (1997), Brooks

indirectly replied to Kirsh by proposing a route by which we might

eventually indeed achieve human-level intelligence without the

need to introduce symbolic concepts explicitly. We used the term

``explicitly'' to indicate that Brooks would not exclude the possi-

bility that Cog might eventually exhibit behavior that we might

want to describe by resorting to the notion ``concept.'' (See also

chapter 4 on the frame-or-reference problem). As we might expect,

Brooks is referring to the Cog project. We might summarize

Brooks's position as follows: ``Earwigs?''Ðof course, we did that a

long time ago; ``Humans?''Ðwe don't know, but we have good

ideas about how to make progress toward higher levels of intelli-

gence in arti®cial systems.

Issue 7.2: SubsumptionÐEngineering or Cognitive Science

``Subsumption is an engineering approachÐit does not relate to

cognitive science'' is what we often hear in informal discussions.

The subsumption architecture postulates modules. Once these

modules have been developed, they are not changed. They can be

used as building blocks in a more complex system. Viewed in this

way, subsumption indeed has a strong engineering ¯avor. How-

ever, the whole motivation for subsumption has its origins in cog-

nitive science. Brooks made a strong point about AI, about building

arti®cially intelligent systems (Brooks 1991b). He carefully ana-

lyzed the characteristics of classical systems and argued why it is

not possible with the classical approach to achieve realistic levels
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of intelligence. Having direct sensory-motor couplings with little

internal processing in order to achieve intelligent behavior was a

new idea in the study of intelligence at the time subsumption

architecture was proposed. Moreover, there is an evolutionary

motivation for the architecture: Capacities, once evolved, are car-

ried on to future generations withoutÐor without signi®cantÐ

modi®cation. We believe that, in spite of the approach's engineer-

ing ¯avor, it has important messages for cognitive science.

Points to Remember
1 The subsumption architecture was originally proposed as an

alternative to traditional symbol-processing approaches to intelli-

gence. In subsumption architecture, the robot's speci®cations, that

is, the desired behaviors, are given as levels of competence that are

then implemented as layers, consisting of modules connected by

wires. The modules, in turn, are implemented as augmented ®nite

state machines, that is, ®nite state machines with additional regis-

ters to store program code and for timing the duration of states.
1 Although the subsumption architecture is ideal from an engineer-

ing perspective, it also contributes a number of highly relevant

ideas from a cognitive science view. It is based on evolutionary

considerations, it realizes sensor-actuator couplings with relatively

little internal processing, and it conceptualizes intelli-

gence emergent from a large number of loosely coupled parallel

processes.
1 The subsumption literature uses the term ``behavior'' for real

behavior resulting from a system-environment interaction as well

as for internal modules (the task-achieving behaviors). The term

``behavior-based robotics'' is sometimes used as a synonym for

subsumption, and sometimes more broadly to mean the ®eld of

embodied cognitive science.
1 The ability, in the subsumption approach, to develop robot archi-

tectures incrementally has contributed greatly to its popularity.

Layers of control can function independently and need not

await signals from higher-level layers (although there can be some

interaction).
1 In spite of their simplicity, subsumption-based robots are sur-

prisingly robust.
1 The subsumption approach has been used in a number of robots

performing behaviors of varying complexity, from insect walking
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(Ghengis), to food collection (Myrmix), to humanlike interactions

(Cog).
1 The ``philosophy'' underlying subsumption is one of cheap robots

that have to perform in a real world rather than in an arti®cial one.
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8 Arti®cial Evolution and Arti®cial Life

In chapter 4, we introduced the term ``emergence.'' This chapter is

about emergence to the maximum degree. The study of arti®cial

evolution and arti®cial life has shown that many of the phenomena

we observe in nature, from the organization of the brain to the

stripes on the fur of the tiger, are not preprogrammed in the genes

Ðat least not directlyÐbut emerge in an organism's interaction

with the environment as it develops. Also, behavior, as we have

seen, can often be produced in simple, cheap, and elegant ways by

exploiting emergence. The ®eld of arti®cial life capitalizes on evo-

lution and emergence, and in this lies its fascination. In this chap-

ter, we would like to convey at least the essence of this fascination.

We have already encountered a number of different types of

agents. All have involved a great deal of work on the part of the

designer. There is an ongoing debate as to how much should or can

be hand designed, and what should be done otherwise. Humans

have strong biases in their thinking because of the way they are

built and interact with their environments. Thus, their designs are

always biased and perhaps they miss some important ideas. For

example, the means of locomotion that evolved in the creatures of

Karl Sims (e.g., 1994a)Ðas we will seeÐare often truly surprising,

are sometimes even funny, and do not directly relate to anything

known in biological or arti®cial systems. The pertinent knowledge

that constrains our thinking is largely implicit: We are not even

aware of it. Given these biases, it might be better to let evolution do

the work for us. If we could put evolution into algorithmic form, we

could let evolution come up with agent architectures or even entire

agents. These algorithms would not suffer from constraints by

implicit knowledgeÐin an algorithm everything is explicitÐso

this might result in designs that we would not have thought of. But

of course, even in arti®cial evolution the designer always has to

make decisions that bias the result.

We have already encountered evolution in a number of places.

Remember that Braitenberg type 6 vehicles were chosen from a set

of vehicles running around on a table and copied, and both the ve-



hicle chosen and the copy put back on the table. Errors could occur

during copying. Some vehicles dropped to the ¯oor. We saw that,

in some sense, this is a model of Darwinian evolution. We also

mentioned evolutionary approaches when discussing autonomy:

Evolved agents are potentially more autonomous because after a

number of generations, it is dif®cult to know ``what is going on''

inside the agents. It is therefore dif®cult to control them, to get

them to do what we want them to do. We have encountered another

example of evolution in the subsumption architecture, which was

explicitly motivated by evolutionary considerations. For example,

once a particular layer has been built and works well, it is changed

no more, but rather is used as it is.

The ®eld of arti®cial evolution started in the 1960s with develop-

ments by John Holland and L. J. Fogel in the United States, and

by Ingo Rechenberg in Germany. Holland's breed of evolutionary

algorithms are called genetic algorithms, or GAs (DeJong 1975;

Goldberg 1989, Holland 1975); Fogel's evolutionary programming,

or EP (Fogel 1962; Fogel 1995); and Rechenberg's evolution

strategies or ESs (Rechenberg 1973; Schwefel 1977). Holland was

interested in adaptation in natural systems, Fogel and Rechenberg

more in exploiting evolutionary algorithms for optimization. All

share a strong belief in the power of evolution. Although from

an algorithmic perspective these three types of procedures have

important differences, for our purposes these differences are not

important. (For a comparison of the three approaches, the inter-

ested reader is referred to BaÈck and Schwefel 1993.)

Arti®cial evolution is closely related to the ®eld of arti®cial life,

or ALife. Biologists have long been interested in applying evolu-

tionary techniques to study the nature and the origins of life. Simi-

larly they have been interested in the nature of evolution. These

interests, together with autonomous agents and aspects of non-

linear dynamics and chaos, form the not-well-de®ned discipline of

arti®cial life. Christopher Langton of the Santa Fe Institute for

nonlinear dynamics, who organized the ®rst conference on arti®-

cial life, de®ned as follows:

Arti®cial Life is the study of man-made systems that exhibit

behaviors characteristic of natural living systems. It complements

the traditional biological sciences concerned with the analysis of

living organisms by attempting to synthesize life-like behaviors

within computer and other arti®cial media. By extending the em-

pirical foundation upon which biology is based beyond the carbon-
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chain life that has evolved on Earth, Arti®cial Life can contribute to

theoretical biology by locating life-as-we-know-it within the larger

picture of life-as-it-could-be. (Langton 1989, p. 1)

Autonomous agents are considered part of this endeavor because

they represent an attempt to create systems, namely intelligent

creatures, that indeed show characteristics of natural living sys-

tems. Given an appropriate level of abstraction, we have indeed

seen behaviors of autonomous agents that are in some sense ``life-

like.'' Arti®cial life is mostly concerned with computer simula-

tions, with virtual creatures inhabiting virtual worlds (the arti®cial

life agents introduced in chapter 1). Figure 8.9 shows a typical

application. In contrast, we have been concerned so far with real-

world agents. We have seen that computer simulations can support

the design of real-world agents. Evolutionary approaches are a case

in point. The simulation studies of arti®cial life in general can be

expected to make interesting contributions to autonomous agents

and to the ®eld of embodied cognitive science.

In this chapter, we show that arti®cial evolution can be put to

work for autonomous agent design. This approach is also called

``evolutionary robotics.'' (e.g., Harvey et al. 1997) We start by dis-

cussing some of the fundamental concepts of evolutionary theory,

namely random selection and cumulative selection, genotype, phe-

notype, and reproduction. We then outline various ways in which

evolution can beÐand has beenÐemployed to design agents. The

®rst example concerns the evolution of a control architecture for

the Distributed Adaptive Control agent that we encountered in

chapter 5. We then introduce some variations on the basic algo-

rithms frequently used in the literature. Next an example of the

evolution of a controller for walking in a simulated insect is shown

next. In nature the neural system quite obviously never evolves

after the body is full grown; rather, as the organism grows, the

neural substrate develops also, or to put it differently: There is

always coevolution of morphology (shape) and control. Karl Sims'

approach takes this into account. Sims succeeds, as we show, in

evolving fascinating creatures with surprising behaviors. We then

move on to the Arti®cial Evolutionary System, an attempt to model

actual developmental processes as they occur in natural systems.

The section following concerns evolution on robot hardware. Using

an example of a robot that learns to recharge its batteries at the right

point in time, we discuss the pros and cons of this approach. We

then look at some additional examples of ALife agents, starting
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with the arti®cial ®sh created by Demetri Terzopoulos. These

®sh are especially interesting because, like Sims' creatures, these

®sh behave in a simulated physical environment. Moreover, they

also exhibit interesting group behaviors, which is subsequently

discussed. We close the chapter with some methodological

considerations.

8.1 Basic Principles

Cumulative Selection

In our presentation here, we largely follow Richard Dawkins'

excellent and entertaining book, The Blind Watchmaker (1988). As

the title suggests, evolution is seen as a watchmaker, a designer of

sorts that builds wonderful things, but has no particular goal: There

are no speci®cations or requirements to be ful®lled. Dawkins points

out the fundamental distinction between random selection and

cumulative selection. Let us look at random selection ®rst.

Assume that a monkey sits in front of a computer and types

letters randomly. Even though his key strokes are entirely random,

there is a certainÐthough extremely smallÐprobability that at

some point he will have typed Shakespeare's Hamlet. To make

things a bit easier, let us look at one simple sentence from Hamlet,

in which the title character discusses with Polonius the shape of a

cloud. Remember the dialogue in which Hamlet points out various

shapes of animals and Polonius always goes along with whatever

Hamlet suggests? The ®nal shape Hamlet proposes is a weasel:

``Methinks it is like a weasel.'' Including the blank spaces between

the words, the sentence has 28 characters. There are 27 possible

letters, again including the blank space. This yields 2728 possi-

ble arrangements of the letters, a very large number indeed. The

chance that the target sentence will be reproduced during the

monkey's lifetime is virtually nil. Even if we let a computer

program, which can generate thousands of random alternatives a

second, do the work, it would have almost no chance of produc-

ing the right sentence during the computer's lifetime. Thus, if the

sentences are simply produced at random without further con-

siderations, the goal cannot be achieved. In other words, random

selection in this case is an entirely useless strategy. Something

more is needed.
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Let us now change the procedure. Instead of simply generating

random sequences of letters, we start from a given, randomly gen-

erated sentence, say WDLDMNLT DTJBKWIRZREZLMQVOP. We now

generate a number of sentences by copying this sentence and ran-

domly changing, say one letter in the string. Out of these newly

generated sentences we select the one that is closest to the target

sentence METHINKS IT IS LIKE A WEASEL. We can assess this by

simply counting the number of correct letters in the correct posi-

tions. The winner might be WDLDMNLT DTJBSWIRZREZLMQVOP.

Figure 8.1 continues the development. After 43 generations, we

arrive at the target sentence. Note the difference: 43 generations as

opposed to 2728!

This example demonstrates the power of cumulative selection in

contrast to random selection. The alternatives were generated

starting from a particular sentence by making random changes

in individual positions. These changes are also called mutations.

Because only the best among the newly generated sentences is

selected for further evolution, its ``good properties,'' that is, the

correct letters in the right position, are generally retained genera-

tion to generation (with the exception of small mutations). Thus,

the term ``cumulative selection'': good properties accumulate

rather than get lost in a random process. Of course, this is not a

realistic model of natural evolution. In nature there is no ``target

sentence''Ðnature has no goal in mind. In nature, those individ-

uals that survive long enough in the competition for resources will

reproduce. Depending on their ecological niche, various properties

Figure 8.1 Cumulative selection. The original sentence typed by the monkey is given at the top
(generation 0). On the right, the distance to the target sentence is given (that is, the
number of incorrect letters out of the target 28). Then a number of new sentences
are generated by randomly changing one of the letters in the previously generated
sentence. From these, the best oneÐthe one closest to the targetÐis chosen. The
procedure is repeated until, after 43 generations, the target sentence has been
obtained.
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will be important for survival (eyes, limbs, body, size, speed).

These properties are encoded in the individual's genes. The set of

all genes is called the organism's genotype.

The Evolutionary Process

Figure 8.2 offers an overview of the evolutionary process. Evolution

always works within populations of individuals. In nature these are

creatures; in arti®cial evolution, they are often solutions to prob-

lems. Each individual agent carries a description of some of its

features (color of its hair, eyes, and skin; body size; limb size; shape

of nose, head, etc.). This description is called its genome. The term

``genotype'' refers to the set of genes contained in the genome. It

is used to express the difference between the genetic setup and
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Figure 8.2 Overview of the process of evolution. (a) The main components. The genotype is
translated into a phenotype through a process of development. The phenotypes
compete with one another in their ecological niche, and the winners are selected
(selection) to reproduce (reproduction), leading to new genotypes. (b) Genetic al-
gorithms can be classified according to a number of dimensions: encoding scheme,
nature of developmental process, selection method, and reproduction (genetic op-
erators). Mitchell (1997, pp. 166±175) discusses the pros and cons of these various
methods in detail. We point out some of these pros and cons in our examples.
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the ®nal organism, the phenotype. The genome consists of a

number of genes, in the simplest case of which one gene describes

one feature. Genes are identi®ed by their position within the

genome. If the individual members of the population to be inves-

tigated are of the same species, they all have the same numbers of

genes, and the genes are at the same location in the genome. But the

values of the genes can differ. The values of all genes of an indi-

vidual are determined before it starts to live and never change

during its life.

Through a process of development, the genotype is translated

into a phenotype. In this process, genes are expressed, that is, they

exert their in¯uence on the phenotype, in various ways. The grow-

ing organism's interaction with its environment determines the

precise ways in which the genes are expressed. In the example

from Hamlet, the genotype is simply the string of letters. There is

no process of development. So, for this speci®c case, the phenotype

is the same as the genotype. In terms of natural evolution, this is

unrealistic. There is always development: The egg has to mature

into an organism. But in arti®cial evolution, the phenotype and the

genotype are indeed often the same. If we remain aware that we are

dealing with algorithms, rather than with a model of natural evo-

lution, there is absolutely nothing wrong with this. Then the phe-

notype competes in its ecological niche for resources with other

individuals of the same or other species. The competition in the

Hamlet example consists of measuring the distance to the target

sentence: the smaller the distance, the ®tter the individual. The

winners of this competition are selected (selection process), which

leads to a new population. Because of how they were selected, the

members of this new population have higher average ®tness than

the one before. The individuals in this new population can now

reproduce. Evolutionary approaches characteristically work with

populations of individuals rather than individuals only. There are

many variations of how selection can be done (see below).

So far we have discussed only asexual reproduction, in which an

individual duplicates only its own genotype, possibly with some

small random mutation. In the Hamlet example, only one sentence

was involved in reproduction, so the reproduction was asexual.

There is also sexual reproduction, in which two individuals

exchange parts of their genotype to produce new genotypes for

their offspring. The most common type of sexual reproduction is

called crossover (see below); it is often used in combination with
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mutation. Finally, there is a reproduction process. Reproduction,

like selection, comes in many variations.

Development, selection, and reproduction are closed processes

in themselves: They receive a certain input and deliver some

output. For example, the development process receives a genotype

as input and eventually produces a phenotype as output. But the

phenotype cannot in¯uence the genotype. Because we are dealing

with algorithms, it would be no problem to have the phenotype

in¯uence the genotype. But that has not been systematically ex-

plored, presumably because that would correspond to a so-called

Lamarckian position. According to Lamarck, an organism's learned

properties can be passed on genetically to the offspring.

The scheme in ®gure 8.2b can be used to classify different evolu-

tionary approaches to autonomous agent design: Some approaches

comprise all these components in nontrivial ways, some lack

developmentÐin fact, most evolutionary algorithms lack develop-

ment, and some have it, but without interaction with the environ-

ment. Additional classi®cation can be made according to the way

the features are encoded in the genome, the type of selection, and

the kind of reproduction performed. We provide only a short re-

view and give examples of the most common kinds of evolutionary

approaches (Many excellent textbooks include systematic reviews

of the various types of algorithms, such as Goldberg 1989; and

Mitchell 1997.)

8.2 An Introduction to Genetic Algorithms: Evolving a Neural Controller for an Autonomous Agent

To make matters more concrete, let us look at an example (also

available as a programming example on our Internet page). For the

sake of simplicity, let us assume that we have a scheme in which

all members of the population are always involved in the same

kind of activity: developing and competing in the ecological niche,

or reproducing. This is called a generational scheme (in contrast to

a steady-state scheme, in which individuals are, asynchronously,

involved in different kinds of activities). Moreover, let us assume

that the size of the population is held constant over time.

We are already familiar with the Distributed Adaptive Control

architecture, having discussed it in chapter 5. There, the obstacle

avoidance re¯exes based on collision detectors were given in the

system design. Through an associative neural network, the agent

learned, over time, to avoid collisions altogether using the IR sen-
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sors. In the example in this chapter, we work differently. Rather

than use re¯exes based on the collision sensors, we only work with

IR sensors and we do not provide any re¯exes: we expect them to

be evolved, starting from random weights. Figure 8.3a shows the

basic setup, which is a variation on the generic robot architecture.

Let us work through the various steps involved in creating the

agent. First we have to decide what properties to encode in its

genome. In this example, only the sensor-to-motor weights are

encoded. Thus, the genome has six genes. The initial values of

the genes are chosen randomly (®gure 8.3b). These genes are then

expressed, that is, transformed into traits of the organisms, in this

case, the connection weights. This is done by normalization to 1

(dividing by 15) and subtraction of .5 to get weights between ÿ:5
and �:5 (®gure 8.3c). Again, to make matters as simple as possible,

all individuals live for the same period of time. Two values are

associated with each individual, its lifetime and its ®tness. Both are

initialized to 0. Whenever a collision occurs, the ®tness value is

reduced by 1. After the lifetime is over, selection takes place, based

on the individuals' ®nal ®tness values.

neural weight

1    2    3    4    5    6

.37 -.1  -.43  -.3  .16  .3

1101 0110 0001 0011 1010 1100

initial weights after
“development”

initial genomeb.

c.

encodes weights (numbers)

IR sensors/
collision sensor

10111011…0011

genome

1 2 3 4 5 6

a.

motor

Figure 8.3 Setup of the agent and the genome encoding in the GA experiment. (a) Agent with
the sensor-to-motor connections: The weights in the neural network are numbered 1
through 6. The IR sensors and the collision sensors are in the same location. (b)
initial genome: It consists of six genes, each having a size of four bits. The position
of the gene in the genome determines which weight of the neural network it encodes.
(c) Initial weights after ``development'': There is a trivial ``development'' process; the
weights are calculated as follows: �v=15� ÿ :5, where v is the value of the bit string
of the gene. This yields values between ÿ:5 and �:5.
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Figure 8.4 illustrates selection and reproduction. As always in

the ®eld of genetic algorithms, there are many variations, with their

advantages and disadvantages. The following selection process was

performed here: The individual with the highest ®tness was chosen

and mated with a randomly chosen individual from the rest of the

population (®gure 8.4a). The reproduction itself consisted of cross-

over and mutation, as shown in ®gure 8.4b. The crossover point

was chosen randomly and the corresponding parts of the genome

were exchanged to produce two offspring, A and B. The new pop-

ulation is then subjected to a mutation process. Typically, the mu-

tation rates are relatively small; they serve the purpose of keeping

variation in the population. It is important that the mutation rates

be small to preserve the bene®t of cumulative selection, or to put it

another way, to keep the good gene combinations around while

still exploring new ones. The goal of crossover is to combine partial

solutions into complete ones with high ®tness. Once a new popu-

lation of genomes has been generated, the genes can be expressed;

that is, the weights can be calculated. Figure 8.5 illustrates the

progress in the behavior of these agents over time. In every appli-

cation of evolutionary methods, we have to specify the size of the

population and the number of generations the algorithm was run.

The results in ®gure 8.5 were achieved using a population size of

10, and the simulation was run for 21 generations.

Variations on Evolutionary Methods: Theoretical Issues

As we have already mentioned, there are many variations on evo-

lutionary methods. Like neural networks, evolutionary algorithms

are fascinating and seem to exert an inescapable attraction urging

the user to play around and tinker with them. Here we present a

few variations; for systematic reviews, see, for example, Mitchell

1997.

Encoding Scheme

The most widely used encoding scheme is what we have seem in

our earlier example, binary encoding in terms of bit strings. A few

others appear elsewhere in this book, such as many-character

encodings, as in Eggenberger's Arti®cial Evolutionary System, or

the graph structures used by Karl Sims. The rule here is to use

whatever is best suited. Choice of encoding scheme is not a matter

of religious devotion to one scheme over all others.

Chapter 8 236



b. reproduction

c. development

a. selection

1. take the one single individual with the highest fitness
2. choose another individual from the population at random, irrespective of fitness,

for sexual reproduction
3. add the fittest individual to the new population

encoded weights

initial genome 1 0 1 0 1 0 1 1 0 0 0 0 1 0 0 1 1 1 0 1 1 1 0 0

fittest individual (highest rank) other individual

–.3 –.17 –.37  .03 .17  .17 .17 .23 –.5  .1 .37 .3

0 0 1 1 0 1 0 1 0 0 1 0 0 1 1 1 1 0 1 0 1 0 1 0

1    2    3    4    5    61    2    3    4    5    6

1 0 1 0 1 0 1 1 0 0 0 0 1 0 0 1 1 1 0 1 1 1 0 00 0 1 1 0 1 0 1 0 0 1 0 0 1 1 1 1 0 1 0 1 0 1 0

crossover pointcrossover point

1 0 1 0 1 0 0 1 0 0 1 0 0 1 1 1 1 0 1 0 1 0 1 00 0 1 1 0 1 1 1 0 0 0 0 1 0 0 1 1 1 0 1 1 1 0 0

1 0 1 0 1 0 0 1 0 0 1 0 0 1 1 1 1 0 1 0 1 0 1 00 0 1 1 0 1 1 1 0 0 0 0 1 0 0 1 1 1 0 1 1 1 0 0

mutation

1 0 1 0 1 0 0 1 0 0 1 0 0 1 1 1 1 0 1 0 1 0 1 00 0 1 1 0 1 1 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 0 0

–.3 –.03 –.37 .1 .37 .3

gene expression

.17 .1 –.37 .03 .17 .17

Figure 8.4 Selection and reproduction. (a) Selection: After their final fitness values have been
determined, individuals are selected for reproduction. The strategy chosen here for
selection is as follows: take the highest-ranking individual (highest fitness) and mate
it with a randomly chosen individual in the population. This can be viewed as a
variation of rank-based selection. (b) Reproduction: The crossover point is chosen at
random, and then the corresponding parts of the genome are exchanged to produce
two offspring, A and B. Then the entire new population is subjected to a small mu-
tation. In the example, 10 percent of the population was subjected to a mutation of
1 bit. The bit position was determined randomly, and the bit was then flipped. (c)
Development: After reproduction, the new genome is expressed to become the new
individual.
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Development

As we mentioned, development is often entirely neglectedÐit

may not be necessary at all. In its absence, selection is performed

directly on the genotype. There are also trivial forms of develop-

ment in which the representation in the genome is directly mapped

onto the organism's features without interaction with the environ-

ment. We have seen this in the example above. More complex, but

still lacking interaction with the environment, is Sims' approach.

One model that capitalizes on ontogenetic development is Eggen-

berger's Arti®cial Evolutionary System.

a

b

c

Figure 8.5 Evolution over time. Panel (a) shows the change of the trajectories of generations 0,
11, and 21, panel (b) shows the increase in the average fitness of the population, and
panel (c) shows the changes in the genome and the weights of an individual from
generations 0, 11, and 21.
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Selection

One gets the impression that researchers in the ®eld have tried

virtually any method of selection that even remotely promised to

improve their algorithms' performance. All methods have their

pros and consÐdiscussing them in any depth is well beyond the

scope of this chapter. One might be tempted simply to take the best

individuals and ignore the others. However, that would lead to a

quick loss of diversity. Those individuals currently not doing as

well as the others may have properties that will prove superior in

the long run. Thus, a great deal of attention has been devoted to

getting just the right mix of individuals. The problem is sometimes

called the exploration-exploitation trade-off. It is related to the

diversity-compliance trade-off discussed in chapter 1. The goal is

to search the space in the region of the good individuals but still to

explore other regions, because the one currently the best may turn

out to be only locally optimal.

Holland (1975) proposed using a method in which an individ-

ual's probability of being selected is proportional to its ®tness. This

is also called roulette wheel sampling: Spin the roulette wheel and

select the individual where it stops. The size of the segment of

the roulette wheel for an individual is proportional to its ®tness.

Elitism is often added to various schemes, meaning that the best

individuals are copied automatically to the next generation. Figure

8.6 illustrates roulette wheel selection. In rank selection, indi-

viduals are chosen with a probability corresponding to their rank

(in terms of ®tness), rather than their actual ®tness value. Tourna-

ment selection is based on a series of comparisons of two individ-

uals: through some random procedure that takes their ®tness into

Figure 8.6 Roulette wheel selection. Individuals are selected with a probability that corresponds
to their relative fitness within the population. This is represented as the size of their
slices of the ``fitness pie.''
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account, one individual ``wins'' and is selected for reproduction.

Finally, there is a distinction between generational and steady-

state selection. As we mentioned above, rather than producing an

entirely new population at the same time, in steady-state selection,

only a small part of the population changes at any particular time,

while the rest is preserved.

Reproduction

The most-often-used genetic operators are mutation and crossover.

We have seen both in the example above. Although evolutionary

methods are easy to program and play around with, their behavior

is dif®cult to understand. It is still subject to debate how they work

and what the best strategies within them are for reproduction and

selection. Let us turn to natural evolution for a moment. Once good

partial solutions have been found for certain problems, they are kept

around and are combined with other good solutions. An example is

eyes and visual systems: Once they had been ``invented,'' they were

kept around and perhaps slightly improved. In evolutionary algo-

rithms, there is an analogical idea of good ``building blocks'' that

are combined to increasingly better solutions.

Crossover is designed to combine partial solutions into complete

ones with high ®tness. There are a number of conjectures about

why crossover leads to fast convergence while maintaining a high

chance of reaching the global optimum. One is the schema theorem

and, related to it, the building block hypothesis (e.g., Goldberg

1989). Schemas are particular patterns of genes that, depending on

the algorithm chosen, proliferate in the population. The details

need not concern us here; there is an ongoing debate as to the rele-

vance of this theorem to evolutionary methods. The related topic

of how useful crossover really is and how it contributes to resolv-

ing this trade-off is also still subject to debate (e.g., Srinivas and

Patnaik 1994).

The preceding discussion can best be summarized as follows:

There is no one best encoding scheme, selection strategy, or genetic

operator. It is all a question of having the right balance suited for

the particular issues one intends to investigate.

8.3 Examples of Arti®cially Evolved Agents

The ultimate goal of evolutionary approaches toward autonomous

agents is the automated synthesis of an entire agent. This goal
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clearly has not yet been achieved. What researchers have mostly

done thus far is to evolve neural network controllers for a given

robot. In this case, the low-level speci®cation is given; that is, the

morphology, the types of sensors and their position on the robot,

and the types of motor components are ®xed. The agent's genotype

codes for (i.e., represents) the properties of the neural network, that

is, the connectivity, the number and types of neurons, and so forth.

Typically, both the control network and the agent are simulated.

But experiments have been conducted in which a controller has

evolved on a physical robot. This work ranges from experiments in

which real robots are used to test controllers evolved in simulation

(e.g., Nol® and Parisi 1995; Salomon 1996) to the evolution of

robot control hardware (e.g., Thompson 1995). A more advanced

approach would be to evolve both the control networks and the

morphology. In this case, the agent's genotype would have to code

not only for the details of the control network but also for the

robot's body and the physical positioning of the sensors and motor

components on its body (limbs, wheels, motors, etc.). A particu-

larly interesting example of this approach is the work by Sims (e.g.,

1994a, 1994b), which is summarized below. (For reviews of evolu-

tion of agents, see Kodjabachian and Meyer 1995 and; Mataric and

Cliff 1996.) In what follows, we describe two examples in more

detail. The ®rst illustrates the standard methodology for evolving

neural network controllers for a given simulated robot (Beer 1995).

The second illustrates how morphology and neural controllers can

be evolved (Sims 1994a).

Evolving a Neural Controller for a Simulated Walking Insect

The agent under discussion is a simulated walking insect, also

called a hexapod (see ®gure 8.7a). It has six legs, each of which may

be either up or down. There are thus two phases for the legs: ®rst,

the stance phase, in which the foot is down, the leg provides

support to the body, and the forces it generates contribute to the

body's movement; second, the swing phase, in which the foot is up

and any forces generated by the leg cause it to swing. Each leg is

controlled by an effector (a subsystem for moving a mechanical

part) that governs the state of the foot (i.e., whether the foot is up or

down) and two effectors that determine the forward and backward

torques about the leg's single joint. If there is backward torque, the

body moves forward (if it is in balance). ``In balance'' means that the
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Figure 8.7 Schema of the simulated insect. (a) Body and legs: There are six legs, each with a
foot that may be positioned up or down. Horizontally, the legs can move back and
forth. The insect shown in this figure is standing on three feet (marked with black
squares). The insect must always be in a static balance; in other words, its center of
gravity must be within the triangle (or the polygon) formed by the supporting feet
(dashed line). The center of gravity is marked with a cross. The insect's antennas are
not used in this experiment. (b) Neural controller for legs: Each leg is controlled by a
fully connected recurrent network that receives external input from the angle sen-
sors. (c) The coupling between the leg controllers: The marked region corresponds
to a leg controller as shown in (b); the recurrent connections are not drawn here.
Note that nodes are connected only to neighboring nodesÐthere is no global, cen-
tral control (adapted from Beer 1995).
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insect stands on at least three legs and its body's center of gravity

falls within the triangle (or polygon) spanned by the feet on the

ground. Note that this kind of nondynamic walking can be prac-

ticed only by creatures having four or more legs: at least three are

always needed to keep the balance. See focus 13.1 for an example

of dynamic walking.) Each leg is also equipped with a sensor

that measures its angle relative to the body axis. This angle sensor

enables the agent, loosely speaking, to ``know'' where its legs are.

Curious about what evolution would come up with, Beer (1995)

used genetic algorithms to evolve neural networks for controlling

the agent. Thus the agent's morphology, its limbs and how they can

be moved were given, as well as the sensors. Figure 8.7b shows the

architecture of the neural network Beer used. Each leg employed a

network of ®ve nodes with full connectivity. All the nodes were of

the continuous, sigmoidal type. Each node received input from its

angle sensor. Three of ®ve nodes were associated with the effectors,

that is, the musclesÐcorresponding to the electrical motors in

robots; one controlled whether the foot was up or down (if the

activation level was 0.5 or greater, the foot was considered to be

up, otherwise down), one was for forward swing, and one was for

backward swing (the level of activation corresponded to the force

applied to the movement). The remaining two nodes were not fur-

ther connectedÐthe designer left their function unspeci®ed. Thus,

each module had 40 parameters: 25 connection weights, 5 weights

for the connections from the angle sensor, 5 thresholds (determin-

ing the location of the sigmoid), and 5 time constants (determining

the slope of the sigmoid). The complete architecture consisted of

six leg controllers assumed to be identical and connected to each

other as shown in ®gure 8.7c. It was further assumed that the ipsi-

lateral connections (the connections along one side) were the same

on both sides, and that the contralateral connections (connecting

the two sides) were also identical for the three left-right pairs. If we

now further assume that we have an additional 10 parameters, we

get a total of 50 parametersÐ50 parameters to be optimized using

an evolutionary algorithm.

For every evolutionary algorithm, we have to specify the encod-

ing of the parameters, the selection method, and the reproduction

operators. In Beer's example, encoding was in terms of bit strings,

four bits per parameter; selection was by roulette wheel; the genetic

operators were crossover and mutation. The mutation rate was

0.0001. Individuals were subjected to crossover only 60 percent of
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the time. There was no development process; selection was per-

formed directly on the genotype. Simulations were run for 100

generations with population sizes of 500. The ®tness function was

de®ned as the distance the agent moved forward in a ®xed amount

of time.

Note that the problems the evolutionary algorithm had to solve

were far from trivial. For one thing, it had to generate the appro-

priate motor signals to get the agent to walk. But in addition, it had

to maintain the agent's stability, that is, its center of gravity had

to be kept within a speci®ed triangle (or polygon, see ®gure 8.7),

otherwise the agent would not be balanced and could not move

forward. Let us now look at some results. Eventually, the networks

Beer employed evolved a so-called tripod gait, in which the front

and back legs on each side of the body swing in unison with the

middle leg on the opposite side. The tripod gait is found commonly

in nature among fast-walking insects. During the evolutionary pro-

cess, different types of controllers appeared. At the beginning,

agents emerged that stood on all six feet (instead of only three) and

pushed until they fell. Other agents could swing their legs, but the

legs' movements were not coordinated; these agents were able to

move forward, but they fell quite often because evolution had not

yet solved the balance problem. Finally, there were agents capable

of moving forward and keeping stability. They slowly improved

over further generations.

In this experiment, no neural network learning occurred. An

evolutionary process determined the weights of the connections in

the network, just as in the Distributed Adaptive Control experi-

ments described in this chapter. What comes to mind immediately

is the idea of combining the two: Some traits would be encoded

genetically, others acquired through learning. Indeed, in recent

years, there has been work in the autonomous agents ®eld trying to

combine the two approaches. In biology, how evolution and learn-

ing work together and the combined effects they produce have been

the subject of many investigations at least since James Baldwin's

seminal publication more than 100 years ago, ``A New Factor in

Evolution.'' (Baldwin 1896). Baldwin suggested ways in which

learning might bene®t evolution, an idea that later became known

as the ``Baldwin effect.''

What can we learn from this example? First, setting up an

experiment in arti®cial evolution is easy. Second, evolution can

indeed be used to solve nontrivial design problems. Third, evolu-
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tion is computationally expensive: Just think of the 50 parameters,

the 500 individuals, and the 100 generations involved in Beer's

work, then consider all the processing that has to be done for every

generation in terms of selection and genetic operators. And fourth,

note how much design still has to be done manually to make evo-

lution work: the shape of the agent, its sensors, and its limbs, as

well as the structure of the neural networks and how they are

embedded in the agent. The only thing evolution does is determine

the weights of the connections in the neural network. Let there

be no misunderstanding, however: Setting the weights of the con-

nections in a fully recurrent neural network is a very hard task, and

evolution does an excellent job of it.

Evolving Morphology and Control: Incorporating a Simulation of a Physical

Environment

Let us now look at a more complex example, Karl Sims' virtual

creatures (1994a, 1994b). These creatures hold an inescapable

fascinationÐand they are a lot of fun. A number of factors underlie

this fascination: First, Sims evolves morphology and neural con-

trol. This relieves the human designer of having to come up with a

®xed design for the entire low-level speci®cation: The designer

commitments are pushed one step further back. We examine these

below. And second, Sims was one of the ®rst to use a 3-D world of

simulated physics in the context of virtual reality applications.

Simulating physics includes considerations of gravity, friction,

collision detection, collision response, and viscous ¯uid effects

(e.g., in simulated water).

The details of such simulations are not essential for our purposes;

what is essential is that the creatures must perform and compete

against each other in this virtual world. As we will see, evolution

generates some fascinating morphologies for agents that occupy

these virtual worlds, and because of the simulated physics, these

agents interact in many unexpected ways with the environment.

In developing his agents, Sims needed to specify the representa-

tion of the genotype, the process of development, the selection

process, and the reproduction strategy.

Representation of the Genotype

Again, we apply the scheme of ®gure 8.2 to describe Sims'

approach. The genotype speci®es a directed graph, which is con-

siderably more complex than the bit strings used in the standard
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evolutionary algorithm. The genotype speci®es how the phenotype

is to be generated. This requires an interpreter for the genotype that

knows what the speci®cations mean and how the various parts are

to be expressed in the phenotype. Figure 8.8 gives an idea of what

this might look like.

Development

In contrast to Beer, Sims uses a procedure development. The phe-

notype consists of a structure of three-dimensional rigid parts

described by a directed graph (see ®gure 8.8). The developmental

process requires an interpreter for these graph structures, depicted

on the left side of each panel in the ®gure. The graph in ®gure 8.8a,

for example, states that two segments are to be simultaneously

attached to the existing segment. The shape, length, joint types,

angles at which the joints are attached, and various other parame-

ters are all subject to variation by the genetic algorithm; that is, they

are subject to mutation and crossover. One of these parameters is

the number of times a particular schema is to be applied. In this

case, as can be seen on the right of ®gure 8.8a, this number is four,

which leads to the standard, treelike structures shown. The exam-

ples in ®gures 8.8b and 8.8c are somewhat more complicated, but

the principle is the same. The developmental procedure always

maps the same genotype onto the same phenotype: There is no

interaction with the environment during development. The geno-

type also encodes information about sensors, effectors, and neurons

that connect the senors and effectors. The tactile sensors can be put

onto all the structures's faces. Light sensors can also be de®ned in

the genotype. Each different morphology (body, limbs, position of

sensors) requires a different neural controller to match the mor-

phology's requirements.

Fitness and Selection

Once the phenotypes have been generated, they have to perform

in the simulated world of physics. Swimming, walking, jumping,

following, and getting control over a cube have been used to eval-

uate the creatures' ®tness. The creature that can swim the longest

distance within a given period of time is selected, and similarly for

walking and jumping. Figure 8.9a shows creatures that have been

evolved for swimming. Figures 8.9b and 8.9c show creatures

evolved for walking and jumping, respectively. In the case of fol-

lowing, the average speed at which a creature moves toward a light

source is taken as the ®tness criterion. In another set of experi-

ments, inspired by nature, the creatures must compete directly for a
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Figure 8.8 Generating a phenotype from the genotype. The genotype specifies a graph struc-
ture, the phenotype a (simulated) structure of 3-D parts. In each panel, the graph
structure on the left is used to generate the (simulated) physical structure on the
right. (a) A tree-structure: The graph indicates that each segment spawns two other
segments. Parameters are physical shape of part (this normally comprises several
parameters, e.g., shape type, length, height, or diameter), joint type (rigid, revolute,
twist, universal, bend-twist, twist-bend, or spherical), joint limits (amount of move-
ment allowed for each degree of freedom, e.g., maximum angle), and number of
iterations to be applied. Moreover, a set of neurons is included in each node to be
used to connect the neural controller. The connections contain information on where
and at what angle to connect the spawned parts. (b) A body and a six-legged crea-
ture. The body segment has an iteration maximum of three; the segments of legs, a
maximum of two. (c) A humanlike body. (From Sims, 1994a, p. 16, Figure 1, re-
printed with permission.)
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Figure 8.9 Selection of evolved creatures (a) for swimming, (b) for walking, (c) for jumping,
and (d) for getting control over a cube. The fitness functions for (a) and (b) were
distance traveled, for (c) how high the creature could jump, and for (d) how close the
creature was to the cube. Because of the different physical conditions involvedÐ
water versus solid groundÐstrikingly different morphologies evolved in the two
environments. Moreover, the ways in which the segments are moved also differ
(though this cannot be seen in the figure). In the water, flapping and smooth
snakelike or fishlike movements are predominant, whereas on land, walking, crawl-
ing, or dragging emerge most often. The creatures that had to compete for a cube (d)
were evolved on land. Again, because of the different task environment, as specified
by the fitness function, their shapes are noticeably different from those of the other
creatures (reprinted with permission).



particular resource. In nature, creatures always have to compete in

their ecological niche. In Sims' experiments, they have to try to get

control over a cube. The creatures' ®nal distances from the cube

were used to calculate their ®tness scores (the closer to the cube,

the higher the score). Again, the details are not essential for our

purposes. Figure 8.9d shows examples of creatures evolved by

direct competition. The simulations typically use a population size

of 300. Selection is by truncation, meaning that the populaton is

``truncated,'' so that only the agents in the upper, say, 20 percent

survive for reproduction. Furthermore, each surviving individual

generates a number of offspring proportional to its ®tness.

Reproduction

The creatures are then subjected to a reproduction process that

includes mutation and crossover. Both operations are more com-

plicated than in the case of simple GAs in which the genotype is

simply a bit string. Here, graph structures have to be manipulated

appropriately to yield structures that the developmental process

can interpret. (For details on the reproduction process, the reader is

referred to Sims' original papers 1994a, 1994b).

What can we learn from this example? First, the example shows

that it is indeed possible to evolve creatures even if the morphology

is not given a priori. Second, the creatures that evolved were sur-

prising and funny. Especially if we look at their ways of locomo-

tion, we ®nd that they can be truly innovative. For example, one

creature in ®gure 8.9b moves by continuously ¯ipping over. Such

unexpected things can happen because the search space, that is, the

space of possible creatures, is enormous, and the more possibilities

there are, the more chances that among them are creatures that can

adapt to the demands of the environment. The third lesson follows

directly from this point: The larger the search space, the more

computation is required. Computation required to evolve these

creatures is immense. Not only must we consider the space of con-

nection weights in the neural network, which is bad enough, as we

saw in the case of Beer's walking insect: We must also consider the

space required by possible morphologies. We know that by intro-

ducing constraints, we can cut down computation by orders of

magnitude. However, and this is the fourth lesson to be gleaned

from the example, the more constraints, the fewer the degrees of

freedom, and the less surprise. This is similar to the exploration-

exploitation trade-off. If everything is entirely unconstrained, we
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are certain not to get any convergence, that is, no creatures with

good ®tness values. Note that in spite of the fact that morphology is

not given, those that result are still very constrained. The possible

morphologies are composed of particular types of segments joined

in a limited number of ways. This certainly helps evolution to

converge, but it also forces it in a particular direction. The ®nal

lesson that we would like to take from the example is that certain

kinds of locomotion that can be evolved are not found in natural

systems. One example is a creature that sort of rolls over. We see

that evolution, at least arti®cial evolution, is by no means con®ned

to the organisms we ®nd in nature: It potentially exploits anything

that is possible. And this is, among many other things, what makes

it so fascinating.

8.4 Toward Biological Plausibility: Cell Growth form Genome-Based Cell-to-Cell Communication

Although vaguely inspired by nature, Sims is not trying to imitate

speci®c natural systems. Natural systems always include a process

of development. Although Sims has to translate genotype into

phenotype, this process is entirely deterministic: If the genotype is

given, the phenotype is determined. Peter Eggenberger, a medical

doctor and theoretical physicist, is interested in modeling devel-

opment from a biological perspective. He wants to create a com-

puter simulation starting from what is currently known about the

mechanisms of cell growth. His ultimate goal is to evolve an entire

organism: its morphology, its neural substrate, its sensors, and its

motor system. In particular, he wants to study the interaction of

genetic and environmental factors in development. Remember that

this precisely echoes the conclusion drawn from the nature-nurture

debate that we raised in chapter 1. Of course, it will be a while

before this can be achieved. As a ®rst test, Eggenberger's Arti®cial

Evolutionary System was used to grow simple shapes and con-

trollers for existing robots (Eggenberger 1996, 1997). Because many

authors have tackled the latter task, we focus on the ®rst, the evo-

lution of shapes.

The Arti®cial Evolutionary System is based on the notion of

genome-based cell-to-cell communication. What is encoded in the

genome in this system is not the organism's structure, but rather the

growth processes. Here is how it works: All the cells are placed on

the points of a 3-D grid, which is then immersed in a solution of

transcription factors: proteins produced by different cells. The
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concentrations of these transcription factors determine what a cell

is going to do next. So let us brie¯y look at how individual cells

``work.''

Every cell contains a genome consisting of so-called regulatory

genes and structural genes. The regulatory genes determine

whether a particular structural gene is turned on. If turned on, the

structural genes each perform their prede®ned functions, namely

1 producing a transcription factor (dumping a transcription factor

into the environment)
1 forming a receptor (forming a receptor on the surface of the cell)
1 forming a so-called cell adhesion molecule (CAM) on the surface of

a cell
1 cell division
1 cell death
1 searching for partner (searching for matching CAM in the cell

environment)

Figure 8.10 illustrates some of these functions. When a transcrip-

tion factor is produced, its concentration is highest at the location

of the cell where it was produced. Further away on the grid, the

Figure 8.10 Basic mechanisms of the Artificial Evolutionary System. (a) Some basic functions of
a gene: production of a transcription factor, formation of receptor cell, creation of a
CAM, used by other cells to make connections. This is required to build neural net-
works. (b) A transcription factor influences a regulatory gene within the same cell.
(c) a transcription factor diffusing into another cell. (d) a transcription factor with
affinity to a receptor.
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concentration of this particular factor is lower because of diffusion.

Regulatory genes are activated whenever the concentration of a

transcription factor at a particular cell's location is high enough.

Whether activation occurs depends on concentration and af®nity.

Af®nity is calculated on the basis of geometric properties: The

geometric properties of the transcription factors are compared to

the geometric properties of the regulatory gene or the receptor

protein on the surface of the cell. These geometric properties are

represented in the genotype as sequences of four digitsÐ1, 2, 3,

and 4Ðmeant to model the four bases of DNA: adenine, thymine,

guanine, and cytosine. Figure 8.11 shows the encoding scheme.

The typical length of a genome as used in the simulations was eight

units. Each unit consisted of two regulatory and two structural genes,

for a total of 32 genes (or one regulatory unit and two structural

genes, as shown in ®gure 8.11).

Encoding of the Genotype

At the beginning of a simulation run, a sequence of the four bases is

generated at random (®gure 8.11a). At each cycle, the cells ``read''

the concentrations of the transcription factors on the 3-D grid

where they are located. Depending on the af®nity of these tran-

scription factors with the regulatory genes of the cell and their

concentration, the regulatory genes are activated and the structural

genes turned on. Figure 8.11b shows how a structural gene is acti-

vated. Activation in turn causes the structural genes to perform

their function. We have discussed the production of a transcription

factor and the formation of a receptor cell. CAMs are used to form

connections between cells, connections needed to grow neural

networks. CAMs are used together with the function ``searching for

partner.'' If a cell ``searches for a partner,'' it looks in the cell envi-

ronment for a matching CAM. The search radius is encoded in the

genome (see ®gure 8.11c). If a match is found, a connection is

established. If the gene for cell division is turned on, the neighbor-

ing grid points are searched for an empty space. If all are occupied,

the cell does not divide. In other words, cells inside the organism

can no longer divide. If the gene for cell death is on, the cell is

removed from the grid.

Development, Fitness, and Selection

In this setup, development results from highly complex dynamics.

The organism's structure is not prede®ned in the genome. Figure

8.12 illustrates some of the shapes that have been grown. The goal
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Figure 8.11 Implementation of the genotype. (a) Generation of initial genotype. Initially, a genome
is generated at random. The structure of the gene is given: the position of the genes
in the genome determine their function. ``0'' is an end-of-gene marker; ``6'' marks the
end of a structural region, ``5'' the end of a regulatory one. The positions marked
with ``#'' are filled with random digits 1 through 4, corresponding to the four bases
of DNA: adenine, thymine, guanine, and cytosine. Panel (b) depicts the matching
process. (c) Details of the encoding. The first three digits (1) in the structural gene
encode the class of substance the gene produces (transcription factor, receptor, or
CAM. The next three digits (2) indicate the range within which a search for a partner
is performed and the diffusion coefficient of the transcription factor. The following
eight digits (3) encode geometric properties of the gene. These digits are used to
generate the geometric properties of the transcription factor the gene produces. The
regulatory gene also contains a region for geometric properties. Affinity is calculated
by comparing the geometric properties of the transcription factor and this region in
the regulatory gene.
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in these examples was to grow organisms of a ®xed size with a

T-shape. The ®tness function in these examples therefore has two

components: (1) the number of cells in the ®nal organism, and (2)

a measure of ``T-shapeness.'' The ®tness function was set to 0 if

the number of cells in the organism was more than 4,000. The

``T-shapeness'' measure was implemented as follows: A 3-D model

of a T-shape was de®ned in Cartesian coordinates, and whenever a

cell happened to be placed within this shape, the organism's ®tness

value was increased, otherwise it was decreased. Each generation

consisted of 40 individuals. The ®nal organism emerged after 72

generations.

The procedure, in general, works as follows. Start with a popu-

lation of 3-D grids; these will eventually host a population of

organisms. In each of these grids, put one cell on a grid point. The

genome for this cell is initialized to a random sequence of letters, as

shown in ®gure 8.11a. Depending on the initial concentrations of

transcription factors, certain genes will be activated. Let the cells

do their work, that is, divide, producing transcription factors, a

receptor, a CAM, and so forth. Calculate the new concentrations

of the transcription factor for each grid point according to the

laws of diffusion. This leads to a changed organism and changed

levels of transcription factors. Repeat this cycle for all organisms a

Figure 8.12 Philogenetic development of an organism using the Artificial Evolutionary System.
The goal was to evolve T-shapes. A population of 40 individuals was used. The
shapes of the best individuals are shown after every six generations. The final shape
had emerged after 72 generations. The size of the final organism is about 1,400
cells.
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preset number of times. (We have to be careful not to confuse

an organism, that is, collection of cells, with the population of

organisms.)

What can we learn from this example? First, it demonstrates a

fascinating way of growing entire organisms without prede®ning

their ®nal structure in the genome. This makes the length of the

genome independent of the organism's size. Second, the example

shows a way biological insights can be translated into a simulation

model in a natural way. For example, having the same genome for

all the organism's cells and having cell differentiation as the result

of which genes are active is a biologically motivated assump-

tion. Any resulting organism has emerged because of a complex

dynamic process. If this process is in¯uenced, for example, by

introducing additional transcription factors, the organism's shape

changes. Third, the process of development in this example is more

realistic than in the other models discussed so far. The designer

does not precode the organism's shape. Fourth, as always, com-

putation is expensive. The search space is very large. It is a real

challenge to ®nd appropriate constraints. And ®fth, at the moment,

the organisms have only shape. It would be more realistic if they

also displayed interesting behavior. After all, behavior is the busi-

ness we are interested in.

In summary, although this model is only a beginning, it opens up

the possibility of experimenting with shapes. As we show later,

shapes are crucial for intelligence, but this point has largely been

neglected in the study of intelligence.

8.5 Real Robots, Evolution of Hardware, and Simulation

In the research we have described so far, evolution has always been

performed in simulation. Throughout the book we have stressed

the importance of embodiment. As we have pointed out in a

number of places, embodiment can, at least to some extent, be

simulated on a computer: The work of Karl Sims provides a

nice illustration. In chapter 4 we summarized the pros and cons

of simulated and robotic agents. Dario Floreano and Francesco

Mondada, two researchers at the Swiss Federal Institute of Tech-

nology, in Lausanne, were convinced that evolution had to be

modeled on hardware. Let us look at an example where the robot

Khepera, which closely resembles our generic agent, was used.

Arti®cial Evolution and Arti®cial Life 255



A Robot That Learns to Run and Recharge Its Batteries

Floreano and Mondada's goal was to see if they could evolve a self-

suf®cient robot (®gure 8.13) (Floreano and Mondada 1994). The

robot's task was de®ned as follows: It had to move around in an

arena, covering as much distance as possible while staying away

from obstacles and walls. Its ®tness value was increased if the

motors moved forward a lot; it was decreased when it was near

obstacles (including walls), as measured by activation of IR sensors.

Because the robot was supposed to be self-suf®cient, there was

one additional very hard constraint: The robot had to maintain its

battery charge. For this purpose, there was a charging area in the

arena, painted black and marked by a light source. An additional

sensor was mounted on the bottom of the robot for detection

of black areas. The robot's battery was simulated: It lasted for 20

seconds of motion and was charged instantaneously as the robot

sensed the black area. Note that this instantaneous recharging pro-

cess can, of course, only work in simulation; in the real world

everything, including charging a battery, takes time.

Figure 8.13 Evolution on a real robot. In this experiment, a controller for the robot Khepera was
evolved. The robot's task was to move around as much as possible while maintaining
its battery charge. A recharging area, painted black and marked with a light, was
located within the robot's environment. The robot could exploit this by means of its
light sensors. As soon as the robot entered the recharging area, its battery was fully
charged instantaneously. The robot had a special sensor to detect the black areas.
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The robot's controller was also speci®ed: a multilayer feedfor-

ward neural network with one hidden layer. The input layer was

for the sensor signals, the output layer for the motor signals. The

hidden layer had recurrent connections, that is, the nodes in the

hidden layer were connected to one another. They can be used to

implement memory about the agent's recent past. Here, just as in

the case of Beer's walking insect, it is up to evolution to determine

what it will do with these connections. The ®tness function was

de®ned as follows:

f � V�1ÿ IR�; 0UV U 1; 0U IRU 1; �8:1�
where V is the average rotation speed of the two wheels and IR is

the activation value of the proximity sensor. V is maximized by

speed, 1 ÿ IR by obstacle avoidance: The larger the distance to an

obstacle, the smaller IR, and so the higher the second term. The

results were pretty amazing. After about 240 generations, the best

individuals moved around in the arena, and immediately before the

battery ran out, they managed to return to the black area and get

their batteries recharged.

Once more, let us see what we can learn from this experiment.

First, if we want to evolve controllers for existing robots, it can be

done on the actual physical robots. A real robot is programmable,

and therefore we can evolve its controller. We cannot change any-

thing on the physical setup of the robotÐit is given. Second, evo-

lution has once again produced a surprising result: The robot

acquired a completely nontrivial behavior. The robot learned to do

exactly the right things, and it stared exploiting its sensors, the IR

sensors for obstacle avoidance, the light sensors to move quickly to

the charging area if need be. Finally, evolution on hardware takes

a very long time. Moreover, the experiments reported could be

simulated without too much effort.

While Floreano and Mondada's experiments demonstrate the in-

principle feasibility of evolving robot controllers in hardware, their

experiments de®nitely raise the question of cost versus perfor-

mance. Do the results really make it worth going through all the

trouble of using real robots? We strongly feel that this is not a

matter of principle but rather an entirely pragmatic issue. We are

interested in the study of intelligence, in revealing the mechanisms

underlying behavior. Thus, the goal is to employ the method best

suited for our purposes.
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Nick Jakobi of the University of Sussex in Brighton, England,

an expert in the ®eld of evolutionary robotics, argued very strongly

for the use of simulation. He demonstrated convincingly that at

least one particular aspect of agent evolution, the evolution of

controllers, can be studied in simulation. Given enough variation

and enough noise, controllers evolved in simulation produce

reliable behavior if translated to real robots (Jakobi, in press). But

if our robots grow more complex, they will become much harder

to simulate, and computation will become an extreme draw on

resources. Using real robots would not help in this case because

of the many alternatives that would have to be tested: the more

complex the robot, the larger the search spaceÐthe space of possi-

ble controllers. Because of the laws of physics, the speed of real

robots cannot be increased inde®nitely, whereas there seem to be

virtually no limits to speed of computationÐat least for the time

being.

The Evolution of Hardware

The next logical step, then, would be to evolve not only controllers

for robot hardware but the hardware itself. This approach, how-

ever, has an obvious fundamental problem. Simulation's great

advantage is that millions of alternatives can be explored in a very

short period of time. How can this be done with real robots at the

same speed? The technology is certainly not yet at a stage that

would permit this. However, an exciting recent development has

great potential: the Field Programmable Gate Array, or FPGA. An

FPGA is a VLSI (Very Large Scale Integration) silicon chip con-

taining a large array of components and wires (®gure 8.14a).

Switches distributed throughout the chip determine how each

component behaves and how the components are connected to

the wires. The speci®c arrangement is de®ned in a con®guration

memory. According to this speci®cation, a physically real elec-

tronic circuit is con®gured. So the FPGA is not programmed to

follow a sequence of instructions; it is con®gured, then allowed to

behave in real time according to the laws of physics governing

electronic circuits. A host computer can be used to specify the

contents of the con®guration memory. In other words, it can be

used to determine the electronic circuit the FPGA will embody. We

use the term ``embody'' to stress that it is a physical circuit, not a

simulation.
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Adrian Thompson, also of the University of Sussex, an expert in

arti®cial evolution, had the idea of using this arrangement to evolve

electronic circuits on hardware (Thompson 1996, 1997). The task

was to distinguish between tones of 1kHz and 10KHz. The ®tness

function involved maximizing the difference in the average output

voltage for the two input signals. The genome encoded the possible

FPGA con®gurations. FPGAs are designed to perform digital logic,

which requires them to use a synchronizing clock, but Thompson's

experiment did not use the clock. The goal was to see in what ways

evolution would exploit the rich natural unconstrained dynamics

of the silicon chip to achieve the task. The FPGA was used in a way

its designers had not thought about. In Thompson's experiment,

out of the 64� 64 array, only the 10� 10 square in the upper left

corner was used. There were 50 individuals per generation (i.e. 50

circuits for the tone separation task). After 3,500 generations, the

response of the circuit was perfect. Figure 8.14b shows the chip

resulting from the experiment. Note in particular the cells shaded

in gray: If the values of these cells are kept ®xed (clamped), the

a b

Figure 8.14 Hardware evolution. (a) Schema of a field programmable gate array. Thompson's
experiments use only the 10� 10 array of components in the upper left corner. (b) A
circuit evolved for distinguishing low- and high-frequency signals (1 Khz and 10
KHz). Note in particular the shaded areas: They are not connected by wires to the rest
of the circuit. Nevertheless, they are needed for the circuit to function properly.
Evolution has exploited this subtle interaction (reprinted by permission of Adrian
Thompson).
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circuit no longer works. But the gray cells are not connected by

wires. Thus, they must be interacting with the rest of the circuit by

some other means, for example, by electromagnetic coupling. Evo-

lution has been exploiting these couplings in clever ways.

Although this is an extraordinary development with enormous

potential, it is, at least for the time being, limited to electronic cir-

cuits. So it seems that entire robots cannot currently be evolved in

hardware. But some researchers argue that simulation is just as

good, or almost as good. With the exception of a few hard-liners,

most researchers in the ®eld of arti®cial evolution would agree that

simulation is a very good substitute for evolution in the actual

hardware.

8.6 Arti®cial Life: Additional Examples

All the examples introduced in this chapter are basically part of

the (ill-de®ned) ®eld of arti®cial life. Sometimes, the ®eld of au-

tonomous agents is considered part of arti®cial life because these

creatures, mobile robots and simulated agents, indeed do exhibit

lifelike behaviors. We don't really like the term; it carries a some-

what negative connotation: people playing God by creating lifelike

arti®cial organisms. For our purposes, we have a somewhat more

sober attitude. We are interested in exploring intelligence, and for

this purpose, arti®cial life provides us with a lot of fascinating

case studies, examples of emergence. For us, the term simply refers

to the combination of complex dynamic systems, chaos, virtual

reality, multiagent systems, and autonomous agents. Arti®cial life

is mostly concerned with computer simulations, with virtual crea-

tures inhabiting virtual worlds, like Karl Sims' creatures.

Virtual Creatures and Collective Behavior

From virtual creatures we can learn to think differently about

intelligence. New morphologies may emanate or new ways of

locomotion might appear, as we have seen in Karl Sims' virtual

creatures, or we may discover that sophsticated group behavior

emerges from simple rules. We now review a few famous examples.

``BOIDS'' AND FLOCKING ROBOTS

The boids are among the most famous creatures in arti®cial life.

They were invented by Craig Reynolds who was at the time, in
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the mid-1980s, working as a computer animator. In Culver City,

California, where he lived, Reynolds would observe ¯ocks of

blackbirds. He wondered how he could get virtual creatures,

``boids,'' to ¯ock in similar ways. He hypothesized that simple rules

would account for this behavior. It was clear to him that the boids

would have to be agents: They would have to be situated, viewing

the world from their own perspective rather than from a global one.

Their behavior would then be controlled by a number of local rules.

Reynolds (1987) came up with the following set:

1. Collision avoidance: Avoid collision with nearby ¯ockmates

2. Velocity matching: Attempt to match velocity with nearby

¯ockmates

3. Flock centering: Attempt to stay close to nearby ¯ockmates

Collision avoidance is the tendency to steer away from imminent

impact with an object. Static collision avoidance is based on the

relative position of the ¯ockmates and ignores their velocity. Con-

versely, velocity matching is based only on speed. The third rule

engenders ¯ock centering: It makes a boid want to be near the

center of the ¯ock. Because of the boid's situated perspective,

``center of the ¯ock'' means the perceived center of gravity of the

nearby ¯ockmates. If the boid is already well within the ¯ock, the

perceived center of gravity is already at the boid's position, so there

is no further pull toward the center. However, if the boid is on

the ¯ock's periphery, ¯ock centering causes the boid to de¯ect its

path somewhat toward the center. Together, these three rules lead

to surprisingly realistic ¯ocking behavior.

Reynolds was interested in what would happen when the ¯ock

encountered obstacles (®gure 8.15). Would the boids continue to

¯ock? Would they all move past the obstacle on one side? Or would

they split? The last is exactly what happened. Note that splitting

was nowhere programmed into the boids. Both the ¯ocking behav-

ior and the splitting behavior they exhibited are truly emergent.

A number of internal processes, functioning in parallel (obstacle

avoidance, velocity matching, and ¯ock centering), account for

these behaviors. These processes are based on the boids' situated

view of their environment. The boids' ¯ocking behavior is very

robust because of the mechanism's local distributed nature. It is

another wonderful example of sophisticated behavior emerging

from simple rules.
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Figure 8.15 Craig Reynolds' ``boids'' engaged in flocking behavior. The boids encounter a cluster
of pillars. Amazingly, the flock simply splits and rejoins after it has passed the
pillars. Note that ``splitting'' is not contained in the set of rules. It is truly emergent:
the result of several parallel processes as the boids interact with the environment.
Reynolds' himself was surprised: He did not know what was going to happen. The
boids' behavior can be fully explained; although remarkable and beautiful, there is
nothing mystical about it (reprinted with permission).
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One last point: In chapter 1 we argued that robots are behaving

systems in their own right. Researchers in arti®cial life claim very

much the same for their science. Boids are digital creatures as such,

not just models of real birds. ``Flocking in boids is true ¯ocking,

and may be counted as another empirical data point in the study of

¯ocking behavior in general, right up there with ¯ocks of geese and

¯ocks of starlings'' (Langton 1989, p. 33).

Rodney Brooks, Pattie Maes, Maja Mataric, and Grinell Moore

used rules almost exactly like Reynolds' to achieve ¯ocking behav-

ior in real robots. At an IROS (International Conference on Intelli-

gent Robots and Systems), conference in 1990, they suggested using

a swarm of robots to prepare the lunar surface for a manned mis-

sion. Mataric produced ¯ocking in her robots using a variation on

Reynolds's rules. Her model was based on the subsumption archi-

tecture. Her robots, like the boids, exhibit robust ¯ocking behavior.

Again, ¯ocking is emergent from local rules. According to Mataric,

``The robots are ¯ocking, but that's not what they think they are

doing'' (quoted in Dennett 1997, p. 251). What they think they are

doing is applying Reynolds' rules: Another example of the notori-

ous frame-of-reference issue. (For those interested in collective

robotics, Mataric has investigated the ®eld for many years. A thor-

ough review would be beyond the scope of this book, so the inter-

ested reader is referred to some of the review papers, such as

Mataric 1995, 1997.)

ARTIFICIAL FISH

Locomotion in boids is rather primitive. It works only in simula-

tion; it was designed for the simulation. Demetri Terzopoulos of the

University of Toronto in Ontario, Canada, a computer graphics

researcher, was interested in generating realistic behavior in arti®-

cial ®sh (Terzopoulos, Tu, and Grzesczuk 1994). It turned out that

the best way to produce realistic animations was to model not just

3-D form and appearance, but also the basic physics of the animal

and its environment. This was Terzopoulos's ingenious idea. His

®sh are modeled as full-featured autonomous agents with sensory,

motor, and control systems. Just like Sims' creatures, they interact

with a simulated environment of realistic physics. In this case, the

hydrodynamics required for locomotion are modeled. In contrast to

Sims who used evolution, Terzoupoulos hand-designed his crea-

tures because he wanted to model real ®sh, not some arbitrary

creature. Figure 8.16a shows the model developed for the ®sh's
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b

Figure 8.16 Artificial fish. (a) Model for physical motion. The tail fin and the rear part of the fish
are used for swimming, the front part for turning. To achieve realistic appearance, a
technique from computer graphics (nonuniform rational B-spline surfaces) has been
used. (b) A number of fish created using this technique. The figure shows a predator
shark stalking a school of prey fish (reprinted with permission).

Chapter 8 264



physical motion. The tail ®n and the rear part of the ®sh are used

for swimming, the front part for turning. To achieve realistic

appearance, a technique from computer graphics (nonuniform

rational B-spline surfaces) has been used. Figure 8.16b shows a

number of ®sh created using this technique. To achieve naturalistic

movement, a variation of reinforcement learning was used (see

chapter 14). After a short learning period, the movements of these

®shes are surprisingly natural and realistic. Terzopoulos and his

coworkers have also modeled schooling, mating, escaping, preying,

and courting behavior among ®sh.

This example shows that highly sophosticated agent models,

models of biological systems, can be constructed in simulation. Let

us summarize some of the interesting results. First, the importance

of modeling the actual physical interaction for agent behavior has

again been demonstrated. Embodiment is the key word here. We

see that embodiment can be simulated realistically. With increases

in computer power, we can expect to be able to model even more

complicated (embodied) agents and behaviors in the near future.

Rodney Brooks at IS Robotics in Somerville, Massachusetts, has

started building arti®cial ®sh as real, physical robots. Their behav-

ior is also surprisingly natural and lifelike. The race between com-

puter modeling and robot building is still open. As pointed out

earlier, we do not think this is a matter of dogma. Rather, it is a

pragmatic decision that depends on the issues we intend to inves-

tigate. Second, relating more to computer animation, this study

makes it evident that often, the best way to achieve realistic, lifelike

animations may be to model the underlying physical processes,

rather than only modeling visual appearance.

This case study leads us directly into biology, in which arti®cial

life studies have already started having a signi®cant impact. We

summarize very brie¯y a few examples.

ETHOLOGY

A wide variety of studies that pertain to ethology are of interest.

Rather than discussing them in detail, we would simply like to

insert a ``bookmark'' here for the interested reader. Ant societies are

popular in the ®eld of arti®cial life. Ants are comparatively simple

animals, and they live in large societies; there are always many of

them, a typical prerequisite for arti®cial life studies. Jean-Louis

Deneubourg at the Free University of Brussels, Belgium, was con-

vinced that ant societies obey principles of self-organization. Of
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course, he was in¯uenced by his next-door colleague, Nobel Prize

winner Ilya Prigogine, who pioneered work in self-organization.

Let us brie¯y inspect the latter topic.

The term ``cooperation'' is problematic. It somehow suggests that

agents have the goal of cooperating with the others, and that they

have the necessary cognitive structures to enable them to commu-

nicate with other agents in order to cooperate on the task at hand.

Studies on social ants demonstrate that cooperation is often emer-

gent (e.g., Deneubourg, Theraulaz, and Beckers 1992; Goss and

Deneubourg 1992). Emergent cooperation behavior has also been

demonstrated in robots (Maris and te Boekhorst 1996; see also

chapter 14 for discussion of an example). Let us illustrate the point

with an example of collective sorting (Deneubourg et al. 1991).

Examination of an ant nest yields the observation that brood and

food are not randomly distributed throughout the nest, but that

there are piles of eggs, larvae, cocoons, and so forth. How can ants

do this? If the contents of the nest, the brood, are distributed onto a

surface, very rapidly the workers gather the brood into a place of

shelter and then sort it into different piles as before. Deneubourg

and his colleagues show that this sorting behavior can be achieved

without explicit communication between the ants.

The model works as follows. Ants can recognize objects only if

they are immediately in front of them. If an object is far from other

objects, the ant has a high probability of picking it up. If other

objects are present, the probability is low. If the ant is carrying

an object, its probability of putting it down increases if there are

similar objects in its environment. Here are the formulas. The

probability of picking up an object is

p�pick up� � �k�=�k� � f ��2;
where f estimates the fraction of nearby points occupied by objects

of the same type and k� is a constant. If f � 0, that is, if there are no

similar objects nearby, the object will be picked up with certainty

�k�=k� � 1�. If f � k�, then p�pick up� � 1=4, and p(pick up) gets

smaller as f approaches 1. The probability of putting down an

object is

p�put down� � � f =�kÿ � f ��2;
where f is as before and kÿ a different constant. The probability p is 0

as f is 0; that is, if there are no similar objects nearby, the probabil-

ity of putting the object down approaches 0. The more objects of
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the same type there are nearby, the larger is p(put down). Figure

8.17 shows the development of the clusters for real ants and for a

simulation. Sorting is achieved by the simple probabilistic rules

given. There is no direct communication between the ants: The

sorting behavior is an emergent property.

Although many people would agree that arti®cial life models

have explanatory power for ant societies, they would be skeptical

of such models' ability to say much of interest about higher animals

or humans. Charlotte Hemelrijk and Rene te Boekhorst, two prima-

tologists at the University of Zurich, Switzerland, had become

interested in arti®cial life and autonomous agents. They were con-

vinced that the kind of modeling technique described above for

the ants could also be applied to societies of of very high±level

mammals like chimpanzees or orangutans. They started a cam-

paign against cognitivistic thinking in primatology. Hemelrijk used

computer simulation models to study emergent phenomena in

societies of arti®cial creatures that for her were abstract simulations

of orangutans. In an instructive paper entitled ``Cooperation With-

out Genes, Games, or Cognition,'' Hemelrijk (1997) demonstrated

that cooperation in the sense of helping behavior is entirely emer-

gent from interactive factors. Often what seems to be a tit-for-tat

strategy, as game theorists term it, turns out to be a side effect of

interactions. (A tit-for-tat strategy is one in which individuals keep

track of what has happened and give back only as much as they

have previously received.) More parsimonious explanations of pri-

mate behavior based on local rules of interaction also obviate

explanations resorting to high-level cognition. For example, par-

ticipants in a con¯ict are thought to keep track of the number of

acts in which a particular individual has helped them and in which

they have helped the individual. (For more detail, the reader is

referred to Hemelrijk 1997.) Along similar lines, te Boekhorst did

a simulation of arti®cial ``orangutans,'' demonstrating that travel

band formation in orangutans can be explained in very simple

terms (te Boekhorst and Hogeweg 1994). This kind of research is

predominantly conducted at the simulation level, since it often

uses high-level operators like ``recognize dominance rank'' that

cannot be translated to real robots in a straightforward manner.

SOCIAL SCIENCE

So far, we have seen that arti®cial life techniques can be applied to

the study of ants and primates. Surprisingly, these techniques have

also been applied to the social sciences; to economics, to the study
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a b

Figure 8.17 Development of clusters of objects in a society of ants: (a) simulation, (b) real ants.
The simulation is based on local rules only. The simulated ants can recognize objects
only if they are immediately in front of them. If an object is far from other objects,
the probability that the ant will pick it up is high. If other objects are present, the
probability is low. If the ant is carrying an object, the probability of putting it down
increases as there are similar objects in its environment. This leads to the clustering
behavior shown (reprinted with permission).
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of migration patterns, and to cultural phenomena. This ®eld is

called ``arti®cial societies.'' It has been championed by Josh Epstein

and Robert Axtell (1996), both associated with the Santa Fe Insti-

tute in New Mexico, where all the arti®cial life activities started.

Convinced of the explanatory power of simple rules, Epstein and

Axtell launched a new research program in the social sciences. It is

a synthetic approach, that is, an approach based on the idea of

``understanding by building.'' They wanted to create a ``laboratory

for social science.'' Their ambitious goal was to develop a better

understanding of the complex dynamics of society and culture

in general. Societies are strange and highly intricate mixtures of

biological, psychological, economical, and legal factors (among

many others).

To illustrate the power of Epstein and Axtell's approach, let us

discuss just one example. Epstein and Axtell asked a question that

had never really been asked before, or at least a question that could

not be investigated before: How does the legal system in¯uence

evolution? This seems a strange question, for how can a man-made

law in¯uence the course of biological evolution?

Epstein and Axtell developed a model, called ``sugarscape.'' In

the model, there is a distribution of sugar on a landscape. Crea-

tures, the autonomous agents that inhabit this sugarscape, con-

stantly collect and consume sugar. One of their ``traits'' is vision,

that is, how far they can see. Of course, the further they can see,

the better. Simulations show that selection pressure favors those

individuals that can see further. If a law is assumed that offspring

can inherit sugar from their parents, sugar that the parents had

collected, vision turns out to be no longer the decisive factor in

evolution. The inheritance law, in a sense, ``buffers'' the power of

vision, a comforting thought to all who are nearsighted (like Rolf

Pfeifer). Note that here we have a fascinating interaction of social

rules (inheritance) and biological selection. The implications of

this ``laboratory for social science'' are enormous. Already a new

®eld, agent-based economics, is forming. Many surprises can be

expected, because in contrast to those in most classical economic

theories, the phenomena in agent-based worlds are highly non-

linear and therefore hard to understand intuitively.

Other Work

The ®eld of arti®cial life is diverse and extremely rich. Researchers

from many ®eldsÐcomputer science; biology, in particular evo-
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lutionary theory; developmental biology; ethology; biochemistry;

genetics; robotics; engineering; economics; social sciences in

general; and, of course, embodied cognitive scienceÐhave been

attracted to it. All share an interest in complex dynamic systems,

self-organization, and emergent phenomena. Because of the enor-

mous diversity of research, we have focused up to this point on

those aspects that relate to the embodied cognition approach by

focusing on autonomous agents of sorts. But there is an enormous

amount of appealing work based on cellular automata, which are

among the key computational devices for local rules. There is work

on pattern formation in plants and animals, for example, of patterns

of sea shells (e.g., Meinhardt 1995). There is research on growing

shapes in natural systems, on the origins of life. The research

spans everything from protein folding to economicsÐa vast ®eld

indeed, and way too much to cover in a single book, let alone one

chapter.

8.7 Methodological Issues and Conclusions

Let us now summarize what we can learn about agent design from

arti®cial evolution and arti®cial life.

Emergence in Agent Design

The synthetic approach now fully starts showing its value. Arti®-

cial evolution and ALife are synthetic disciplines par excellence.

We have remarked, in this chapter, on the fascination with arti®-

cial evolution. We have also seen how truly surprising designs,

strange but ef®cient creatures, emerged. As always, the value of the

methods depends on the goals: Are we interested in engineering,

designing useful artifacts that perform tasks for us, or are we inter-

ested in understanding principles of intelligence? Let us look at the

former for a moment. ``Design is out, evolution is in'' is a slogan

sometimes heard in evolutionary circles. Arti®cial creatures like

those of Karl Sims stimulate our fantasy and boost our hopes that,

at least potentially, entirely new forms of intelligent creatures

might emerge that will do wonderful things for us. There is an

enormous potential for applications of evolution.

There are two questions to be addressed here. One is about the

power of the evolutionary approach, and the second is whether we

want to eliminate design completely. Let us ®rst look at the former.
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It is often argued that arti®cial evolution can be bene®cially applied

whenever the behaviors we want to achieve are too complex to be

hand designed. One major implication of this claim is that evolu-

tionary robotics is capable of automatically synthesizing more

complex behaviors than those that can be designed by hand. As

far as we can tell this has not been demonstrated so far. Mataric

and Cliff (1996), in a recent review of the state of the art in evolu-

tionary robotics, argue ``a survey of the results in the ®eld to date

does not show any demonstrations that have reached that goal. . . .

none of the evolved behaviors have been particularly dif®cult to

implement by hand'' (p. 17). If Mataric and Cliff are referring to

designing robots for practical purposes, they are certainly right.

Viewed from this perspective, Sims' creatures basically move for-

ward, jump, or get control over a cube, all behaviors for which

better robots could easily be designed by hand. But designing

robots for practical applications is not our main interest: We want

to understand behavior. Before we look at that, let us discuss the

second question.

The real question is not ``to design or not to design,'' but rather

what to design and how to design. This is almost a trivial point.

Since the methodology is synthetic, there must be design. In

chapter 4, we argued that the designer should focus on low-level

commitments and leave room for emergence. The same holds

here. When employing evolutionary methods, we are pushing the

designer commitments, in a sense, further ``back'' in time; we leave

more up to self-organization. Thus, in the design process, we must

include the agent's autonomous interaction with its environment.

Once we are ®nished with the design, we still do not know the

®nal product, because that product strongly depends on the agent's

interaction with the environment. This makes it particularly hard

to predict the outcomes of our designs. Note that such an agent

has potentially more autonomy than one that is completely hand-

designed. There is currently no systematic, top-down methodology

for designing for emergence. The ®eld is largely exploratory and

because our main goal is to understand intelligence, this is not a

problem, but a virtue.

Here, the principles and ideas shown in this chapter are highly

revealing. Remember that a comprehensive understanding of intel-

ligence always requires three perspectives: short term, ontogenetic,

and phylogenetic. We can ask ourselves what we have actually

learned about behavior from the examples of evolutionary and
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arti®cial life systems that we have discussed. One of the main

insights we have gained is the importance of morphology, devel-

opment, and physical interaction with the environment. Moreover,

if we want to study morphology, we must not encode the structure

directly in the genome: we don't want to design the morphology

directly, but to let it emerge! Even in a relatively simple devel-

opmental process like the one proposed by Sims, surprising things

happen.

We can order our examples according to how far the designer

commitments have been pushed back. The Eggenberger model

has pushed them farthest back, followed by Sims, then Beer, and

®nally Florano and Mondada. But there are always trade-offs. If

the designer commitments are pushed too far back, convergence

becomes a problem (i.e., we don't get agents with high ®tness),

especially if we are interested in complex behaviors. If the agents

and their ecological niches get too complex, the ®tness function, a

very global performance measure, does not exert suf®cient in¯u-

ence on speci®c properties of the individual. This is the reason

why Harvey and his colleagues use a kind of ``staged development''

in which they manually chose ``interesting'' candidates as ``seeds''

for further generations (e.g., Harvey, Husbands, and Cliff 1994).

There is another problem, if designers let evolution do a lot of

their work: The more evolution does for the designer, the more

dif®cult it will be to understand what the resulting agents are

®nally able to do. We feel that if we are to understand intelligence,

we not only need to model the evolutionary process, but we must

also understand why the product of evolution, the agent itself,

works. We should not only be able to give explanations from a

phylogenetic perspective, but from a short-term one as well. This

is especially necessary if at some point parts of the agent start mal-

functioning and it has to be repaired.

Challenges

What are the major challenges faced by the ®elds of arti®cial evo-

lution and arti®cial life? We focus on those aspects that concern

autonomous agents.

1 Evolving physical robots: Two issues here concern us. First,

evolving controllers on physical robots, and evolving physical

robots themselves. One problem is the amount of time required. For
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example, Floreano and Mondada (1994) reported that it took them

65 hours to evolve obstacle avoidance behavior in a real robot.

Moreover, robots have batteries that need to be recharged. This

further slows down the evolutionary process. Finally, hardware

needs to be maintained and repaired and might not survive the

continuous testing, yet we do not want to evolve controllers only

for existing robots. So the more challenging issue is how to test

enough hardware con®gurations in a short period of time. FPGAs

are a start, but they are circuits, not entire robots.
1 Evolving in simulation: Simulations are currently the only means

of evolving arti®cial agents if morphology is not predetermined.

But we know that especially complex robots are hard to simulate

accurately (e.g., Brooks 1991a,b; Mataric and Cliff 1996). Simula-

tion techniques need to be improved. Arti®cial life and virtual

reality will be extremely helpful here. Remember, for example, the

sophisticated simulation of Terzopoulos's arti®cial ®sh.
1 Coevolving morphology and neural controllers: Normally, only

controllers, typically in the form of neural networks, are evolved.

However, in natural systems, morphology and neural systems

always coevolve. Work on this problem is only in its initial stages

but has a lot of potential (e.g., Sims 1994a; Eggenberger 1997).

Obviously, given the current state of technology, it is as yet con-

®ned to simulation.
1 Evaluation: One fundamental problem in evaluating evolved

behaviors is that determining when a desired behavior has been

achieved on a robot is very dif®cult. Typically, this judgment is

qualitative, subjective, and based on face validity (i.e., by merely

looking at the agent's behavior). As a result, quantitative analysis is

the exception in the ®eld. We return to the problems of evaluation

in chapter 17.
1 Fitness function design: Designing a ®tness function is notori-

ously dif®cult, mainly because in essence, anything the robot

should or should not do has to be couched in one single formula.

Natural systems have no ®tness function; the individuals that sur-

vive long enough simply reproduce. In robots, it is not obvious

what ``surviving long enough'' means.
1 Understanding emergence and designing for emergence: Al-

though there are many exciting examples of emergence, it is still

not a well-understood phenomenon. If we are to design for emer-

gence, we badly need a better understanding of it.
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Issues to Think About

Issue 8.1: Generating Diversity and Unexpected Behavior

Evolutionary approaches are praised for being ideally suited to

designing autonomous agents. The argument is that humans' expe-

rience biases them and makes them unable to discover designs that

evolutionary algorithms, which have no such bias, can. Although

this may be true to an extent, it does not hold generally. The search

spaces involved in evolutionary approaches are much too large to

be searched without signi®cant constraints imposed. Constraining

the search imposes a priori design knowledge, whether explicitly

or implicitly. For example, in one of their experiments, Harvey et al.

(1997) used a process of staged evolution, which involves nothing

less than introducing designer knowledge: the designer knows that

it is better for the agent to learn one thing (in this case, moving

forward) before another (recognizing triangles and circles); it can

then learn to move towards triangles and circles, combining the

two. As always, there are trade-offs. The more the evolutionary

process is constrained, the smaller the potential for unexpected

things to happen, but the higher the chance that the procedure will

converge and the agent will do something sensible. The slogan

``Design is out, evolution is in'' is only part of the truth.

Issue 8.2: Simulation and Real Robots

Throughout the text we have stressed the importance of using real,

physical robots. Theoretically, these considerations also apply

to evolutionary techniques. But the reproduction in hardware is

clearly not feasible with today's technology. Perhaps with the ad-

vancement of the new ®eld of nanotechnology (e.g., Drexler 1992)

this may eventually change, but not in the near future. So we are

stuck with simulations. Some people have used real robots to test

systems evolved. The disadvantage of using real robots in evolu-

tionary studies is that their sensory-motor setup is predetermined.

Thus, only their control architecture can be evolved. To bring about

interesting evolution, the sensory systems, the motor system, and

the neural substrate must coevolve. This is currently possible only

in simulations. Unfortunately, most approaches to date have been

geared toward evolving control architectures only (typically neural

networks). We hope that this changes in the future. If morphology
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is included as well, this research could shed interesting light on the

relationship between sensory-motor systems and neural substrate.

Will the agents generated by such research evolve gigantic brains,

or will they also augment the degree of sophistication of sensory-

motor systems if environmental pressures increase? Our current

thinking suggests that the latter will happen. Evolving complete

agents requires better systems for simulating the real physical

world than are currently available. Karl Sims has made an impor-

tant step in this direction.

Points to Remember
1 Implicit knowledge constrains human designers in their thinking.

Thus, their designs will always be biased, and they may miss

interesting and truly novel design ideas. Evolutionary methods

have been suggested, in part, to overcome these biases.
1 The evolutionary process can roughly be depicted as a cycle:

genotypeÐdevelopment, phenotypeÐselection, new population of

individualsÐreproduction. This scheme can be used to classify the

various evolutionary approaches.
1 Selection is the process by which individuals are chosen for

reproduction. Random selection means that the genotypes of new

individuals are generated from scratch, whereas in cumulative

selection, existing genotypes of individuals with high ®tness are

chosen for modi®cation, thus keeping their ``good'' properties.
1 The two most common operators used in evolutionary methods are

mutation (asexual reproduction, requiring only one individual) and

crossover (sexual reproduction, requiring two individuals).
1 The genetic algorithm is a commonly used optimization procedure.

In the ®eld of autonomous agents, it is often used to optimize

parameters of a control architecture. In classical GAs, the genotype

represents a solution and the selection is performed directly on the

genotype. There is no development.
1 Evolutionary methods can also be used to evolve control archi-

tectures and morphology. If evolutionary methods are used in a

strong sense to evolve the architecture or even the morphology of

a complete agent, that is, if the search space is very large, there is a

signi®cant danger that the algorithms will not converge, because

the only ``guidance'' provided comes from the global ®tness

function.
1 While it has been demonstrated that arti®cial evolution can be

performed in hardware, these experiments have, for the better part,
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been restricted to evolving the control architectures. Evolution of

entire robots in hardware is, given the current technology, not fea-

sible. Thus studies involving the coevolution of morphology and

control architecture have to be performed in simulation. If this is to

be done realistically, it requires the simulation of physical envi-

ronments independent of the agent's own dynamics.
1 The design and evolution of virtual creatures and collective

behavior are important sub®elds of arti®cial life. Often, sophisti-

cated behaviors can be achieved by designing systems with many

individuals and applying local rules only. Examples are Craig

Reynolds's ¯ocking ``Boids'' and Maja Matarics's ¯ocking robots.
1 Often, more natural animations can be achieved by modeling the

physics of the underlying processes responsible for the locomotion

of an agent (e.g., a ®sh) than by merely trying to reproduce the

shape changes.
1 Arti®cial life studies can shed light on behavior of animal societies

(ants, primates) where often simple explanations of behavior in

terms of local rules can be found.
1 It is an open question how much hand-design should be done

and how much work the designer should leave to evolutionary

methods. This decision strongly depends on the purpose of the in-

vestigation and cannot be answered in general. All evolutionary

methods currently in use still require many designer decisions.
1 The evolutionary perspective contributes in interesting ways to the

explanation of intelligence. It complements the short-term and the

ontogenetic perspectives, but does not replace them.

Further Reading
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Langton, C. (Ed.). (1995). Arti®cial Life: An overview. Cambridge, MA: MIT Press (a
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life. The book's editor, Christopher Langton of the Santa Fe Institute and Los Alamos.
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9 Other Approaches

In previous chapters, we discussed some of the main approaches to

designing autonomous agents. In this chapter we outline additional

ones. Given that the ®eld is still relatively young, ``evolution'' has

not had enough time to select the ``®ttest'' of these approaches,

and many are still in competition. The selection so far represents

something of a bias on the part of the authors. The jury is still out

on which ones will become established and which will fall out of

favor. We look in this chapter, at dynamical systems, behavioral

economics, and schema-based approaches. We keep our overview

deliberately short, because our main goal is to provide a general

idea of each of these approaches: A detailed discussion would ®ll

an additional book.

9.1 The Dynamical Systems Approach

A review of the approaches discussed in the last few chapters, gives

the impression that what is lacking in the ®eld of embodied cogni-

tive science is a unifying framework as we ®nd it in other sciences.

In physics, quantum mechanics and the general theory of relativity

®ll this function, and in biology, the theory of evolution. In classi-

cal cognitive science, as well as neuroscience, the information

processing framework plays a central role. A number of researchers

have suggested that the theory of dynamical systems might provide

just that framework for autonomous agents and what we now call

embodied cognitive science (Beer 1997; Steinhage and SchoÈner

1997; Thelen and Smith 1994; van Gelder 1998).

The dynamical systems approach has become increasingly

popular in recent years in many sciences. Arti®cial evolution

and arti®cial life are building strongly on the theory of nonlinear

dynamical systems. But it has also spread to many other dis-

ciplines, such as physics, immunology, biology, brain sciences,

psychology, management science, and business economics, mainly

because nonlinear systems have attracted a lot of interest over the

last one or two decades as computer power has become more and



more widely available. Computing power is a necessity for non-

linear systems, because in general they have no closed solutions.

The dynamical systems ®eld provides highly appealing and intu-

itively plausible metaphors for characterizing the behavior of a

system. It should be noted, however, that the dynamical systems

perspective is not really new. What used to be called ``systems

theory'' had exactly the same goals, but its focus was more on

linear, rather than nonlinear systems.

Before we begin our discussion, we need to de®ne some termi-

nology. The term dynamics is used in at least three different ways.

First, it is used for anything that changes, in contrast to something

static. In this sense, any equation containing time, or any neural

network that changes in certain ways over time, has dynamics.

Second, it is used to designate a mathematical discipline that

studies the properties of certain types of systems of differential

equations. Third, it is used to distinguish geometrical or kinematic

aspects from physical ones. This distinction is made by roboticists.

The shortest path for a hand to follow in grasping a particular

object can be found on a purely geometric basis by knowing the

coordinates of the target position, the degrees of freedom of the arm,

the spatial constraints given by the arm's geometry, and the hand's

initial position. Dynamics then refers to the physics of the process,

namely the forces, gravity, inertia, friction, and stiffness of the

springs or muscles.

Dynamical systems are a particular mathematical formalism. In

this sense, like any other formalism, such as logic or computation,

the formalism does not provide the content. Thus, it is not a theory

of a particular ®eld. It does not tell us how to apply it to a particular

problem domain. Its main use in the ®eld of autonomous agents

is as a descriptive tool, that is, to describe and analyze an agent's

behavior and internal dynamics.

We start with a very short introduction to the basic concepts of

dynamical systems theory. We include an example to convey

the essence of the approach. No prior knowledge of the theory of

dynamical systems is required to understand the discussion pre-

sented here. The ®eld of dynamical systems is vast, and it has pro-

duced an enormous amount of literature. A comprehensive review

is clearly beyond the scope of this book. (For those interested in

more details of the dynamical systems approach, there are many

excellent textbooks, such as Arrowsmith and Place 1990; Baker and

Gollup 1990; and Jackson 1991).
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The phase space of a dynamical system is a mathematical space

with each dimension representing a variable needed to specify the

system's state. For example, the state of a particle moving in one

direction is speci®ed by its position (x) and velocity (v); hence its

phase space is two-dimensional. Assume now that the ``particle'' is

a robot moving on a ¯at surface. In this case there are two dimen-

sions for its position and two for its velocity vector: the phase space

is therefore four-dimensional. Essentially, two types of equations

can be used to describe trajectories of dynamical systems in phase

space. One operates with discrete time using difference equations;

in the other, time is a continuous quantity, thus differential equa-

tions are used. In essence, there are four possible characteristics of

bounded development in phase space, bounded meaning that none

of the variables gets inde®nitely large (see ®gure 9.1):

1. motion toward a stable steady state or point attractor (®gure 9.1a).

2. motion toward a stable periodic orbit or limit cycle (®gure 9.1b).

3. quasiperiodic motion, in which events never repeat exactly, but

neighboring trajectories remain neighbors (®gure 9.1c).

4. motion in a chaotic attractor. The region in phase space in which

the system moves around is bounded but the trajectory cannot be

steady state

a.

x1

x2

x3

limit cycle

b.

x1

x2

x3

quasiperiodic motion

c.

x1

x2

x3

chaotic attractor

d.

x1

x2

x3

Figure 9.1 Different types of attractors in a three-dimensional phase space. The state of the
entire system is exactly characterized by a point in phase space. A point in an n-
dimensional phase space is characterized simply by the values of all variables, that
is, by a vector. (a) point attractor (steady state), (b) limit cycle, (c) quasi-periodic
motion, (d) chaotic attractor.
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predicted (®gure 9.1d). Such motion is characterized by sensitive

dependence on initial conditions, which means that even the

smallest change in the starting point can lead to an entirely differ-

ent trajectory.

The ®rst three types have been well known for a long time, but

chaotic dynamics have become a major research topic only rela-

tively recently. Although the great French mathematician PoincareÂ

already knew about the chaotic properties of some dynamical sys-

tems in the last century, investigating them systematically really

requires today's high-speed computers.

Dynamical systems terminology is applied in two ways, meta-

phorical and formal. In its metaphorical use, one essentially

applies the dynamical systems vocabulary to better characterize

what a robot is doing. For example, if an agent's behavior stabilizes

in a particular environment and the agent starts going in circles or

oscillates to the left and to the right in a corner, this is said to con-

stitute a limit cycle.

When using dynamical systems formally, we ®rst need to specify

what system we intend to model and then we have to establish

the differential (or difference) equations. One approach would be

to model the agent and the environment separately and then to

model the agent-environment interaction by making their state

variables mutually dependent. The dynamical laws of the agent (A)

and of the environment (E) can be described by the following dif-

ferential equations:

�dxa=dt� � A�xa; ua�; and �dxe=dt� � E�xe; ue�; �9:1�
where x represents the state variables, such as angles of joints, body

temperature, or location in space, and u the respective parameters

describing thresholds, learning rates, and fuel ef®ciency, all of

which are subject to change.

As stated in equation (9.1), the agent and the environment are

independent. We can couple them by de®ning a ``sensory function''

S and a ``motor function'' M. The environment in¯uences the agent

through S; the agent in¯uences its environment through M. S and M

constitute the agent-environment coupling. Formally, we can write

�dxa=dt��A�xa; S�xe�; ua�; and �dxe=dt��E�xe; M�xa�; ue�;
�9:2�

where ua and ue are those parameters not involved in the coupling.

It is assumed that the behavior of this system is always bounded;

that is, the variables do not diverge to in®nity.
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To make matters a bit more concrete, let us look at the example of

the evolved controller for a walking insect by Beer (1995) that we

described in chapter 8. Here we summarize Beer's analysis of the

agent's behavior in dynamical systems terms. Beer states the basic

analysis problem as follows: Given an environment dynamics E,

an agent dynamics A, and sensory and motor functions S and M,

explain how the agent's observed behavior is generated.

To see how Beer uses dynamical system concepts to address this

analysis problem, let us now examine his analysis of one of the

controllers, the central pattern generator. Central pattern generators

evolved when the agent's angle sensors were turned off, that is,

when it could not sense the position of its legs. In this case, the

activation levels of the neurons exhibit a limit cycle that causes

the agent's single leg to stand and swing rhythmically; that is, it

causes the insect to walk, as ®gure 9.2 illustrates. The system's

state repeatedly changes from the stance phase (foot on the ground;

upper left-hand corner in the ®gure) to the swing phase (foot in the

air; lower right-hand corner in the ®gure) and back.

This example illustrates how the notion of a phase space can be

applied to an agent's behavior. In essence, it allows us to visualize

a system's dynamical variables. Even though this example of a

Figure 9.2 The limit cycle behavior of a central pattern generator. The three axes graph output
of the foot (Foot ), backward swing (BS ), and forward swing (FS ) motor neurons.
The foot is considered to be down when the output of the foot motor neuron is larger
than 0.5 and up otherwise. Two main regions in the phase space correspond to the
two phases of the leg: In the region near the back, upper left-hand corner, the
stance phase is located where the foot and backward swing motor neurons are
active. The region near the front, lower-right-hand corner of the phase space corre-
sponds to the swing phase in which the forward swing motor neuron is active and
the foot and backward swing motor neurons are inactive. The system's state moves
in a limit cycle between these two points in phase space (after Beer 1995, p. 195).
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central pattern generator is relatively simple, it nicely illustrates

the basic idea of how dynamical systems tools can be applied to

behavior analysis. The interested reader can ®nd more complex

examples in Beer 1995.

In spite of its popularity, the dynamical systems approach has

not been widely adopted by the autonomous agents community for

several reasons. First, equations (9.1) and (9.2) are readily written

in their general form but much less easily worked out for concrete

situations. For example, establishing the environment function

E�xe;ue� implies modeling those aspects of the environment that

are relevant to the agent-environment interaction. If this entails

modeling the (physical) effects of an agent's motor system on the

environment as well as the environment's physical in¯uences on

the agent (as the agent is hitting an obstacle, is being heated by

sunlight, or affected by sensory stimulation), it is feasible only for

very limited aspects of the agent (as in our example above). Second,

the approach is often used in an analytic rather than synthetic way:

It starts from a given agent-environment interaction, which is for-

malized in terms of differential equations. These equations describe

the behavior: They do not provide the mechanisms. (We discuss an

exception just below.) In general, if we want to build agents, as

in the synthetic approach, we need the mechanisms. Finally, if

systems of differential equations are indeed used as the mecha-

nisms, the approach turns out to be computationally very expen-

sive (e.g., SchoÈner, Dose, and Engels 1995).

Let us conclude with an example of how the dynamical systems

approach can be used not for describing and analyzing, but rather

to actually design agents. The latter is the focus of the work by

Gregor SchoÈner and his group (e.g., SchoÈner, Dose, and Engels

1995; Steinhage and SchoÈner 1997), whose main focus is robot

navigation. Central to their approach is the notion of ``behavioral

variables'' which characterize behaviors of the agent. These vari-

ables de®ne the state of the system. Such variables have to ful®ll

two important requirements. First, they must be capable of

expressing the agent's task environmentÐas points in the state

space spanned by the behavioral variables. Second, the variables

must be linked to the agent's sensory-motor apparatus. In other

words, there must be sensory signals that specify the variable's

level of activation, which is used to set the agent's motor variables.

An example of such a variable is an agent's heading direction f in

the environment. For example, if the agent's task is to move to a
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lamp located in direction ft, the agent can determine that direction

using a set of light sensors.

The most important aspect of this approach concerns the gener-

ation of behavior, which is achieved by de®ning a differential

equationÐa dynamical systemÐthat governs the behavioral vari-

ables. Behavior is generated by integrating the differential equation,

then using the solutions to steer the agent. We do not further elab-

orate on these considerations here but rather point out that one key

advantage of this approach is that much of the agent's behavior

can be designed by means of analytical tools from the theory of

dynamical systems. Most of the work so far has been conducted in

simulation, and it remains to be seen how this approach scales to

physical robots, but ®rst attempts seem promising (Bicho and

SchoÈner 1997).

9.2 Behavioral Economics

In this section we introduce an approach that emerged from a

theory in the ®eld of animal behavior, namely David McFarland's

``behavioral economics'' (McFarland and BoÈsser 1993). It is inspired

by economic theories of decision making based on the ideas of

costs, utilities, and rational man, ideas which lead to interesting

conclusions about how to design robots. Over the last few years

McFarland, an ethologist at Oxford University, has become increas-

ingly interested in autonomous agents. He has also championed

an approach called ``animal robotics'' that is of particular interest

because of its strong theoretical foundation and consistency. Our

discussion implies a number of simpli®cations; we report only the

essential of McFarland's approach. (The interested reader should

consult McFarland and BoÈsser 1993, which explains the approach

in detail.)

Before we continue, we must introduce an important distinc-

tion that takes us back to chapter 2, where we introduced the cog-

nitivistic paradigm. Simon de®ned the principle of rationality as

follows: If an agent has a goal and the knowledge that an action

will get him closer to the goal, he will in fact perform that action

(Simon 1969). Thus, the agent needs a representation of a goal,

knowledge, and a way of deciding whether a particular action will

bring it closer to the goal. As is so often the case, there is a frame-of-

reference issue involved here: We must make a distinction between

rational thought, which concerns the mechanisms within the agent,
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and rational behavior, which pertains to the agent's interaction

with the environment. Rational behavior is, of course, behavior and

can thus be perceived by an observer. It is not necessary, in order

for rational behavior to take place, to postulate goals and knowl-

edge as being explicitly represented within the agent. In other

words, rational thought is not a prerequisite for rational behavior.

This requires a bit of elaboration.

According to McFarland and BoÈsser (1993), rational behavior has

four basic requirements:

1 Incompatibility: An agent cannot perform certain activities

simultaneously, such as moving forward and moving backward. If

it could, it would not have to make choices, and the notion of

rationality would not make sense. More generally speaking, this is

why we need behavior control in the ®rst place.
1 Common currency: If different (incompatible) activities compete

for expression, they must somehow be made comparable, otherwise

it is not possible to choose between them; that is, there must be

a common currency to enable decision making. Typically, the

potential consequences in terms of costs and bene®ts of taking a

particular action are translated into this common currency. For

example, if a choice must be made between drinking a beer and

going to a concert, the very different consequences of these alter-

natives must be made comparable by a common currency: They

must be put in terms that allow a comparison for a decision to be

made.
1 Consistency: An agent's behavior must have consistency; that is,

any time the agent is in a particular state, it must make the same

choice as it did the last time it was in that state and as it will when

it is in the same state again. If it makes an apparently different

decision, the agent must be in a different state; otherwise, it would

not be acting rationally. For example, if an agent capable of learn-

ing encounters an environmental situation similar to a situation

it has previously encountered, it normally acts differently than

before, because it is now in a different state. Recall the agent

equipped with the Distributed Adaptive Control architecture. Ini-

tially, when receiving sensory stimulation from its proximity sen-

sors, it kept moving straight. After a number of collisions, given the

same sensory stimulation as before, it turned away because through

Hebbian learning some of the weights had been strengthened so

that the same sensory stimulation led to a different internal state

(one in which a collision node was active as well) and thus to a
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different behavior (turning away, rather than moving straight).

Such an agent is still behaving consistently.
1 Transitivity of choice: If the agent chooses among potential

behaviors on the basis of some common currency, then if it

chooses A over B and B over C, it must choose A over C to behave

rationally.

If the agent acts consistently, its choices are transitive, and if it

always chooses the top-ranking alternative available to it, then it

maximizes a quantity normally called utility (see below). In doing

so, it engages in rational behavior, but we must be careful not to

infer rational thought from this. Figure 9.3 illustrates the difference

between rational thought and rational behavior. According to this

de®nition of rational behavior, animals behave rationally. Note that

they do not have to be aware of it to behave rationally: There need

be no explicit internal representation of utility. Utility in this sense

is an observer-de®ned quantity: The agent behaves as if it were

maximizing utility, even though it has no internal representation

of ``utility.'' As always, we come back to the frame-of-reference

problem.

a b

Figure 9.3 Distinction between (a) rational behavior and (b) rational thought. The boy in (a) is
exhibiting rational behavior; we can make no valid inferences as to whether his
thoughts are rational, because we do not know what they are. He may have swerved
deliberately to avoid the snail, or he may have swerved for some other reason en-
tirely (or for no reason at all). So rational behavior does not necessarily imply ratio-
nal thought. Note that the converse is also true: The professor in (b) is shown having
an (apparently) rational thought, but his behavior can hardly be considered rational.
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So we see that we can de®ne rationality without resorting to any

kind of internal representation. The idea here is that biological

agents, animals and humans, obey the laws of microeconomics,

that they behave rationally. Quite obviously, if we want to design

a robot, it has to behave rationally, because we expect rational

behavior from an intelligent agent. Consider the requirement of

consistency. Who would want to buy a robot whose behavior is not

consistent? For example, when a lawn-mowing robot is in a partic-

ular idle state and the grass is high, we always want the robot to

mow the lawn, not just sometimes.

In microeconomic thinking, the individual spends his money in a

way that maximizes utility. In this context, isoutility curves can be

used to determine what choices are neutral (that is, they do not

change the utility). For example if you derive the same utility from

two apples and six oranges as from two oranges and six apples,

you will be indifferent with regard to these two selections of fruit.

Figure 9.4 shows this idea graphically. The point here is, stated

broadly, that rational agents maximize utility or, put differently,

they minimize cost. As we explain below, three kinds of costs can

be identi®ed: the cost of being in a state, the cost of a particular

behavior, and the cost of changing between behaviors. The agent

has no information about the real costs involved, which is why the

term notional costs is sometimes applied. This does not mean that

costs have to be explicitly represented internally. The decision

mechanisms can simply be wired into the agent's neural substrate.

Real cost is what matters in terms of Darwinian ®tness, whereas

Figure 9.4 Isoutility curve for oranges and apples. The consumer is indifferent in choosing be-
tween those combinations of oranges and apples represented by points on the curve
because utility remains constant as you move on the curve. (After McFarland and
BoÈsser 1993, p. 44.)
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notional cost is what an animal has been ``equipped'' by evolution

to perceive. For example, real cost is the amount of energy required

to climb a tree or the amount of fuel used to travel a particular dis-

tance. Notional cost refers to the apparent costs, that is, the costs

used by an animal's decision mechanism or a car's driver in

making a decision whether to climb the tree or to travel to a par-

ticular place. The closer the match between notional costs and real

costs, the better an animal's behavior contributes to its ®tness.

As we noted, three factors are involved in cost, namely the cost

of being in a particular state, the cost of performing a behavior, and

the cost of changing between behaviors. Consider the diagram in

®gure 9.5. For the sake of simplicity, it only shows two state vari-

ables of an agent, say temperature and energy supply. Both are

Figure 9.5 State space for an agent. The axes represent any two physiological variables. B is
the lethal boundary. Trajectories are repelled at the boundary (a) by physiological
emergency mechanisms. The region in which these mechanisms are active is called
purgatory (b) Trajectories are repelled at the center (c), leading to a region called
limbo (d). (After McFarland 1989; quoted in McFarland and BoÈsser 1993, p. 75.)
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physiological variables. The dashed vertical line indicates the

minimum possible value for the variable on the horizontal axis

(e.g., the contents of a fuel tank can be no less than empty). The

oval labeled B indicates the lethal boundary; for values of the

two variables outside this boundary, the animal dies. If the animal

approaches this boundary, automatic mechanisms (e.g., shivering)

are triggered that attempt to move it away from the boundary

toward the center. As it goes closer and closer to the center, there is

less and less for the animal to do in terms of physiological survival,

and normally it will then engage in activities that will bring it away

again from the center (e.g., reproductive activities). The region near

the lethal boundary is called purgatory, and the inner region near

the center, limbo.

Let us return to the idea of costs and ®rst look at the cost of being

in a particular state. This cost is taken to be the risk of reaching a

lethal boundary. Thus, near B, the costs of being in this particular

state are high, and near the center they are low. If you are driving in

a car and the fuel gauge indicates low gas (approaching a lethal

boundary), the risk of running out of gas is high, whereas it is low

if the tank is nearly full (nearing the center of the space). The

cost curve can be expected to rise steeply as a state approaches

the lethal boundary. In our car example, an empty fuel tank is

considered to be ``lethal.'' Thus, if your fuel gauge displays a nearly

empty tank, you are on the alert for a gas station, even if this

implies having to drive off the highway. Driving off the highway

for refueling illustrates the costs involved in changing from one

behavior to another. Changing from one behavior to another always

involves costs. This is why, if you have an almost full tank, you are

less likely to drive off the highway to get gas. The costs in terms

of say, lost time, outweigh any potential bene®tÐwhen your tank

is nearly full. However, if the gas station happens to be on the

highway and you want to eat something anyhow, you might as

well get some gas at the same time. You incur no extra costs by

getting the gasÐyou are already stopped for foodÐso the cost for

changing from one behavior to another does not come into play in

the decision.

The cost of performing a behavior has to do with energy expen-

diture and the fact that the agent cannot engage in other behaviors

at the same time. Driving fast consumes more fuel for the same

distance than driving slowly. Often the cost of performing a be-

havior is assumed, based on empirical evidence to be the square
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of the rate at which it is performed (in our car example, the speed).

In the car example, the ®rst idea that comes to mind on how to

implement a decision mechanism on when to refuel is a (®xed)

threshold model: Whenever the fuel level drops below the thresh-

old, go to the next gas station. A moment's re¯ection tells us that

this cannot work. First, the density of gas stations can vary greatly.

If the density is high, we can comfortably drive until the tank is

almost empty (low threshold), whereas when it is low, the thresh-

old has to be set higher. However, an equally disturbing problem

with this model is that at high speeds the car consumes more fuel

for the same distance, and there is an ``optimal'' speed at which the

car consumes the least fuel per unit distance traveled. We put

``optimal'' in quotation marks because there might be additional

constraints to comply with, such as maximum driving time. Thus

depending on the speed chosen, the threshold for refueling would

have to be adjusted. This is the reason why instead of a ®xed

threshold model, it is better to have a model based on the con-

sequences of behavior in terms of cost or utility.

The Robot Ecosystem

Based on these ideas about cost and utility, David McFarland,

together with Luc Steels, the director of the AI Laboratory at the

Free University of Brussels, developed a so-called robot ecosystem

(McFarland 1994; Steels 1997). McFarland, as an ethologist, was

interested in using robots to investigate biologically realistic issues.

Moreover, both wanted to investigate emergence, a phenomenon

that we have identi®ed as crucial in the study of intelligence. The

topic area they chose was cooperation. How could something like

cooperation emerge among robots? The setup of an experiment to

explore this question would have to be such that the robots would

bene®t from cooperation in some way. Otherwise, there would be

no incentive for them to learn to cooperate.

In this robot ecosystem (®gure 9.6), there are a few robots and a

few boxes with infrared lamps. The lamps are called ``competitors''

because theyÐlike the robotsÐconsume energy from the ecosys-

tem, and because the overall amount of electricity is limited, the

robots have to compete with the lamps for the electricity. A con-

stant but restricted in¯ux of energy into the system limits the

amount of electricity available. The robots have to push against

the competitors to reduce the competitors' energy consumption.

Other Approaches 289



Reducing the infrared lamps' energy consumption dims their lights.

The darker the boxes, the more current there is in the charging

station. The robots are equipped with sensors whose activation

levels can be coupled to motivations. If the environment is made

more taxing, for example, by increasing the number of energy-

consuming boxes, the robots have to exploit these sensors to pro-

duce bene®cial sensor-to-motor couplings. ``Bene®cial'' in this case

means ``leading to higher energy levels.'' For example, the robots

have a sensor for internal energy level. If this sensor is coupled

directly with the motivation for forward movement, the robot

moves more slowly when the energy is low, which makes the robot

take longer to move through the charging station. The robots also

have a sensor for detecting the charging station. If this sensor is

inversely coupled to the motivation for forward movement, this

keeps the robot in the charging station even longer. In addition, the

robots have light sensors, and the charging station is marked with

a light, so they can potentially use phototaxis to approach the

charging station. If the robots exploit the various sensory modal-

ities in appropriate ways, they get an advantage in terms of energy

management (value). This implies increasing the complexity of

their behavioral repertoire: among other things, better exploitation

of the motor system. When an ontogenetic perspective is applied,

we need a value system. In the robots' case, it is related to energy

supply: Increase in energy level is of value. The task of energy

Figure 9.6 The robot ecosystem. Two robots and one competitor (the black box behind the
robot on the left) are shown. The charging station is on the right in the back (marked
with a light) (reprinted with permission).
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management is dif®cult, because the bene®cial effects of certain

actions manifest themselves only much later. (As we will see in

chapter 14 this is a fundamental issue in reinforcement learning).

The entire experiment can also be put into an evolutionary context.

It would be interesting to study what sorts of value systems would

evolve.

Another issue can be studied: cooperation. The energy in¯ux into

the charging station increases if another robot pushes against the

energy-consuming boxes. In a sense, the robot that pushes against

the boxes works for the one in the charging station. If the robots

cooperate in this way they can potentially draw more current

from the charging station. Thus, they may be able to support more

robots, because they manage to divert electricity from the com-

petitors. This entire procedure can also be embedded into an evo-

lutionary cycle, and we can see what sensors will be exploited

given a particular environmental pressure. The ®tness criterion in

this case would be how long the agents can survive (maintain

energy level above 0).

The ``behavioral economics'' approach to autonomous agents is

refreshing and brings in important ideas, one of which is a precise

characterization of self-suf®ciency: Thinking in terms of utilities

rather than speci®c quantities leads to plausible models of rational

behavior. McFarland's framework is highly useful in understanding

animal behavior and behavior of autonomous agents in general.

For example, the idea that rational behavior can occur without

rational thinking or that the notorious problems of thresholds can

be avoided by using utilities is highly appealing. However, the

behavioral economics approach is not without problems. As in

the case of dynamical systems, the main drawback of behavioral

economics is that the approach is more analytic than synthetic. It

does not provide heuristics on how to derive the mechanisms

that lead to the desired behaviors. Another dif®culty is that the

approach is top-down and suggests that careful prior analysis of the

problem can produce optimal designs. Experience from 40 years of

software engineering suggests that a top-down approach may not

work well in an unstructured domain. Moreover, from a cognitive

science perspective, a bottom-up approach seems more promising.

These may be among the reasons why the behavioral economics

approach has not been widely recognized in the autonomous

agents community.
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9.3 Schema-Based Approaches

The term ``schema'' has been used in many different ways in the

literature and is somewhat controversial. It has been used to refer

to structures stored in memory (records, objects, scripts, and

the like). This is the typical way of employing the term in cog-

nitive psychology and traditional AI. It has also been used to

designate certain ``modules'' in robotic systems. Arkin (1993) fo-

cuses in particular on motor schemas, which he de®nes as follows:

``A motor schema is the basic unit of motor behavior from which

complex actions can be constructed. It consists of both the knowl-

edge of how to act and the computational process by which it is

enacted'' (Arkin 1993, p. 385). In this sense, the subsumption

architecture can also be viewed as ``schema based.'' Note, inciden-

tally, the inconsistency about the frame-of-reference problem. A

schema, in Arkin's de®nition, clearly refers to some extant struc-

ture within the system. But it is de®ned as a unit of motor behavior.

As we know, the latter is emergent from the system-environment

interaction; it is not to be taken as a mechanism. The term is used

in yet another way: to designate some kind of organization. Let

us quote Bartlett (1932), who is often cited, along with Piaget, as

being responsible for the introduction of the concept of a schema to

psychology: `` `Schema' refers to an active organization of past

reactions, or of past experiences, which must always be supposed

to be operating in any well-adapted organic response'' (p. 201). A

more comprehensive review of the various notions of the terms in

psychology, neuroscience, AI, and robotics can be found in Arbib

1995.

The main purpose of schema-based theories is to ®nd an

intermediate level of abstraction, a level that is neurologically

plausible and at the same time permits abstraction from too much

detail. In neurobiologically oriented studies (e.g., Arbib 1981)

``schema'' refers to a distributed organization of perceptual and

motor systems. Arkin (1989, 1993) has successfully applied the

notion to robotic systems. As we pointed out above, the schema-

based approach, as used in these studies, has similarities to the

subsumption approach. Motor schemas operate as concurrent,

asynchronous processes each of which instantiates a behavioral

``intention'' such as avoid-static-obstacle, avoid-robot, or

move-to-goal. In this approach, sensory signals are translated

into an output for each active schema. The resulting outputs are

summed and normalized and then written onto the motor variables
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(see Arkin 1989 for more details). Thus, as in subsumption, a

number of parallel processes are each connected to the agent's

sensory-motor apparatus. In contrast to the subsumption approach,

however, there is no explicit arbitration in the schema-based

approach between the different schemas: There is only summation

and normalization of schema outputs. We will see in chapter

11 that this is an instantiation of so-called cooperative process

coordination, whereas the subsumption architecture is an example

of so-called competitive process coordination.

Arkin has used the schema approach in multiagent systems. In a

typical setup, a number of agents (e.g., four) have to build various

formations (e.g., line, column, diamond, wedge) and keep that

formation while traveling through an obstacle ®eld. Arkin showed

that this behavior can be achieved with four schemas: avoid-

static-obstacle, avoid-robot, maintain-formation, and

move-to-goal. Each of these schemas generates an output repre-

senting the desired behaviorÐdirection and magnitude of the

movementÐfor the agent given the current sensory stimulation.

Together, they consistently lead to the aforementioned formation

patterns.

Another exponent of schema theory in robotics is Michael Arbib,

who has based his ideas on extensive studies of biological systems,

in particular the frog (Arbib 1981, 1992, 1995). Arbib has built a set

of models of visuomotor coordination in the frog and toad called

Rana computatrix. Both animals snap at small moving objects and

jump away from large moving objects. A simple schema-based

model of the frog brain consists of four schemas, two perceptual

(for recognizing objects and situations) and two motor (for control-

ling the two behaviors). One perceptual schema recognizes small

moving objects and activates the motor schema for approaching

prey; the other recognizes large moving objects and activates the

motor schema for avoiding a predator. (For details, see Arbib 1981,

1995.)

In summary, it is dif®cult to identify de®nitively the central

characteristics of the schema-based approach because the term

``schema'' is so variously de®ned. Thus, many schema-based

approaches share, one way or another, some major assumptions.

Perhaps the most characteristic commonality of the various schema-

based approaches is that, based on neurobiological or psychologi-

cal evidence, they are trying to abstract chunks of structure or

organization located at an intermediate level of abstraction and
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therefore suited not only for analysis but also for synthesizing

robotic systems.

Issues to Think About

Issue 9.1: Driving Cars

In the section on the behavioral economics approach, we discussed

the problem of how to decide when to refuel. We argued that a

simple threshold modelÐwhenever the fuel level drops below the

threshold, go to the next gas stationÐdoes not work because the

density of gas stations can vary greatly and because at high speeds

the car consumes more fuel for the same distance; further, there is

an ``optimal' speed at which the car consumes the least fuel per

unit distance traveled. Thus, depending on the speed chosen, the

threshold for refueling would have to be adjusted, so a threshold

model is inadequate. What other mechanism can you think of that

might be more satisfactory? What variables does such a decision

mechanism need to take into account, except the obvious one of the

current fuel level? Chapter 11 offers an example of how the prob-

lem can be addressed in a robot, but we would like you to re¯ect on

this important problem before reading that case study.

Issue 9.2: Why So Many Different Approaches?

We have seen many approaches to autonomous agents: Braitenberg

vehicles, subsumption, arti®cial evolution, arti®cial life, collective

agents, dynamical systems, behavioral economics, and schema-

based. We could ask ourselves why there are so many different

ones. We have seen that all have their merits and their problems.

Which ones will survive, which will come out as leaders, and

which will eventually die out is an entirely open question at this

point. But would it really be desirable to have only one or two

paradigms? This too is an open question. Recall that in arti®cial

evolution diversity is one key factor. On the other hand, diversity

with no structure would be just as bad as no diversity at all. Intel-

ligence is multifaceted, and multiple methods will presumably

always be required. From your perspective, where do you see

the advantages and disadvantages of having this diversity in

approaches?
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Points to Remember
1 So far we have discussed the following approaches to autonomous

agents: neural networks, Braitenberg vehicles, subsumption

architecture, evolutionary robotics, dynamical systems, behavioral

economics, schema-based approaches, collective behavior, and ar-

ti®cial life. Each of these approaches focuses on different aspects of

intelligence. Thus it is currently not possible to evaluate them

against one another. All are needed for the progress of the ®eld.

Nevertheless, a coherent framework would be desirable. The design

principles introduced in the chapter 10 are a step in this direction.
1 The dynamical systems approach to autonomous agents is used

mainly to describe and assess behavior in a qualitative, metaphori-

cal sense. Among its major advantages are its formal character, its

intuitive appeal, and its potential as a unifying framework. Among

its major disadvantages are its analytic nature (it is dif®cult to

employ it for design) and the dif®culties in applying the framework

to problems of even moderate complexity.
1 The behavioral economics approach is based on the idea of a

rational agent, which is in turn based on utility and cost, as in tra-

ditional economic theory. This approach posits four basic require-

ments for rational behavior: incompatibility of activities, common

currency, consistency, and transitivity of choice. Animals have

been shown to behave rationally according to this de®nition. The

robots that we want to design must behave rationally, otherwise

they would not be of much use or interest.
1 Schema-based approaches are hard to delineate. Many approaches

couldÐdepending on the perspective adoptedÐbe classi®ed as

schema-based. A case in point is the subsumption architecture. In

general, the common denominator of these approaches is that they

try to abstract chunks of structure or organization located at an

intermediate level of abstraction. Typically, they are based on

neurobiological or psychological evidence.

Further Reading

Dynamical Systems
Beer, R. D. (1997). The dynamics of adaptive behavior: A research program. Robotics and

autonomous systems. R. Pfeifer and R. A. Brooks (Eds.), 20, 257±289, [Special issue:

Practice and Future of Autonomous Agents.] (Provides an overview of how to employ

dynamical systems in the ®eld of autonomous agents. Includes an introduction to

dynamical systems.)
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Steinhage, A., and SchoÈner, G. (1997). Self-calibration based on invariant view recogni-

tion: Dynamic approach to navigation. In R. Pfeifer and R. Brooks (Eds.), Robotics and

Autonomous Systems. [Special issue: Practice and Future of Autonomous Agents.]

(One of the few papers in which the theory of dynamical systems is actually used to

design robots.)

Behavioral Economics
McFarland, D., and BoÈsser, M. (1993). Intelligent behavior in animals and robots. Cam-

bridge, MA: MIT Press. (McFarland is one of today's leading ethologists. The book is

full of highly interesting ideas. It represents a style of thinking completely different

from what computer scientists or psychologists are used to.)

Schema-Based Approaches
Arbib, M. A. (1992). Schema theory. In S. C. Shapiro (Ed.), Encyclopedia of Arti®cial

Intelligence, 2nd ed (pp. 1427±1443). New York: John Wiley. (A comprehensive

review of schema theory by one of the champions in the ®eld.)
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IV Principles of Intelligent Systems

Part IV is an attempt to integrate insights in the ®eld of embodied

cognitive science into a coherent theoretical framework. It com-

plements the design framework outlined in part II. The ``design

principles of autonomous agents'' represent a compact way of

characterizing the essence of what we mean by an intelligent

system. We have to keep in mind that the ®eld has been around

only for a little more than 10 years. Thus, we cannot expect it to

have a well-established set of principles that most researchers in

the ®eld would accept as basically correct. As a consequence, it is

not so much a matter of whether the design principles set forth are

right or wrong. Rather, they should be taken as a ®rst pass, a set of

working hypotheses to be explored in more detail in the future:

They point to the important issues on which research could focus.

Although chapter 10 is entitled ``design principles of autonomous

agents,'' we should not look at agents in isolation: the triad ``agent±

task/desired behavior±ecological niche'' must always be speci®ed

and continuously taken into account in all considerations. Gener-

ally speaking, intelligence should not be considered in isolation,

as a property of an agent only; we must consider the ecological

nicheÐthe environmentÐin which the agent is to operate as

well, since behavior is emergent from the system-environment

interaction.

Because these design principles are at the core of our new

understanding of intelligence, after we summarize them in chapter

10, we elaborate on them in separate chapters. The reader who

wants to get an overview of the ®eld of embodied cognitive science

may wish to continue with the case study on memory (chapter 15)

right after this chapterÐhe or she can skip the signi®cant amount

of detail provided in chapters 11 through 14 without losing the ar-

gument and consult these chapters only later.

The principle of parallel, loosely coupled processes is in essence

a statement of the core belief of the ®eld as outlined in Brooks's

subsumption architecture (chapter 11). To ferret out the essential

features of this principle, we contrast it with more classical views.



The principle of sensory-motor coordination elaborates the nature

of an agent's interaction with its environment such that it can

structure its own input, which often vastly simpli®es learning or

enables it in the ®rst place (chapter 12). The principles of cheap

design, redundancy, and ecological balance are closely related and

are discussed in one chapter (chapter 13). These principles deal

with the complex relationships among embodiment, morphology,

dynamics, internal mechanisms, and environment. The value prin-

ciple deals with the driving forces behind agent behavior, in partic-

ular the control of learning and of how processes of self-organization

can be in¯uenced in certain ways (chapter 14). Finally, chapter 15

presents a case study of human memory. The ®eld of embodied

cognitive science has a bit of an ``insect ¯avor'': Many people believe

that the approach is valid for understanding simple creatures like

insects or worms but not higher mammals and humans. This case

study demonstrates how this approach, and the design principles

we have formulated can be productively applied to a phenomenon

normally classi®ed as a ``high-level cognitive'' one.

Part IV 298



10 Design Principles of Autonomous Agents

In the last few chapters, we have looked at a number of different

approaches, types of agents, frameworks, and models. As we have

seen, all have their particular merits and problems. In this chapter,

we map out the territory of embodied cognitive science. On the one

hand, this enables us to locate the various approaches on the map;

on the other, it provides direction for further explorations under-

taken in the remainder of the book. The basic infrastructure was

provided in chapter 4, which introduced a framework for describ-

ing, understanding, and designing autonomous agents. In this

chapter, we want to establish the landmarks that further delineate

the basic territory of embodied cognitive science. This territory is

still rough, and navigating on it is still a challenging endeavor. The

design principles provide a conceptual framework, a ®rst step

toward a theory of intelligence. Because we are still at the begin-

ning, it is not so much a matter of whether these principles are

right or wrong: Rather, they point to the core issues that need to be

researched in this ®eld.

In this chapter we give a short overview of all the design princi-

ples. This overview provides enough intuition to understand their

intention and the general idea. We proceed as follows. First, we

discuss the nature and status of the design principles. Second, we

elaborate the design principles themselves. Then we discuss the

design principles in context: We outline how they are interrelated,

and how they compare with the principles underlying other

approaches in the ®eld as well as the principles of traditional AI.

10.1 The Nature of the Design Principles

We have established the landmarks of the territory of embodied

cognitive science in the form of design principles (see ®gure 10.1).

There are several reasons for doing so. First, the design perspective

is highly productive. Embodied cognitive science is by de®nition

synthetic: Its goal is understanding by building. The way we de-

sign our agents is a manifestation of our views of intelligence.



Experienced designers often rely on their intuitions, and these

intuitions are implicit. One purpose of the design principles is to

make this knowledge explicit. Alternatively, scienti®c papers con-

tain descriptions of architectures, and it is shown that they work.

But often the rationale for the designs is left implicit. Second, and

related to the ®rst point, design can offer a bene®cial perspective

from which to view natural systems, animals and humans: that of

evolution as a designer. One of the goals of embodied cognitive

science is to include ideas from biology for designing arti®cial

systems. Viewing biological systems from a design perspective is

a good strategy for making this transfer possible. Third, because

we are still at an early stage in the ®eld of embodied cognitive

science, it is neither desirable nor possible to have a fully formal-

ized ``theory'' of intelligence. A less formal description in terms of

a set of principles is more appropriate. These principles capture

compactly the better part of insights contained in the very rich

and diverse literature the ®eld has produced. And fourth, the prin-

ciples can be seen as a set of design heuristics for autonomous

agents. They are good heuristics only if you are interested in issues

Figure 10.1 Scientist wondering how to proceed. The design principles provide guidance on how
to build autonomous agents. They incorporate the insights gained in this new re-
search field in a compact and coherent form. Design principles guide us in asking the
right questions when investigating issues concerning intelligence.
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relating to cognitive science. If your main goal is to develop appli-

cations, other principles have to be applied (see chapter 16).

Chapter 4 elaborated on the distinction between a cognitive

science and an engineering approach to design of autonomous

agents. In ®gure 10.2, we see two designs for the same task: collect-

ing ping-pong balls. The design principles for autonomous agents

give a good characterization of the agent in ®gure 10.2b, but they

are not very helpful for agents like the one shown in ®gure 10.2a.

The agent in ®gure 10.2a sucks in the balls with great speed, the

one in 10.2b searches for the balls, picks them up, and puts them

into a bin. The latter has been built based on the design principles

explained in this chapter, the former has not. The design principles

we set forth here can be used for engineering, but only when the

solution of the tasks requires behavioral diversity. Most designs,

like revolving doors, paper clips, zippers, or drinking glasses do

not require diversity. Even most of today's computer or robot

applications rely on the fact that the computer or the robot always

executes exactly the same programmed sequence of actions. The

robot in ®gure 10.2a is of this type. The one in ®gure 10.2b is

expected to exhibit behavioral diversity. For example, it should be

able to explore the environment, search for balls, move up to them,

avoid obstacles and people standing around, pick the balls up, go to

a bin, and deposit the balls.

The principles of design we are advancing should enable the

generation of empirical hypotheses. If these principles indeed do

characterize intelligence appropriately, they have to apply to natu-

Figure 10.2 Collecting ping-pong balls. (a) engineering solution, (b) cognitive science solution.
The solution in (a) requires no behavioral diversity, whereas the one in (b) does. The
design principles discussed in this chapter are not very helpful for designing solution
(a), whereas they can sensibly be applied to solution (b).

a b
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ral systems, to animals and humans, as well as to arti®cial ones.

Currently, they must be considered as working hypotheses. A con-

siderable amount of empirical support bolsters them, but it remains

to be seen whether they can stand up to hard empirical testing.

Although such testing is an important scienti®c criterion, it is notÐ

given the current state of the ®eldÐthe major focus here. However,

as we go along, we discuss the relation of the design principles to

empirical ®ndings.

10.2 Design Principles for Autonomous Agents

The set of design principles consists of two parts: a metaprinciple

(principle 1) that tells us the essential constituents of the design

process, and a number of principles that concern the agent itself, its

morphology, its sensors and effectors, and its control architecture,

that is, its internal mechanisms (principles 2 to 8). Table 10.1 pro-

vides an overview of these principles. The design process itself is

discussed in chapter 16.

A Metaprinciple

We call the ®rst principle a ``meta'' principle because, in contrast to

the other principles that characterize the agent itself, it is about the

context in which the other principles have to be embedded.

PRINCIPLE 1: THE THREE-CONSTITUENTS PRINCIPLE

Designing autonomous agents always involves three constituents:

(1) de®nition of ecological niche, (2) de®nition of desired behaviors

and tasks, and (3) design of the agent. Constituents (1) and (2)

together are referred to as the task environment. They are discussed

in this section. Constituent (3), agent design, has been split into

design principles 2 through 8. They are discussed in later sections.

The design problem can be stated as follows: Given the intended

ecological niche and the desired behaviors, how do we design the

agent? If we are interested in explaining the behavior of natural

systems, we start from a particular set of behaviors and ask how

they come about and what the mechanisms are. Behavior is always

tied to a particular niche; it cannot be considered in the abstract.

Alternatively we could proceed as follows. Assume that you

already have an agent with a particular architecture. Assume also

that you have a particular ecological niche. You can now ask what
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Table 10.1 Overview of design principles of autonomous agents.

Principle Name Summary Chapter(s)

Constituents
of design
1 The three-constituents

principle
Designing autonomous agents
always involves three constituents:
(1) de®nition of ecological niche,
(2) de®nition of desired behaviors
and tasks, and (3) design of the
agent.

4, 16

Morphology,
architecture,
mechanism
2 The complete-agent

principle
The agents of interest are the
complete agents, i.e., agents that
are autonomous, self-suf®cient,
embodied, and situated.

4, 10

3 The principle of parallel,
loosely coupled processes

Intelligence is emergent from an
agent-environment interaction
based on a large number of
parallel, loosely coupled processes
that run asynchronously and
are connected to the agent's
sensory-motor apparatus.

11

4 The principle of sensory-
motor coordination

All intelligent behavior (e.g.,
perception, categorization,
memory) is to be conceived as a
sensory-motor coordination that
serves to structure the sensory
input.

12

5 The principle of cheap
designs

Designs must be parsimonious
and exploit the physics and
constraints of the ecological niche.

13

6 The redundancy principle Sensory systems must be
designed based on different
sensory channels with potential
information overlap.

13

7 The principle of ecological
balance

The ``complexity'' of the agent has
to match the complexity of the task
environment. In particular, given a
certain task environment, there
has to be a match among the
complexity of sensors, motor
system, and neural substrate.

13

8 The value principle The agent has to be equipped with
a value system and with
mechanisms for self-supervised
learning employing principles of
self-organization.

14
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behaviors will emerge as the agent functions in its ecological niche.

An example of this strategy involving self-organizing robots is

given in chapter 14. A third possibility would be to start with an

existing agent and a set of desired behaviors. The question then

becomes in what environments the agent will exhibit the desired

behaviors. This strategy might be important for a robot manufac-

turer interested in selling existing robots to operate in many differ-

ent environments. From a scienti®c perspective, the ®rst strategy,

detailed in this chapter, is the most frequently used, although, it is

often mixed with the others.

De®nition of the Ecological Niche

Recall our discussion of ecological niches in chapter 4. We pointed

out that there is no universality in the real world. Agents are always

``designed'' for a particular niche (by either evolution or engineers).

The ecological niche, the environment in which the agent has to

operate, must be de®ned. For example, if the goal is to investigate

the navigation behavior of the desert ant Cataglyphis, it has to be

decided what aspects of the animal's niche are relevant and should

be taken into account in the investigation. One has to decide, for

example, whether indoor experiments are feasible or whether one

has to work outside. One may even decide to go to the desert.

Clearly specifying the agent's ecological niche is important for

several reasons. First, the design of the agent depends crucially on

its niche. If a robot for collecting ping-pong balls has to operate in

several rooms, it has to be mobile. If it has to operate only in one

room, it might be stationary, and its design would then be much

simpler. Second, specifying the ecological niche makes it explicit

that there is no universality in the real world, that the agent is

designed for a speci®c environment. If it is designed for an of®ce

environment, it will likely look very different than if designed for

the surface of Mars. Third, the de®nition of the ecological niche

signi®cantly constrains the agent's design. An illustrative example

is Ian Horswill's robot Polly, based on a vision system that exploits

the fact that of®ce ¯oors are ¯at (remember the ``ground plane con-

straint'' from chapter 4). This has several advantages: If ¯oors are

¯at, wheels can be used. Moreover, a higher y-coordinate in the

image supplied by this vision systemÐa camera pointed at the

ground in front of PollyÐimplies that the object is further away

(given that the object is standing on the ground; e.g., Horswill

1993), as ®gure 10.3 illustrates.
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De®nition of Task and Desired Behaviors

In chapter 4, we distinguished between task and desired behaviors.

Both robots in ®gure 10.2 achieve the task of collecting the ping-

pong balls, but they do so using behaviors that are very different. So

the task is concerned with the effect of behaviors rather than the

behaviors themselves. Often the separation is not so clear. Recall

the example from chapter 4: the robot's task was to mow the lawn.

Mowing is in fact the desired behavior to achieve the task of keep-

ing the grass short. We also know from chapter 4 that complete

agents must always engage in a number of different behaviors. A

garbage-collecting robot obviously has the task of collecting gar-

bage, or rather of eliminating garbage from the streets. Its designer

has to map this task onto desired behaviors like searching for gar-

bage, picking it up, bringing it back to a garbage truck, and so forth.

Alternatively the garbage could be burned on the spot, requiring no

collecting. If the robot is to be self-suf®cient, it has the additional

task of charging its batteries. Note that, strictly speaking, the de®-

nition of the task is independent of the agent itself. The designer

decides what the tasks of the agent are to be and designs the agent

in such a way that it can accomplish them. This does not mean that

there must be an explicit representation of the task within the

agent. One of Maja Mataric's remarks about the behavior of her

robots illustrates this point nicely: ``They're ¯ocking, but that's

not what they think they are doing'' (quoted in Dennett 1997).

As we know from the discussion in chapter 8 of ¯ocking in Craig

Reynolds's boids, ¯ocking can be achieved by a few local behav-

ioral rules. If all the agents follow these rules, their behavior looks

Figure 10.3 An illustration of Ian Horswill's robot Polly. It is designed to give tours to visitors
at the MIT Artificial Intelligence Laboratory. Offices are its ecological niche. Polly
exploits the fact that office floors are flat. If an object is standing on the ground,
whatever is higher on the y-axis of the image it obtains through a camera that points
at the ground in front of it is further away.
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like ¯ocking. It is an emergent phenomenon. The ¯ocking is in the

head of the observer rather than in the head of the robots.

Morphology, Architecture, Mechanism

Once we have de®ned its ecological niche and desired behaviors,

we can design the agent itself. We now look at the principles that

characterize the designs of intelligent agents.

PRINCIPLE 2: THE COMPLETE-AGENT PRINCIPLE

The complete-agent principle states that intelligent agents are com-

plete. Recall from chapter 4 that complete agents are capable of

exhibiting a set of behaviors in the real world independently and

without human intervention. More precisely, they are (a) autono-

mous, (b) self-suf®cient, (c) embodied, and (d) situated. Chapter 4

elaborated on all of these characteristics; we only summarize them

here. Autonomous agents have to be able to function without hu-

man intervention, supervision, or instruction. Self-suf®cient agents

have to be able to sustain themselves over extended periods of time.

Embodied agents must be realized as physical systems capable of

acting in the real world. Finally, situated agents view the world

from their own perspective; information about the environment is

acquired through their own sensory system. An example of a com-

plete agent is the Fungus Eater shown in ®gure 4.1. Natural agents,

animals and humans, are true complete agents by de®nition: They

ful®ll all the criteria of principle 1. Arti®cial agents that ful®ll all

those criteria to the same extent as natural agents do still do not

exist. As we have seen, the Mars Sojourner, for example, has very

limited autonomy.

In summary, the complete-agent principle states that we should

aim for a particular class of agents, those that have characteristics

(a)±(d) above. These kinds of agents have the potential for what we

would intuitively call intelligence. In chapter 1, we said that one

may choose whatever behavior one ®nds interesting and then ask

the question of how it comes about. Here we are specifying instead

which agents are the most interesting agents.

PRINCIPLE 3: THE PRINCIPLE OF PARALLEL, LOOSELY COUPLED

PROCESSES

Intelligence emerges from an agent-environment interaction based

on a large number of parallel, loosely coupled processes that run

asynchronously and are connected to the agent's sensory-motor
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apparatus. The motivation for this principle comes from Brooks's

(1986) subsumption architecture that we discussed in chapter 7.

We also introduced, in chapter 2, the sense-think-act cycle. During

sensing, information from various sensors is collected and inte-

grated into a central representation of the environment, the world

model that forms the basis for planning. A number of plans are

generated and one of them is chosen for execution and ®nally

executed. This requires a great deal of central processing. One of

principal 3's main claims is that coherent behavior can be achieved

largely without hierarchical control as we will argue in detail in

chapter 11. This principle is at the core of most control archi-

tectures in embodied cognitive science. Its essence is that the indi-

vidual processes can independently lead to behaviorÐthey do not

have to await instructions from other processes. Moreover, these

control architectures can be built incrementally by adding pro-

cesses on top of already existing ones. We have already encountered

this evolutionary idea in the subsumption architecture. Processes

can be implemented through a number of different formalisms,

from ®nite state machines to immune system algorithms to neural

networks. One of the main questions that arises concerning this

principle is how the independent processes are coordinated. Such

coordination is achieved both within the agent and from the inter-

action with the environment as well. Within the agent, competitive

or cooperative mechanisms coordinate the processes. Since these

processes are coupled to the sensory-motor apparatus, their activa-

tion and thus their coordination depends on the environmental

context.

One of the main advantages of the approach implied in principle 3

is that it offers room for emergent behaviors, and emergence

is required because (according to the frame-of-reference problem)

behavior cannot be reduced to internal mechanism only. For exam-

ple, if we want to achieve wall-following behavior, we should de-

sign not a module for wall-following within the agent, but instead

basic processes that together, interacting with the environment,

engender this desired behavior. We have already encountered two

examples of emergence of wall-following in agents: in Distributed

Adaptive Control (chapter 5) and in the timid vehicle of chapter 6.

PRINCIPLE 4: THE PRINCIPLE OF SENSORY-MOTOR

COORDINATION

The principle of sensory-motor coordination states that all intel-

ligent behavior (e.g., perception, categorization, memory) is to be
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conceived as a sensory-motor coordination. Note that sensory-motor

coordination does not mean simply ``behavior.'' The behavior must

be directly guided by the sensory input; a robot that is simply

turning about its own body axis is not engaged in a sensory-motor

coordination. The principle has two main aspects. The ®rst relates

to embodiment. Perception, categorization, and memory, processes

that up to this point have been viewed from an information-

processing perspective only, must now be interpreted from a per-

spective that includes sensory and motor processes. Principle 4

thus provides a heuristic for analyzing and designing behavioral

systems. Whatever behavior we are analyzing or whatever behavior

we want to design for a robot, principle 4 suggests that we focus on

how sensory and motor systems are coordinated. Embodiment

plays an important role in this coordination. Let us examine cate-

gorization for a moment. Categorization is often viewed as a map-

ping of a stimulus onto an internal category representation.

According to this principle, however, categorization and in partic-

ular, category learning, also includes motor processes. Similarly,

perception does mean the passive reception of information but

crucially involves, for example, the oculomotor system as well.

More generally, perception and action cannot be separated, as

chapter 12 explains in detail.

The second, more speci®c point of this principle is that through

sensory-motor coordination embodied agents can structure their

input and thereby induce regularities that signi®cantly simplify

learning. ``Structuring the input'' means that through the inter-

action with the environment, sensory data are generated, they are

not simply given. Moreover, the sensory data thus generated are

``good'' data, that is, correlated data (for details, see chapter 12).

The principle of sensory-motor coordination has a number of

implications. Let us brie¯y look at an example: category learning in

human infants. According to the principle category learning is a

consequence of sensory-motor coordination, a prediction recent

evidence from developmental psychology supports (Thelen and

Smith 1994; Smith and Thelen 1993). Figure 10.4 shows an infant

engaged in category learning through sensory-motor coordination.

One implication of the view that category learning is based on

sensory-motor coordination is that the categories humans employ

are automatically ``grounded.'' (Recall the symbol-grounding prob-

lem discussed in chapter 3). Similarly, if this principle is applied to

arti®cial agents, the implication is that they will form only fully
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grounded categories. Stated differently, the symbol-grounding

problem is really not an issue, according to principle 4: Anything

the agent learns is based onÐgrounded inÐits sensory-motor

coordination, which by de®nition connects any learning to the real

world.

Another approach closely relates to this principle, namely active

vision (e.g., Ballard 1991). In this approach, vision is not seen as

something that concerns not just input: Movement is also consid-

ered to be an integral aspect of the perceptual process. Chapter 12

discusses active vision further.

PRINCIPLE 5: THE PRINCIPLE OF CHEAP DESIGN

The principle of cheap design states that good designs are

``cheap,'' with the word ``cheap'' not to be taken too literally. We

use it here to mean essentially three things. First, ``cheap'' design

implies exploiting the physics of the system-environment interac-

tion. Second, it means exploiting the constraints of the ecological

niche. And third, it means designing parsimoniously. Designs

that embrace all three aspects seem intuitively cheap, which is

why this is called the principle of cheap design. This requires some

explanation.

Let us start with the idea of exploiting the physics of the system-

environment interaction. Insect walking illustrates this point

nicely. Leg coordination in insects requires no central controller.

Insects have no internal process corresponding to global commu-

nication among the legs; they communicate only locally with each

other (e.g., Cruse 1991). In other words, the legs have direct neural

Figure 10.4 Infant categorizing objects and building up concepts while engaged in sensory-
motor coordination. Infants never just sit there and watch an object; rather, they
manipulate and continuously interact with it.
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connections only with neighboring legs (ipsilateral (i.e., along the

side) and contralateral (i.e., from one side to the other)). Global

communication among all the legs does occur, but the neural sys-

tem does not mediate such communication. Rather, the communi-

cation is achieved through interaction with the environment. If the

insect lifts one leg, its weight changes instantaneously the force

exerted on all other legs. This communication is exploited for the

purpose of coordination.

Ian Horswill's robot Polly, which we introduced earlier in this

chapter, illustrates the second aspect of cheap design, exploitation

of the constraints of the ecological niche. To implement vision-

based obstacle avoidance (®gure 10.3), Polly's design exploits the

fact that of®ce ¯oors are ¯at and that the objects relevant for Polly's

navigation are standing on the ground.

The use of matched ®lters in biological systems offers an example

of the third aspect, parsimonious design. Recall our case study on

cricket phonotaxis in chapter 4, as illustrated by Barbara Webb's

phonotactic robots. In phonotaxis, the females turn toward the

males' calling song. They do not ``perceive'' the full spectrum of

sounds and then ``decide'' on the one originating from male

crickets. Rather, they have a ``matched ®lter.'' Matched ®lters are

systems that react only to a very narrow frequency range. The other

frequencies simply do not register on the animal's sensory equip-

ment, and therefore it cannot hear them. On the one hand,

matched ®lters exploit the constraints of the agent's niche because

agents ``expect'' to hear a sound of the right frequency. On the

other, this design quali®es as parsimonious. It is, for example,

much simpler, much ``cheaper,'' than a system that analyzes the

whole spectrum and then chooses a particular sound. The require-

ment that designs be parsimonious is a generally accepted princi-

ple in the philosophy of science called Occam's razor. However,

there are no generally agreed upon ways of measuring parsimony.

We treat this issue extensively in chapters 13 and 17.

The principle of cheap design has an interesting relationship to

societies of animals. Often, tasks can be accomplished much more

cheaply by having a society of less sophisticated agents, rather than

having one or only a few highly complex individuals (e.g., Mataric

1995). It is also interesting to analyze social insects from this per-

spective. What these comparatively simple creatures achieve collec-

tively, like constructing a termite's tower, has astonished scientists

and laypeople alike. Chapter 14 elaborates this principle further.
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PRINCIPLE 6: THE REDUNDANCY PRINCIPLE

The redundancy principle states that redundancy must be incor-

porated into an agent's design. More speci®cally, it states that the

agent's sensors have to be positioned on the agent in such a way

that there is potential overlap in the information acquired from

the different sensory channels. Introducing redundancy is a well-

known engineering principle normally applied to make systems

more secure. Systems with built-in redundancy should continue to

function satisfactorily even in unforeseen situations; such systems

are said to be robust. Because robustness in aviation is extremely

important, airplanes incorporate a lot of redundancy: They are

equipped with several computers for the same function have

two pilots, and employ several braking systems (through the jets,

through the wheels, through parachutes). Although robustness

itself is also an important issue in an autonomous agents context,

what we are even more interested in here is generation of diversity:

How can we design agents so that new behaviors can emerge? As

pointed out in chapter 1, truly adaptive systems have the capacity

to come up with new kinds of behaviors. As it turns out diversity

can be achieved only be having redundancy: Low-level speci®ca-

tion and neural control should include resources that are currently

not required. At a very abstract level, generation of diversity can be

viewed as an elegant way of achieving robust behavior in the sense

that it enables the agent to continue to function even though sig-

ni®cant environmental changes have occurred. Note that this goal

is very different from that of achieving robustness by duplicating

computers and power supply systems in an airplane.

Let us now look at the more speci®c part of the principle gov-

erning the positioning of the sensors. An agent's sensors should be

positioned in such a way that the information acquired from dif-

ferent sensory channels in the interaction with the environment

overlaps. The Distributed Adaptive Control architecture described

in chapter 5 is designed with an overlap of spatial information:

Whenever the agent bumps into an obstacle, the collision sensors

report that the distance to the object is 0, and at the same time, the

proximity sensors, the IRs, show high activation. Thus, there is

redundancy in the sensory stimulation: Whenever the collision

sensors are activated, IR sensors are likely to be stimulated also.

The overlap occurs because the sensors have been positioned in the

right places. While in the case of Distributed Adaptive Control,

hitting an obstacle was suf®cient to achieve the correlations in the
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different sensory channels, a sensory-motor coordination (i.e., the

active manipulation of the environment like grasping and turning

an object) is often required for learning to take place: there is a

close interdependency between the redundancy principle and the

principle of sensory-motor coordination.

The term ``redundancy'' is used in a number of different ways. So

far we have been applying it in an informal way to mean something

in addition to what is minimally required to make a particular

system work. This is the term's most widespread use, and it is the

meaning we intended when we talked about redundancy in sensory

channels. The term also has a more precise characterization in the

®eld of information theory, which has its origin in Shannon and

Weaver's famous mathematical theory of communication. Shannon

and Weaver de®ne redundancy as ``the fraction of the structure of

the message which is determined not by the choice of the sender,

but rather by the accepted statistical rules governing the choice of

the symbols in question'' (1948, p. 13). For example, if an English

text is transmitted, there are constraints on the sequences of letters,

because on the one hand only certain letter combinations are

possible in English, and on the other certain letter sequences are

more frequent than others. The fact that there are these constraints

implies that a sentence, for example, can still be understood even if

certain letters are missing. In other words, the redundancy con-

tained in language results from the constraints on the letter combi-

nations (Ashby 1956). Whereas in Shannon and Weaver's theory,

the focus was on transmission of messages over noisy channels, we

focus on (physical) agent-environment interaction, in particular, on

exploiting the constraints from this interaction. Recall the robot

Polly. The constraints of Polly's ecological niche (¯at of®ce ¯oors,

objects standing on the ¯oor) enormously reduce the amount of

information required for Polly to determine the relative distance

of objects. Ashby made this point more than 40 years ago: ``When

a constraint exists advantage can usually be taken of it.'' (1956,

p. 130).

PRINCIPLE 7: THE PRINCIPLE OF ECOLOGICAL BALANCE

The principle of ecological balance brings together the ecological

niche, the desired behaviors, and the agent itself. It states that the

agent's ``complexity'' has to match that of the ecological niche and

the desired behaviors. In particular, given a certain task environ-

ment, there has to be a match in the complexity of sensors, motor
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system, and neural substrate.1 The way the term ``complexity'' is

used here appeals to our everyday understanding: A human hand is

more complex than a simple gripper, and a standard camera more

complex than an IR sensor. We have also deliberately used the term

``match'' to relate the complexities of the sensory system and the

motor system, because we do not mean ``equal''. Rather, we mean

that these systems cannot be chosen arbitrarily, but each must be

selected with the others in mind. For example, given a particular

task environment, the motor system has to be taken into account

when designing the sensory system and vice versa.

It seems of interest also to apply this principle when studying

natural agents. In this case, the principle of ecological balance tells

us that we should never look at the agent's sensory side, percep-

tion, in isolation, but always, instead, in the context of its motor

system and physical setup. Many examples from nature illustrate

ecological balance; let us mention just two. According to the prin-

ciple of ecological balance, redundancy in sensory systems that is

normally not used can be exploited if other sensory modalities fail,

as illustrated by people who become blind and then start exploiting

their auditory channels to a higher extent. In child development,

acuity of visual distinction has been shown to coevolve with cer-

tain motor capabilities (e.g., Bushnell and Boudreau 1993).

Even though this principle in its current formulation is relatively

vague and general, we can get considerable leverage from it. For ex-

ample, when we are augmenting an agent's capacities, the principle

draws our attention to the fact that we have to maintain some bal-

ance in our designs between the various systems and components:

There must still be a rough correspondence in complexity among

these systems and components once we make our design change.

Take the Cog project (or other projects on humanoid robots, e.g.,

Kuniyoshi and Nagakubo 1997). The approach employed in the

Cog project is fully compatible with the principle of ecological

balance. As discussed in chapter 7, Cog has been designed to study

developmental processes, to investigate how intelligence might

emerge from sophisticated sensory-motor coordination, and for

that purpose the agent has to be ecologically balanced. An easy

way to augment the complexity of an agent is to add additional

1 In an earlier publication (Pfeifer 1996b) we focused too much on the agent itself, rather

than viewing the agent vis-aÁ-vis its task environment. We would like to thank the many

commentators for pointing this out to us.
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sensory capabilities like sophisticated cameras. It is much harder

to increase the complexity of the motor system. Because the de-

velopers of Cog were aware that sensory-motor coordination is

required for interesting developmental processes to take place, they

invested a great deal of effort into the design of Cog's motor system:

Explicitly or implicitly, they were applying the principle of eco-

logical balance. Because Cog's task environment is the same as that

of humans (except that it cannot walk), that is, a standard of®ce

environment, humans, with their sensory and motor systems, can

be taken as ``models'' of ecologically balanced designs (see ®gure

7.11). Generally speaking, by mimicking natural systems, one au-

tomatically takes the principle of ecological balance into account:

Natural agents are by de®nition ecologically balanced: They have

survived the evolutionary process.

As with all the principles, we have to ask how good a principle

this one is. One way to go about ®nding the answer is to use arti®-

cial evolution for this purpose. Assume that we were able to evolve

entire agents including their bodies, sensors, motor systems, and

neural systems. Assume further that we choose a particular task

environment such as collecting garbage while maintaining suf®-

cient battery supply in which the agents are evolved. It will be

interesting to see to what extent the evolved agents will be ``eco-

logically balanced.'' We have used the hypothetical form because

we know from our discussion of arti®cial evolution that evolving a

complete agent is not only dif®cult but involves an entire research

program. So, it will be a good while before we can test this princi-

ple synthetically in evolution.

Before going on to the next principle, we should state explicitly

one point that we have glossed over. We have used the term

``complexity'' in its everyday sense. It would be desirable and

would make the principle more powerful if we had a more quanti-

tative description of this concept. The dif®cult part of ®nding such

a measure is that we cannot look at the agent in isolation, we have

to assess the agent's complexity vis-aÁ-vis a particular task environ-

ment. Chapter 13 presents preliminary considerations concerning

such a measure. The redundancy principle is tightly intercon-

nected with the principle of cheap design and the principle of

ecological balance; these relations are also discussed in section

10.3 and in chapter 13.

Let us conclude the presentation of the principle of ecological

balance with a quote from the 19th century. Hering (1868!) said: ``It
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is obvious that the motor apparatus of the visual organ has to ®t

the sensory apparatus as the shell does an egg. For, whether one

assumes that they were set up according to a wise plan, or that they

developed with each other and through each other in an inevitable

way as the evolutionary series is traversed, in any case: the capa-

bilities of the one have to correspond to the needs of the other''

(cf. Wechsler 1990, p. 252).

PRINCIPLE 8: THE VALUE PRINCIPLE

The value principle states that the agent has to be equipped with a

value system and with mechanisms for self-supervised, incremen-

tal learning employing principles of self-organization. If the agent

is to be autonomous and situated, it has to have a means of ``judg-

ing'' what is good for it and what is not. Such a means is provided

by an agent's value system. A value system modulates an agent's

learning process, either explicitly or implicitly. In an explicit

value system, value signals are generated within the agent. These

signals can be neural or hormonal. In neural network±based

architectures, this modulation concerns the learning rules, that is,

how fast the change in synaptic strength occurs. Implicit modula-

tion is achieved by mechanisms that increase the probability that

an agent gets into a situation in which it can learn something

useful, useful here being de®ned as leading to increased adaptivity.

An example of an implicit modulation mechanism is the capacity

to distinguish between food and nonfood items based on visual

cues rather than taste. This capacity enables the agent to search

for food more quickly: It can simply look at something and make a

determination rather than having to put it into its mouth to ®nd

out. Re¯exes are examples of implicit value mechanisms: They

increase the probability of getting explicit value, as the following

illustration shows.

Assume that a garbage-collecting robot has the task of collecting

small objects only and not large ones. Further assume that the robot

is equipped with two re¯exes: one for turning toward an object and

one for grasping and for picking up. Sensory stimulation on the

side triggers the ®rst, proximity to an object for a certain period of

time the second. Together these re¯exes increase the probability of

an interesting interaction with the environment, such as the agent's

picking up an object. In other words, the agent's re¯exes introduce

a bias toward interactions that are bene®cial for learning. If the

agent were to make only random movements, the probability for
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interesting interactions would be much lower, and learning would

be much slower. If the grasping behavior is successful, for example,

if the agent manages to pick up an object, a value signal has to be

generated. In this case, an explicit value system is required that

generates the appropriate signals whenever the agent has per-

formed a useful behavior. In this way, the intuition that grasping is

considered rewarding in itself can be modeled. Figure 10.5 shows a

learning robot that has successfully grasped a small object, thus

generating an explict value signal via its neural system to reinforce

the behavior.

According to the value principle, an agent's learning mecha-

nisms have to be based on principles of self-organization, because

the environment is unknown and the categories to be formed are

not known to the agent beforehand. The value system is the

``teacher,'' telling the agent what actions to repeat, that is, what

actions are good for it. (``Teacher'' is put in quotation marks here,

because the value system is built into the agent itself.) Moreover,

learning has to be incremental: If the agent is to survive and adapt

to novel situations over extended periods of time, learning must

always be active. This is an important requirement for autonomous

agents, and one that is often not considered in the neural networks

community at large.

Additional Principles

We have referred to evolution in a number of places, arguing that

evolutionary considerations are important in agent design. In

Figure 10.5 Garbage collecting robot successfully grasping a small object. An explicit reinforce-
ment signal is generated that enables the robot eventually to learn the distinction
between small (graspable) objects and large (nongraspable) objects. Because it is
internal to the robot, the value signal is not visible.
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chapter 8, we saw that principles of evolutionÐarti®cial evolu-

tionÐcan be used for design. The designer commitments are in that

case made at a different level: The design decisions pertain not

to the agent itself, but rather to the level of the genes, selection

strategies, and ®tness criteria. The design criteria for evolutionary

approaches could also be couched as design principles, similar in

spirit to the ones presented so far. One example might be that all

cells in an organism must have the same genome. Cell differentia-

tion then comes about as a result of different genes within the same

genome being expressed in different cells. Another example could

be that the organism's ®nal structure is not be predetermined in the

genome, but must be conceived as emergent, that is, as the result of

an interaction of genetic and environmental factors during develop-

ment. There could then be principles concerning good selection

strategies for particular types of problems, good genetic operators,

and so forth. Elaborating on such principles would ®ll another

book; moreover, it has not been our central focus. Coming up with

a neat set of principles would also require a lot more additional

research. We hope that researchers will develop design principles

for the ®eld of arti®cial evolution, in particular for autonomous

agents, so that these principles can be applied to the study of

intelligence.

Another area discussed in chapter 8, albeit brie¯y, that requires

additional design principles is group behavior, or collective ro-

botics. Many of the principles presented here for individual agents

can be translated directly to groups of agents. The ecological niche

and the desired behaviors must be de®ned. Then the agents must

be designed. Of course, principles 2 through 8 can be applied to de-

signing the individual agents in a group, but often simpler ones can

be used. Some of the design principles described in this chapter

can also be applied at the level of group behavior. The principle

of parallel, loosely coupled processes, for example, can apply to

systems with many agents. The individual agents within the system

can be viewed as representing individual processes that run in

parallel. Communication, the loose coupling, can be effected using

local rules. Reynolds's boids and their ¯ocking behavior illustrate

this idea. The principle of cheap design is also fully compatible

with collective behavior because many tasks can be achieved more

cheaply and robustly by having many simple agents working in

parallel rather than a single, sophisticated one. We have yet to

elaborate these principles systematically. (For a review of some of
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the design principles for the ®eld of collective robotics, see, for

example, Mataric 1995.)

10.3 Design Principles in Context

Interdependencies among Principles

We have examined one by one the principles governing design of

autonomous agents. Figure 10.6 provides an overview of these

principles. In various places, we have also discussed the inter-

dependence of these principles. Let us just brie¯y point out the

most important of these dependencies.

The complete-agent principle states, among other things, that

the agents of interest must be embodied and self-suf®cient. Self-

suf®ciency in turn implies that the designs must be cheap: The

more an agent takes advantage of the physics of its environment,

the more likely it is to consume less energy. Moreover, agents tend

to be cheaper if they are designed in an ecologically balanced way.

Figure 10.6 The design principles and their interdependencies. All the principles presented in this
chapter are, in fact, connected because they all concern agents embedded in their
task environments (ecological niches, desired behaviors, and tasks). Some principles
are more closely related than others, however. The various dependencies are dis-
cussed in the text.
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The complete-agent perspective implies sensory-motor coordina-

tion: To act adaptively in the real world, the agent has to have

adequate sensory-motor coordination. Sensory-motor coordination

is implied by the embodiment requirement. Interesting kinds of

sensory-motor coordination require appropriate design of the

sensory-motor system, which can be achieved through observing the

redundancy principle. If the agent is to be autonomous, it must

have the capacity to learn on its own about the environment; that

is, it must have the capacity for self-organized learning. Moreover,

the complete agent has to receive value from the behaviors in

which it engages in order to be motivated to engage in more com-

plex behaviors over time, and value is required in turn for sensory-

motor coordination. The redundancy principle and the principle of

cheap design are related to one another by the task environment:

The task environment for which the agent is designed, will require

more or less redundancy. Exploiting the constraints of the ecologi-

cal niche leads to cheap designs and the amount of redundancy

necessary may be reduced in this way. Cheap designs can often be

created by having many simple parallel processes rather than

only a few complex ones. Finally, redundancy can be achieved by

having many loosely coupled, parallel processes. When we discuss

the individual principles in detail in the next several chapters, we

provide additional illustrations of these interdependencies.

It is essential that the design principles we have formulated not

be looked at in isolation. Their real power comes from their con-

nections. Together, they form a coherent storyÐa tentative build-

ing block of a ``theory of intelligence.'' They obviously do not

represent the ®nal answer. However, they do capture, in a very

compact form, a signi®cant proportion of the insights of the very

rich literature in the ®eld. They are not only enormously effective

as design heuristics, but they also lead us to ask interesting ques-

tions. The principles have been deliberately stated in a general

way, to help us keep the grand scheme in mind and not get

bogged down in details. Each of the principles can of course be

spelled out more explicitly, which we in fact do in chapters 11

through 14.

Other Principles for Agent Design

The design principles established by Brooks (1991a,b) overlap sig-

ni®cantly with those presented here. (This is not surprising given
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that we have drawn a lot of inspiration from Brooks's work) Here

are a few examples of Brooks's principles:

1 The goal is to study complete, integrated, intelligent autonomous

agents.
1 The agents should be embodied as mobile robots, situated in

unmodi®ed worlds found around the laboratory. This confronts the

embodiment issue.
1 The robots should operate equally well when visitors or cleaners

walk through their work space, when furniture is rearranged, when

lighting or other environmental conditions change, and when their

sensors and actuators drift in calibration. This confronts the sit-

uatedness issue.
1 The robots should operate on timescales commensurate with those

used by humans. This too confronts the situatedness issue. (Brooks

1991b, p. 571).

Quite obviously, these principles relate to the complete-agent

principle (for embodiment and situatedness). They also pertain to

the speci®cation of the ecological niche (that it should not be

modi®ed, people should be moving around, lighting conditions can

change, and so forth). One of Brooks's overarching principles is the

following:

1 The overall organizing principle is the subsumption architecture.

As we discussed in chapter 7, this principle can be viewed at both

the conceptual and implementation levels. For our arguments, the

conceptual level is more relevant; Implementation is secondary.

Implications of applying these principles have already been pointed

out: No central model of the world is maintained; all data are dis-

tributed over many computational elements; there is no central

locus of control (no central program calling other programs) and

no separation of perceptual system, central system, and actuation

system; layers can be incrementally added; run in parallel, and are

often coupled through the environment (Brooks 1991b). As we

discuss in chapter 11, most of these points are covered by the

principle of parallel, loosely coupled processes.

Maes (1993) has established two important abstract design

principles:

1 Looking at complete systems changes the problems, often in a

favorable way.
1 Interaction dynamics can lead to emergent complexity.
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We can keep the discussion of these principles short, because they

echo some of ours. The ®rst closely matches the complete-agent

principle, for example, though Maes also includes the ecological

niche in this principle. In addition, she points out that agents are

always part of society. The main point in the second principle

concerns emergence, and it is a point that we have already made in

various places throughout the book.

Relating to Classical Thinking

Let us close this review of design principles for autonomous agents

by relating them to classical thinking, as outlined in chapter 2 and

summarized in table 2.3. Table 10.2 provides an overview of the

design principles underlying the two approaches. We ®rst discuss

the case of traditional AI and cognitive science, the better part of

whose output is still in the form of computer programs (principle

c1). Then we brie¯y discuss robot models employing a classical AI

approach.

The three-constituents principle has no equivalent in the classi-

cal domain: A computer program has a very limited ecological

Table 10.2 Comparison of design principles of autonomous agents and traditional AI.

Principles for autonomous agent design Related/contrasting classical design principles

The three-constituents principle Model as computer program (c1)

The complete-agent principle Model as computer program (c1)
Rational agents (c3)

The principle of parallel, loosely coupled
processes

Modularity (c4)
Sense-think-act cycle (c5)
Central information processing architecture (c6)
Goal-based designs (c2)

The principle of sensory-motor
coordination

Sense-think-act cycle (c5)
Central information processing architecture (c6)

The principle of cheap design No related/contrasting principle

The redundancy principle No related/contrasting principle

The principle of ecological balance No related/contrasting principle

The value principle Goal-based designs (c2)

Note: Numbers in parentheses at right refer to table 2.3.
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niche, since its communication with the environment is restricted

to the high-level ontology and it cannot interact with its environ-

ment in a nontrivial sense. The same holds for the complete-agent

principle: It does not apply to classical models because the issues

of autonomy, self-suf®ciency, embodiment, and situatedness simply

are not relevant for computer programs. In classical design, agents

obey the principle of rational agents (principle c3), which per-

tains to rational thinking (see chapter 9). Complete agents exhibit

rational behavior, but the rational behavior is not the result of

rational thinking. The principle of parallel, loosely coupled pro-

cesses contrasts with the modularity principle in classical AI: Rather

than de®ning components for categorization, learning, memory,

and so forth, embodied cognitive science considers these capacities

to be emergent. The processes in the principle of parallel, loosely

coupled processes correspond to nonhierarchical sensory-motor

couplings with comparatively little internal processing, thus con-

trasting with principles c5 (sense-think-act cycle) and c6 (central

information processing architecture) in the classical paradigm and

c2 (goal-based designs). The principle of sensory-motor coordina-

tion contrasts with the traditional view of categorization as a pro-

cess of mapping a sensory stimulus onto an internal representation,

as suggested by principles c5 and c6. The principle of cheap design

has no analog in classical AI and cognitive science. There is no

embodiment in classical AI, the notion of an ecological niche does

not exist, there are no physics to be exploited, and there are no

interesting interactions with the environment. By analogy, one

might view the application of heuristics to limit large search spaces

in classical AI as an instance of the principle of cheap design,

because in a sense this exploits constraints present in the data. But

then, input data don't constitute a real environment: They are

still part of the computational framework. The only real overlap

between the two approaches' design principles is Occam's razor.

The redundancy principle and the principle of ecological balance

are not applicable in a classical framework; there is no physical

system outside the computer, so redundancy is not crucial, and

there can be no question of ``ecological balance'' for systems that do

not interact with the real world. The value principle, that is, the

view that learning is to be conceived as a process of self-organization

guided by a value system, contrasts markedly with classical think-

ing. The value principle can be seen as providing the motivation for

autonomous agents which, in classical thinking, is achieved instead
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by goal-based designs (principle c2). The agent's goals in classical

AI result from a designer-based high-level ontology. The value

principle for embodied agents advocates speci®cation of only the

basic values to guide a process of self-organization.

Because most classical models take the form of computer pro-

grams, we have been focusing on them in our review. We could

now make the same kind of comparison for classical robotic agents.

Most considerations would still apply. Of course, in this case the

agent from classical AI is embodied, but that does not automati-

cally imply that the agent is designed according to the design

principles introduced in this chapter. The same holds for redun-

dancy: As soon as there is a physical system, redundancy becomes

potentially relevant. Again, compliance with the redundancy prin-

ciple is not automatically entailed by the choice of an embodied

agent.

As we pointed out in chapter 2, our intention has been to ferret

out the essence, the gist of what constitutes classical thinking

because it still dominates a large part of the literature in cognitive

science. In this section, our intention was to contrast classical

thinking with the new principles of embodied cognitive science.

Some of our contrasts, of course, imply criticism of the classical

position: If we agreed with classical thinking, we would not have

written this book. But we should keep in mind, having said that,

that it is always easy to criticize in hindsight. We have the de®nite

advantage of having all the knowledge and experience acquired

in embodied cognitive science at our disposal that classical AI

researchers at the time of its predominance obviously did not have.

Issues to Think About

Issue 10.1: Motivation, a Missing Principle?

Complete systems have many things to do. To determine when they

should do which task is a dif®cult problem. Some people view it as

one of action selection. Seen from a broader perspective, we are

really talking about motivation. Why have we set forth no design

principles concerned with motivation? This question is entirely

justi®ed, and the answer is not straightforward. The lack in our

scheme of principles concerning motivation relates to, among other

things, the frame-of-reference problem. The agents that we build
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do things. They learn certain things but not others. They pick up

certain objects and not others. In some situations, they go to the

charging station, in others they search for objects. They behave as we

expect motivated agents to behave. That does not necessarily imply

that there is an internal representation of motivation, a module, that

accounts for it. Rather, what the observer interprets as motivation is

emergent from the interaction of many different kinds of processes.

An example are the Braitenberg vehicles, for example, the ones of

type 4: They sit there, doing nothing, and then all of a sudden start

moving. We as designers know that there is no explicit motiva-

tional system in the vehicles but simply a number of parallel pro-

cesses in¯uencing the motor variables. Stated differently, the type 4

vehicles illustrate that motivation does not need to be engineered

explicitly into the system. The principle of parallel, loosely cou-

pled processes touches on motivation, as does the value prin-

ciple. It is interesting to ponder at what point we will have to

design an explicit motivational drive for our agents. Motivation is

often related to emotion. Do we need to engineer emotions into

our models to achieve appropriate motivational behavior? This is

another open research topic. Don Norman's paper entitled ``Twelve

Issues for Cognitive Science'' (Norman 1980) remarks on motiva-

tion in a way analogous to our remarks here on whether a thir-

teenth issue was missing. That thirteenth issue was motivation.

Norman also suggested that motivation should be seen as emergent

from the other issues (which we do not list here). We suspect that

the same holds for emotion (e.g., Pfeifer 1994).

Issue 10.2: Empirical Testability of Design Principles

In the empirical sciences, the experimental testing of hypotheses is

one of the most fundamental scienti®c principles. We have said

that the design principles are to be seen as working hypotheses on

the nature of intelligent systems. Thus, they should, in principle,

be subjected to empirical tests. We have argued that, given the state

of the ®eld, this is currently not our main focus. In the synthetic

sciences, empirical testing, though important, is not the only eval-

uation criterion (see chapter 17). Pick out one of the design princi-

ples discussed in this chapter and try to think about how you

would go about testing it. For example, take the principle of paral-

lel, loosely coupled processes. What would constitute evidence and

what counterevidence? Note that in embodied cognitive science,
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an agent constitutes an organism that can be empirically investi-

gated. If the agent exhibits the desired behaviors robustly, would

you consider this as evidence supporting the principle, or would

you accept only evidence from natural systems?

Points to Remember
1 Design principles of autonomous agents concisely summarize and

make explicit the insights gained from the ®eld of embodied cog-

nitive science. These principles represent only a ®rst step toward a

more comprehensive theory of intelligence. It is currently entirely

an open question what such a ``theory'' might look like if it is ever

developed.
1 The design perspective is productive for the following reasons: (a)

It captures insights in compact ways; (b) It enables natural systems

to be viewed bene®cially from a design perspective; (c) Given the

current state of the ®eld, the framework of design principles is

preferable to a formal system, and (d) The principles are heuristics

for agent design. They should also enable the generation of empir-

ical hypotheses.
1 The design principles set forth here apply to a cognitive science

perspective. Engineering design is not covered here (but see chap-

ter 16 for some pertinent ideas).
1 A single metaprinciple, the three-constituents principle, structures

the entire design process. There are three components in agent

design, ecological niche, task and desired behaviors, and the agent

itself. Most design principles currently formulated apply to the

agent's morphology, architecture, and mechanism.
1 This chapter discusses the following principles: complete agent;

parallel, loosely coupled processes; sensory-motor coordination;

cheap design; redundancy; ecological balance; and value. The

reader is encouraged to consult table 10.1 for a summary.
1 Arti®cial evolution will eventually require a separate set of design

principles, as will collective robotics. This work remains to be done.
1 The interdependencies among the design principles set forth here

demonstrate the principles' overall coherence. They have been

discussed throughout this chapter.
1 The design principles for autonomous agents presented here over-

lap signi®cantly with those suggested by Rodney Brooks. This is

not surprising, because we have drawn a great deal of inspiration

from Brooks's work.
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Further Reading
Brooks, R. A. (1991). Intelligence without reason. Proceedings of the International Joint

Conference on Arti®cial Intelligence-91, 569±595. (An instructive and entertaining

introduction to behavior-based robotics. Provides a lot of the background for the ideas

and the scienti®c and intellectual environment in which they evolved. Also presents

a number of design principles.)

Additional readings are provided in subsequent chapters that discuss the design princi-

ples in detail.
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11 The Principle of Parallel, Loosely Coupled Processes

The principle of parallel, loosely coupled processes introduced in

the previous chapter states that intelligence is emergent from a

large number of parallel, loosely coupled processes as the agent

interacts with the environment. These processes run asynchro-

nously and are coupled to the agent's sensory-motor apparatus,

requiring little or no centralized resources. This principle has been

pointed out in various places throughout this book, in particular

in chapters 6 and 7. It is at the core of the embodied approach to

cognitive science. Figure 11.1 illustrates how it relates to the other

design principles. The principle of parallel, loosely coupled pro-

cesses is closely linked with the redundancy principle and the

principle of cheap design. We discuss these connections in more

detail as we go along. Let us ®rst elaborate on the principle's main

focus: behavior control. The claim underlying this principle is that

a number of loosely coupled processes running in parallel can

control behavior. It postulates that an explicit process that controls

all the others is unnecessary. At ®rst thought, coherent behavior

seems impossible without such a controlling process. How can a

human being, who has an enormous number of different sensory-

motor systems (eyes, ears, neck, arms, ®ngers, legs, and mouth, to

mention but a few), function at all if there is no central agent

interpreting all sensory inputs, making sense of it all, then gen-

erating the next output? How can a rat with many different needs

like eating, sleeping, drinking, reproduction, and curiosity do at

the right time what it must do to survive? Indeed, many traditional

behavioral control models assume a hierarchy in which higher

levels control lower ones. Hierarchical models are popular because

it is clear how they can be employed to generate coherent behavior.

Let us brie¯y look at an example of hierarchical control. For drink-

ing a beer in a pub (top-level goal), you ®rst have to get to the pub

(subgoal), which implies that you have to ®nd a means of trans-

portation (sub-subgoal), for example, a car, you have to go the

garage, and so forth. Once all the subgoals have been achieved, the

top-level goal has been achieved. A clear goal hierarchy controls



the agent's behavior. This is an important design principle in clas-

sical cognitive science (cf. table 2.3, principle c2).

In order to avoid confusion, a note on terminology is in order.

Throughout the literature, the term ``hierarchical'' is used in very

different ways. Of course, everyone knows about hierarchies in

companies, in political systems, or in armies. Sometimes the term

``hierarchy'' is used to characterize static structures. In this sense,

object hierarchies, as they are known from object-oriented pro-

gramming, are hierarchical. Objects lower in the hierarchy inherit

properties from those higher up. Another view of hierarchy is also

employed in computer science: A program calls a subprogram. The

subprogram is executed, and control is returned to the calling pro-

gram, which is higher up in the program's hierarchy. This leads to

what is known as a subroutine-call hierarchy. In a strict hierarchy,

the calling program typically has to wait until the subroutine has

done its work. The term ``hierarchy'' has still other aspects. Some-

times it means feedforward organization as we ®nd it in the human

visual system, which has about 14 layers connected in a forward

way. Related to this view is the one common to neural networks,

Figure 11.1 Overview of the design principles for autonomous agents. This chapter discusses the
principle of parallel, loosely coupled processes. This principle relates directly to the
redundancy principle and to the principle of cheap design: The redundancy principle
requires parallel processes, and observing the principle of parallel, loosely coupled
processes can lead to cheap designs.
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in which, especially in pattern recognition tasks, local features

are successively integrated: lower-level features such as corners,

T-junctions, arcs, and the like are combined into higher-level ones,

like letters, which are combined to form words. Simultaneously,

there is top-down activation (from hierarchically higher levels)

guiding the process of feature integration. But it gets even worse.

The term ``hierarchical'' has also been used to characterize the

subsumption architecture: One layer is on top of the other; there are

lower levels and higher levels. ``Hierarchical'' is also used to mean

that certain functions are automated and don't need centralized,

high-level resources. For example, when learning to drive begin-

ners typically have to concentrate, which requires high-level cen-

tralized resources. They are hardly able to lead a conversation

while driving. Over time, high-level resources are less and less

necessary: Hierarchically lower levels of organization take over.

Similarly, the term sometimes means that there are hierarchically

lower sensory-motor processes on the one hand and cognitive pro-

cesses higher up in the hierarchy on the other. This notion is

implied when one talks about ``high-level intelligence.'' Finally,

in a view often adopted in psychology and everyday thinking,

the term hierarchical is used to designate systems with a central

resource that gives orders to lower levels, just as in the army model,

or in the computer subroutine-call model. The lower levels execute

their tasks and deliver the required information to the central

resource.

It is precisely this latter view of hierarchy that we want to chal-

lenge: It is this view of intelligence that is inappropriate. It is also

this conceptualization that Rodney Brooks had in mind when

he suggested the subsumption architecture as an alternative. The

principle of parallel, loosely coupled processes is meant to contrast

with this particular view of hierarchical organization. One of the

key problems with this view, as we argue in this chapter, is that it is

an eternal conundrum what that central resource should be. In any

case, this notion of hierarchical processing also implies centraliza-

tion and sequentiality. The central resource (whatever it is) decides

what is to be done next, and everything is done sequentially. It

should not be surprising, then, that the notion of parallel, loosely

coupled processes implies decentralized, distributed control.

Many people would agree that intelligence involves some sort of

parallelism. For example, the brain is a massively parallel system;

this is also re¯ected in the connectionist paradigm, in which many
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cognitive functions (e.g., perception, memory, categorization) are

often modeled by means of distributed, parallel neural networks:

``In psychology, continued failings of the symbolic paradigm

made parallel, connectionist processing an attractive alternative to

the old game'' (Leahey 1994, p. 343). Psychologists were and are

attracted to connectionism because it provides an alternative view

to sequential symbol processing, an alternative that capitalizes

on parallel, loosely coupled processes. As we argue repeatedly

throughout this chapter, the concept of parallelism underlying the

principle of parallel, loosely coupled processes has a precise mean-

ing in embodied cognitive science. It goes beyond and extends

in important ways this general notion of parallel processing.

The crucial point is that the different processes, for example, in

the Extended Braitenberg Architectures discussed below, can, in

parallel, create sensory-motor couplings. In such couplings, the

higher levels do not have to wait for preprocessed signals from

lower levels: All the processes have relatively direct sensory-motor

couplingsÐin parallel. In addition, the processes are relatively

independent of one another, each being an implementation of a

mechanism that can control the agent on its own. Recall, for exam-

ple, that one of the hallmarks of the subsumption architecture

is that each layer implements a particular behavior and, once

debugged, is left unchanged while other layers are added. In other

words, the principle of parallel, loosely coupled processes encom-

passes a class of problems that goes beyond the tasks studied by con-

nectionist models such as associative recall or pattern recognition.

We will proceed as follows. First, we discuss general issues in

the design of control architectures. We outline some well-known

hierarchical models of behavior control and point out their major

problems. Then we introduce the alternative approaches. The

details of one approach, the Extended Braitenberg Architecture, are

presented via a case study of a garbage-collecting robot.

11.1 Control Architectures for Autonomous Agents

The general issue underlying the problem of behavior control is

how an agent's sensory input should be mapped onto motor output

in order for the robot to be able to ful®ll its tasks. In other words, a

control architecture has to be designed and implemented. The

subsumption architecture is by far the best-known control archi-

tecture in embodied cognitive science. This section discusses some
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additional ones. Table 11.1 provides an overview of some control

architectures for autonomous agents.

Characterization of Control Architectures

In chapter 4 we listed a number of steps to be followed when con-

ducting experiments with complete agents (see table 4.5). In this

section and the remainder of this chapter, we focus on the third

step on this list: The design and implementation of a control

architecture. We have said that a control architecture essentially

speci®es how the various parts of the low-level speci®cations

should be connected to produce a desired behavior. Consider the

following problem. As you might know, one of the authors of this

book, Rolf Pfeifer, is Swiss. The Swiss like to have things neat and

clean. This does not necessarily imply that they like to actually

clean things themselves. If they had robots to do the work, things

might even be cleaner than before. So it is a sensible task for a

Table 11.1 Overview of agent architectures in embodied cognitive science.

Architecture Process de®nition Implementation Coordination

PDL Parallel processes with
direct connections to
sensory-motor system

Functions to change the
rate of change of motor
variables

Cooperative
(process output
summation)

Subsumption Layers of competences Augmented ®nite state
machines

Competitive
(supression,
inhibition)

Action
selection
dynamics

Parallel processes with
direct connections to
sensory-motor system

Behavior rules with
precondition and
postcondition lists

Competitive
(winner-take-all)

EBA Parallel processes with
direct connections to
sensory-motor system

Neural networks Cooperative
(process output
summation)

Immunoid Parallel processes with
direct connections to
sensory-motor system

Sensory inputs as
antigens; internal
processes as antibodies

Competitive
(winner-take-all)

Schema-based
approach
(chapter 9)

Parallel, asynchronous
schemas

Perceptual and motor
schemas

Cooperative
(process output
summation)

Collective
approach

Group of robots
(parallel processes)

Individual robots, simple
and local rules

Cooperative and/or
competitive
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laboratory to try to build a garbage-collecting robot that operates on

a university campus. Such a robot would have to explore the given

environment, locate and categorize the relevant objects, grasp

them, put them into a container onboard, and take them to some

prede®ned location in the environment. In addition, it would have

to avoid obstacles such as other people walking on the campus and

maybe go to a charging station when its battery was getting low. In

other words, the robot would have to engage in multiple behaviors.

How can we design a robot to perform such a complex series of

behaviors? In other words, how can we design a control architec-

ture for a particular problem such as collecting garbage?

Intuitively, we perceive that the problem has to be broken

down somehow into a number of simpler problems. The classical

approach employs the modularity principle (cf. table 2.3, principle

c4) which was applied in designing the agent JL. Earlier we said

that this approach runs into the action selection problem, in which

at each point in time an internally represented action module has to

be selected. Moreover, we argued for a more general term, behavior

control, which does not imply any particular architecture. Behavior

control denotes the problem of how to coordinate the processes

running within the agentÐhowever they might be representedÐin

order to achieve coherent behavior. This coordination is not just an

internal activity, but strongly depends on the agent's interaction

with its environment.

The design and implementation of a control architecture encom-

passes three main aspects:

1. Process de®nition: A methodology that allows us to de®ne the

basic processes, that is, to decompose the overall problem into

smaller subproblems according to established principles. In the

®eld of embodied cognitive science, this typically means that the

desired behavior (e.g., garbage collecting) is broken down into a set

of basic processes. Note that the main focus is to de®ne processes

for system-environment interaction (e.g., processes for approach,

avoidance, or object exploration behavior) rather than internal

modules (e.g., object recognition, memory, or planning).

2. Implementation: Formalisms and methods for implementing solu-

tions for these subproblems. We call the result of such an imple-

mentation an internal process.

3. Coordination: Mechanisms to coordinate these internal processes

in such a way that the desired behavior results. There are both

competitive and cooperative coordination mechanisms. Particular
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examples of each are discussed in more detail below. A core aspect

of the coordination mechanisms advocated in the ®eld of embodied

cognitive science is that coordination is seen as an interactive pro-

cess, including the agent and the environment. There is no module

within the agent that decides which process should be active at a

given point in time. Rather, all processes run in parallel, and the

interaction of the agent with the environment leads to the emer-

gence of a particular behavior. The environment can in fact be

exploited to simplify the coordination problem. For example, when

an insect lifts up one leg, the forces on all other legs are changed,

which in turn has an impact on their coordination, as the following

quote from Cruse et al. (1996) illustrates: ``Let us assume that only

one of the joints is moved actively. Then, because of the mechani-

cal connections, all other joints begin to move passively, but exactly

in the proper way. Thus, the movement direction and speed of

each joint does not have to be computed because this information is

already provided by the physics'' (p. 453).

The traditional and the embodied approach lead to different

ways of implementing a particular function. Assume that you want

to build a robot that is capable of following walls. If you build this

agent along classical principles, you start by decomposing the

global functionality (wall following) into different subfunctions

(®gure 11.2). In the speci®c example the ®gure presents, you might

decompose the wall-following module into two modules, ``Go to

wall'' and ``Follow wall.'' Both modules might be further decom-

posed into still more modules, each implementing a particular

subfunction such as detecting a wall or moving to a wall. Note that

each subfunction is either directly realized by a particular compo-

Figure 11.2 Hierarchical decomposition of wall following. The global functionality, wall following,
is decomposed into a number of modules, each responsible for a particular sub-
function involved in wall following. The modules are organized hierarchically. Each
subfunction is either directly realized by a particular module (e.g., ``detect wall,''
``move to wall'') or further decomposed (e.g., ``go to wall,'' ``follow wall'').
(Adapted from Steels 1991, p. 452.)
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nent (e.g., ``move to wall'' and ``move along wall'' in ®gure 11.2)

or further decomposed into lower level-modules (e.g., ``go to

wall'' might be decomposed into ``detect wall'' and ``move to

wall''). An agent's functionality thus arises directly from its par-

ticular components, each of which is designed with a particular

function in mind. The alternative approach advocated here, that is,

the embodied cognitive science approach, is that a function such as

wall following can emerge from the joint dynamics of a number of

basic processes, each of which contributes to the overall function,

as the agent interacts with the environment. We said in chapter 4

that the art of agent design is design for emergence. Emergent

functionality arises through interaction among processes not

themselves designed with that particular function in mind. Take

again the wall-following robot. Mataric (1991) has developed a

wall-following robot along the principle of parallel, loosely cou-

pled processes. Wall following results from the joint processing of

four processes called stroll, avoid, align, and correct, each

of which is closely coupled with the agent's environment. It is an

emergent behavior: the robot has no internal instructions that tell

it to follow walls, nor is there an internal representation for wall

following inside the agent. This is one of the core ideas underlying

the principle of parallel, loosely coupled processes: Intelligent

behavior emerges from an ensemble of parallel processes. It is

important to note that one and the same process can contribute to

several functions. For example, a process implementing a sensor-

stimulation-left-turn-right behavior can be used for obsta-

cle avoidance, for picking up an object with a wire loop (see the

case study in section 11.4), or as a part of a moving-along-

object behavior (see the SMC I agent, described in chapter 12).

This is a type of resource sharing, in which different functions

share overlapping processes.

The Coordination Problem

We now look at how these processes can be coordinated. What

do we mean by ``loosely coupled''? This is obviously a description

of how various processes are coordinated. We cannot overstress

the point that this coordination is always a result of system-

environment interaction. Of course, there have to be ways to couple

the processes within the agent, especially if they in¯uence the

same motor variables. However, a particular behavior is always
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emergent from interaction between the internal processes running

within the agent and the current environmental situation. Hendriks-

Jansen (1996) makes this point forcefully in his discussion of a

robot incorporating the principle of parallel, loosely coupled

processes:

It is possible to classify the decision-making process as decentral-

ized and dynamically recon®gurable, but this does not describe its

most important features. Each of the robot's sensory-feedback

loops (internal processes in our terminology) is in continuous

operation. The effect they have on its drive motors depends on

contingencies in the environment. If it makes any sense to talk

about a decision-making process that activates one re¯ex rather

than another, that process clearly cannot be located inside the

robot. To a large extent, it is the particular environment for which

the robot was designed that serves as the choice mechanism

between the various low-level re¯exes. (p. 190)

Hendriks-Jansen further argues that the robot itself plays an active

role in this process, because its own behavior is equally responsible

for the particular behavioral ``choices'': the environmental circum-

stances themselves change only because the robot moves. Thus

``the agent does not choose, nor does the environment; the agent is

constructed so that the right choices will emerge from the inter-

actions between its movements and the environment'' (Hendriks-

Jansen 1996, p. 191). Consider the following example. Assume you

want to build a soccer-playing robot. One way to proceed would be

to implement processes that make the robot kick the ball and pro-

cesses that make the robot ``®ght'' with its opponent if the latter is

at a very close distance. If your robot and its opponent are in the

middle of the ®eld, the robot should try to ®ght its opponent. On

the other hand, if the two robots are near the goal and everything

else is the same as in the situation in the middle of the ®eld, then

the robot should try to kick the ball instead of attacking its oppo-

nent. In other words, the environment strongly in¯uences the co-

ordination of the robot's processes. We might be tempted to simply

de®ne logical conditions such as ``if near opponent and near goal,

then kick ball,'' or ``if near opponent and near center of ®eld, then

attack opponent.'' But then we would have to prede®ne all possible

situations, and we would loose the potential for emergence. More-

over, the goal here is to coordinate the processes such that they are

continuously active. Let us look at how this coordination can be

achieved.
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The ®rst question that arises is what should be coordinated?

We have said that most (if not all) control architectures within

embodied cognitive science encompass a number of parallel pro-

cesses, most of which are coupled to the robot's sensors and motors.

The main issue with respect to coordinating these processes is that

typically, a large number of such processes try to control the same

motor. For example, assume a particular robot has a process for

avoiding obstacles and one for moving to a charging station. Both

processes write their outputs to the motors controlling the robot's

wheels. These outputs have to be coordinated somehow before they

are allowed to change the motor speeds, because otherwise the

robot would be likely to hit obstacles or never get to the charging

station. Clearly, it is mainly the outputs of the processes that have

to be coordinated to avoid inconsistent motor activations.

The literature has suggested two main approaches to process

(output) coordination: competition and cooperation. In competitive

coordination of process, only one process writes its output to the

motor1 at any point in time; the others are deactivated or inhibited

while that process is active. Such a competitive coordination

mechanism is used in the subsumption architecture, for example,

in which a higher behavior, if it has something to contribute, over-

writes or supresses any outputs generated by lower behaviors. For

example, if the agent is to pick up a soda can on the campus, it

should obviously not avoid it, but approach, touch, and grasp it.

So in the agent's design, a competitive coordination mechanism

ensures that the process for obstacle avoidance is inhibited when

the process for can retrieval comes into play. A popular criterion

employed in many ethological approaches is time: The probability

that a given behavior will win the competition decreases the longer

it goes on (and vice versa). For example, in Lorenz's (e.g., 1981)

famous ``psycho-hydraulic'' model, each behavior exerts a constant

pressure to get activated that increases over time. The longer a

behavior has been activated, therefore, the higher its probability of

being executed. Another example of competitive coordination is

sequencing, in which process outputs are written to the motors in a

®xed temporal sequence. For example, assume that an agent ®rst

uses a process to reach for an object, then uses another process to

grasp that object. Both processes control the same effector (the

1 It would be more precise to say: The process writes its output to the motor speed vari-

ables, but if no confusion can arise we use the shorthand: The process writes to the motor.
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arm), but at different time steps in the sequence of actions neces-

sary to pick up an object. A ®nal example is winner-take-all strat-

egies, in which processes compete against each other for access to

the motor, and one process wins the competition and gets exclusive

control over the motors.

Cooperative coordination means that the output of two or more

processes that involve the same motor is combined into a single

output that is then sent to the motor. The most popular mechanism

for combining process outputs is summation. In addition, the out-

puts are often individually weighted before the sum is computed.

With this kind of cooperation mechanism we can specify how

much a process should contribute to the overall output. Using

weights to modulate a process's in¯uence on the overall output

also has the advantage of enabling the system to learn such weights

as the agent performs a task using standard learning rules. In some

cases, the weights can be evolved by using genetic algorithms. This

type of cooperation is used in many architectures. We discuss rep-

resentative examples below. Finally, it should be noted that the

coordination mechanism itself can be evolved. We addressed in

chapter 8 the question of what aspects of a control architecture

should be designed and what parts should be evolved. We do not

discuss evolutionary approaches further in this chapter, because

our main interest here is how agents can be designed by employing

the principle of parallel, loosely coupled processes.

11.2 Traditional Views on Control Architectures

The general idea of goal-based, hierarchical behavior control has its

roots in an in¯uential paper by Rosenblueth, Wiener, and Bigelow

(1943), in which goal-directed behavior was conceptualized in

terms of the cybernetic concept of negative feedback: The differ-

ence between the present state of the agent and the goal controls

intelligent behavior. The idea that behavior is controlled by its

desired results has been very in¯uential in such diverse areas as

arti®cial intelligence, cognitive psychology, ethology, psychopa-

thology, and neuroscience. In all of these ®elds, a tremendous

amount of work has been undertaken to extend this basic idea. In

most of this work, the major conceptual step has been to postulate

mental operations that increase an agent's ability to achieve the

goal state. The most prominent such mental operation suggested

in traditional cognitive science is planning. To be able to plan a

The Principle of Parallel, Loosely Coupled Processes 337



sequence of actions, an agent must have (a) an internal model, to be

able to estimate the outcome of an action without waiting for the

sensory feedback, or even without performing the action and (b) a

notion of distance between goal and current state. Let us look at a

classical and very in¯uential instantiation of the traditional way of

thinking about behavior control: the Test-Operate-Test-Exit (TOTE)

model (that was introduced in chapter 2) (Miller, Galanter, and

Pribram 1960).

Psychology

The action selection problem in psychology has a long history of

research. The most popular approach is called action theory (e.g.,

Heckhausen and Kuhl 1985). Within the action theoretic frame-

work, the term ``action'' has a speci®c meaning: an action is always

related to an anticipated resultÐa goalÐand to an intention to

reach this result. In other words, in the context of action theory

action always refers to goal-directed action. TOTE systems illus-

trate this idea. As noted in chapter 2, the TOTE model has become

a landmark in psychology. It nicely summarizes the main ideas

underlying the traditional approaches to behavior control. Its basic

idea is that behavior control can be conceptualized as involving a

sequence of testing, then operating, then testing again, and ®nally

exiting, as illustrated in ®gure 11.3. This is the TOTE model, which

is based on the concept of negative feedback. In essence, the dif-

ference between the system's current state and its goal state con-

trols behavior. A continuous evaluation of this difference guides

the system's actions. The test module in ®gure 11.3 continuously

compares the output of the operate module until the difference

between the test outcome and a given criterion is 0. This criterion is

derived from the goal. The TOTE model can be illustrated with the

Figure 11.3 Example of a simple TOTE unit. There is a test module that continuously checks
the output of the operate module until the difference between the test outcome
and a given criterion, the goal, is zero.
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example of going to a pub. Going to the pub is your goal. According

to the TOTE model, your behavior is controlled as follows. You

have to represent the goal mentally (being in the pub). As you drive

toward the pub (operate), you continuously compare this mental

representation to your current position; that is, the test subsystem

continuously evaluates the degree of incongruity between the goal

and the current state. As soon as the goal state is achieved, that is,

as soon as you enter the pub, the TOTE system is exited. Note that

behavior control is accounted for in purely cognitive terms.

TOTE units can be arranged hierarchically into larger TOTE sys-

tems, as ®gure 11.4 illustrates. Assume again that you want to go to

a pub. This is the goal. To achieve the goal, you need to know how

to get to the pub. If you don't know where the pub is, you can use a

street map to determine a route to the pub before you start driving

there. As you drive along the route you have planned, you con-

tinuously compare your current position on the map to the position

of the pub. The main idea of the TOTE model is that this compari-

son is the main variable controlling your behavior. The behavior

(going to the pub) only comes to an end when your current position

coincides with the goal position, that is, when you are actually in

the pub. More speci®cally, you start by pinpointing your current

position on the map. (Note that the map could be a mental map

instead of a real one.) If you realize that you are not yet in the pub

(your goal), you check your position on the road (e.g., by reading

the street names). If your current position does not correspond to

Figure 11.4 A hierarchy of TOTE units for going to a pub. A top-level goal (go to pub) translates
into three subgoals (test position on road, test heading direction, and test vehicle,
which tests whether the vehicle makes the right kind of movement). When the top-
level goal (being at the pub) has been reached, the TOTE system is exited. (Adapted
from McFarland and BoÈsser 1993, p. 182.)
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where you thought you were on the map, you adjust your position

on the map. Next you check where you are currently heading. If

you are currently heading in a direction that is not in the direction

of the pub, you adjust your direction on the road. Finally, you test

the car (e.g., by making a U-turn) until the car points in the desired

direction. This closes the loop, and your next step is again to check

your position on the map. Miller, Galanter, and Pribram (1960)

suggested that such a hierarchy of TOTE systems is at the core of

behavior control: ``the underlying structure that organizes and

coordinates behavior is . . . hierarchical'' (p. 34). It is hierarchical in

the narrow sense of the word as we have used it to characterize the

traditional view: Lower levels in the control hierarchy are activated

from higher levels and the higher levels have to wait for the results

from the lower levels before they can go on. The TOTE model

was developed almost 40 years ago. We have summarized it here

because, as McFarland and BoÈsser (1993) have pointed out, ``this

basic principle . . . has persisted in arti®cial intelligence and in

robotics up to the present day'' (p. vii). The incorporation of plans

essentially extends the basic idea underlying the TOTE modelÐthe

comparison between the goal state and the current stateÐby means

of more sophisticated internal processes that serve to enable the

agent to better achieve the goal state.

Arti®cial Intelligence

The literature in arti®cial intelligence abounds with examples of

hierarchical, goal-based control. One of the earliest robots used to

study intelligent behavior was Shakey (®gure 11.5), developed at

the Stanford Research Institute in the early 1970s. Shakey imple-

ments aspects of the JL agent discussed in chapter 2. Shakey's task

was to navigate autonomously from one room to another, to avoid

obstacles, and to push boxes from one room to another. The primi-

tive actions available to the robot were precoded in a set of ``action

routines.'' For example, execution of the action routine ``Go Thru

(D1, R1, R2)'' caused the robot to go through the doorway D1 from

room R1 to room R2. The robot was equipped with a world model

that contained representations of the different rooms, doorways,

and boxes. Tasks were given to the robot by specifying the goal

state the robot was supposed to achieve. For example, to direct

the robot to room R2, the designers gave the robot the instruc-

tion ``In Room (Robot, R2).'' To reach this goal, Shakey used the
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Figure 11.5 The robot Shakey. Shakey was developed at the Stanford Research Institute to
explore in particular the relation between problem-solving systems and plan execu-
tion. It was equipped with the STRIPS planning system. (From Raphael 1976, p. 252,
reprinted with permission.)
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STRIPS planner (introduced in chapter 2). STRIPS's main purpose

was to come up with a plan that solved the task, that is, a sequence

of actions that would change the world in such a way that the goal

would be reached. To do this, STRIPS had a model of each actionÐ

the operators mentioned aboveÐthat allowed it to predict an

action's effects. Moreover, operators were invested with certain

preconditions that had to be met before they could be applied. For

example, the operator ``Go Thru'' could be applied only if the robot

was at the door. By applying a sequence of operators to the initial

world model, STRIPS searched for the sequence of actions, a plan,

whose execution would result in the agent's achieving desired goal

state.

One of the important insights gained in the Shakey project was

that one cannot simply transfer to a robot algorithms that work

well in other areas: ``You could not, for example, take a graph-

searching algorithm from a chess program and a hand-printed-

character-recognizing algorithm from a vision program and, hav-

ing attached them together, expect the robot to understand the

world'' (McCorduck 1979, p. 232). STRIPS was developed nearly

30 years ago, and considerable effort has been expended to improve

planning systems in the meantime. (For a review, see Fikes and

Nilsson 1971, 1993.) For example, the classic scheme described

here has been improved to include partially ordered (also called

nonlinear) planning techniques, in which the initial plan repre-

sents only the start and the ®nish (goal) steps, and on each iteration

one more step is added. Partially ordered plans were ®rst intro-

duced by the NOAH planner (Sacerdoti 1974). More recently, situ-

ated planners have been developed capable of re®ning a plan in

light of additional information obtained during execution or of

unexpected changes in the environment. Situated planners are

hybrid systems that combine traditional planning methods with

methods from embodied cognitive science. Typically, they imple-

ment low-level behaviors using, for example, the subsumption

approach. On top of this, a planner is implemented. The idea is

that the reactive system handles the real-time issues of having to

interact with the real world, whereas a traditional planner controls

planning of behavior. In chapter 3, we characterized this approach

to planning as the ``traditionalist'' alternative to the problems of

classical planners.

We conclude this section with a critical remark from Brooks

(1991b), who suggests that such hybrid approaches suffer from the
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horizon effect: They may be a little more robust and fault tolerant,

but ``they have simply pushed the limitations of the reasoning sys-

tem a bit further into the future'' (p. 571). The future will tell how

far this hybrid approach can be pushed.

Ethology

The last ®eld we consider in our discussion of traditional views on

behavior control is ethology. Again, only a very brief summary of

the best-known ideas is presented here. (For a detailed review of

most important ethological approaches and their relation to auton-

omous agents research, the reader is referred to the discussion in

Hendriks-Jansen 1996, chaps. 11 and 12.) Consider the following

situation. A lion starts its prey-catching behavior by following its

prey from a distance. It then attacks by increasing its speed and

chasing the prey. Finally, it goes in for the kill, for which it uses yet

another behavior. There seems to be an underlying plan to this

behavior, because there is a clear serial organization: The lion does

not attack before having followed its prey. This type of structured

behavior can be found in many species. It led Tinbergen (1951) to

postulate a hierarchy of ``behavior centers.'' At the top level of such

a hierarchy are very general behaviors such as ``reproduce'' or

``look for food.'' At lower levels of the hierarchy, we ®nd more-

speci®c behaviors like ``®ghting'' or ``nesting,'' and at lowest levels,

motor units that move the effectors. Tinbergen's notion of hier-

archies differs from that instantiated by the TOTE approach and

AI planners discussed previously in two important ways. First,

Tinbergen rejected the idea that animals have explicit knowledge of

their goals, that is, the idea, that behavior is governed by the goal-

directed principle: ``There has been, and still is, a certain tendency

to answer the causal question by merely pointing to the goal, end or

purpose of behavior, or of any life process. This tendency is, in my

opinion, seriously hampering the progress of ethology.'' (Tinbergen

1951, p. 4). Tinbergen believed that natural selection imposed the

apparent goal-directed behavior he observed in animals and that it

did not result from the animal's knowledge of that goal. Second,

Tinbergen postulated that there exists an energy that ¯ows down

the hierarchy to motivate behaviors below. The idea was that

behaviors must be ``motivated'' by a form of energy. Although there

have been many advances since Tinbergen's original proposals, his

notion of hierarchies, behavior centers, and energy can be found in
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a number of recent autonomous agent architectures (e.g., Blumberg

Todd, and Maes 1996).

More recent ethological approaches have replaced Tinbergen's

notion of energy with concepts from control theory and AI, result-

ing in hierarchical systems very much like the ones formulated in

the TOTE approach and traditional AI. One of the key papers in

establishing this direction was written by Richard Dawkins (1976),

whose ideas on cumulative selection we summarized in chapter 8.

Dawkins argued that behavior control in animals is achieved

through a hierarchical architecture. In essence, he suggested that

these hierarchies are organized like computer programs in which

high-level programs call subroutines whenever the situation at

hand indicates that they are needed.

This completes our far from complete summary of the main ideas

on how to approach the behavior control problem in psychology,

AI, and ethology. One of the main reasons that the hierarchical

view of behavior control has been (and still is) so popular is that it

is straightforward and easy to understand. Moreover, it has a strong

basis in folk psychology: It seems compatible with what we do in

our everyday activities.

Problems and Issues

In this section, we brie¯y summarize the main problems underly-

ing traditional views on behavior control. We discuss two types of

problems. First, we talk about theoretical or conceptual problems

with hierarchical thinking that relate, in essence, to the frame-of-

reference problem. Second, we elaborate on practical problems,

such as brittleness, and real-time issues.

PRACTICAL PROBLEMS

We listed the most important practical problems of classical archi-

tectures in chapter 3. These problems also apply to hierarchical

systems of the type described in this section. They are well known

(see, e.g., Steels 1991), so we do not discuss them in great detail.

The ®rst problem with classical architectures is that hierarchical AI

systems are not fault tolerant and not robust with respect to noise.

When a module is removed or breaks down, the whole system's

functionality is affected. For example, when the ``Go to wall''

module in ®gure 11.2 is removed, the robot can no longer follow
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walls. Another problem relates to real-time issues. We have seen

that in hierarchical systems, only a small proportion of modules are

devoted to receiving input from the environment. For example, the

``Move to wall'' module in ®gure 11.2 receives input only through

the ``Detect wall'' module. This leads to limited means of inter-

acting with the environment and thus to a signi®cant amount of

internal processing, which can make the system rather slow, so that

it may not be able to react to the demands from the environment in

real-time. Yet another problem relates to dependence on prior

analysis. For example, if a module is assumed for detecting walls, a

prior analysis needs to be made about what counts as a wall. As we

discuss extensively in the chapter 12, this is very dif®cult, particu-

larly in realistic environments.

THEORETICAL PROBLEMS

Let us now turn to problems that are more of a theoretical nature.

Hierarchical systems, such as TOTE systems, consist of a set of

modules arranged in a hierarchy. Each of these modules imple-

ments a subfunction of the system's global functionality. This

approach presents a problem in that it leaves no room for emer-

gence: Everything is prespeci®ed. We provide examples of this

point in the remainder of this chapter. Our discussion of the frame-

of-reference problem in chapter 4 revealed that we have to be

careful about the relationship between our description of an agent's

behavior, which might employ concepts such as hierarchy, module,

or goal, and the mechanisms underlying that same behavior. Finally,

hierarchical, modular approaches suffer from the fundamental

problems of classical architectures that we discussed in chapter 3.

For example, systems employing plans suffer from the frame prob-

lem. We do not repeat the arguments here but encourage the reader

to go back to chapter 3 and apply the arguments presented there to

the approaches summarized above.

11.3 Parallel, Decentralized Approaches

Let us now discuss alternative approaches to the behavior control

problem. (see table 11.1) The hallmark of all of these approaches is

that they decompose the problem, in one way or another, into a

number of parallel, loosely coupled processes. They differ in the

particular ways they implement these processes and in how they
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coordinate them. We discuss here all the approaches listed in the

table except the schema-based approaches, which we discussed in

chapter 9.

Process Description Language

Process Description Language (PDL) was introduced by Steels (e.g.,

1992). Its main idea is many processes operating in parallel. All

processes are active all the time. No behavior control mechanism

gives one behavior precedence over another. Instead, each process

has a certain in¯uence on some variables, typically the motor

speeds. Let us look at an example. Assume we want a robot to

move forward. This seems to be a trivial problem, because one can

simply set the translation speeds of the left and right motors to a

positive value. PDL, however, approaches the matter differently:

The forward movement process in¯uences the translation (forward)

speed to move toward a desired default value. Moreover, the

rotation (turning) should become 0 so that the agent moves in a

straight direction. In PDL, to get the robot to move forward, one

writes:

add value(Translation, (DefaultTranslation -

value(Translation))/MovementChange);

The add value function increases or decreases the variable

Translation (i.e., the forward or backward speed). The change to

this variable is calculated by taking the difference between the

default translational speed and the current translational speed. The

default speed is stored in the variable DefaultTranslation, and

the function value(Translation) returns the current value of

the variable Translation. Finally, the difference between the

desired and actual translation is divided with (or normalized by)

the value stored in the variable MovementChange. For example,

suppose we want the robot to move forward at a speed of 40 units

(e.g., cm per second). Further assume that the robot is currently

running at 25 units. Calling the add value function would yield

add value(25, 40ÿ25). Thus, it would increase the current

translational speed (25) to the default speed (40) by adding the

desired value (15), assuming that the MovementChange variable is

set to 1. In order to keep the robot moving straight, the rotational

speed needs to be 0. This can be achieved by calling the following

PDL function:
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add value(Rotation, DefaultRotation -

value(Rotation)/MovementChange);

Here, the variable Rotation is increased or decreased based on the

difference between it and the default rotation, which is 0 in our

example. In sum, then, PDL consists of a set of calls to the function

add value(q, v), which adds the value v (e.g., the difference

between actual and desired translational speed) to a quantity q

(e.g., Translation).

The PDL architecture is based on parallel processes: Many dif-

ferent processes can add to the same quantity. For example, a move

forward process as described above might add 20 units to the

quantity Translation, whereas an avoid obstacle process might

subtract 10 units from the quantity Translation. At each time

step, all these additions and subtractions are simply summed, and

the resulting value of the quantity determines what the robot does,

for example, how fast it moves forward. In other words, PDL is

based on a cooperative coordination mechanism. Note that in

PDL only changes are added to the quantities. In other words, PDL

works by manipulating derivatives of the various variables. This

implies that a very fast control loop must be used, because other-

wise the system might become unstable (e.g., oscillatory behavior

or dithering).

Subsumption Architecture

We discussed the subsumption architecture in detail in chapter 7.

Here we discuss only brie¯y how it relates to the issues of process

de®nition, implementation, and process coordination. The sub-

sumption architecture was the ®rst architecture to exploit fully the

principle of parallel, loosely coupled processes. Recall the Cog

project described in chapter 7. We said that ``Cog'' stands for

``Cognition'' but also for the little cogs on a cog wheel as they can

be found in watches and transmission boxes. We suspect that by

this, Brooks means that intelligence can be achieved by many very

simple processes. This is why, in general, the principle of parallel

processes is linked to the principle of cheap design: Each process

is very simple, requiring very little internal computation. In the

subsumption approach, the problem is decomposed by de®ning

layers of competence such as safe-forward, avoid, or collect.

These layers are implemented by means of augmented ®nite state
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machines. The coordination of the various processes is competitive

via suppression and inhibition links.

Action Selection Dynamics

Action selection dynamics was developed to achieve robust and

¯exible behavior in a complex dynamic world. Its design was

guided by the conviction that such behavior could be achieved

only in a bottom-up way (Maes 1991). In the action selection dy-

namics approach, a creature is viewed as having a set of behaviors

in which it can engage. (In earlier papers, these behaviors were

called ``actions,'' thus the phrase ``action selection dynamics.'') The

terminology used here is similar to that in the subsumption archi-

tecture (i.e., behavior refers to an internal structure). Behaviors are

represented as nodes in a network. They have a level of activation,

a set of preconditions that must be ful®lled for the behavior to be

``executable,'' and a threshold above which the behavior can be

selected for execution. The preconditions are expressed in terms of

what the agent perceives in the environment. A precondition for

the eating behavior, for example, is that the food must be within

reach. Other examples of behaviors in which the agent can engage

are obstacle avoidance, exploring, ®ghting with another creature,

going toward another creature, ¯eeing from another creature, going

toward food, drinking, and sleeping. It also has a set of motivations,

like curiosity, laziness, hunger, thirst, aggression, fear, and the

desire for safety. These motivations are connected to behaviors. As

hunger increases, the activation of the eating behavior increases;

if aggression increases, the activation of the ®ghting behavior

increases. Conversely, eating reduces the activation of the hunger

motivation.

The behaviors in action selection dynamics are integrated into a

behavior network that functions on the basis of a spreading activa-

tion mechanism (®gure 11.6). They are connected to one another

via ``predecessor,'' ``successor,'' and ``con¯icter'' links. A behavior

is connected to another behavior via a predecessor link if the

execution of the latter leads to the ful®llment of a precondition of

the former. Another way of expressing the same relationship is to

say that the latter behavior is connected to the former via a succes-

sor link. For example, the execution of the go-to-food behavior

leads to food being within reach, which is the precondition for

the eating behavior. Thus, the eating behavior is connected to the
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go-to-food behavior via a predecessor link, whereas the go-to-food

behavior is connected to the eating behavior via a successor link.

``Con¯icter'' links are employed whenever the execution of a

behavior precludes the ful®llment of a precondition of another:

¯eeing, for example, by de®nition makes the precondition for

®ghting unful®lled because in order to execute the ®ghting behav-

ior, the agent has to be near the other agent, which is impossible if

it is ¯eeing from it. Figure 11.6 shows an example of a behavior

network. Here is how such a network works. Assume, for example,

that the hunger motivation is increasing: The agent is getting

hungry. This increases the activation level of the eating behavior.

Eating has as a precondition that food must be within reach.

Through the predecessor link, the go-to-food behavior is activated.

The latter, in turn, has as a precondition that food must be per-

ceived. This precondition can, in turn be satis®ed by the explore

behavior. In other words, the go-to-food behavior has a predeces-

sor link to the explore behavior. On the other hand, the explore

behavior is connected to the go-to-food behavior via a successor

Figure 11.6 Action selection dynamics. Individual behaviors are connected via predecessor,
successor, and conflicter links through which activation is transmitted. They also
receive activation both from internal motivations and through perception. Behaviors
whose preconditions are fulfilled and have a level of activation above threshold can
be selected for execution.
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link. The intuition is that if the explore behavior is executed, the

go-to-food behavior is ``almost executable,'' since its preconditions

will be ful®lled after the explore behavior has been completed. The

last important point is that behaviors can also be activated through

the perceptual system. The presence of food increases the activa-

tion level of the eating behavior, even if the hunger motivation is

low.

The activation levels of the behaviors in the network are

changing continuously and in parallel. The implementation is dis-

tributed: The behaviors watch the environment and interact with

the other behaviors in the network without central control. The

agent is driven by internal motivations on the one hand, but

the behaviors can also be activated through the environment on

the other, which enables the agent to take advantage of a given

situation. If several behaviors are above threshold, one is chosen

for execution. There is a certain similarity between this concept

of behaviors and the operators in the STRIPS model: A number of

preconditions have to be ful®lled, and if executed, the behaviors

have a certain effect on the agent or the real world. Although in

simulations the satisfaction of these preconditions is easily recog-

nized, in robotic agents it has to be extracted from sensory readings.

Action selection dynamics has been tested on both simulated

and robotic agents. For an evaluation and comparison with other

mechanisms for action selection (or behavior selection), the reader

is referred to Tyrell 1993.

Extended Braitenberg Architectures

In chapter 6 we discussed Braitenberg vehicles. Instead of modules

or behavioral layers, Braitenberg vehicles have a number of simple

processes all of which run in parallel and continuously in¯uence

the agent's internal state. We have seen that in this way coherent

and sometimes surprisingly sophisticated behavior can be gen-

erated. We mentioned that these ideas can be extended to agent

architectures in general (Lambrinos and Scheier 1995; Scheier and

Pfeifer 1995). The approach is called Extended Braitenberg Archi-

tecture (EBA) and is illustrated with an example in the next

section. Here we summarize the main principles, which ®gure 11.7

depicts graphically. The agent is equipped with a number of

sensors (``sensor 1,'' ``sensor 2'', and ``sensor 3''). Sensors can be

anything from infrared sensors to wheel encoders that measure the
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robot's speed. Each sensor is connected to a number of processes

(``process 1'' to ``process 6''), and this connection can be weighted

to modulate a particular sensor's in¯uence on a process. A small

weight means that the sensor contributes only weak input to the

process, even if the sensor is fully activated. The designer has to

decide which sensor has to be connected to which process. Typi-

cally, a sensor is connected to only a subset of the existing pro-

cesses. Processes are usually implemented as neural networks.

(There are, however, other possible implementations of a process.)

A process for controlling the motion of a camera upon input from

that camera, for example, could be implemented using standard

active vision techniques (see chapter 12). The next section presents

an example of an architecture in which all processes are imple-

mented as neural networks.

Processes provide output to other processes (see arrow pointing

to ``from other processes'' in ®gure 11.7) as well as to the motors

(``motor 1'' and ``motor 2'' in the ®gure). Let us ®rst look at the

former, i.e., process outputs that give input to other processes.

This type of connection between processes allows one process to

modulate the activation of another. Processes also send output to

the motors. For example, the output of a move-forward and an

avoid process might be fed into a robot's left and right motor.

Figure 11.7 Basic EBA scheme. Sensors provide input to processes. Processes compute an out-
put that is integrated for each motor separately (``I1'' and ``I2''). In the simplest case,
integration is computed by summing over all process outputs. Processes can also
give input to other processes, as indicated by the arrows going back from the output
to the input side of the processes (``from other processes''). This allows processes
to influence (e.g., modulate) other processes.
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For this to work, the outputs have to be integrated (``I1'' and ``I2'' in

®gure 11.7). The most straightforward way to integrate process

outputs is simply to sum the individual outputs and set the motor

variable equal to this sum (which might be normalized in some

way, e.g., using the number of processes over which the sum has

been taken). Even though this integration scheme is simple, it can

lead to surprising and complex behavior, as the next section shows.

Nevertheless, it is clear that eventually more complex integration

schemes have to be used, especially if the number of processes

involved exceeds a critical number.

Finally, it is important to note that all the processes run in

parallel and all the time. They exert a varying in¯uence on the

agent's behavior depending on the circumstances. So under certain

conditions, they have no in¯uence on the agent, and in others, they

constitute its major in¯uence; but they are not ``on'' or ``off.'' What

the agent does at any point is the result of all the processes. This is

an important point, because it effectively means that it will not be

trivial to infer from observing the agent's behavior what the under-

lying mechanisms are, since the behavior is the result of the com-

pound activity of many processes running in parallel. Given this

architecture, the agent's behavior is emergent from the joint acti-

vation of the processes and not determined by some sort of selec-

tion mechanism. In contrast to the action selection dynamics

model, EBA has no selection process: Processes are not behaviors

that can be chosen for execution.

Interestingly, Kien and Altman (1992) have made a proposal

very similar to EBA for behavioral control in animals, particularly

in the insect motor system. Figure 11.8 depicts their model, which

considers the motor system as a set of several loops acting in par-

allel. The authors suggest that it is the ``consensus of the activity

in these loops that regulates behavior and provides the basis for

decision making'' (p. 164). Note the striking similarity to the EBA

(and the other approaches discussed in this section): there are sev-

eral parallel, loosely coupled processes that together lead to coher-

ent behavior. Interestingly, Kien and Altman stress that in their

model, ``decisions are an emergent property of the whole system;

they are the outcome of the total activity in all the loops at any

time, where each loop regulates different aspects of motor output

and hence of behavior'' (1992, p. 165). This is precisely what we

claimed for the behavior control problem in robots, too: Behavior is
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an emergent property of the whole system of processes running in

parallel.

Kien and Altman's model summarizes data on insect behavior.

The question arises whether the same, or at least similar, principles

hold in so-called higher animals like primates or humans as well.

Kien and Altman explicitly address this issue: ``The principles we

propose here are generally applicable to the study of motor systems

in a wide range of animals from mollusks to mammals, and perhaps

to sensory processing as well'' (1992, p. 166). Additional evidence

that this might indeed be the case comes from a recent book by

Milner and Goodale (1995) on the human visual system. In essence,

Miller and Goodale show that there are many sets of parallel path-

ways in the visual systems of many species, including humans. For

example, in a large group of animals (both amphibian and mam-

malian), separate pathways from the retina right through the motor

system mediate several behaviors triggered by visual stimulation

Figure 11.8 Behavior control model of Kien and Altman (1992). The model is composed of sev-
eral parts (1±3) representing different systems of functional organization. The output
of each system (X,Y,Z) provides one component of the input to the other systems, so
that all parts are kept informed about the state of the others. Each part also receives
sensory stimulation (A,B), and the internal state of the animal (C). The model oper-
ates as several loops, each of which makes a different contribution to the selection of
the final motor output. (Adapted from Kien and Altman 1992.)
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such as escape or obstacle avoidance. Moreover, the cerebral cortex

has many interacting visuomotor systems, and these systems sup-

port a range of skilled behaviors, such as visually guided reaching

and grasping. How are these visuomotor loops integrated? Accord-

ing to Milner and Goodale, there is no need ``to suppose that the

different actions controlled by these networks are guided by a

single visual representation of the world residing somewhere in

the animal's brain. There is clearly no single representation or

comparator to which all the animal's action are referred'' (1995,

p. 12). This suggests that much of the skilled behavior we observe

in humans might be based on the principle of parallel, loosely

coupled processes as well, implemented by many visuomotor loops

running in parallel.

The Immunoid Approach

Ishiguro and his coworkers (e.g., Ishiguro et al. 1997; Watanabe et

al. 1998) have introduced the immunoid approach to the behavior

control problem. The main idea of this innovative approach is that

insights and concepts from immunology can be used to solve the

behavior control problem, because both the immune system and

the behavior control system have to solve similar problems: They

deal with various sensory inputs through the interaction among a

number of parallel processes. Naturally, the immunoid approach

draws heavily on concepts from immunology, which is why we

only give a brief summary here; a detailed discussion would re-

quire the introduction of the necessary terms from immunology

and is beyond the scope of this book.

The human body's immune system consists, among other things,

of so-called antibodies. An antibody recognizes speci®c foreign

substances such as viruses or cancer cells that invade the human

body. These substances are called antigens. The so-called immune

network hypothesis suggests mechanisms of how antibodies (and

other components of the immune system) act together to generate

appropriate responses to invading antigens. The main idea under-

lying this hypothesis is that antibodies are not isolated structures,

but rather communicate with each other, leading to a large-scale

network (®gure 11.9a).

The application of this hypothesis to the behavior control prob-

lem is as follows. The robot is equipped with a number of sensors.

The sensory readings act like antigens invading the robot's control
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architecture, which consists of a number of processes each of

which implements a simple behavior such as obstacle avoidance,

grasping, or exploring. The key idea is to conceptualize these pro-

cesses as antibodies, and their interaction as a stimulation and

suppression between antibodies. The main result is that such an

architecture selects processes (antibodies) appropriate for the cur-

rent situation as indicated by the sensory readings (antigens).

When an antigen enters the architecture, an appropriate antibody

must be selected. In other words, a process suitable for the current

situation has to be identi®ed. This is of course the core issue in

behavior control. Antibodies are activated whenever they match

with an antigen. For example, if an antigen indicates that the

energy level is low (®gure 11.9b), the antibody corresponding to

this situation (low energy level) will be selected. More speci®cally,

each antibody has an associated variable that indicates the con-

centration of the antibody. This concentration is high when the

a

b

Figure 11.9 The immunoid approach. (a) The main idea. Sensory input is conceptualized in terms
of antigens, and internal processes are viewed as antibodies that neutralize the in-
vading antigens. The antibodies form a distributed, decentralized network. (b) Appli-
cation to a garbage collecting robot. An antigen indicates that energy is low and an
appropriate internal process (in the form of antibodies) is selected. The selection
depends on the concentration of the antibody as determined by the goodness of
match to the antigen. The situation shown on the left is represented in terms of
antigens on the right (reprinted with permission).
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antibody matches perfectly with the incoming antigen. The anti-

body with the highest concentration is selected and the corre-

sponding behavior is executed (e.g., going to the home base). In

other words, there is a competitive coordination among the differ-

ent antibodies. This approach has similarities both with the sub-

sumption architecture, as well as with the EBA approach. Similar

to the subsumption architecture, there is only one behavior that is

selected at each point in time. All other behaviors (antibodies) are

suppressed. Unlike subsumption-based architectures, and similar

to the EBA, there is no layering of processes.

There are several interesting extensions to the basic setup just

described. First, the connectivity between antibodies can be learned

using reinforcement learning techniques. In other words, the cou-

pling of the parallel processes can be learned and does not, as in

the case of, for example, the subsumption architecture, have to be

speci®ed a priori. A second, very interesting extension concerns

the question of what kinds and how many antibodies should be

used for a particular task. In other words, what type of behaviors,

and how many of them should be implemented by the designer?

This is a fundamental question for which there currently exists no

decisive methodology. The core problem is that once the basic set

of processes is de®ned, the robot will not be able to go beyond these

behaviors. How can we make a robot produce behaviors that we, as

designers, have not implemented beforehand? Within the immu-

nology framework there is a natural way to approach this basic

problem, called metadynamics. In essence, metadynamics refers to

a process whereby antibodies are removed or created. Since each

antibody corresponds to a particular behavior, this is equivalent to

having certain behaviors removed, and new ones added. Ishiguro

and his colleagues are currently implementing such a meta-

dynamics in the setup just described. This work is an important

step toward resolving one fundamental issue of intelligence: the

generation of diversity.

Collective Approaches

So far we have discussed approaches in which the principle of

parallel, loosely coupled processes is used to control the behavior

of one agent. The principle is not restricted to single agents, how-

ever, but also holds for the control of a group of society of agents.

The idea, introduced in the previous chapter, is to view each agent
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as a process (which might itself consist of a number of processes).

Collective behavior among these agents can then be viewed as

resulting from a number of parallel, loosely coupled processes. The

coupling here can often be achieved through changing and per-

ceiving or changing the environment in some way (e.g., pheromone

trails) or some other simple form of communication between the

agents. We emphasized in chapter 8 that studies on social ants

demonstrate that often cooperation between such agents is emer-

gent. For example, experiments by Deneubourg and his colleagues

show that sorting behavior in ants can be achieved without explicit

communication between the ants (Deneubourg et al. 1991). Other

examples of emergent collective behavior we have mentioned in

chapter 8 are Reynolds' boids and Mataric's ¯ocking robots, as well

as the arti®cial societies of Epstein and Axtell.

From this discussion we can see that the principle of parallel,

loosely coupled processes is compatible with ideas of self-

organization theory. Self-organization is found in systems (a) that

are distributed and (b) whose individual components interact only

locally with each other. Moreover, from this interaction, coherent

patterns emerge. Examples of emergent patterns include heap

building in ants (Deneubourg et al. 1991) or robots (Maris and te

Boekhorst 1996), insect walking (Cruse et al. 1996), or even human

behavior (Kelso 1995).

Finally, it is important to note that analogous to the coordination

problem in the control of single agents, the cooperation between a

group of agents results from the agents interacting with their envi-

ronment. We can see again that the core idea of coordinating a

number of processes, either internal or implemented in various

agents, is to exploit the system-environment interaction.

This completes our overview on some of the better known be-

havior control architectures. We have discussed a variety of differ-

ent approaches employing the principle of parallel, loosely coupled,

processes. We now take a very close look at an example. It is time

to explore some experiments that further illustrate how behavior

can be controlled according to this principle.

11.4 Case Study: A Self-Suf®cient Garbage Collector

In this section, we use the EBA discussed earlier in this chapter to

build a garbage-collecting robot that has to maintain its battery

charge. The case study illustrates how the concepts of the EBA, and
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more generally the principle of parallel, loosely coupled processes,

can be used to actually design and implement a control architec-

ture for an autonomous agent. The overall structure of this section

follows the steps in designing agent experiments we have described

in chapter 4 (table 4.5). The ®rst question to be answered is what

research goal we are pursuing. In the case study presented here, we

are interested in testing the principle of parallel, loosely coupled

processes, as instantiated in the EBA. In other words, we focus on

general principles of intelligence, rather than modeling a particular

natural agent or solving a task from an engineering perspective.

Desired Behavior and Ecological Niche

Table 4.5 tells us that whenever designing an agent, we have to

specify the ecological niche and the agent's desired behaviors or

tasks. The ecological niche for the robot in this example is a ¯at

environment with a recharging station and a home base to which

the agent has to bring the garbage it collects (®gure 11.10). The

home base is marked with a shaded area so that the agent can

detect it with its ¯oor sensor. It is located on the opposite side of

the charging station. The task of the agent is to collect the objects in

its environment and bring them to the home base. At the same time,

it has to sustain itself by regularly visiting the charging station,

which is equipped with a light source. The agent uses this light to

®nd the charging station and the home base with its ambient light

sensors, that is, by performing phototaxis (i.e., moving toward a

Figure 11.10 Task environment of garbage-collecting robot: collecting objects while maintaining a
sufficient level of battery charge. The home base is marked as a shaded area, the
charging station is equipped with a light source.

Chapter 11 358



light source) and antiphototaxis (moving away from the light

source), respectively. Whenever the light values exceed a certain

threshold, the agent receives energy according to the equation

DE � Ec�1ÿ E�t�2�; �11:1�
where Ec is a constant. Thus, the energy in¯ow, DE, depends on the

current battery level, E�t�. It is larger when E�t� is low and vice

versa. Objects for the experiment are small, wooden cylinders. In

all experiments conducted, 30 objects were randomly distributed

over the whole arena.

Low-Level Speci®cations and Platform

How we de®ne our agent's task environment largely determines its

low-level speci®cations. An agent with small wheels has been used

in this instance, the miniature robot Khepera, because its intended

ecological niche consisted of a ¯at and clean surface. A ``gripper''

made out of two bent wires was attached to the back of the agent,

forming a kind of a two-sided hook. With this ``gripper'' the agent

could grasp objects distributed in the environment (see ®gure

11.11b). We did not have to use a more sophisticated gripper

because we knew in advance that there would be only objects of

a particular diameter in the task environment. The hook was

adjusted to match this diameter, which amounted to creating a kind

of object recognizer: Only those objects would be ``recognized'' that

a b

Figure 11.11 Robot platform used in the experiments. A two-sided wire loop has been attached to
the rear of the robot, enabling the robot to grasp small objects. (a) Schematic of
robot, which is the generic robot introduced in chapter 5 (figure 5.8). (b) Real robot.
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®t into the wire loop, that is, that had the appropriate diameter.

This provides an example of how constraints in the morphology

can be exploited to simplify a problem that would otherwise be

more dif®cult to solve. Rutkowska (1997) has made a similar point.

In her theoretical analysis of the agent discussed here, she pointed

out that this ``constrained grasping'' is a kind of ``embodied

knowledge,'' provided through physical-morphological constraints:

``Different environmental objects permit different activities of the

Khepera agent, and the diameter of its collection wire [its wire

loop] contributes to determining what are graspable and non-

graspable things, providing the agent with a `body-scaled' notion of

object size'' (p. 292). Note that even in this simple setup, the agent

isÐfrom an observer's perspectiveÐmaking distinctions between

walls and garbage. Walls simply don't ®t into the wire loop, so they

belong to a different category than garbage.

Now that we have described the low-level speci®cation of the

agent's motor system, let us look at its sensors. The agent was

equipped with nine IR sensors, six in the front, two in the back and

one on the bottom of the agent. Objects inside the wire loop could

be detected by one of the rear IR sensors. The sensor on the bottom

of the agent formed a kind of ``¯oor sensor'' that could detect black

markers in the environment, such as the one at the home base (see

®gure 11.10). Except for this ¯oor sensor, the agent is an instantia-

tion of the generic agent architecture introduced in chapter 5 (see

®gure 11.11a).

In addition to being able to detect objects, walls, and its home

base, the agent had to maintain its battery level, and thus had to be

able to sense the current level of energy contained in its battery. We

added a sensor for the battery level, E. In the present implementa-

tion, the agent could not sense its actual, physical battery level;

rather the battery level was simulated (as was the recharging

process).

Control Architecture

The next step in designing our garbage collector involves the de®-

nition of the control architecture. The control architecture used

here is based on the EBA. A number of simple, prewired processes

all run in parallel and continuously in¯uence the agent's effec-

tors: move-forward, avoid-obstacle, home, deposit, go-to-

charging-station, and recharge. We have chosen names for
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the processes that relate to behaviors in order to provide some

intuitions as to the effect a process has on the agent's behavior

when none of the other processes is active (which is, strictly

speaking, never the case). However, it might have been better to

name them differently, for example, the move-forward process

might be called ``send same amount of activation to both motors.''

Again, strictly speaking, from the agent's perspective, it is not

executing a move-forward process but sending activiation to the

motors. The processes are implemented as Braitenberg-style pro-

cesses: In other words, they receive inputs from the sensors and

contribute their activation to the motors. Figure 11.12 shows the

architecture. Two variables are associated with the two motors,

corresponding to their respective speed. The processes con-

tinuously change these speed variables by adding or subtracting

particular values. A sum of the output values from all processes

determines the speed variables. Formally, this can be written as

s�t� � �sl�t�; sr�t�� �
XN

i�1

ol
i �t�;

XN

i�1

or
i �t�

 !
; �11:2�

Figure 11.12 Control architecture of the garbage-collecting robot. The architecture is based on the
EBA. Six processes run in parallel: mode-forward, avoid-obstacle,
home, deposit, go-to-charging-station, and recharge. They
receive input from the robot's sensors and contribute activity to the robot's motors.
Each process is implemented as a Braitenberg-style process, that is, a simple neural
network that couples the robot's sensors and motors. The processes are coordinated
by a cooperative cooperation scheme: linear summation of process outputs.
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where sl�t� and sr�t� are the left and the right motor speed, ol
i �t� and

or
i �t� the contributions of process i to the motor speeds, and N is the

total number of processes. This is the most simple form of cooper-

ative coordination. The speed variables determine what the agent

does, since the two wheel motors are the only ways it can control

its motor system.

The complete source code for all the processes listed in ®gure

11.12 can be downloaded from the internet page. The reader is

encouraged to have a look at (or even run) the complete source

code to get an idea of the workings of the complete architec-

ture. Here we focus on four of the six processes: move-forward,

avoid-obstacle, go-to-charging-station, and recharge.

Together, the processes make the agent avoid and grasp objects and

keep the energy level above critical values. We show how this

functionality can be achieved by incrementally adding processes to

the architecture.

The ®rst thing with which a mobile agent has to be equipped is a

process for moving forward. The activity of the move-forward

process is extremely simple: A constant value is written to the

motors (®gure 11.13b), making the agent move forward at a ®xed

speed (®gure 11.13a). Note that, as expected, all the agent did was

move forward. At some point, however, it crashed against the wall

after about ®ve seconds (®gure 11.13c). This is obviously not very

wise and potentially harmful. So, in addition to the move-forward

process, we needed to de®ne a process by means of which the agent

could avoid obstacles and walls. Moreover, we needed a process

that caused the agent to grasp the objects it was supposed to collect.

In the set-up used here, only one process was needed to accomplish

both tasks. We called this process avoid-obstacle because

avoiding was all it could make the agent do. The grasping behavior

came free from the interaction with the move-forward process,

because as the agent turned away from the object, the object would

end up in the hook on the agent's rear, as ®gure 11.14 shows.

The agent successfully avoided the object. The two processes,

move-forward and avoid-obstacle, were running in parallel,

and their output was summed to yield the motor speeds (®gure

11.14a). Note that the agent was moving forward and avoiding the

object, using the only two behaviors available to it at that point, but

from an observer's point of view, it seemed to grasp the object.

Grasping was not explicitly represented in the agent's processes.

Rather, it was emergent from the parallel activity of the two pro-
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Figure 11.13 The move-forward process running in isolation. (a) Motor speeds as the robot
moves in the environment. (b) Contribution of move-forward. It is a simple
constant added to the motor speed variables. (c) Activation in the two front IR sen-
sors. The sharp increase after about five seconds indicates that the robot crashed
into a wall because at this point it had only the move-forward process and
therefore lacked means of avoiding obstacles.
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Figure 11.14 Adding the avoid-obstacle process. (a) Motor speeds resulting from the
parallel processing (the thin line indicates 0 speed). (b) Output of the move-
forward process. It is the same constant as in figure 11.13. (c) Output of the
avoid-obstacle process. The robot encountered an object after moving for-
ward for about 5 seconds and avoided it by turning to the right. A strong negative
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Figure 11.14 (continued)
output of the avoid-obstacle process to the right motor and a positive output
to the left motor generated the turning behavior. (d) Activation in the two front IR
sensors. There is only very brief activation in the two front IR sensors; that is, the
robot hits the obstacle very shortly and then avoids the obstacle successfully. (e)
Activation in the back two IR sensors. IR8 is activated because the robot now has a
cylinder in the wire hook. Note that both processes are active during this ``grasping''
behavior. The robot is moving forward and avoidingÐthe only two behaviors it has
at this pointÐbut to an observer it seems to grasp objects.
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cesses controlling the agent's behavior and its interaction with the

object. It is clear that this emergent grasping occurred only because

of the particular positioning and shape of the hook. Although this

might seem like cheating, it was, as mentioned earlier, an instan-

tiation of the principle of cheap design in that we exploited con-

straints of the niche (e.g., size and shape of objects) to simplify

certain otherwise dif®cult problems (e.g., identifying objects to

collect, mechanisms of grasping).

Let us brie¯y look at how the avoid-obstacle process is

implemented. The process increases its in¯uence on the speed

variables as the agent gets close to an obstacle. Its output is a

weighted sum of the activation of all front IR sensors:

o
�ao�
l �t� �

X6

i�1

w
�ao�
il IRi�t�; �11:3�

o�ao�
r �t� �

X6

i�1

w
�ao�
ir IRi�t�; �11:4�

where w
�ao�
ij are weights determining the in¯uence of each corre-

sponding IR sensor IRi�t� on the activation of the process. These

weights are chosen such that obstacles on the right lead to

high activity in o
�ao�
r �t� and low activity in o

�ao�
l �t� and vice versa.

As a result, the agent turns in the opposite direction of the high

IR sensor activation (®gure 11.14a) and thus avoids the obstacle

(®gure 11.14d).

So far, we have discussed two processes, move-forward and

avoid-obstacle. These processes enabled the agent to explore its

environment (by moving straight forward), avoid obstacles, and, via

an emergent behavior, grasp objects. In addition, the agent needed

to be equipped with processes that would make it bring the objects

it had grasped to a home base and visit the recharging station

whenever its battery level reached critical values. Let us ®rst dis-

cuss the latter, the go-to-charging-station process. Whenever

the battery level was low, the go-to-charging-station process

needed to be highly active so that the agent visited the charging

station and recharged. The tendency to go to the charging station

depended on the battery level and the agent's distance from the

charging station. The agent found the charging station using its

light sensors, that is, by phototaxis, as ®gure 11.15 shows.

Because of the joint processing of the move-forward, avoid-

obstacle, and go-to-charging-station processes, the agent
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Figure 11.15 Adding the go-to-charging-station process. The outputs of move-
forward and the avoid-obstacle are similar to those in figure 11.14. (a)
Motor speeds from the joint processing of the three processes. (b) Output of the
go-to-charging-station process. The output of the process increases as
the overall energy level decreases and drops to 0 when the robot receives energy.
(c) Time series of energy level. The agent visits the charging station regularly, but
only small increases in the energy level result, because the robot does not stop at the
charging station: It lacks, at this point, a recharge process.



Figure 11.16 The move-forward, avoid-obstacle, go-to-charging-
station, and recharge processes running in parallel. (a) Motor speeds re-
sulting from the parallel processing. (b) Output of the move-forward process.
(c) Output of the avoid-obstacle process. (d) Output of the go-to-
charging-station process. (e) Output of the recharge process. This
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Figure 11.16 (continued)
process tries to stop the robot (the motor speeds become 0; see panel a) by pro-
ducing an output (ÿ0.6) that ``neutralizes'' the output of the move-forward
process (0.6). This can be seen clearly at around 120 seconds. (f) Time series of
energy level. In contrast to figure 11.15c, the energy level is now kept in a safe range
because of the activity of recharge.
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moved to the charging station. It received small amounts of energy

from the charging station (®gure 11.15c), but it couldn't really

recharge, because it didn't stay in the charging station long enough.

Given its setup at the time, the agent did not really stop at the

charging station: It had no process to generate such a stopping

behavior. This can be seen in ®gure 11.15c: Whenever the agent

entered the charging station, it received small amounts of energy,

resulting in small increases in its energy level. Overall, however,

the absolute energy level decreased from its initial value of 1 to

0.3 after about 120 seconds. This was undesirable: We needed an

additional process to make the agent stop at the charging station.

This is the task of the recharge process, which causes the agent to

slow down once inside the charging station. The activity of this

process is a function of the energy in¯ow. The energy in¯ow is

large when the battery level is low and vice versa, as discussed

above. Thus when the agent enters the charging station with a

low battery level, the in¯ow is large, and as a consequence, the

recharge process tries to stop the agent. Figure 11.16 shows the

dynamics of the complete system discussed so far. The agent was at

this point self-suf®cient: Its energy level did not drop below critical

levels (®gure 11.16f), because the agent, due to the activity of the

recharge process, stopped at the charging station (®gure 11.16a)

and received much more energy than before, when it only passed

by the energy station (®gure 11.15d).

The parallel architecture just discussed has several side effects.

Let us look at two in more detail, illustrated in ®gure 11.17. The

®gure shows that the agent can behave ``rationally'': Whenever its

energy level was low, it stopped grasping objects it encountered on

its way to the charging station (®gure 11.17c), because the go-to-

charging-station process ``drove'' the agent toward the charg-

ing station; its in¯uence on the motor speeds was stronger than

usual (®gure 11.17b) and caused the agent to avoid objects, but not

grasp them. This behavior had not been explicitly programmed.

Rather, it emerged because all the agent's processes run in parallel:

the avoid-obstacle process was still running, but its in¯uence

on the motor speeds was at that point now smaller because of the

large output of the go-to-charging-station process. As soon as

the energy level was within safe ranges again, the agent returned

to grasping objects (®gure 11.17c).

The parallel processing had another interesting side effect. In

some situations, the agent got stuck and could no longer move. For

Chapter 11 370



example, it sometimes got stuck in a corner of the environment:

There were a number of objects in the corner, and the agent tried to

avoid them, which resulted in a 0 motor speed when there was an

object on the left, on the right, in the back and in the front of the

agent. In this situation, the energy level kept decreasing because

the robot was still trying to move. This energy decrease increased

the activation of the go-to-charging-station process; that is,

its in¯uence on the motor speeds increased. As a result, the agent

was ``pulled'' in a different directionÐthe charging stationÐand

started to move again. Initially, it made only small wiggling move-

ments, but since this did increase its energy use, the activation of

the go-to-charging-station process further increased. At some

point, the agent's wiggling behavior became strong enough for it to

get out of the impasse and reach the charging station. This illus-

trates an advantage of having parallel processes that operate

autonomously: The agent could get out of the impasse only because

the go-to-charging-station process was continuously contri-

buting activity to the motor variables.

Once the agent has grasped an object, it should bring it to the

home base. High activity in the home process, which generates

such behavior, causes the agent to go to the home base. The agent

estimates direction of the home base via antiphototaxis, that is, by

going in the opposite direction of the light gradient emitted from

the charging station. Antiphototaxis is used because the home base

is located at the corner opposite the charging station, where the

lamp is mounted. The tendency to go to the home base is propor-

tional to the number of objects the agent is carrying. Note that the

agent cannot count the number of objects it is carrying. It can only

sense whether it is carrying something in its left or right wire loop

by using the two IR sensors on its back (see ®gure 11.14e). Both

sensors are active when the agent is carrying two or more objects,

leading to a strong tendency to visit the home base. Similarly, when

only one sensor is active, the agent is carrying one object only, and

there is a weaker tendency to go to the home base. Finally, when

the agent reaches the home base, the ¯oor sensor sends strong

activation to the deposit process.

Our discussion so far illustrates the incremental nature of de-

signing and evaluating control architectures. We started with one

process only, the move-forward process. We then ran experi-

ments (®gure 11.13) and realized the need for an avoid-obstacle

process. After having added means for avoiding obstacles, we again
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Figure 11.17 ``Rational'' behavior of the garbage-collecting robot: Whenever its energy is low,
it does not grasp objects it encounters on its way to the charging station. (a)
Motor speeds resulting from the parallel processing. (b) Output of the go-to-
charging-station process. The output increases as the energy decreases
and vice versa. (c) Activation of the rear IR sensors. (d) Time series of energy level.
After about 80 seconds, the agent no longer grasps objects (indicated by 0 activation
of the rear IR sensors; see panel c). The output of the go-to-charging-
station process increases significantly (panel b). This output influences the
motor speeds in such a way that the robot avoids objects but does not grasp them.
This is ``rational'' because if the robot had grasped the object, it would not have
made it to the charging station.
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ran experiments (®gure 11.14), after which we decided to add

the go-to-charging-station process. Experiments with this

three-process architecture (®gure 11.15) revealed the need for an

additional process to make the agent stop suf®ciently long at the

charging station for its energy level to increase signi®cantly. This

was accomplished by adding the recharge process (®gure 11.16).

Running this architecture in turn showed interesting side effects

(®gure 11.17). Throughout the discussion, we have illustrated the

experiments by plotting the relevant internal data: the motor

speeds, the contribution of the individual processes to the motor

speeds, the activation levels of the sensors, and the energy level.

We have chosen to represent the results in terms of internal data

in order to illustrate the parallel dynamics underlying the agent's

behavior. We said in chapter 4 that there are many ways to describe

Figure 11.17 (continued)
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an agent's behavior; only one was shown here. For example, we

could have added summary statistics of the agent's performance:

We could have recorded, among other things, the number of objects

the agent had grasped per unit time (or before the energy level

dropped to 0), the distance it had traveled until the energy level

dropped below some threshold, or the number of objects the agent

did not collect. We could have also varied the number of objects

in the environment to assess how this affected the agent's perfor-

mance. Moreover, we could have systematically changed critical

parameters (e.g., the weights connecting the processes to the motors)

in order to evaluate how the agent's performance was affected by

these changes. Clearly, the presentation of all these results would

be beyond the scope of this chapter. In general, however, we should

always collect summary statistics in addition to data showing the

dynamics within a single trial.

Issues to Think About

Issues 11.1: Coherent Behavior and Sequencing

The main question researchers have asked is how one can obtain

coherent behavior from an agent in the form of sequences of actions

if there are merely a number of parallel processes and if the infor-

mation generated from the various processes is not integrated in a

central process or representation. One of the essential points here is

that sequences of behavior can occur even if there is no internal

representation of these sequences. Simon's ant on the beach walks,

turns, walks, turns, picks up food, and so forth, and we strongly

suspect that the sequence of these behaviors is not represented as a

plan. It is often surprising how far we can get in terms of generating

sequences of behavior without representing them internally.

Sequences can arise simply because the loop between output and

input is closed: An agent's action leads to the next input, which in

turn triggers the next action. One should ®rst exploit these inter-

actions before explicitly designing sequencing mechanisms into

the agent. Think about potential sequencing mechanisms that one

might consider necessary to get the agent to do its job in the right

sequence (but that turn out to be unnecessary). An example of such

a mechanism might be one that prevents the agent from grasping

pegs if it is on the way to the charging station.
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Issue 11.2: Free Will?

The principle discussed in this chapter makes a strong claim:

Intelligence is emergent from a large number of parallel, loosely

coupled processes. In other words, there is no need for a control-

ling agent that manages the dynamics of these processes; rather,

they are coordinated by means of competitive or cooperative coor-

dination mechanisms as the agent interacts with the environment.

With this focus on emergence, you may start to wonder about your

own actions. If behavior is emergent, how do you control it? We

usually have the feeling of being in control of our own actions, of

knowing what we want to do and how we want to do it. The prin-

ciple presented in this chapter claims that a large part of your

actions are emergent: Is this a contradiction? How can you recon-

cile your own feeling of possessing free will with the notion of

parallel, loosely coupled processes that are not controlled by some

internal or external agent?

Points to Remember
1 The principle of parallel, loosely coupled processes states that

intelligence is emergent from a large number of parallel processes

loosely coupled to the sensory-motor system. These processes run

asynchronously and are largely peripheral, requiring little or no

centralized resources. The principle is fundamental to most control

architectures in embodied cognitive science. It addresses the

behavior control problem.
1 The design and implementation of control architectures for

autonomous agents encompasses three main aspects: process de®-

nition, implementation, and coordination. First, the basic processes

need to be de®ned. The implementation of these processes requires

appropriate formalisms and methods. The resulting processes have

to be coordinated. There are competitive and cooperative coordi-

nation mechanisms; the environment can be exploited to simplify

process coordination.
1 Traditional approaches design control architectures by means of

functional decomposition, which leads to a sense-think-act cycle.

Embodied approaches employ a different strategy in which instead

of a number of functional modules, parallel processes with direct

connections to the sensory-motor apparatus are designed. These

processes lead to emergent functionality: Each function emerges

out of their concurrent activity.
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1 Many approaches to behavior control are based on the notion of

hierarchies. They employ the goal-directed principle, according to

which behavior results from a comparison between a representa-

tion of a goal state and the actual (usually current) situation. The

following models fall into this category: TOTE (psychology),

STRIPS (arti®cial intelligence), and Tinbergen's model (ethology).
1 We have discussed alternative approaches based on the notion of

parallel, loosely coupled processes: Process Description Language,

subsumption, action selection dynamics, EBA, and the immunoid

and collective approaches. All but the last are control architectures

for autonomous agents that fully exploit the principle of parallel,

loosely coupled processes.
1 The case study of the self-suf®cient garbage collector illustrates

how coherent behavior can be incrementally designed by means of

parallel processes. We have looked in detail at how one such agent

behaved in the various stages of its design. It turned out that the

avoid-obstacle process, in addition to preventing collisions,

made the agent grasp objects; there was no need to explicitly design

grasping behavior.
1 Behavior control based on parallel processes can lead to interesting

side effects. For example, the garbage collector stopped grasping

objects when it was low on energy because of the increased activity

of the go-to-charging-station process. In other words, it dis-

played rational beheavior.

Further Reading
Jeannerod, M. (1997). The cognitive neuroscience of action. Oxford, UK: Blackwell. (A

recent monograph by one of the leading researchers in the neuroscience of behavior

control. The book presents a large amount of empirical data about behavior control,

together with an overview of the most important ideas and concepts of (traditional)

approaches to behavior control, including Jeannerod's own model.)

Kien, J., and Altman, J. S. (Eds.). (1992). Neuroethology of action selection. Cambridge,

MA: MIT Press. (This book summarizes the major ®ndings on behavior control in

invertebrates.)

Miller, G. A., Galanter, E., and Pribram, K. (1960). Plans and the structure of behavior.

New York: Holt, Rinehart and Winston. (A seminal book outlining the classical cog-

nitivistic view of behavior control.)
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12 The Principle of Sensory-Motor Coordination

One core assumption of the embodied cognitive science approach

is that intelligence must be studied in the context of system-

environment interaction. In chapter 10 we introduced the principle

of sensory-motor coordination, which states that all intelligent be-

havior (e.g., perception, categorization, memory) is to be conceived

as a sensory-motor coordination that serves to structure the input.

This principle has two main aspects. First, whatever behavior we

are analyzing, or whatever behavior we want to design for a robot,

the principle suggests that we focus on how sensory and motor

systems are coordinated. Second, embodied agents can structure

their own sensory input, and thereby induce regularities that sig-

ni®cantly simplify learning. Figure 12.1 shows how this principle

relates to the other principles.

In the present chapter, we use the principle of sensory-motor co-

ordination to study categorization, a fundamental concept of cog-

nitive science. Any agent in the real world has to be able to make

distinctions between different types of objects; that is, it must have

the competence of categorization, a prerequisite for intelligence.

Making distinctions in the real world comes very naturally to all of

us: we recognize objects and ®nd our way around with great ease.

However, getting machinesÐrobotsÐto do the same thing has

turned out to be an enormously hard problem, one of the hardest

in the study of intelligence. We discuss the question of why this is

so hard and we show that the problem of categorization in the real

world is signi®cantly simpli®ed if it is viewed as one of sensory-

motor coordination, rather than one of information processing. A

series of agents is presented to illustrate the ideas. We start by out-

lining the information processing approach to categorization, and

we point out its problems. We then introduce theoretical aspects of

viewing categorization in terms of sensory-motor coordination,

followed by a number of examples that instantiate, in one way or

another, the principle of sensory-motor coordination we then illus-

trate the theoretical concepts with a case study.



12.1 Categorization: Traditional Approaches

For the most part, research on categorization has been conducted

within the information processing framework. In this section, we

summarize work from cognitive psychology and machine vision.

Our goal is to elucidate the main ideas rather than to give a com-

prehensive review. Later (section 12.2), we contrast the information

processing view on categorization with the one derived from

embodied cognitive science.

Cognitive Psychology

Cognitive psychology has a long history of research on catego-

rization, which is not surprising, since categorization is a funda-

mental act of human cognition. How can we account for the

amazingly sophisticated categorization behavior of humans? Cog-

Figure 12.1 The relationship of the principle of sensory-motor coordination (highlighted) to the
other design principles. This principle is directly related to the complete agent
principle, the value principle, the redundancy principle, and the ecological balance
principle. The agent's overall adaptivity is increased if it exploits sensory-motor co-
ordination. The value principle is required for sensory-motor coordination because
the agent has to have a means of assessing in what sorts of sensory-motor coordi-
nations to engage. A prerequisite of sensory-motor coordination is the appropriate
positioning of the sensors on the agent providing the required redundancy for con-
cept learning. Finally, only if the design is ecologically balanced will there be inter-
esting kinds of sensory-motor coordination.
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nitive psychology has addressed this question from an information

processing perspective (®gure 12.2). According to this view, cate-

gorization in humans and higher animals involves the following

steps (Barsalou 1992): First, a structural description of the object

to be categorized is formed. This description provides informa-

tion about the object's primitive perceptual features, such as hori-

zontal and vertical lines and the relations between these basic

features. Next, category representations with similar structural

descriptions are searched in memory, and the category representa-

tion most similar to the structural description is selected. Based on

the selected representation, inferences about the object are drawn,

and ®nally information about the categorization is stored in mem-

ory. If the object is a chair, for example, the categories chair, sofa,

stool, or table might be considered, given their structural similarity.

The selection process would then choose the category ``chair'' be-

cause it is the most similar. Inferences about the chosen category,

``chair,'' would then be drawnÐfor instance, that it can be sat

upon.

Psychological theories of categorization fall into three families;

classical, prototype, and exemplar, depending on how categories

are assumed to be represented in memory. The modern view on

categorization was initiated by Rosch, who showed in a seminal

Figure 12.2 The information processing approach to categorization. According to this view, cat-
egorization proceeds through the following steps: First, a structural description of
the entity to be categorized is formed. Next, category representations with similar
structural descriptions are searched, and the most similar category representation
is selected. Based on the selected representation, inferences about the entity are
drawn, and finally information about the categorization is stored in memory.
(Adapted from Barsalou 1992, p. 48.)
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work (1973) that people judge some instances of a category to be

better members of that category than other instances. For example,

for most people a robin is a better instance of the category ``bird''

than a penguin. Similarly, when humans are asked to judge typi-

cality of fruits, the most typical fruits are apples and oranges, and

less typical fruits are mangos or coconuts (Rosch 1975). These

results contradicted the classical view that an object is a member of

a particular category if and only if it possesses a set of de®ning

features. A category was de®ned in the classical view to be a de-

scription that speci®ed the necessary and suf®cient features to be a

member of that category. Rosch's main discovery was that people

organize categories according to prototypes and that a particular

object could be judged to be a good or bad instance of a category,

depending on its similarity to the prototype. Thus, categorization

turned out to be a matter of degree, and not an all-or-nothing judg-

ment. In this view, categories are de®ned by a set of features none

of which is critical. An object is then an instance of a category to

the degree that it possesses a number of characteristic features.

An alternative approach to the prototype view is the exemplar

approach. According to the exemplar-based approach, the learner

stores mental representations of exemplars, grouped by category,

then categorizes new instances on the basis of their similarity to the

stored ensembles. That is, according to the exemplar view, people

do not form abstract category knowledge, such as prototypes, but

instead store collections of exemplars. We have already encoun-

tered one of the most popular exemplar-based models, ALCOVE, in

chapter 4, where we contrasted it with agent-based models. We

said this model can account for a wide range of empirical phe-

nomena. Let us look more closely at how exactly it works.

Most connectionist models of categorization consist of an input

layer that codes object features and an output layer that represents

the categories (e.g., Gluck and Bower, 1988). Typically, the goal is

to learn, via supervised learning schemes such as the delta rule, an

association or mapping between activations in the input layer and

the corresponding activations in the output or category layer. More

elaborated models, of which ALCOVE is the best-known example,

use a hidden layer in addition to an input and an output layer.

Figure 12.3 illustrates this basic scheme. ALCOVE is a feedforward

network with three layers of nodes. We encountered a similar net-

work in chapter 5: NETTalk, the network that learns to pronounce

English. Both networks have an input layer, a hidden layer, and an
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output layer. The input nodes encode the stimulus, one node per

feature dimension or feature. Each input node of ALCOVE is con-

nected to the hidden layer via weights called ``attention strengths.''

These weights change to re¯ect the relevance of a dimension for the

categorical distinction being learned. The larger the weight be-

tween an input and a hidden node the more attention the network

pays to the feature encoded by that input node. The hidden layer

consists of nodes that represent training exemplars. A hidden node

is activated when a particular stimulus is similar to the exemplar

represented by that node. The larger the resemblance of the input

to the stored exemplar, the stronger the activation of the exemplar

node. Finally, the output layer consists of one node per category,

with each node's activation level computed as a sum of weighted

activations from the exemplar nodes. Category activation levels are

converted to choice probabilities that is, the activation values in

the output nodes are interpreted as indicating the probability with

which the network chooses a particular category. Large activation

values lead to a high probability and vice versa.

Learning is supervised and involves a learning phase and a test

phase. In the learning phase, input vectors (typically binary feature

vectors) are presented to the network. The network processes this

input and activates one or several category nodes. The difference

between the network's output and the correct output (the ``catego-

rization error'') is then propagated back to the hidden layer, where

the weights are adjusted in order to minimize the error. Note that

category nodes

w

α α

learned association
weights

exemplar nodes

learned attention
strengths

stimulus dimension
nodes

Figure 12.3 Overview of the ALCOVE network. ALCOVE is a feedforward network that has input,
hidden, and output layers. The weights between the input and the hidden layer are
called attentional strengths. The hidden neurons represent the exemplars the net-
work has learned. The output nodes represent the categories.
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this is, in essence, the standard back-propagation algorithm. (For a

discussion of the similarities and differences between ALCOVE and

standard back-propagation, see Kruschke 1992.)

In sum, the ALCOVE network instantiates the view that category

learning is supervised and that categorization consists in ®nding a

mapping from stimuli onto category representations. Let us now

look at how machine vision has addressed categorization.

Machine Vision: Object Recognition

We summarized some of the basic ideas of machine vision in

chapter 2 in our discussion of the robot JL. Here we focus on one

particular aspect of machine vision: object recognition. In our dis-

cussion, we largely follow Ullman's (1996) review of the state of the

art in object recognition.

A typical object recognition system consists of a camera attached

to a computer. The generic problem arti®cial object recognition

systems address is how to determine which out of a number of

individual objects has generated the image currently registered by

the sensor (camera). In order words, the system must, based on the

camera image, identify the corresponding object, The problem is

that objects can change their appearance because of viewing posi-

tions, photometric effects (e.g., light conditions), object setting (e.g.,

different backgrounds), and changes in shape (e.g., animals). The

core problem in object recognition is to somehow relate the many

views that one and the same object can generate. For example, a car

can look very different depending on the viewing position, but it is

always the same car. This is also called the object constancy prob-

lem. We return to this problem below, because it concerns not only

the traditional approaches but categorization models in general.

The core idea in most machine vision approaches to object

recognition is similar to the one underlying the psychological

approaches summarized above: An inputÐan image of an objectÐ

has to the mapped onto an internal representationÐin this case

stored templates or views of images. Ullman (1996) distinguishes

three major approaches to object recognition, all of which are based

on the idea that in order for the agent to match an image of an

object to the stored internal representation, regularities across dif-

ferent views of one object have to be exploited. These approaches

differ in their speci®c ways and assumptions of how these regu-

larities can be extracted. The invariant properties method assumes
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that certain basic properties remain invariant under the trans-

formations of changes an object is allowed to make. This has for a

long time been the most popular approach. The parts decomposi-

tion method relies on the decomposition of an object into its con-

stituent parts or generic components. For example, a face might be

decomposed into the eyes, nose, and mouth, each of which can

often be recognized on their own. The task then is to ®rst locate

such a part (e.g., a view on a mouth), then ®nd the corresponding

generic component (e.g., mouth), and ®nally describe the object in

terms of its constituent parts. The parts decomposition approach

has become more popular in recent years, both in cognitive psy-

chology and machine vision. A third approach, also receiving

increasing attention, is called the alignment method, described in

great detail in Ullman (1996). The core idea in this method is to

align the image of the object and the corresponding stored model.

For example, if the image of an object and the stored model are very

similar except for a difference in size, then aligning the two

involves scaling either image or model, thereby reducing the dis-

crepancy and improving the match. More generally, the idea is to

store not only a model of an object but also a set of ``allowed

transformations'' that the object may undergo (e.g., changes in size,

position, orientation). Object recognition then becomes a matter of

searching for a particular model and a particular transformation

that increase the match between model and image.

Let us look at an example that is based on the alignment

approach; the invariant properties and the part decomposition

method will not be further elaborated. The particular example

summarized here (Basri 1996) is instructive because it combines

the alignment approach with the prototype approach to categorize

images. We have seen that according to the information processing

framework, categorization involves ®nding a mapping of an input,

the image to some internal representation, the stored category rep-

resentations. The ®rst step in such a scheme is to store a library of

object representations (also called object models) in memory. In the

example discussed here, a library of 3-D object models was divided

by the designer into categories, and 3-D prototype objects were

selected to represent the category. A category representation thus

consisted of the prototype object and the corresponding set of object

models belonging to the category. More speci®cally, the library of

object models consisted of two categories. The ®rst included two

chairs, and the second contained two car models (see ®gure 12.4).
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Once the object models and the category representations have

been established, the system can be used for object recognition. It

works in two stages. In the ®rst stage, the categorization stage, the

image is compared to the prototype objects previously stored in

memory. For example, an image of a chair (see ®gure 12.4) was

compared to the chair and the car prototype: This was done by (a)

determining the transformation that best aligns the prototype with

the image, (b) applying this transformation to the prototype and (c)

determining the degree of similarity between the transformed pro-

totype and the image. If the degree of similarity is better than a

prede®ned categorization threshold, i.e., the prototype is suf®-

ciently similar to the image, the category of the object has been

found. The system has correctly categorized the image as belonging

to the category ``chair.'' Figure 12.5 shows a typical result of a good

match.

In the second stage, the identi®cation stage, the image is

compared to the individual object models in its category, which

involves searching for an object model that matches the image. In

Figure 12.4 The categories used in Basri's (1996) study on object recognition. (a) Pictures of two
chairs used as models. The chair on the left was used as prototype and was matched
to an image of the chair on the right. (b) Pictures of two cars as models (a VW
model, and a Saab model). The task of the object recognition system is to map an
image from a model (e.g., an image from the VW model) onto the correct category (a
car). (From Basri 1996, p. 21, reprinted with permission.)
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the example, it involved searching through the models of chairs

until a match with the image of the chair (®gure 12.5a) was found.

Again, the system tries to ®nd the transformation that aligns the

model with the image. If such a matching model is found, the

object's speci®c identity is determined, and the object recognition

process stops (®gure 12.6).

This scheme illustrated the core ideas underlying the informa-

tion processing framework of categorization. Above all, catego-

rization is viewed as a process of matching an image to a library of

stored object representations. According to this view, categoriza-

tion has two main objectives: First, it enables a vision system to

derive properties of unfamiliar objects on the basis of their resem-

blance to familiar ones. Second, for familiar object, categorization

helps ®nding a particular object in a library of object models. Sev-

Figure 12.5 The categorization stage: matching a prototype chair to an image of another chair.
(left) The image to be recognized (an image of the chair on the right in figure 12.4);
(center) appearance of the prototype (the chair on the left in figure 12.4) following
the transformation; (right) overlay of the image (left) and the transformed prototype
(center). The match is good despite the differences in shape. (From Basri 1996, p. 22,
reprinted with permission.)

Figure 12.6 The identification stage: matching a model of one chair (center) to an image of
the same chair (left). The match is nearly perfect (overlay on the right), so the
system has ``identified' the particular chair. (From Basri 1996, p. 22, reprinted with
permission.)
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eral things should be noted. The recognition problem is solved

by means of internal processing only, for example, by aligning a

stored model of a chair with the current image using a prede®ned

transformation scheme. As we show below, one of the underlying

reasons for neglecting system-environment interaction in this way

is the belief that ``recognition is the ultimate goal of any visual

system'' (Wechsler 1990, p. 303). However, from an evolutionary

perspective the ultimate goal of vision is not recognition per se, but

rather enabling an agent to behave ef®ciently in the real world. The

main idea that we will elucidate throughout this chapter is that

recognition can be drastically simpli®ed by allowing an agent to

manipulate the object it is supposed to recognize, or, in other

words, when the system-environment interaction is exploited.

Another issue relates to the system's domain ontology. The object

models and thus the categories in the information processing

framework are ®xed a priori. This means that the ontologyÐa high-

level ontologyÐof the system is ®xed. In the particular example

used above, the system knows only about chairs and cars and is

unable to deal with other categories, such as airplanes or houses.

Note that there is in fact no need for the system to do so, since it

does not have to rely on the categories to recharge its batteries, for

example. If that were the case, then the system would be in trouble,

because its categories are not grounded in its own experience with

the objects. Rather, the designer has de®ned the categories for the

system.

Problems and Issues

We have seen that the information processing framework de®nes

categorization in terms of mappings of sensory stimulation onto

internal representation. In the ALCOVE model, this involves the

mapping of an input pattern to a category node, and in machine

vision it involves the mapping of an image onto an internal object

model. We see again and again that the main problem with these

models from an embodied cognitive science perspective is their

neglect of the system-environment interaction. Before discussing

this in more detail, however, we have to address two issues. The

®rst relates to the frame-of-reference problem, and the second con-

cerns the question of why categorization is such a hard problem in

the ®rst place. Let us start with the frame-of-reference problem.
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THE FRAME-OF-REFERENCE PROBLEM

We are interested in how agents (as complete, embodied systems)

perform categorization tasks in the real world. Our main question is

the following: What are the underlying mechanisms of a particular

behavior that we term ``categorization'' or ``category learning''?

When looking for these mechanisms, we have to take the frame-of-

reference problem into account. The description of a behavior in

terms of categories that an agent ``has'' does not imply that the

mechanisms that generate this behavior actually employ explicit

category representations (such as category nodes or prototype

models).

Let us take an example. We observe an infant picking apples from

a table while leaving the newspapers. We say that his behavior is

based on a category that we might want to call ``apple.'' Note that

this is an attribution made to the infant by an observer. Moreover,

it is an attribution to the infant as a whole, not of one part of the

infant, say its brain. We do not have to postulate any kind of rep-

resentation in order to describe its behavior. Thus, if an agent con-

sistently displays one kind of behavior when it encounters one type

of object but not when it encounters other objects, it is reasonable

to say that the agent somehow has means of categorizing that object

type. If an infant initially picks different kinds of things off the table

and over time only chooses apples, we say that it has learned the

category that we call ``apples.''

How this change comes about is an entirely different issue. In

this chapter, mechanisms are introduced that lead to categorization

behavior. It is then of interest to correlate behavior and internal

mechanism to deepen our understanding of how this behavior

comes about. In sum, we have to be very careful in distinguishing

our description of an agent showing categorization behavior from

and our hypothesis about the underlying mechanisms.

THE OBJECT CONSTANCY PROBLEM

One of the main reasons why categorization in the real world is

hard is the object constancy problem, that is, the problem of deter-

mining what parts of the input belong to one and the same object.

The problem is hard because the same object can lead to a very

large number of different input patterns depending on the viewing

angle relative to the object, the lighting conditions, noise in the

sensors and so forth. Let us brie¯y illustrate the problem with an

example. In an experiment by Moses et al. (1994) human subjects
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had to recognize face images from different individuals, different

views (®ve per individual), and different illumination conditions

(four per individual). The conditions were such that when com-

pared (using various similarity measures) the differences in the

images of one individual induced by changes in the viewing

conditions were larger than the differences between different

individuals. Humans, who had to recognize those same images,

nevertheless had a very high (97 percent) recognition rate when

trained with a single image of each one of the individuals and

tested on all other images.

The object constancy problem makes the categorization of real-

world objects a very dif®cult task for robots or any other arti®cial

recognition system. Humans, however, have no problem whatso-

ever in solving these problems. In fact, we are hardly aware of them

because we categorize seemingly without effort even such complex

patterns as faces, houses, animals, and the like. So why do agents

in the approaches summarized above have such dif®culties in

categorizing even the simplest stimuli?

At the beginning of this section we suggested that the main

problem from an embodied cognitive science perspective is

the neglect of system-environment interaction in the traditional

approaches to object recognition and categorization. Let us look at

an example that supports this idea.

Nol® (1996) studied a robot whose task was to distinguish

between walls and target objects (small cylinders). In other words,

the robot faced a category-learning problem: It had to learn to dis-

tinguish between walls and targets, a seemingly trivial task. Sen-

sory data from walls and target objects were collected by placing

the robot (re¯ecting our generic robot architecture) in front of them

and storing the activations of the IR sensors for 180 different ori-

entations and for 20 different distances. These data were then used

to train a back-propagation network to categorize the two types

of objects. Three types of network architectures were used: a two-

layer network with six input neurons (one for each IR sensor) and

one output neuron (coding walls by responding with a 0 and targets

by responding with a 1), and two architectures in which an addi-

tional layer of four and eight hidden neurons, respectively, were

added. The networks received the collected sensory data at their

input layer, and were to learn to respond appropriately by activat-

ing the output node for sensory data originating from targets, and

by being silent when data from the walls were presented. Note
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that this essentially corresponds to the approach taken by most

connectionist models of categorization, according to which catego-

rization involves mapping sensory patterns onto category repre-

sentations (the output node). There is no motor component, and

thus no sensory-motor coordination.

The results of these experiments in spite of the apparent sim-

plicity of the problem, showed a very poor categorization perfor-

mance. Networks with no hidden units correctly categorized 22

percent of the patterns, and networks with hidden units, on aver-

age, were correct in 35 percent of the cases. Adding four extra

hidden units did not improve performance. The main reason for

this poor performance is the ambiguity in the sensory data, as

can be seen in ®gure 12.7, which depicts positions from which the

networks categorized correctly the sensory patterns as a function of

the distance and the angle of the robot relative to the objects.

Two important points need to be noted with respect to the data

shown in ®gure 12.7. First, because only the front sensors were

used, categorization could not be achieved beyond an angle of

G120�: there were simply no sensors. Also, at a distance greater

than about 35 mm, categorization was not possible because of

the limited range of the IR sensors. In all other cases, the sensory

data were ambiguous, and the network could not categorize them

appropriately. Second, note that the two ``wings,'' representing

correct categorizations, are not symmetrical, implying that the

sensors on the left and on the right of the robot, despite being

physically and electronically identical, responded differently. Such

a result would not have occurred in a simulation study.

In sum, back-propagation networks similar to the ALCOVE

model performed very poorly for the two categories. We return to

this study below where we discuss the alternative solution to this

categorization task that Nol® describes, which involves the evolu-

tion of the control architecture by means of genetic algorithms.

TYPE-1 AND TYPE-2 PROBLEMS

So why is it so dif®cult for an agent to learn about categories in the

real world by trying to learn a mapping from sensory patterns to an

internal representation (e.g., a category node)? In essence, it is dif-

®cult because of the large input space and the ambiguities due to

the above-mentioned object constancy problem. Clark and Thornton

(1997) introduced the concept of type-2 problems to denote data

sets for which the mapping from input to output cannot be
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extracted by means of learning algorithms or statistical procedures.

An example of a mapping that cannot be learned is Nol®'s experi-

ment: Wherever the area in ®gure 12.7 is white, the mapping from

sensory stimulation to category (cylinder or wall) cannot be

learned, that is, category learning cannot be achieved. Whenever

the mapping can be learned from the input data directly, the data

are said to be of type 1. Often, type-2 problems can be transformed

into type-1 problems.

An example is given in table 12.1. The ®rst table (a) shows a

mapping from input �x1; x2� to an output �y�. The problem with the

Figure 12.7 Distances (y-axis) and angles (x-axis) from which the back-propagation network is
able to categorize the sensory patterns correctly. A black dot indicates correct cate-
gorization at a particular distance and angle. The top panel shows the results for the
network without hidden units, the center and bottom panels for networks with a four-
neuron and an eight-neuron hidden layer, respectively. (From Nolfi 1996, reprinted
with permission.)
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data set shown in the table is that the output cannot be predicted

from the input and thus, there is nothing to be learned. For exam-

ple, the conditional probability that y � 1 given that x1 � 1 is 0.5

(in the ®rst and the last row x1 � 1 but y is 1 in the ®rst row and 0

in the last). However, if we apply the following transformation, a

simple subtraction to the data x3 � x2 ÿ x1, we ®nd that all the

conditional probabilities are 1. For example, if x3 � 0 then y � 0,

etc. In other words, after the transformation there is a well-de®ned

mapping form input (e.g., x3) to output �y�, and thus this mapping

can easily be learned. A type-2 problem (table 12.1a) has been

transformed into a type-1 problem (table 12.1b). The dif®culty is

that in general the appropriate transformation is not known a priori

but rather has to be found.

Table 12.1 Illustration of type-1 and type-2 problems (after Clark and Thornton 1997).

a.

x1 x2 y

1 2 �) 1

2 2 �) 0

3 2 �) 1

3 1 �) 0

2 1 �) 1

1 1 �) 0

b.

x3 y

1 �) 1

0 �) 0

1 �) 1

2 �) 0

1 �) 1

0 �) 0
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We can now reformulate the core problem of categorization as

follows: The main problem in category learning of real-world

objects is to turn type-2 problems into type-1 problems.

There are two main strategies for achieving this. First, the inter-

nal processing of the input can be improved. Clark and Thornton,

for example, suggest that the appropriate transformation, that is,

the one that transforms the data into a type-2 problem, might be

achieved by what the organism has already learnedÐan attractive

idea that will of course have to be elaborated in more detail.

The second approach for transforming type-2 into type-1 prob-

lems is directly derived from the basic tenets of embodied cognitive

science and consists of exploiting processes of sensory-motor co-

ordination. The idea is that through sensory-motor coordination a

mobile agent can actively structure its own sensory input by

manipulating the world. We show that this manipulation can serve

to transform the former type-2 problem into a type-1 problem. Let

us add a note on terminology. Assume that the robot approaches

a cylinder. At every time step you can record its sensory data.

Because the robot's distance and relative orientation to the object

changes continuously, there will be a lot of variation in the sensory

data recorded. However, because the sensory data originate from

the same object, it should be possible to extract a common property

or invariance in these patterns. Stated differently, an invariance is

a property of the input data that remains constant as the data

changes. If this invariance could be found by means of a learning

mechanism or statistical procedure, the categorization problem

could be solved. Alas, this would only be possible if the data were

of type 1. Using this terminology, sensory-motor coordination

serves the purpose of generating invariances.

12.2 The Sensory-Motor Coordination Approach

The concept of sensory-motor coordination is of fundamental

importance in embodied cognitive science. We devote the rest of

this chapter to summarizing the main ideas, approaches and results

relating to this concept.

The Concept of Sensory-Motor Coordination

We have seen that the traditional way of approaching the catego-

rization problem has had only limited success. We concluded our
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summary of the main reasons underlying this state of affairs with

the suggestion that (a) the core challenge in category learning is

transforming the input space such that categories can be learned

(object constancy problem), and that (b) this problem can be

approached through appropriate means of interacting with the

environment, i.e. through sensory-motor coordination, and our goal

in this section is to clarify what we mean by that term.

PERCEPTION, ACTION, AND THEIR INTERDEPENDENCY

The underlying idea behind sensory-motor coordination is best

illustrated by a quote from American philosopher and psychologist

John Dewey, who recognized the problem a long time ago and pro-

vided inspiration for our work.1 Dewey ®rst presents the standard

view that starts from sensory stimulation, goes on to internal pro-

cessing, and ®nally generates an action (i.e., what we have called

the sense-think-act cycle). Here is the alternative he suggests:

``We begin not with a sensory stimulus, but with a sensorimotor

co-ordination. . . . In a certain sense it is the movement which is

primary, and the sensation which is secondary, the movement of

the body, head, and eye muscles determining the quality of what is

experienced'' (Dewey 1896/1981, pp. 127±128). Dewey's claim is

that perception and action are tightly coupled, and he calls this

coupling ``sensory-motor coordination.'' This general idea of a

close link between perception and action is at the core of the

very in¯uential theory of perception developed by Gibson (1966;

see focus 12.1) and has recently gained increasing attention in

a number of disciplines such as developmental psychology (e.g.,

Thelen and Smith 1994), cognitive psychology (e.g., Glenberg

1996), neurobiology (e.g., Edelman 1987) and neuropsychology

(e.g., Milner and Goodale 1995). It is also supported by recent work

on the primate visual system and the human visual system. For

example, Douglas, Martin, and Nelson (1993) concluded in their

review of recent ®ndings on the primate visual system that vision

should not be viewed as passive information processing but rather

as an active integrated sensory-motor event. Milner and Goodale

(1995) have also stressed the point that vision has evolved to sub-

serve action in the real world and should be viewed as a process of

sensory-motor coordination.

1 We are grateful to Bill Clancey for drawing our attention to the work of John Dewey.
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Focus 12.1: Gibson and Embodied Cognitive Science

The theory of direct perception (sometimes also called ``ecological optics''),
developed by American psychologist J. J. Gibson (1966), is still very
influential and is considered by many (e.g., Gordon 1989) to be among the
most interesting theoretical developments in perception research. According
to this view, perception cannot be studied in isolation but rather the organism
must be studied as it acts (perceives) in its natural environment. The same
point is at the core of design principle 1, the three constituents principle.
Moreover, perception is not a matter of a passive module processing
information, rather, ``Perceiving is an act, not a response, an act of attention,
not a triggered impression, an achievement, not a reflex'' (Gibson 1979,
p. 68). Note the similarity to John Dewey's quote above. Similar to Dewey,
Gibson's theory of direct perception stresses the fundamental importance of
action in perception and criticizes the distinction between sensory and motor
aspects of behavior. This is one core aspect of the concept of sensory-motor
coordination. However, there is an important difference to Gibson's view.
Gibson sees these invariances as being provided by the environment itself. For
example, consider the following problem. How can an observer determine
whether two objects of the same phyiscal size but at different distances from
the observer are in fact the same size? It can be shown that there is an
invariance that is directly perceivable from the environment (Gordon 1989).
The ratio of an object's height to the distance between its base and the horizon
is constant across all distances from the observer (see figure 12.8). Because
this invariance is contained in the environment, it is directly reflected in the
agent's sensory data. In conclusion, whereas some invariances may indeed be
contained in the environment, in general, the agent must generate these
invariances through processes of sensory-motor coordination.

Figure 12.8 Solution of the size constancy problem based on invariants in the environment. If
a : b � a 0 : b 0, then A and B are the same size. (Adapted from Gordon 1989, p. 158.)
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CHARACTERIZATION AND PURPOSE OF SENSORY-MOTOR

COORDINATION

Initially we pointed out that sensory-motor coordination is not

simply synonymous with behavior. For example, a robot turning

about its own axis is not engaged in a sensory-motor coordination

because the sensory patterns it generates through its behavior do

not guide its behavior in a way that leads to stable sensory-motor

patterns. The data from such behaviors are in general not very

interesting and useful, as a case study by Dedieu and Mazer (1992)

illustrates. Also, simply hitting an object is not an instance of

sensory-motor coordinationÐthe sensory stimulation and the

robot's behavior do not lead to a stable sensory-motor pattern:

merely a re¯ex is triggered. Dedieu and Mazer (1992) developed

a robot that rotated at varying speeds around its own axis and

recorded the resulting input from its photosensors. They then ana-

lyzed the motor speeds and the sensory data recorded to ®nd cor-

relations between the two streams of data that would reduce the

dimensionality of the input space. This seems similar to the core

idea underlying the concept of sensory-motor coordination. The

authors noted that the results were disappointing and concluded by

suggesting that if the data had been preprocessed in appropriate

ways they might have found correlations. The problem is, however,

at a more fundamental level: Dedieu and Mazer's robot did not

really interact with its environment to ful®ll some task (see

Hendriks-Jansen 1996, p.p. 172ff, for a similar conclusion). The

control of its actions is entirely within the agent itself. Recall that

the fundamental mechanism by which the Distributed Adaptive

Control robot introduced in chapter 5 learned about obstacles

was an association between activities of two modalities, collision

sensing and proximity sensing, by means of a Hebbian learning

rule. This worked because of the temporal correlation of these

activations due to a collision with the object. Note that unlike

Dedieu and Mazer's agent that merely turned around its own axis,

the sensory patterns in the DAC agent result from a coupling with

the environment, the collision. We will refer to this kind of simple

coupling as direct coupling.

In contrast to these examples, sensory-motor coordination

involves object-related actions used speci®cally to structure the

sensory space for the purpose of learning about an object. This is

an active process whereby the agent manipulates its own sensory

input to simplify the problem of category learning. For example,
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human infants often explore objects by moving them in front of

their faces at a ®xed distance (Bushnell and Boudreau 1993), which

automatically ``normalizes'' the size. This seems a really clever

thing to do, because it drastically simpli®es the object constancy

problem: The object is always viewed from the same distance.

Moreover, systematic rotations of the object generate additional

correlations that the infant can exploit for learning. Another exam-

ple is the circling behavior of the SMC I agent that we discuss

below. SMC I agents learn about objects by circling around them,

thereby generating correlations in their input space. This circling

behavior is similar to object rotation at a ®xed distance: the agent

structures its own input by appropriate ways of coupling with the

object. Other examples that we discuss in more detail below are the

moving-back-and-forth behavior of the agent implemented by Beer

(1996) and the contour-following behavior of Edelman's (1987)

Darwin II agent.

There is one problem, however, that we have not addressed so

far. By introspection, of our own perceptive processes, we under-

stand that an agent does not have to execute an sensory-motor co-

ordination with respect to an object for the agent to be able to

reliably categorize that object. For instance, we can look at a bottle

and immediately recognize it without having to interact physically

with the bottle. While this phenomenon is not yet fully understood,

there is a lot of evidence that sensory-motor coordination plays its

main role in category learning (e.g. Thelen and Smith, 1994). This

can be seen in infants' physical interactions with objects as their

fundamental strategy for learning about objects. Even adults often

resort to this type of interaction when confronted with objects they

have never seen before.

Evolved Sensory-Motor Coordination

To reveal further details of the mechanisms underlying sensory-

motor coordination, we now discuss a number of examples in more

detail. So far we have argued that cognitive processes such as

perception, categorization, or memory are best viewed from the

perspective of sensory-motor coordination. An interesting way to

further investigate the advantages or disadvantages of sensory-

motor coordination for categorization is to employ the evolutionary

approach described in chapter 8. Consider the generic robot intro-

duced in chapter 5. Recall that this robot has a left-right symmetry,
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a number of proximity or distance sensors, and two wheels that can

be individually driven. How can we enable a robot with such a

simple sensory system to categorize objects in its environment?

One approach is to hand-craft means of sensory-motor coordina-

tion, that is, appropriate ways of interacting with an object, and

have the robot learn the resulting sensory patterns. This approach

is adopted in the SMC agents presented below. Another way is to

evolve the entire control architecture. Individuals that achieve a

high percentage of correct categorization have a high ®tness and are

more likely to be included in the next generation. In this way, the

following issue can be addressed: What strategy proves to be the

®ttest, that is, achieves the best categorization performance? Based

on the arguments introduced above, we predict that whatever

strategy emerges as the ®ttest must include mechanisms of sensory-

motor coordination. An alternative hypothesis, derived from the

information processing framework, is that the best strategy involves

a mapping from sensory patterns to an internal representation of

the categories.

These issues have been addressed in studies by Nol® (1996) and

Beer (1996). The surprising result of both studies is that the evolu-

tionary process resulted in behaviors that exploited mechanisms of

sensory-motor coordination to learn about the categories.

CASE STUDY I: LEARNING TO DISTINGUISH BETWEEN OBJECTS

AND WALLS

Let us ®rst look at the Nol® study. We referred to one part of this

study above. There the point was that a back-propagation network

could not learn to distinguish between target objects (small cylin-

ders) and walls. Here we summarize the alternative approach that

Nol® implemented to approach the problem of learning to distin-

guish between walls and objects. Nol® used a genetic algorithm to

evolve a neural controller able to perform the required catego-

rization task. Individuals were evolved in simulation, using the

same sensory data as in the experiments with the back-propagation

networks; that is, real sensory data were used to drive a simulated

robot. The evolved individuals were then downloaded onto the

physical robot (a Khepera robot) to test their capability of operating

in the real world. The process began with 100 randomly generated

genotypes, each representing a network with a different set of

randomly assigned connection weights from input to output layer.

Each generation was allowed to operate for ®ve epochs consisting
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of 500 actions each. At the beginning of each such epoch, the robot

was randomly placed in the environment at some distance from the

target object. After the ®fth epoch, individuals were allowed to

``reproduce'' as follows. The networks of the 20 ®ttest individuals

were copied ®ve times, resulting in 100 (20 � 5) new individuals

that constituted the next generation. Random mutations were

introduced in this reproduction process. Overall, 100 generations

were evolved. Fitness was computed by measuring the number of

cycles an individual spent at a distance less than 8 cm from the

target object. Three network architectures were used: networks

without hidden units and those with four or eight hidden units. On

average, networks without hidden units were found to be able to

solve this task better than the ones with hidden units (Nol® 1996).

As Nol® pointed out, this might relate to the fact that additional

hidden neurons require longer genotypes and thus increase the

genetic algorithm's search space. Let us summarize the behavior of

the evolved robots. Individuals never stop once they are in front of

the target. Rather, they start to move back and forth as well as

slightly to the left- and right-hand side, thereby keeping a ®xed

range of angles and distances with respect to the target. In other

words, the evolutionary process has produced a mechanism of

sensory-motor coordination to solve the categorization (®gure 12.9).

This study demonstrates not only how sensory-motor coordina-

tion can be used to enable a robot to categorize objects in its envi-

ronment, but also how such a behavior actually evolves in robots

faced with a categorization task. Using the terminology introduced

above, we can describe the behavior of these agents as generating

Figure 12.9 Categorization of sensory patterns after evolution. The gray area represents the
sensory patterns which could be categorized correctly using the back-propagation
networks (same data as shown in figure 12.7). The black area indicates the relative
positions (angle and distance) that a typical evolved agent assumes when it reaches
a target. Note that this area is very small and also contains regions where the back-
propagation networks did not categorize correctly. (From Nolfi 1996, reprinted with
permission.)
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type-1 data. Had they not engaged in a sensory-motor coordination,

the sensor data would have been of type 2 and they would not have

made the distinction. This can also be seen in ®gure 12.9, which

shows the relative positions a typical agent has assumed with

respect to a target (the black area in the ®gure). Note that the agent

has assumed only a small part of all possible positions, thus

reducing the resulting sensor space signi®cantly. Note that agents

recognized objects from positions where the back-propagation

networks failed, implying that the strategy of sensory-motor coor-

dinationÐin this case moving back and forth, as well as moving to

the left and to the right in front of the objectÐdiscovers regions in

sensor space where the categorization is possible. This detection of

regularities through active manipulation of the world is at the core

of the concept of sensory-motor coordination: Through sensory-

motor coordination, the agent generates ``good'' data, that is, data

from which categories can be distinguished.

CASE STUDY II: LEARNING TO DISTINGUISH CIRCLES AND

DIAMONDS

In another study, Beer (1996) obtained very similar results. Beer

also evolved agents that had to solve a categorization task. More

speci®cally, the agents had to discriminate between circles and

diamonds, catching (moving close to) circles while avoiding the

diamonds. The study was conducted in simulation; Figure 12.10

shows the experimental setup. The agents could move horizontally.

ObjectsÐdiamonds and circlesÐwere falling from above, from

starting points with varying degrees of horizontal offset from the

initial position of the agent. The neural network that controlled

these agents was evolved using a genetic algorithm. (See Beer 1996,

for details on this algorithm.) The network consisted of ®ve fully

interconnected neurons that received input from a number of dis-

tance sensors on the agent and were connected to two motor neu-

rons (for operating the motors for moving left or right).

How did the agents solve the categorization task in these experi-

ments? Figure 12.11 depicts the main results. They can be sum-

marized as follows. The robot, when confronted with a circle or a

diamond, ®rst centered the object (®rst 20 time units). The robot

then actively scanned the object until about 40 time units, and then

either centered the object, in the case of circles, or avoided it, in

the case of diamonds. This is another example of how sensory-

motor coordination (centering, active scanning) can help simplify

categorization. In this case, the agent reduces the sensor space by
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assuming a standard position with respect to the object it has to

categorize. In other words, as Beer put it, ``this agent is not merely

centering and then statically pattern-matching an object. Rather, its

strategy seems to be a dynamic one, with active scanning appar-

ently playing an essential role'' (1996, p. 426). Again, we suggest

that sensory-motor coordination transforms the sensor space in

such a way that regularities become apparent and objects can be

learned. Based on this mechanism, all objects could be catego-

rizated correctly (Beer 1996). Note also that as in the case of the

Nol® study summarized above, this solution has not been hand

crafted, but rather has emerged out of an evolutionary process.

In sum, the Nol® and Beer experiments reveal that agents

evolved to solve a category-learning problem employed mecha-

nisms of sensory-motor coordination to solve the task and did not

try to learn a mapping from input patterns to internal representa-

tions while standing still. The underlying reason is that in the latter

case the problem is of type-2. However if the agents apply a

``trick''Ðthe one to which the evolutionary methods used in the

experiments converged, that is, sensory-motor coordinationÐthe

problem is of type 1. We suspect that very similar processes were at

work in natural evolution, leading to the types of sensory-motor

Figure 12.10 Setup of Beer's experiments. The agent is equipped with a number of rays (shown as
dotted lines) with which it can measure distance from objects. Objects enter the en-
vironment from above and then move toward the agent. The agent can move hori-
zontally left and right. The task of the robot is to discriminate between circles and
diamonds. (Adapted from Beer 1996, p. 425.)
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coordination we can observe in animals and humans. We now look

at two examples in which this idea can be further pursued.

The Darwin II Model

The Darwin series of models was developed by Edelman and his

coworkers (see Reeke et al. 1989). We focus on Darwin II because it

explicitly addresses categorization. Darwin II incorporates impor-

tant aspects of the principle of sensory-motor coordination and of

the redundancy principle as well. In chapter 14, we discuss its

successor, Darwin III, as an example of the value principle and

value-based learning.

CATEGORIZATION AND THE THEORY OF NEURONAL GROUP

SELECTION

Before going into the details of Darwin II, we need to discuss

Edelman's conceptualization of categorization, derived from his

Figure 12.11 Results from Beer's categorization experiments (1996). The two figures represent
plots of the horizontal positions (y-axis) over time (x-axis) of an evolved agent that
could categorize circles and diamonds. The agent's path is indicated as a solid line,
that of the object as a dashed line. (a) Path of the agent catching a circle. The agent
categorized the object by staying close to it, as indicated by the overlap of the
agent's and the object's path after about 43 time units. (b) Path of the agent avoiding
a diamond (reprinted with permission).
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Theory of Neuronal Group Selection (TNGS). The theory applies

evolutionary thinking to development. It was formulated as an

alternative to information processing models of mind. It tries to

explain how perception, categorization, memory and learning can

emerge from processes of system-environment interaction and how

learning can occur without assuming that there is a homunculus in

the brain or that the world presents itself in prede®ned categories.

According to the theory, a selection mechanism is applied to

assemblies of neurons, the neuronal groups, in the brain. The brain

acquires its ability for mental capacities such as categorization as a

result of this selection from a large population of structures result-

ing from the organisms's development. Note that the term ``selec-

tion'' is not used in the same way as in evolutionary theory. In the

latter context, the timescale transcends the individual, whereas in

the TNGS, the term applies to ontogenetic development. The term

somatic selection is sometimes used to make this point explicit.

Three main claims underlie the TNGS:

1. Developmental selection: The neural structure is an epigenetic

result of prenatal development. Epigenetic means that the phe-

nomenon is not under genetic control. Because development is

epigenetic, the connections among the cells cannot be precisely

prespeci®ed in the genes. Genetic activity only partly determines

the diverse anatomical connectivity. This connectivity is the result

of cell division, cell movement, and cell differentiation during

embryonic development. By birth, cortical cells are arranged in

a large number of highly diverse neuronal groups. This ensemble of

neuronal groups is called the primary repertoire.

2. Experiential selection: After birth, the neural structure is basi-

cally ``in place.'' During postnatal development the focus is on

modifying the strengths of synaptic connections both within and

between neuronal groups of the primary repertoire, a process that

results in the so-called secondary repertoire. The strengthening and

loosening of synaptic strengths depends upon the correlation of

neuronal activities with sensory and motor signals.

3. Reentrant mapping: Connections must be established between

those groups created in the secondary repertoire and those parts of

the nervous system that make the ``connection'' to the outside

world, namely the sensory and motor systems. The term ``reentry''

denotes the recurrent anatomical connections between sensory and

motor areas. Recurrent connections are necessary to account for

category learning.
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The main goal of the TNGS is to understand the biological basis of

categorization by studying how an organism can behave adaptively

in an unlabeled world. The general framework that Edelman pro-

poses overlaps signi®cantly with the principle of sensory-motor

coordination by suggesting that the results of motor activity are

an integral part of categorization: ``While sensation and perhaps

certain aspects of perception can proceed without a contribution of

the motor apparatus, perceptual categorization depends upon the

interplay between local cortical sensory maps and local motor

maps. . . . The strongest consequence of this assumption is that

categorization cannot be a property of one small portion of the

nervous system'' (Edelman 1987, p. 210). Edelman suggests that

categorization involves not only the brain but also the sensory-

motor apparatus, a key implication of the principle of sensory-

motor coordination. The essential mechanism of categorization in

Edelman's theory is a parallel sampling of the environment by

multiple sensory maps within the same modality and between dif-

ferent modalities. This sampling is a process of sensory-motor co-

ordination in which various maps pick up different, but temporally

correlated, signals from the environment. These correlations play a

fundamental role in categorization. Thelen and Smith point out

that ``this perfect temporal association of multimodal information

is perhaps the only perceptual invariant that spans all ages, con-

texts, and modalities. We believe, with Edelman, that this correla-

tion is the primary link between the mind and the world'' (1994,

p. 149). This is very close to what we said earlier in our discussion

of the concept of sensory-motor coordination: Sensory-motor coor-

dination structures the high-dimensional sensor space by inducing

regularities in that space. The temporal correlation of signals in

many modalities, generated by interacting with an object, is the

most basic example of such regularities.

Edelman views categorization as the most signi®cant of mental

activities. In the simplest case, categorization is a process of phys-

ically relating two functionally different neural maps by reentrant

connections in so-called classi®cation couples (®gure 12.12). A

feature detection system and a feature correlation system extract

information about the environment. Whereas the feature correla-

tion system responds to category properties of an input (e.g., char-

acteristics of the letter ``A''), the feature detector system responds

to aspects of each individual stimulus (e.g., particular instances of

the letter ``A''). These networks respond to local properties of the
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stimulus only; that is, only parts of the input activate them. The

feature correlation system responds to larger-scale correlations of

features such as T-junctions by tracing objects by motion with eyes

or ®ngers. The two systems are linked through reentrant weights,

thus linking individual and category properties of stimuli. Thus the

maps resulting from the two systems respond to different signals.

However, they are connected via reentrant synapses in such a way

that each map is also mapped to the other one, allowing the parallel

simultaneous sampling of distinctive characteristics of a stimulus.

These ideas are best exempli®ed with an example.

THE DARWIN II MODEL

Darwin II is a simulated agent equipped with a simple sensory

system with which it can extract basic features of objects. In addi-

tion, it can trace objects with a simple effector system. Its task is to

learn alphabetic letters. This task is not very illuminating from an

autonomous agents perspective because the system does not really

have to rely on or use the categories to solve a particular task, and

therefore the categories are of no particular value for the system. It

is, however, a good illustration of how letter categories can be

learned based on sensory-motor coordination and principles of

nonsupervised learning. Remember that the idea of explicit teach-

ing of categories, that is, supervised learning, dominates connec-

tionist categorization models. In contrast, categories Darwin II

acquires are not explictely represented within its memory, and the

Figure 12.12 A classification couple linked through reentrant connections. The two feature maps
(MAPI, MAP2) extract information about the environment in parallel. The feature
detector system extracts basic features such as edges, lines, curves and orientations
of objects. The feature correlation system responds to larger-scale correlations of
features such as T-junctions by tracing the motion of objects with eyes or fingers.
Because the two systems are linked through reentrant weights, individual and cate-
gory properties of stimuli are linked.
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system learns about the categories by interacting with them. Figure

12.13 offers an overview of Darwin II's architecture.

Darwin II's architecture is an instantiation of the general frame-

work summarized above (®gure 12.12). Darwin II consists of two

systems, called ``Darwin'' and ``Wallace,'' that comprise four neural

networks in all. They are organized in two layers, and both receive

their input from an input array, which Darwin and Wallace process

simultaneously. In other words, they are redundant: they are sepa-

rate and independent (one is not built out of the other), but they

extract partially overlapping information about the input. Darwin

II's real categorization power comes from coupling these two sepa-

rate processes via modi®able weights that are adjusted based on the

overlap or correlation between activity in Darwin and Wallace. Let

us look at this in more detail.

The main purpose of Darwin is to extract features such as lines,

orientations, and curves of incoming letters, which it accomplishes

by means of two layers, R and R-of-R. The R layer consists of a

number of identical-feature-analyzing networks, each of which

extracts the same features (lines, orientations, line terminations,

ect.) from different locations of the input pattern. These networks

thus respond only to local properties of the stimulus. In other

words, they are activated only by parts of the input, such as a line

Figure 12.13 An overview of Darwin II.
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segment of the letter A. The R layer is connected to the R-of-R layer,

whose purpose is to respond, by connecting each group of neurons

in the R-of-R layer with numerous input connections from ran-

domly selected neurons in R, to nonlocal combinations of the

strictly local features the R layer extracts.

The Wallace pathway has the same two-layered structure as

Darwin, but whereas Darwin maps the input letter to combinations

of features, Wallace's main task is to map the input letter to the

movement sequences of a continuous tracing of the letter. Wallace

``interacts'' with the letter by tracing its contours by hypothetical

eye or arm movements. (Only the resulting activations but not the

movements themselves are simulated.) Wallace works as a ®nger

does in tracing an object's edges. The tracing is accomplished by

Wallace's ®rst layer, the Trace layer, implemented as a separate

computer simulation that simulates the tracing. It does not consist

of groups of neurons, but rather simulates the sensory input of

a ®nger tracing objects. It responds to large-scale correlations of

features, such as T-junctions. In other words, the tracing move-

ments provide information about a letter's global shape and make

Wallace's responses independent of translations and rotations of

the stimulus. As a result of the tracing movement, a set of ``virtual''

groups (G1; . . . ;G27 in ®gure 12.13) is activated. (These groups are

referred to as ``virtual'' because they are connected to the separate

simulation system rather than other neuronal groups.) These vir-

tual groups are connected to the next higher layer, called RM. RM

responds to the activity in the Trace system in a similar way to that

in which R-of-R responds to activity in the R layer. This makes RM

even more independent of distortions of the stimulus. Put differ-

ently, RM responds to category properties of an input (e.g., charac-

teristics of the letter ``A''), whereas R-of-R responds to aspects of

each individual stimulus (e.g., particular instances of the letter

``A'').

Let us now discuss how the different aspects of letters extracted

by Darwin and Wallace become related. Reentrant connections

between layers R-of-R and RM link the Darwin and Wallace path-

ways (``Reentrant'' means simply that the connections go from

R-of-R to RM as well as from RM to R-of-R.) We have seen that the

two independent samplings by the Darwin and the Wallace path-

way process qualitatively different aspects of the input: Darwin

responds to characteristics of an individual stimulus, whereas

Wallace responds to characteristics of the category to which a
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stimulus belongs. The activity of the two pathways is, however,

correlated, because they process the same input in parallel. The

resulting correlations are extracted by a simple Hebbian rule that

strengthens the reentrant connections. If a particular group in R-of-

R responds strongly, and at the same time a group in RM is strongly

activated, these two groups are associated by Hebbian learning.

Darwin II is an example of how categorization can occur in a self-

organized way by means of exploiting both sensory and motor

processes. Notice the difference in comparison to the traditional

models discussed earlier. There is no explicit category representa-

tion onto which sensory stimuli are mapped. Rather the system

learns to categorize by interacting with the objects in appropriate

ways. As Thelen and Smith (1994) pointed out, one prediction that

can be derived from this system is that letter tracing should in¯u-

ence feature analysis. In other words, the letter categories should

depend on the motor movements involved in tracing them, with the

implication that if you wrote from right to left instead from left to

right, you would accept different physical stimuli as instances of,

say, the letter ``A.'' Empirical data in fact supports this prediction.

(See discussion in Thelen and Smith 1994.)

Darwin II is a simulation model. Let us now turn to a case study

which used physical robots to study categorization from the per-

spective of sensory-motor coordination.

12.3 Case Study: The SMC Agents

We now present a series of agents that we call the SMC (for

sensory-motor coordination) agents. These agents implement the

concept of sensory-motor coordination on various levels. The task

of these agents is to learn to collect some types of objects (e.g.,

small ones) while ignoring others (e.g., large ones). In order to solve

their task, they have to be able to make distinctions between vari-

ous types of objects; that is, they must be able to categorize the

objects in their environment. The SMC I agent is a ®rst attempt to

equip a robot with the ability to categorize based on the notion of

sensory-motor coordination. Extensive experimentation with these

agents revealed that they have certain de®ciencies. To illustrate the

design process, we report these de®ciencies here: The de®ciencies

are equal in importance to the achievements in terms of what we can

learn from them. They also motivate the next agent, SMC II, which

is implemented on a robot with a more complex sensory-motor
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setup, including a camera. Moreover, its categorization mecha-

nisms are different from those used in the SMC I models. SMC I and

SMC II will eventually lead to SMC III, a robot that can operate

outdoors: It is a ®rst step toward the overall goal of building a

garbage-collecting robot. The main aim in this section is not so

much to explain each and every detail of the individual agents but

rather to illustrate the power of the metaphor of sensory-motor

coordination in generating productive ideas that can be tested on

autonomous agents or in experiments with natural agents.

SMC I: Basic Categorization

The SMC I agent was developed to investigate basic categorization

behavior in the real world in a ®rst attempt to study how autono-

mous agents can make sense of an unlabeled world on their own.

ECOLOGICAL NICHE AND TASK

Again we must ®rst specify the agent's ecological niche and desired

behaviors. The desired behavior in the case studies presented here

was garbage collection, a task chosen because it involves all issues

pertinent to the study of categorization from an embodied cognitive

science perspective: In order to solve this task, the agent has to

learn about the objects it has to collect and to distinguish these

objects from others it should not collect. It has to learn this dis-

tinction based on its own interactions with the objects. The agent's

ecological niche was a ¯at environment with a home base to which

the robot had to bring the garbage it collected (®gure 12.14). Instead

Figure 12.14 The ecological niche of the SMC I agents. The environment contains both small and
large objects. The robot's task is to bring the small objects to a predefined location
(Home) and to learn to avoid exploring the large objects.
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of different types of garbage, the environment contained objects of

different sizes constituting the categories the agent had to acquire.

Two types of objects were used: small and large cylinders with a

height of 3 cm and 2 cm and a diameter of 1.5 cm and 4 cm, re-

spectively. The agent's task was to learn to bring the small objects

to the home base while avoiding the large ones. In all experiments,

®fteen objects of each category were randomly distributed over the

whole arena.

LOW-LEVEL SPECIFICATION AND PLATFORM

The de®nition of the task environment largely determined the low-

level speci®cation of the SMC I agents. The generic agent was used

because the ecological niche consisted of a ¯at, clean surface. The

robot had to grasp objects in its environment and bring them to a

home base. Thus, it needed means to pick up objects, which was

provided by equipping the robot with the two-degrees-of-freedom

arm-gripper system ®gure 12.15 shows. The arm of the gripper can

move through any angle from vertical to horizontal, whereas the

gripper can assume only an open or closed position. Position sen-

sors coupled with the respective motors can sense arm and gripper

positions. The arm position sensor takes on values from 0 (bottom

back) to 255 (bottom forward); the gripper position sensor registers

whether the gripper is open or closed. An optical barrier mounted

on the gripper can detect objects inside the gripper. The optical

barrier takes values from 0 (no object) to 255 (object presence).

Figure 12.15 The arm-gripper system used in the SMC I experiments. The arm of the gripper can
move through any angle from vertical to horizontal, whereas the gripper can assume
only an open or closed position. Arm and gripper positions can be sensed via posi-
tion sensors mounted in the respective motors. In addition, there is an optical barrier
inside the gripper that can sense the presence of objects.
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The SMC I agents used their IR sensors only to learn to categorize

the objects in their environment. Their sensory system was delib-

erately kept simple to obtain an ecologically balanced design. The

robot's effector system is relatively simple, consisting of two motors

and the arm-gripper system just described. In the case of the SMC II

agents, this arm-gripper system was controlled in relatively com-

plex ways, and this increased complexity made it possible to

achieve a balance with these agents' complex visual system (see

below). In the SMC I agents, however, the arm-gripper system was

controlled simply. Moreover, it was not used to explore the objects.

Following the principle of ecological balance, we therefore opted

to use simple IR sensors. Moreover, the fact that we used a very

simple visual system forced us to actually exploit mechanisms of

sensory-motor coordination and not rely on complex visual pro-

cessing to extract properties of the objects.

We have now described the low-level speci®cation of the robot's

motors and sensor system. The next step in running agent experi-

ments involves the design of a control architecture.

CONTROL ARCHITECTURE

We said in the previous chapter that a control architecture essen-

tially speci®es how the various parts of the low-level speci®cations

should be connected to produce a desired behavior. The desired

behavior here is garbage collection. One task in an autonomous

agent model of categorization is to combine the general control

architecture with the processes related to categorization: There is

no special categorization module. This is an important issue. Most

current models study categorization in isolation. Typically, the

experiments stop when the network has converged on one out of

a number of category nodes upon receiving some input. Such a

modular approach implies that a separate categorization module

would have to be implemented in the SMC agents. This approach,

however, does not comply with the design principle of parallel,

loosely coupled processes. From an autonomous agents perspec-

tive, categorization makes sense only with respect to the complete

agent, as is summarized by the principle of sensory-motor coordi-

nation. This poses the problem of how categorization processes can

be embedded in an agent's general control architecture. We used

the EBA approach discussed in the previous chapter. Figure 12.16

illustrates the control architecture.

Chapter 12 410



Remember that one of the EBA's fundamental characteristics is

multiple processes functioning in parallel. Let us now have a closer

look at the seven EBA processes used in the SMC I model: move-

forward, avoid-obstacle, turn-toward-object, grasp-

object, turn-away, and bring-to-nest. Each process is

described in more detail below, we ®rst need, however, to motivate

the general ideas underlying this SMC I architecture. Recall that

the task of this agent is to learn to distinguish between small and

large objects. More speci®cally, it should learn to collect small

objects and to avoid large ones using its sensors and its motor

system. It has only two types of sensors: IR sensors and wheel

encoders. Because it is moving around, it has to solve the object

constancy problem. How should the agent learn about the cate-

gories? One way to achieve this is by imposing some constraints

on the number of possible sensor states originating from the same

object. This can be done by having the agent generate spatio-

temporal correlations in the sensor space by interacting appropri-

ately with the object. In other words, the strategy is for the agent to

explore the object in such a way that the sensor readings are corre-

lated in time and correlations exist among different sensors. This is

the approach we have chosen for the SMC agents. In the case of the

SMC I agents, the sensory-motor coordination leading to a reduc-

Figure 12.16 Architecture of SMC I agent. Seven EBA processes run in parallel. The shaded areaÐ
concerned with learningÐis explained in detail in figure 12.25.
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tion in sensor space is circling. Instead of having the robot

approach the object from different angles and try to learn a map-

ping of the resulting sensor activation and some category node, we

let the robot circle around the objects. This circling behavior

induces high spatiotemporal correlations in the sensor patterns (see

below). It is equivalent to the object rotation behavior found in

human infants (Ruff 1984).

Before presenting results on the reduced sensor space, we need

to introduce the mechanisms underlying the circling behavior. We

mentioned that there is no simple one-to-one mapping between

behavior (e.g., circling) and the underlying mechanisms. Thus, we

do not want to design a ``circling'' module. Rather, we design

simple EBA processes the joint dynamics of which result in circling

behavior. The ®rst behavior with which we have to equip the agent

is the ability to move forward. Thus, there has to be a move-

forward process. The activity of this process is extremely simple:

A constant value is written to the motors, making the robot move

forward at a ®xed speed. We used the same process in the previous

chapter in the case study of the self-suf®cient garbage collector. In

addition to the move-forward process, we need again to de®ne a

process by which the robot can avoid obstacles such as walls. This

is the task of the avoid-obstacle process, which increases its

in¯uence on the speed variables as the robot approaches an obsta-

cle. Its implementation is very similar to the one presented in the

previous chapter.

In order to implement the circling behavior, the robot needs to

somehow move along the objects. This can be achieved by intro-

ducing a turn-toward-object process that runs in parallel with

the other two processes, move-forward and avoid-obstacle.

This process was implemented as follows: Whenever there was

lateral stimulation in a sensor, the agent turned slightly toward that

object, the intuition being that objects are more interesting than

open spaces. Such a re¯ex ensures that the agent has a tendency to

be near objects, thus increasing the probability for an interaction of

interest. This process is thus an instantiation of an implicit value.

An agent with this architecture normally moves forward, move-

forward process) and when it encounters an obstacle, avoids it by

turning away (avoid-obstacle process). At the same time, if it

senses stimulation in one of its lateral (left or right) sensors, it turns

slightly toward the object turn-toward-object process).
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The interaction of these three processes leads to a behavior that

we might call move-along-object, shown in ®gure 12.17. This

behavior is a form of sensory-motor coordination: Sensors and

motor actions are coupled via the basic processes. Note that there is

no move-along-object process or module represented inter-

nally, as the contributions of the individual processes to the cir-

cling behavior shown in ®gure 12.17 illustrate. The contribution of

the move-forward process is identical to that of the same pro-

cess in the garbage collector of chapter 11: A constant value is

continuously written onto the robot's motors. This makes the robot

move forward at a constant speed. A more interesting pattern is

evidenced in the contribution of the avoid-obstacle process

shown in ®gure 12.18. The amplitude of the contribution is large in

the case of large objects (®gure 12.18b), because large objects acti-

vate the IR sensors, and in turn, the avoid-obstacle process

more strongly. Figure 12.19 shows the contribution of the turn-

toward-object process. The contribution of this process

increases signi®cantly as the robot encounters an object and re-

mains large as long as the robot circles around the object. The con-

tributions for small and large objects are almost identical because

the robot reacts to the IR sensor on the side; its stimulation is the

same in both cases. Together, the three processes just shown lead to

the circling behavior illustrated in ®gure 12.17. Let us last look at

the resulting motor speeds, which are essential for the category

learning. They are shown in ®gure 12.20. The important point

about these motor speeds is that they are different for the two types

of objects. We can compute the robot's angular velocity by sub-

tracting the motor speed of the left motor from the motor speed of

Figure 12.17 Adding the turn-toward-object process leads to circling behavior. (a)
Agent circling around small object. (b) Agent circling around large object.
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the right. This is illustrated in the example of ®gure 12.21 where an

agent was freely moving around in an arena cluttered with small

and large objects: The robot ®rst moved in the open plane for about

40 steps. It then started to circle around a small object for about 80

steps. After it had left the object, the robot ®rst moved in the open

plane again, then avoided a large object (indicated by large ¯uctu-

ations around 150 and 170 steps), and ®nally started again to circle

around a small object at around 180 steps. Note that the absolute

value of the angular velocities is different for the two types of

objects. This difference can be used for category learning. In addi-

tion, however, we want the learning to be based on the sensory

readings. We said earlier that such learning is hard because of the

Figure 12.18 Contribution of the avoid-obstacle process to circling behavior. (a) Agent
circling around small object. (b) Agent circling around large object. The amplitude of
contributions is large in the case of the large objects; the robot is ``wiggling'' more
than in the case of the small object.
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high-dimensional state space. The circling behavior just described,

an example of sensory-motor coordination, signi®cantly reduces

this space, as ®gures 12.22 and 12.23 show. Figure 12.22 shows the

activation of the IR sensors as the robot circles around the objects.

The most important point to be noted is that the IR sensor acti-

vations vary very little because of the sensory-motor coordination

behavior. In other words, the previously large state space has been

signi®cantly reduced. This can be computed explicitly as follows.

We had the agent move across the open plane and then approach a

large object. Figure 12.23 shows the resulting correlations among

the 10-dimensional vectors consisting of the readings from the

eight IR sensors and the two motor speeds. The correlations were

calculated as follows. A ``window'' of 20 time steps (150 msec/step)

Figure 12.19 Contribution of the turn-toward-object process to circling behavior. (a)
Agent circling around small object. (b) Agent circling around large object. The two
are very similar.
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was de®ned. For this window, the 20� 20 correlation matrix of the

20 10-dimensional vectors (in other words, the correlation of the

vectors at subsequent time steps) was computed. Finally, the aver-

age over all entries in the correlation matrix was taken to obtain a

measure of how the vectors are correlated in time. High correla-

tions indicate that subsequent vectors are very similar, which

occurs when the robot is moving along an object, after it has estab-

lished a sensory-motor coordination.

Figure 12.23 shows an intermediate level of coordination as the

agent moves about in the open. Theoretically, this correlation

should have a value of 1 because the IR sensors have a limited

range, so that there would be no stimulation. Noise, however,

Figure 12.20 Motor speeds of the circling behavior shown in figure 12.17. (a) Motor speeds re-
sulting from the agent's circling around small object. (b) Motor speeds resulting
from the agent's circling around large object. On average, the differences in motor
speeds in (a) are larger than the ones in (b).
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makes the correlations drop to roughly 0.5. The variation (the low

correlation) is due to the fact that the activation levels are low, and

small changes due to noise therefore have a large effect relative to

the sensors' absolute level of activation. As the agent approaches an

object, the correlation drops, because sensory activation is chang-

ing rapidly. Once the agent is near the object, the dynamics of the

processes come into play and there is time-locked activity in the

sensory-motor space spanned by the IR sensors and the motor

speeds, as can be seen in the correlations, which rapidly jump to

the maximum. Note that these correlations are induced by the

agent's own movements, or in other words, by means of sensory-

motor coordination.

LEARNING

We now have all the prerequisites for actually learning the differ-

ences between the two types of objects. After the agent had moved

along an object for some time, i.e., after it has had continuous

Figure 12.21 Motor speeds and resulting angular velocities of robot moving around in arena. The
robot first moved in the open plane for about 40 steps. It then started to circle
around a small object for about 80 steps. After it had left the object, the robot first
moved in the open plane again, then avoided a large object (indicated by large fluc-
tuations around 150 and 170 steps), and finally started again to circle around a small
object at around 180 steps.
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stimulation of a lateral sensor, a re¯ex was triggered: This re¯ex,

called sense-object process, enabled the agent to ®nd out what it

could do with the object. The process consisted of lowering the

gripper over the object (®gure 12.24). If the agent has successfully

grasped an object (®gure 12.24a), it brings the object to a home sta-

tion by means of the bring-to-nest process. If the object is too

heavy, it cannot be picked up, and the agent turns away from the

object (®gure 12.24b).

The robot in our experiment ®rst tried to grasp all objects because

of activity in the sense-object process. If the object was grasp-

able and the agent could pick it up, a value signal was generated

Figure 12.22 Activation of lateral IR sensors as the robot circles around objects. IR 0 and IR 1
denote sensors on the robot's left-hand side, and IR 4 and IR 5 denote sensors on its
right-hand side. (a) Activation of lateral sensor IR 5 as the robot circles around a
small object. (b) Activation of lateral sensor IR 5 as the agent circles around a large
object. (c) Activation of lateral sensor IR 4 as the robot circles around small object.
(d) Activation of lateral sensor IR 4 as the robot circles around large object.
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that reinforced the association between the sensory-motor sequence

in which the agent engaged right before grasping and the grasp

process itself. Figure 12.25 depicts the part of the architecture

responsible for learning.

To reinforce the connections between a particular sensory-motor

coordination and the networks for the different processes, the

readings from the IR sensors and the wheel encoders are projected

onto a Kohonen map with leaky integrators for all the sensor vari-

ables. (Leaky integrators are nodes in neural networks that have a

certain time constant for decaying their activation.) Leaky integra-

tors provide a certain amount of information about the agent's

recent sensory-motor past. The Kohonen map is connected to the

grasp and the turn-away networks, which in turn write their

outputs to the motors and the gripper. The gripper sensors provide

input to the value system, which modulates the weight change in

Figure 12.22 (continued)
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Figure 12.23 Change in correlations between subsequent input vectors as the agent approaches a
large object. Vectors are 10-dimensional: eight IR sensors and two motor speeds.
(``SMC'' stands for ``sensory-motor coordination.'') There is a drop in correlation as
the agent approaches an object.

Figure 12.24 Different gripper positions leading to different behaviors. (a) If the object can be
lifted, the robot brings it to the home base. (b) If the object is too heavy to be lifted,
the robot turns away.
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the connections between the Kohonen map and the grasp and

turn-away processes. When the robot in the experiment could lift

an object, a value signal was triggered because of the input from the

gripper sensors. Because in this case the grasp was active, the

weights between the Kohonen map and this process were strength-

ened through Hebbian learning. If, on the other hand, the object

was too heavy to be lifted, the turn-away process was triggered,

and its activation resultedÐagain via Hebbian learningÐin an

increase of the weights from the Kohonen map. The learning rule is

as follows:

Dw
p
ij � v p�h � aj � ap

i ÿ e � �aj � a
p
i � �w p

ij �; �12:1�

where Dw
p
ij is the change of the weights from the Kohonen map

to the process network p(grasp-object, turn-away), v p is the

value signal generated by the value system for process p, h is the

learning rate, aj the activation of node j in the Kohonen map, a
p
i is

the respective activation in process network p, and e is the forget-

ting rate.

This learning scheme implies that learning takes place when

there is activation in the Kohonen map and one of the two networks

Figure 12.25 Learning in she SMC I agent. A Kohonen map receives input from the wheel en-
codersÐmeasuring the speeds of the motorsÐand the IR sensors. The Kohonen
map is connected to the grasp and the turn-away networks, which in turn
write their outputs to the motors and the gripper. The gripper sensors provide input
to the value system, which modulates the weight change in the connections between
the Kohonen map and the two processes. The arrows pointing down from the
move-forward, avoid-obstacle and turn-toward-object pro-
cesses indicate that this learning is possible only through sensory-motor coordina-
tion by these processes.
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and a value signal has been generated. Because the nodes are

implemented as leaky integrators, the nodes associated with the

sensory-motor sequence that led to the successful behavior are still

active to some extent. Thus, sensory stimulation from the whole

sensory-motor sequence is associated with the process network

currently active.

If the environment does not change over time, it reaches an

equilibrium, and the weights no longer change systematically; they

change only slightly because of statistical ¯uctuations, as shown in

®gure 12.26.

The robot thus learns to distinguish between the two types of

objects. Note that it perceives a difference between small objects

seen from the left and small objects seen from the right (the same

holds for large objects). This is because the sign of the motor

speeds, which enter the learning process, changes as the direction

changes. The important point, however, is that the Kohonen map

can pick up the regularities induced by sensory-motor coordina-

tion. In this study, the robot's learning converged very rapidly, on

average after the robot had encountered about 10 objects. Table

12.2 summarizes the results of our experiments. The numerical

results show that the number of steps before the agent engaged in

the right sort of behavior were signi®cantly reduced after the agent

had encountered 10 objects. Note that performance is only one

possible way to evaluate an architecture. Chapter 17 discusses

other means of evaluation, such as a model's predictive and heu-

ristic value.

EXTENSIONS

The SMC I agent can learn, as we have shown, to distinguish

between two types of objects. We now consider an extension of that

learning to three categories by introducing a new object type, large

rectangles, as well as a new agent capable of handling this more

complex learning task. Before discussing the details of this new

agent, however, we have to discuss a few theoretical points. Intro-

ducing a new category of object would seem to be a trivial thing. In

connectionist models, this would amount merely to feeding the

network with the data from the new category and having it adjust

its weights accordingly. In the framework presented here, this is

not as straightforward, mainly for two reasons. First, categories in

this framework are not de®ned in terms of sensory patterns only;

their de®nition crucially involves the agent's behavior with the
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Figure 12.26 Activation of Kohonen map as the agent interacts with the objects. Activations at the
beginning (panel a) are random; no learning has yet occurred. Panels (b) and (c)
show activations later on, as the robot circles around a small object from the left (b)
and the right (c). Panels (d) and (e) show the same data for a large object.
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category of object. When we introduce a new category, therefore,

we also have to de®ne a new behavior. This considerably increases

the complexity of the required architecture, because now the agent

must learn to engage in three different behaviors, depending on the

object type. Second, we cannot, because of the notion of value,

simply add new categories without asking what value these cate-

gories have for the agent. From an embodied cognitive science

perspective, it makes sense to learn about categories only if they are

of value for the agent. In other words, extending the basic SMC I

scheme to include a third category also involves an extension of its

value system. The agent now has to de®ne value for three types of

objects, instead of only two, and this again increases the complex-

ity of the architecture required. Chapter 14 discusses the trade-off

between very speci®c values, as used here, and more general ones

that hold for different objects or situations.

In the extended version presented here, a push process was

added to the already existing ones. The agent again used the

sense-object process to explore the objects it encountered. This

consisted of lowering the gripper as before. This time, however, in

the case of rectangular objects, the robot could not lower the grip-

per at all, as ®gure 12.27 shows. The robot could not lower the

gripper as before because the object was too large. Again, the

resulting readings from the gripper triggered the value system.

Let us now examine the circling behavior of the extended SMC I

agent. So far, the agent has encountered and circled only circular

objects. The ®rst question to be asked is whether the circling

mechanism extends to rectangular objects as well. Figure 12.28

provides the answer. The agent successfully circles around the

rectangular object; in other words, we can use the same sensory-

motor coordination mechanism as we used in the prior experi-

ments to generate the regularities needed for the category learning.

Table 12.2 Number of steps taken by robot along object before engaging in appropriate behavior
(averaged over ®fty trials)

SMC I Initial After 10 objects

Small 40:2G1:44 14:2G 1:76

Large 41G2:11 14:4G 2:08
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We can again isolate the contributions of the individual processes

to this behavior, which are essentially the same as the ones shown

above, except that the contribution of the avoid-obstacle pro-

cess has a larger amplitude than in the case of the circular objects,

because now the IR sensors are activated even more strongly. We

again use the motor speeds resulting from the circling behavior,

shown in ®gure 12.29, as a part of the input to learn the objects.

These motor speeds are suf®ciently different from the ones result-

ing from circling around the circular objects for the agent to learn

this category of object as distinct from the prior two (see below). In

addition to the motor speeds, the activation of the IR sensors,

shown in ®gure 12.30, is also used for learning. Sensor IR 4 (®gure

Figure 12.27 Gripper position when the robot tried to grasp a rectangular object. The robot could
not lower the gripper, because the object was too large to fit within the gripper's
handles.

Figure 12.28 Trajectory of the extended SMC I agent as it ``circles'' around a rectangular object.
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Figure 12.29 Motor speeds for the ``circling'' behavior shown in figure 12.28.

Figure 12.30 Activation of the lateral IR sensors resulting from the circling behavior shown in
figure 12.28. (a) Activation of lateral sensor IR 5. (b) Activation of lateral sensor IR 4.

Chapter 12 426



12.30b) shows some variation in activation, but this variation is

constrained to values within a limited range. IR sensor 5 (®gure

12.30a) is again essentially constant. In other words, the sensory-

motor coordination behavior again reduces the input space within

which the agent has to learn. The variations are in fact important,

as we argue in the next chapter, when we interpret sensory-motor

coordination behavior from the perspective of information theory.

Let us ®nally look at how the extended SMC I agent learns about

the rectangular objects. Figure 12.31 shows the Kohonen map acti-

vations resulting from this learning. The activations are suf®ciently

different for the robot to learn to associate a different behavior with

rectangular objects. In summary, the SMC I models illustrate how

the principle of sensory-motor coordination can be used to enable

an agent to learn to distinguish reliably between different types of

objects. Let us now consider the SMC II agent.

SMC II: Increasing the Complexity

SMC II (®gure 12.32) is an extension of the SMC I agent. A com-

prehensive discussion of this architecture would be beyond the

scope of this chapter, and the interested reader is referred to the

original publications (Scheier and Lambrinos 1996a,b; Lambrinos

and Scheier 1996; Pfeifer and Scheier 1997). The SMC II agent was

again implemented on a standard robot (Khepera). As before, the

Figure 12.31 Activation of Kohonen map for rectangular objects. (a) Activation resulting from the
robot's circling around the object from the left. (b) Activation resulting from the robot
circling around the object from the right. The activations are sufficiently different
from the ones obtained for the circular objects for the agent to associate a different
behavior with rectangular objects.
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robot's task was to collect certain objects and to bring them to a

home base. In this case, the objects were cylindrical and all of the

same size; additionally, they were either conductive or non-

conductive. The conductive objects had a strongly textured surface,

whereas the nonconductive ones had a white or only slightly tex-

tured surface. The robot's task was to collect the conductive

objects. The control architecture of SMC II was again based on the

EBA. In SMC II, two new processes replaced the various processes

in SMC I that implemented object-related behavior (i.e., grasp-

object, push-object, and turn-away): haptic and visual explo-

ration. The focus in this architecture is how agents can learn about

objects by exploring them visually and haptically, that is, by using

their eyes and hands. To this end, the sensory-motor complexity of

the SMC II agent was signi®cantly augmented. Instead of IR sen-

sors, a camera was used. The ``ecological balance'' principle states

that if an agent's sensory complexity is increased, the complexity of

the motor system and the neural substrate must be increased, too.

Thus in addition to increasing the SMC's sensory complexity by

adding a camera, the control of the arm-gripper system was been

considerably improved. Moreover, a conductivity sensor was

added. To enable the robot to do more than just passively scan the

camera image, an arti®cial eye was implemented that actively

moves a fovea to interesting parts (e.g., bright spots, texture, move-

ment) of the image encountered. Once it has visually focused on an

object, the robot moves up to it and starts exploring it using the

arm-gripper system.

In SMC I, categorization was based on (a) learning a sensory-

motor sequence and (b) associating this with the corresponding

Figure 12.32 The SMC II agent. The basic platform is again the Khepera robot, but this time a
camera and a gripper have been added.
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processes (grasping, pushing, turning away). Categorization in SMC

II is achieved by learned reentrant connections between haptic and

visual feature maps that are part of the haptic and visual systems of

SMC II (®gure 12.33). The fact that the agent can interact with its

environment is exploited in two ways: First, in both the haptic and

the visual system, an ``attentional sensory-motor loop'' is coupled

to the arm, gripper, and wheel motors (i.e., the robot's effectors). As

a result, the agent moves its body and the arm into a position from

which it can explore an object it has encountered. Second, both

haptic and visual data that result from the exploration process are

used for learning and categorizing objects. As shown in ®gure

12.33, sensory maps in both systems are connected to feature maps.

Feature maps are layers in a neural network that respond to prop-

erties of objects such as texture (visual) or conductivity (haptic).

The interaction between the two modalities is implemented via

reentrant weights between these feature maps. This part of the

architecture is similar to the one used in Darwin II (®gure 12.13).

The correlation of signals of the haptic and the visual feature maps

by these reentrant connections is part of the basic mechanism of

categorization. A fundamental property of SMC II is that the feature

maps are connected via modi®able feedback connections to the

attention maps. The main idea is to link the correlated activity in

the feature maps to the attentional sensory-motor loop. In essence,

the result of learning is that relevant objects enhance activity in the

attentional loop, but activity is not sustained in the case of unin-

Figure 12.33 Parts of the architecture of the SMC II agent. The agent has a visual and a haptic
system with similar structures: First, sensory networks receive input from the sen-
sors on the robot. These sensory networks are connected to attention and feature
maps. The sensory and the attention networks together with the effectors form an
attentional sensory-motor loop. The feature maps are connected through reentrant
weights; changes in these weights are modulated by a value map.
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teresting objects (the object is ignored). Thus, no explicit avoidance

or approach behavior is linked to the feature maps as was the case

in SMC I. Instead, whether the agent approaches or avoids an object

is the result of how the feature maps modulate the attentional

sensory-motor loops depending on the kind of object encountered.

Just as in SMC I, value signals modulate the learning process. The

value map receives input form the conductivity sensor and the

gripper sensors. The basic motivation behind these connections is

that the robot should learn only when it explores an object. Activity

in the value map is used as a reinforcement signal for the synaptic

modi®cations among the feature maps. Thus, the value system

triggers an explicit value signal.

Let us brie¯y look at the resulting behavior. Figure 12.34

shows the robot's behavior as it moves around in the environ-

ment and explores objects. Figure 12.34a shows a typical trajectory

at the beginning of a trial. White and shaded circles indicate

nonconductive/nontextured and conductive/textured objects, re-

spectively. No distinct behavior for the two types of objects can

be seen. Rather, the robot approaches all objects and explores

them. Figure 12.34b shows a typical trajectory after the robot has

encountered 10 objects of each type. Two main results can be taken

from these trajectories. First, the robot has stopped exploring both

a b

Figure 12.34 A typical trajectory of the SMC II agent (a) at the beginning of a trial and (b) after the
agent had encountered 10 objects.
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types of objects because the dynamics of the coupled feature maps

now govern its behavior. Second, the robot ``ignores'' nonconduc-

tive objects and grasps conductive ones (without ®rst exploring

them). We use the term ``ignoring'' instead of ``avoiding'' to indi-

cate that there is no separate avoidance module. Rather, avoiding is

achieved by not sustaining the activation in the attentional sensory-

motor loop. Scheier and Lambrinos 1996a presents a detailed

analysis of the internal dynamics underlying this learning process.

Finally, it is important to note that categorization in SMC II

includes the agent as a whole; it is not a subsystem of some sort.

Rather, the feature maps are tightly coupled to the attention maps,

which in turn form sensory-motor loops via their connections to

the motor system. Thus, categorization is distributed over all these

areas and cannot be separated out of the system. In this respect,

the term ``classi®cation couple,'' used by Edelman to designate the

feature maps that are tightly coupled in both directions, is some-

what misleading.

12.4 Application: Active Vision

Active vision (also called ``animate,'' ``purposive,'' or ``dynamic''

vision) is the active control of all camera parameters. It has

received increasing attention over the last decade as an alterna-

tive to the traditional machine vision approaches described at the

beginning of this chapter. The main motivations underlying the

active vision approach are as follows. Substantial work on vision

within the traditional framework has resulted in the insight that

``general vision does not seem to be feasible'' (FermuÈ ller and

Aloimonos 1995, p. 726). We summarized the main problems of

traditional computer vision earlier in this chapter. The active

vision paradigm suggests, as an alternative, studying vision in

conjunction with biology and the tasks that the system has to

perform. Biological vision systems do not passively process their

input but instead interact with the environment in an active and

task-dependent way. This inspiration from biology is best illus-

trated with the following quote from Bajcsy (1988):

It should be axiomatic that perception is not passive, but active.

Perceptual activity is exploratory, probing, searching; percepts do

not simply fall onto sensors as rain falls onto ground. We do not

just see, we look. And in the course, our pupils adjust to the level of

illumination, our eyes bring the world into sharp focus, our eyes
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converge or diverge, we move our heads or change our position to

get a better view of something, and sometimes we even put on

spectacles. This adaptiveness is crucial for survival in an uncertain

and generally unfriendly world. (p. 996)

Note that the idea that we do not just see, but look, is again an

instantiation of the general idea that perception and action are

closely linked. We have seen above that John Dewey had for-

mulated this basic insight already more than 100 years ago. Active

vision is concerned with how it can be implemented in arti®cial

vision systems. We do not further elaborate on this idea here. We

conclude by stating that active vision incorporates important

aspects of sensory-motor coordination. We tried to demonstrate

that the inclusion of active generation of sensory data can lead to

additional simpli®cations for learning.

Issues to Think About

Issue 12.1: Dimensionality Reduction versus Generation of Diversity

We suspect most researchers would agree that dimensionality

reduction is an important function of sensory-motor coordination.

This phenomenon can be clearly demonstrated on robots and can

also be argued theoretically. Reducing behavior to simpler con-

cepts is one thing; generation of new behaviors is quite another. We

said in chapter 1 that intelligence crucially involves generation of

diversity. We must thus ask how new behaviors can come about

despite these necessary reductions in dimensionality. The fact that

complexity is reduced enables the organism to make cross-modal

associations, that is, associations between different sensory chan-

nels. For example, in the SMC II agent, the fact that the agent

viewed the objects from the same distance enabled it to learn

through associations between its haptic and its visual system. If

the dimensionality reduction did not take place, such correlations

between different sensory modalities would neither exist nor could

they be established. Such associations, however, may enlarge

agents' behavioral repertoires. In other words, the initial reduction

in complexity is a prerequisite for the eventual increase in com-

plexity. For example, if a robot is able to form associations in the

context of a visuo-haptic-motor coordination, it may be able to
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learn to home in from a distance on objects of interest from a haptic

perspective. If the dimensionality were always low, there would be

no reason for having high-dimensional motor spaces.

Issue 12.2: Where Is the Category?

We made a strong point of saying that the categories the robot

acquires are, in fact, in the observer's head rather than the agent's.

Categorization must therefore be de®ned in behavioral terms. This

is a sensible thing to do, because to de®ne the category, we do not

need to refer to an internal mechanism. Note that we are not

adopting a behavioristic framework. We want to know how a par-

ticular change in behavior comes about, and if the agent's behavior

changes but the environment remains more or less the same, some

change must have taken place within the agent. This change

accounts for the acquisition of what the observer calls the category,

but where is the change in the agent? Is it that sensory patterns get

associated with a so-called grandmother cell? (A grandmother cell

is another term for a particular neuron that stands for the category

that is, a category node.) A belief in the existence of such a grand-

mother cell is actually quite prominent in the neural network

community. From a cognitive science perspective, we do not think

that the idea of the grandmother cell is a sensible oneÐat least not

in general. The categories in our robots are represented in a dis-

tributed way in the weights of certain connections in the neural

networks, and typically, many weights are involved in all systems:

the haptic, the visual, the sensory-motor loops, and so forth. These

weights make sense, though, only if they are embedded in a real-

world physical agent. Take the same network and put it into

different agents: The connections then mean something entirely

different. If you take the same network initially and put it into a

different agent, the new agent will acquire very different categories.

Thus once more, we see that categorization is not what is done by a

particular module, but is a property of the complete agent.

Points to Remember
1 The principle of sensory-motor coordination states that all intelli-

gent behavior (e.g., perception, categorization, memory) is to be

conceived of as a sensory-motor coordination that structures input.
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1 This principle has two main aspects. First, whatever behavior we

are analyzing, or whatever behavior we want to design a robot for,

the principle suggests that we focus on how sensory and motor

systems are coordinated. Second, embodied agents can structure

their sensory input and thereby induce regularities that signi®-

cantly simplify learning.
1 In the information processing framework, categorization is de®ned

in terms of mappings of sensory stimulation onto internal repre-

sentations. In the ALCOVE model, this involves the mapping of an

input pattern to a category node, and in machine vision, it involves

the mapping of an image onto an internal object model.
1 The object constancy problem denotes the problem of determining

what parts of the sensory input belong to one and the same object.

The problem is hard because the same object can lead to a very

large number of different input patterns.
1 Type-2 problems denote data sets from which no mapping from

input to output can be extracted by means of learning or statistical

procedures. In data sets of type 1 such a mapping can be extracted

without much effort, because it is apparent in the raw input data.
1 In the real world, sensory patterns are often of type-2. If an agent is

to learn about categories in its environment, it needs type-1 data

sets. Mechanisms of sensory-motor coordination can be used to

generate type-1 data in the interaction with the environment.
1 Sensory-motor coordination is not synonymous with behavior.

Rather, it denotes object-related behaviors used speci®cally to gen-

erate structures in input space for the purpose of learning about

objects.
1 The SMC models instantiate the principle of sensory-motor coor-

dination in mobile robots and are ®rst steps toward the overall goal

of understanding categorization.
1 In addition to helping understand categorization, the SMC models

are useful in working toward the goal of building a garbage-

collecting robot that operates in outdoor environments.

Further Reading
Clark, A. and Thornton, C. (1997). Trading Spaces. Behavioral and Brain Sciences, 20,

p. 57±90. (The original paper on the type-1 type-2 distinction.)

Thelen, E., and Smith, L. (1994). A dynamic systems approach to the development of

cognition and action. Cambridge, MA: MIT Press (A Bradford book). (A nice applica-

tion of the views presented in this chapter to the development of cognition. Shows

the interdependence of sensory-motor abilities and intellectual development.)
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13 The Principles of Cheap Design, Redundancy, and Ecological Balance

We are still in the process of elaborating the design principles of

chapter 10. Previous chapters have discussed the principles of par-

allel, loosely coupled processes, and sensory-motor coordination.

This chapter illustrates three additional principles: cheap design,

redundancy, and ecological balance. All design principles are re-

lated to one another. But the notions of cheap design, ecological

balance, and redundancy are so intimately related that they cannot

be treated separately (®gure 13.1). These principles also have a

close alliance with the concept of the task environment. We illus-

trate all these relations with examples in the course of the chapter.

We start by discussing the principle of cheap design. We dem-

onstrate how the physics of the system-environment interaction

and the constraints of the ecological niche can be exploited to

achieve a cheap design. We then introduce the ``Zen of robot pro-

gramming,'' the notion of parsimony, and the trade-off between

cheapness and ¯exibility. Next, we take up the redundancy princi-

ple. In particular, we focus on the application of information theo-

retic considerations to agent design. Then we discuss the principle

of ecological balance. We discuss how we might want to investigate

ecological balance experimentally. We show that this requires the

introduction of environmental pressures. We then brie¯y introduce

a measure of brain complexity that attempts to quantify an agent's

complexity.

13.1 The Principle of Cheap Design

The principle of cheap design states that good designs are ``cheap.''

As we explained in chapter 10, we use the word ``cheap'' to mean

essentially three things. First, it implies exploiting the physics of

the system-environment interaction. Second, it means exploiting

the constraints of the ecological niche. And third, it means parsi-

monious. We have already looked at some examples of cheap

designs: insect walking, matched ®lters, and cheap vision for navi-

gation purposes. To further support our intuition, let us look at a

number of additional ones.



Exploiting the Physics of the System-Environment Interaction

The goal of this case study is to show that implicit assumptions that

are often made can substantially in¯uence a control architecture's

complexity. For example, if pixel arrays from a camera are used for

navigation purposes, certain operations may be orders of magni-

tude more complex than if motion detectors are used. We show

here how the ``right'' physics of the sensors automatically resolves

certain dif®cult problems and leads to cheaper designs. Our pre-

sentation is inspired by work of Franceschini, Pichon, and Blanes

(1992). These researchers were interested in building a model of

house¯y navigation. The house¯y's impressive navigational skills

are largely due to the fact that its visual system can detect optical

¯ow. Franceschini, Pichon, and Blanes developed a robot that

navigates based on principles derived from the house¯y. The

robot's neural system was largely built in hardware, and this mas-

sively parallel architecture led to excellent real-time performance.

In what follows, we do not investigate the house¯y itself; instead,

we discuss a particular question relevant for robot navigation but

often neglected.

Figure 13.1 Overview of the design principles. This chapter discusses the principles of cheap
design, redundancy, and ecological balance. These principles are strongly interde-
pendent. Cheap implies ecologically balanced. The redundancy principle states how
ecological balance can be achieved. The details of the interrelationship between
these principles are discussed throughout this chapter.
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If dealing with a fast robot with inertia, we would want the fol-

lowing behavior: If the robot is moving fast, it should turn earlier to

avoid obstacles than if moving slowly, in order to minimize the risk

of hitting an obstacle. Intuitively one would think that this would

require an assessment of the robot's speed and its distance from the

obstacle, and a mechanism that adjusted the distance (and perhaps

the angle) at which the agent should divert. This turns out to be

unnecessary if motion detection is employed instead.

Figure 13.2 illustrates our simpli®ed argument. Figure 13.2a

shows the optical ¯ow, as indicated by the angular speed W,

induced by an object P at some distance D from the agent when

moving at speed Vo. Figure 13.2b is the analog for a lower speed Vo 0

and a proportionally less distant object P 0. It is obvious from the

®gure that if �Vo=D� � �Vo 0=D 0�, the angular speeds W and W 0 are the

same. Let us assume that there is a hard-wired mechanism for

obstacle avoidance that causes the agent to turn, given a certain W.

It follows that whatever the agent's speed, it needs no internal

adaptive mechanism to adjust for its speedÐsuch an adjustment is

taken care of by the mechanism determining motion relative to

the environment. As an aside, we see here another instance of the

frame-of-reference problem: Adaptivity is not purely a property of

an agent, but rather of an agent's interaction with the environment.

What we perceive as two different situations, ®gures 13.2a and

13.2b, is one and the same situation to the agent. This is, of course,

Figure 13.2 Navigation based on optical flow: (a) high speed, far away object, (b) low speed,
nearby object. Allowing for certain idealizations, the angular speed W is the same in
both situations if �Vo=D� � �Vo

0=D 0�. So, if D 0 < D , then, if Vo
0 is proportionally

smaller than Vo , the situation is identical to the agent. (Adapted from Franceschini,
Pichon, and Blanes 1992.)
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only strictly true in our idealization, that is, if the environment

consists only of the objects shown in the ®gure.

Again we see that by taking the system-environment interaction

into account, we can arrive at an effective and cheap mechanism

for navigation that adjusts for speed without an information pro-

cess or algorithm to instigate the adaptation. Moreover, the exam-

ple demonstrates that adaptation is observer de®ned and does not

necessarily require an adaptive mechanism inside the agent.

Figure 13.3 shows something called the principle of motion par-

allax. The eye of the ¯y has a nonuniform layout of its visual axes

such that the resolution is ®ner toward the front than on the side.

Figure 13.3a shows a point traveling across densely spaced vision

segments in the retina, ®gure 13.3b a point traveling across widely

spaced vision segments. If an object is traveling at a constant

speed through physical space, its image moves more slowly across

the retina if it is near the front of the agent; its image moves faster,

if it is on the side. Everyone has experienced this phenomenon

while riding in a train. Because the vision segments are spaced

more densely in the front of the retina than on the side, an image at

a given distance from the agent does require the same amount of

time to traverse one vision segment. The speed at which a point

traverses the visual ®eld in fact follows a sine law: It is small at

Figure 13.3 Exploiting motion parallax. (a) Point traveling across densely spaced vision seg-
ments in retina. (b) Point traveling across widely spaced vision segments in retina. If
an object is moving through physical space at a constant speed, its image moves
more slowly across the retina if it is near the front of the agent; it moves faster, if it is
on the side. Because the vision segments are spaced more densely in the front of the
retina than on the side, a point at a given distance from the agent requires the same
amount of time to traverse one vision segment.
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small angles (near the front), has maximum value at 90 degrees and

then decreases again.

This unequal spacing of the vision segments in the retina, the

gradient, compensates for the sine law inherent in the optic ¯ow

®eld. The introduction of the sine gradient allows the underlying

motion detection system to be built uniformly by elements each

displaying the same temporal properties as its neighbors. No neural

circuitry is needed to compensate for the sine law. This illustrates

two points. First, if we want to understand an agent's behavior, it is

not suf®cient to look at the control architecture; in this case, the

control architectureÐa uniform arrangement of identical motion

detectorsÐsuggests something linear and homogeneous, whereas

motion parallax is in fact highly nonlinear. The advantages of

having a sine gradient in the eye are so obvious that they may in

retrospect contribute to explaining the gradient in resolution

observed in the peripheral retina of so many creatures, including

humans and ¯ies (Franceschini, Pichon, and Blanes 1992). Second,

the nonuniform physical arrangement of the visual segments, the

facets, makes additional circuitry to compensate for the continu-

ously changing angular speed unnecessary. Once again, a physical

process is exploited, making the control architecture cheaper.

This example illustrates another important point: What seems

most natural to at least some of us may often not be the most ef®-

cient. Although it seems natural to use pixel arrays in visual sen-

sors, using ¯ow sensors, as in the house¯y, turns out to be much

simpler for certain navigational tasks such as obstacle avoidance,

and the related control architecture is much cheaper and more

robust. What appears to require a lot of processingÐthe determi-

nation of optical ¯owÐcan be achieved cheaply because motion

parallax has already been compensated for by the shape of the

eye: by a homogeneous array of elementary motion detectors (EMDs;

Franceschini, Pichon, and Blanes 1992). This example again illus-

trates that control algorithms make sense only with respect to the

system-environment interaction and cannot be studied in isolation,

as in the symbolic approach to cognition.

We see another, more general point here: The shape and the

arrangement, that is, the morphology of the visual sensors is crucial

to the navigation system's effective operation. If an appropriate

morphology is chosen, neural processing may be reduced and sim-

pli®ed by orders of magnitude. Having the right morphology to

exploit the system-environment interaction nicely illustrates the
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principle of cheap design. The general point is that often neural

processing can be traded for morphology. The obvious advan-

tages of morphology are speed and little required processing, the

obvious disadvantage its lack of ¯exibility: Once the morphology is

installed, it can no longer be changed, whereas neural processing

offers much more ¯exibility. The same argument holds for robots in

which computation replaces neural processing.

Exploiting the Constraints of the Ecological Niche

The second aspect of cheap design is exploitation of the constraints

of the ecological niche. We have seen earlier that if the ecological

niche is exploited appropriately, some behaviors can be achieved

much more ef®ciently. Remember the ``ground plane constraint''

that Horswill's robot Polly took advantage of? It exploited the fact

that of®ce ¯oors are ¯at and that the relevant objects were standing

on the ground (see ®gure 10.3). Another example of a constraint

that can be taken advantage of is, for example, the presence of

walls. In the Distributed Adaptive Control agent, following walls is

a good strategy, because the environment is closed. Thus the agent

will eventually ®nd anything deposited along the walls. Also,

learning problems that are intractable if considered from a purely

computational view often turn out to be benign, if the constraints of

a particular ecological niche are taken into account. Normally in the

real world, learning systems do not have to be universal. To illus-

trate this point assume that you want a learning machine, typically

a neural network, to learn the XOR function based on examples.

XOR is the exclusive ``or'' function: Its value is 1 if only one of the

inputs is 1 but not the other; it is 0 if both are 1 or both are 0.

Learning theory tells us that this is a hard problem: It is not linearly

separable (e.g., Hertz, Krogh, and Palmer 1991). Thus, it requires

powerful neural networks like multilayer perceptrons. Although

XOR is an excellent case study for demonstrating the power of

MLPs, it tells us relatively little about the real world, since for-

tunately, there is rarely a need to learn XOR in the real world: XOR

is something unnatural. It has even been shown experimentally

that natural systems (e.g., monkeys) perform poorly on XOR learn-

ing tasks (Thorpe and Imbert 1989), and it is hard to think of natu-

ral situations in which the ability to solve an XOR problem would

confer an advantage: As Thorpe and Imbert put it, ``In general, if

two cues both signal that food is about to arrive, when the two are
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present at the same time, the food is even more likely to appear!''

(1989, p. 85). As a consequence, much simpler neural networks

may almost always be used. This case provides an example in

which the environment gives the constraints. Often the environ-

ment does not give the constraints directly but they can be gen-

erated in its interaction with the agent through sensory-motor

coordination.

A Cheap, Self-Suf®cient Robot

The self-suf®cient robot introduced in chapter 11 is another illus-

tration of the principle of cheap design. The only processes de®ned

on that robot were move-forward, avoid-obstacle, go-to-

charging-station, recharge, home, and deposit. Because of

the right dynamics, the robot actually ``picks up'' objects when

avoiding obstacles. ``Picking up'' in this case means getting the

objects into the wire loop on the robot's back. If the IR sensor in

that wire loop is activated, the home process gains strong in¯uence

and quickly becomes dominant. If the robot is on its way to the

charging station, because of the different dynamics, it no longer

picks up objects when avoiding them, a very useful behavior

change, because when its battery is low, it should not waste energy

by carrying objects. As we pointed out, this behavior is emergent.

There are no internal links in the control architecture speci®cally

designed for this purpose. Emergent designs, in fact, often have the

additional advantage of being cheap. And we saw that emergent

designs can be produced by following the principle of parallel,

loosely coupled processes. The principle of complete agents is also

related to cheap design. Recall that when the agent in chapter 11

gets stuck along the wall, it frees itself after a while because its

battery level progressively decreases, and the robot eventually has

to go to the charging station: It is ``pulled'' in a different direction.

Again, no extra mechanism is designed into the robot to produce

this behavior. The fact that the agent must engage in a number of

different behaviors, not just a single one, takes care of the problem

of getting stuck.

The ``Zen of Robot Programming'': Control versus Exploitation

Consider now the well-known Puma arm. The Puma arm is an

industrial-strength robot arm used successfully in many industrial
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and academic environments. The user can simply choose to pro-

gram it with a particular trajectory, and if the trajectory is physi-

cally possible for the robot arm, it performs the desired movements.

The user doesn't have to worry about the real world, about the

physics, that is, friction, inertia, and the forces acting on the arm.

The engineers who designed the arm have taken care of all of this.

In a sense, the real world has already been taken care of: The user

can focus on the geometry of the problem, where the hand has to

move, what objects have to be picked up and manipulated. Within

certain limits, he has complete control over the arm. And for

industrial applications, this is what is required.

Let us consider the example of an arm that is not so well engi-

neered, less precise, not so tightly controllable. In this case, the

programmer has to concern himself much more about the physics

of the process, about the arm's interacting with its environment.

To speak metaphorically, he has to think about how the agent will

``be'' in the world. Such an arm would presumably have less use

in industrial applications. However, on robots that have to interact

with humans, it could be extremely useful. An arm of such a robot

would need to have different properties than an arm on a robot

designed for an industrial application. Rather than being precisely

controllable, for example, it would have to be compliant. If the

standard industrial robot arm meets resistance on its way to its

target, it typically increases its force. By contrast, if an arm on a

robot designed for human interaction touched a person, it would

need to yield elastically instead of pushing harder. Chapter 16

offers an example of a compliant design: It concerns the control of

the arm movements in the humanoid robot Cog. The Cog project

employed a bottom-up design philosophy. The springlike prop-

erties of human muscles are simulated (e.g. Pratt and Williamson

1995). The arm has a natural resting position. If it is removed from

the resting position, the arm swings back based purely on local

processes at the joints of the arm, without central control. Control

is achieved largely by changing the elastic properties of the (simu-

lated) springs. The designer starts with minimal control circuitry

and increases the complexity only if required. This resulting design

is cheap and robust. Another impressive example of exploiting

physics is the passive dynamic walker (see focus 13.1). More on the

idea of exploiting physics can be found in Pfeifer 1995.

We suspect that this exploitation of environmental physics is the

design philosophy Rodney Brooks had in mind when he used the
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Focus 13.1: A Passive Dynamic Walker

Figure 13.4 shows a so-called passive dynamic walker, which simulates
human walking. It illustrates that something as complex as humanlike walking
can be achieved without an internal controller. Most work on walking has
focused on the neurobiology and on control and how ``the brain does it.''
Often such models lead to overdesign: They make many assumptions about
what simply must be included in terms of neural circuitry, what the design
could not possibly work without. As we have now seen many times, if the
system-environment interaction is properly taken into account, matters turn
out to be much simpler, much cheaper. The passive dynamic walker project
has focused on the interaction of gravity, inertia, and collision, rather than
control. The passive dynamic walker can be thought of as a dynamical system
being driven into a limit cycle, a steady periodic motion ``inherent'' to the
mechanism. (Chapter 9 introduced the idea of limit cycles.) The resulting
walking movement is surprisingly natural. The idea for the walker was
introduced by Tad McGeer (1990a, 1990b). More details can be found in
Garcia et al. in press.

Figure 13.4 The passive dynamic walker built by the Department of Theoretical and Applied Me-
chanics at Cornell University. It walks down a shallow slope, driven solely by gravity.
There is no electronic control whatsoever on the robot: the robot has no ``brain.''
Still, its movements look very natural and humanlike, a beautiful example of the ex-
ploitation of dynamics.
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term ``Zen of robot programming.'' In general, we can conclude

that incorporating considerations about the physics of the system-

environment interaction typically leads to better and more robust

designs. If an arm for a robot is not as well designed as the Puma

arm, one has to include such considerations in the design process.

Because a cheaper, not-so-well-designed arm forces the designer to

consider these issues, it has been argued that working with cheap

robots is a virtue and not a problem (Smithers 1994). But keep in

mind the very different areas of application in which the different

kinds of philosophies are applied.

So far we have illustrated exploitation of physics and constraints

of the ecological niche in considering the various aspects of cheap

design. Let us now turn to the last aspect, parsimony.

Parsimony

Parsimony is a general principle applied in modeling. As we brie¯y

pointed out in chapter 10, it implies that the designer should aim

for a kind of minimalist, simple agent or model in general. The

search for parsimony is also referred to as Occam's razor in the

philosophy of science. It is generally accepted that if there are a

number of competing models, the more parsimonious ones are to

be preferred. A model that can explain the clustering behavior of

ants based on simple re¯exes, for example, is to be preferred over

one that postulates some sort of internal representation of cluster-

ing. In this sense, the Didabots are parsimonious models of ant

behavior, irrespective of whether they are good models in other

ways. A robot for obstacle avoidance that employs simple re¯exes

based on IR sensors is more parsimonious than one that does

extensive visual analysis for the same purpose.

The concept of parsimony is not without its problems because

there are no generally accepted quantitative measures for it. In the

examples given above, it is intuitively clear which is more parsi-

monious; in others, however, it is not. For example, if we trade

morphology for computation, for instance, an insect's eye with the

visual segments spaced according to a sine law, is the overall solu-

tion more parsimonious than one based on computation? Is wheeled

locomotion more parsimonious than walking? In spite of the fact

that parsimony is only a qualitative term and not precisely de®ned,

it still provides a heuristic on how to assess the quality of models or
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the quality of our designs. Other evaluation factors, however, are

often more relevant. In the case of the house¯y, the question is

whether it can perform in real time, and for this purpose, it is a

necessity to trade shape for computation. In other words, if the

house¯y were using a uniform visual sensor and doing the neces-

sary processing for achieving the same kind of obstacle avoidance

exclusively at the neural level, it would presumably not succeed: It

could not possibly meet the real-time requirements.

Cheap versus Flexible

We have now seen a number of examples of how to exploit

constraints to yield cheap designs. As always, however, there are

trade-offs. Cheap designs exploit the speci®c characteristics of an

ecological niche, which implies that whenever these constraints no

longer hold, the system breaks down. The cheap vision system of

our robot Polly works well as long as the ¯oors are ¯at and as long

as the objects to be avoided are standing on the ground. But what if

there are stairs? Or what if the objects are standing on a table? With

thin legs that would be hard to defect with a camera. The obstacle

avoidance system ceases to function appropriately in that case, and

if we want the agent to continue to function, we may have to drop

the assumption that all objects to be avoided are standing on the

ground. But the agent then needs additional capacities, better

visual and perhaps more sophisticated motor control. Or take a

person who all of a sudden ®nds himself in the dark. He can use,

for example, his ears and his tactile system for orientation. But he

may want not only to listen passively but also to explore the envi-

ronment actively with a stick to generate the required information.

In other words, he may need motor abilities to acquire the infor-

mation he needs in the new situation. If an agent has only vision, as

does Polly, it can no longer function once light is gone; it has to use

a different strategy.

So, parsimony, cheapness, is not the only criterion in evaluating

a design's merit. Remaining adaptive, allowing for behavioral

diversity, is another. How can natural agents come up with new

kinds of behaviors that help them adapt to new environments? Or

synthetically speaking, how can we design agents to be able to

adapt to new environments? We need to equip our agents with

redundancy, which is what the redundancy principle addresses.
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13.2 The Redundancy Principle

The redundancy principle concerns an agent's low-level speci®ca-

tions. It states that an agent has to incorporate redundancy. More

speci®cally, in relation to the sensory system, the principle states

that an agent's sensors have to be positioned on the agent in such a

way that there is potential overlap in the information that can be

acquired from the different sensory channels. As we pointed out in

chapter 4, an agent's low-level speci®cations span a very large

space incorporating a lot of redundancy. Introducing redundancy

is a well-known engineering principle wherever mission-critical

systems are concerned, that is, systems where security and relia-

bility are crucial to success. An airplane is equipped with several

computers for the same purpose, it has two pilots, and there are

several braking systems working on the basis of different principles

and mechanisms. Computer storage and network systems all in-

corporate considerable amounts of redundancy, from duplication

of data sets, to parity bits, to more complex redundancy schemes

for checking and potentially correcting erroneous transmissions.

Although this aspect of redundancy is also relevant for agent

design, we really mean something more speci®c when we speak of

redundancy here.

In chapter 10, we pointed out that concept of redundancy stems

from Shannon and Weaver's mathematical theory of communica-

tion, which is concerned with transmission of messages across

noisy channels: The goal is to use redundancy to transmit messages

error free over noisy channels. Redundancy takes several forms: (1)

repetitive transmission of the same message over one channel, (2)

duplication of channels, (3) restrictions on the use of characters

transmitted across the channel, and (4) communicating something

already known to its addressee. Forms (3) and (4) are closely

related. If the addressee knows about the restrictions, something

that he already (at least partially) knows is transmitted.

Before we can look at these points from an autonomous agents

perspective, we have to specify what ``communication channels''

we are discussing in this context. For autonomous agents, commu-

nication channels are the signals generated by the sensory systems

and then processed by the control architecture. As we know, situ-

ated agents have no other way of acquiring information about the

environment. In contrast to communication channels, autonomous

agents are active entities. Thus constraints are not only imposed by

the information being transmitted over the channel but also gen-
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erated by the agent's behavior. Let us now translate into the agent

domain the four forms of redundancy we delineated above.

Repeated Messages

We start with form (1), the repetitive transmission of the same

message over one channel. Assume that you have a certain storage

location in computer memory. On the left (®gure 13.5a), the data

originate from a sensor; on the right, the origin (®gure 13.5b) of the

data is unknown. Because they translate a physical process into a

signal that can be processed by the control architecture, sensors

have a particular operating frequency, a rate at which they trans-

form physical processes into internal signals. Since there is an

actual physical process, and since the sensory stimulation and the

objects in the real world normally don't change instantaneously,

there is a high probability that two successive patterns will be

similar. They will normally not be identical, however, because

there is noise, and things do change, because the environment has

its dynamics and the agent moves, too. Still, on average, two suc-

cessive signals will be alike. This similarity constitutes temporal

redundancy: It is like sending a message repeatedly over a com-

munication channel. An engineer can exploit this redundancy:

Because the redundancy is there, the sensor and the transmission

channel between the sensor and the data storage location can be

designed cheaply; that is, it does not have to be extremely reliable.

Generally speaking, from the perspective of the control architec-

Figure 13.5 Redundancy from sensor data. (a) Data item (byte) connected to outside world via
sensor. (b) Independent data item. In case of loss of data, the byte in figure (b) is
lost; it is not backed up by any sort of redundancy. In (a), however, the data are re-
dundant, because they are constrained by their connection to the real world via a
physical process, i.e., via the system-environment interaction. On average, because a
physical process is involved, the data item on the left does not change instanta-
neously but has a certain sluggishness, thus providing a temporal redundancy: the
data can be repeatedly read into the storage location if need be.
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ture, we see that the closer the data items are to the sensors from

which they originate, the more there is redundancy contained in

the interaction with the real world. The further away a data item

is from the sensors, the less the real-world constraints exert their

in¯uence, and the more effort has to be expended to ensure that it is

not distorted.

In chapter 10, we brie¯y pointed out redundancy's relation to

sensory-motor coordination. Let us now look at this in more detail.

Figure 12.23 shows the temporal correlations of the vectors of the

10-dimensional sensory spaceÐthe 8 IR sensors and the 2 motor

speedsÐof an agent approaching a large object. During the period

when the sensory-motor coordination takes place, the sensory

input is relatively stable. This temporal redundancy is required for

learning to take place. If things change rapidly, beyond a certain

rate of change, there is no sense in learning. The essential point

here is that the robot's interaction with the environment in fact

generates the prerequisites for learning in terms of redundancy.

This further illustrates the information theoretic perspective on

sensory-motor coordination. Note that this temporal redundancy

does not come about if the focus is on the sensors only: The motor

system has to be taken into account as well.

Duplication of Channels: Learning to Predict Sensory Inputs

Normally we are interested not only in repetition over one channel,

but also in correlations among several channels. For example, we

do not want an agent to know only the color of an object; we want

the agent to associate the color with the object's shape and its tex-

ture. Moreover, we want to be able to associate information from

different sensory modalities, like IR and haptic (touch), IR and

vision, vision and haptic, or vision and audio. In terms of design,

this implies that redundancy should be introduced with respect

not only to one sensory modality but to several. Different sensory

modalities are based on different physical processes. They should

be designed in such a way that the information they deliver poten-

tially overlaps. For example, vision sensors and IR sensors both

yield spatial information. Depending on the environment's re¯ec-

tive properties, the physical characteristics of the sensors and their

position on the agent, readings of the visual and the IR sensors

show some correlation as the agent interacts with the environment.
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Redundancy can occur in three cases. First, there can simply be

temporal coincidence in the stimuli. To use an example by de Sa

(1994), whenever you see a cow, there is a high probability that you

will also hear a ``moo'' sound. Thus the environment alone lends

a certain redundancy to the sensory stimuli. This redundancy can

be picked up by unsupervised neural networks (e.g., Becker and

Hinton 1992; de Sa 1994). Forming such associations as those

between seeing a cow and hearing ``moo'' is an important aspect of

concept development. In autonomous agents speci®cally, these

associations can be formed only if the environment provides the

opportunity. Moreover, this sort of associative learning requires

that the ``stimulus'' cow has already been recognizedÐotherwise

the association cannot be formed. Thus, we cannot rely on such a

mechanism in general to ensure learning (for example, if the agent

has not yet learned to recognize a cow or a ``moo'' sound).

Fortunately, because agents can interact with their environment,

they do not have to wait passively for the right kinds of sensory

signals to arrive. Through appropriate interaction, such signals can

be generated, which leads us to the second case of how redundancy

can occur: through spatial information overlap. Note the arrange-

ment and the properties of the sensors in ®gure 13.6a. Collision

Figure 13.6 Spatial information overlap. (a) This generic agent (from chapter 5) has been de-
signed to yield spatial information overlap. (b) All IR sensors are on one side of this
robot, whereas all collision sensors are on the other. In this robot there is no spatial
overlap in the information from different sensory channels by direct coupling. (c)
There is no redundancy by direct coupling if there are only long thin objects in the
environment.
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sensors and proximity sensors are based on different physical

processes: in the former case, it is actual touch (which can be

implemented, for example, as a microswitch), in the latter, mea-

surement of re¯ected intensity of infrared light. Whenever a colli-

sion occurs, there is high activation in the proximity sensors

adjacent to the particular collision sensor. Thus, in a collision, the

information from the IR sensors is largely redundant. In other

words, the agent is getting similar information twice, once over

each channel. This is an instance of direct coupling. It works only if

the sensors are positioned appropriately, as can immediately be

seen by inspecting the robot in ®gure 13.4b. If this robot hits an

obstacle, the spatial information delivered by the two sensory

channels does not overlap, because the two types of sensors are not

collocated, and there is nothing to be learned. This robot has not

been designed according to the redundancy principle. But it can

still be used to pick up the correlations: It can behave in the real

world. For example, it could simply continuously wiggle back and

forth in such a way that both types of sensors are in the front of the

robot alternately. Near an obstacle, the sensory signals from the

different channels will then be correlated, just as for the properly

designed robot in ®gure 13.4a. (An alternative would be to simply

rotate the sensors, but that would be a somewhat different argu-

ment, and we do not discuss it here.) This is a more expensive

solution, however, than designing the robot with its sensors inter

mixed. Further, if the wiggling angle is preprogrammed, this is not

a sensory-motor coordination, because the sensor signals do not

in¯uence the robot's wiggling behavior. But if the wiggling behav-

ior depends on the sensory signalsÐand this is the third case of

how redundancy can occurÐwe have the general phenomenon of

sensory-motor coordination. It would be interesting to use arti®cial

evolution to see whether such wiggling behavior would in fact be

generated when we used as a ®tness function the distance traveled,

minus a reduction for the collisions.

What can we conclude from this case study? If the designers

position different types of sensors appropriately in advance, corre-

lations can be generated and learned through direct couplingÐno

sensory-motor coordination is required: a cheap solution. But even

if the sensory channels are not a priori positioned to yield correla-

tions, through its own behavior, through sensory-motor coordi-

nation, an agent can position itself so that correlations can be
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achieved which can then be picked up by a learning mechanism.

This way, one sensory channel becomes a predictor for the other.

To put it differently, the information from one sensory channel is

partly contained in the other. We see that sensory-motor coordina-

tion provides ¯exibility in how the potential redundancy in the

sensory signals of different channels can be exploited. So the

design decision of where to put the sensors becomes highly

involved: The potential overlaps in various types of sensory-motor

coordinations have to be taken into account. The kinds of sensory-

motor coordinations possible or necessary depend, in turn, on the

environment. Imagine, for a moment, that the robot in ®gure 13.6a

was operating in an environment with only narrow, vertical objects.

The correlations necessary for learning could no longer be gen-

erated through direct coupling because the objects would not be

large enough to stimulate both sensors simultaneously (®gure

13.6c). The robot in ®gure 13.6c would have to engage in some kind

of behavior to generate the appropriate redundancy required for

learning.

There is currently no general solution to this problem of how to

optimally design sensory systems with different channels and

where to position the sensors. This is, once again, because the right

choice strongly depends on the task environment. Thus a good bet

is once again to draw inspiration from natural systems, hoping that

evolution did in fact do a good designer's job.

Redundancy in the different sensory channels is a universal

phenomenon. We have seen many examples from robots, and

developmental studies provide abundant evidence for it. An enter-

taining illustration is provided by the so-called McGurk effect,

which concerns the fact that visual and auditory channels are both

used in speech perception. McGurk and McDonald (1976) took

videotapes of people uttering certain sounds, then changed the

sound so that the physical sound was not compatible with the

sound suggested by the videotape. For example, when the tape

showed /pa-pa/, the physical sound was /na-na/. Those watching

the tape often reported hearing /ma-ma/. Another example was a

/da/ on the video and a /ba/ as a physical sound, which was often

reported as /va/ by those viewing the tape. Because there is redun-

dancy in the two channels, the perceivers noted the incompatibility

(not consciously). The result was a kind of compromise: They

seemed to believe both channels to some extent.
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ConstraintsÐCommunicating Information Already Known

Let us conclude this discussion by translating redundancy of types

(3) and (4) to autonomous agents. Associations between sensory

modalities exploit redundancy. The information from one modality

(the visual one) reduces the uncertainty in the other (the IR sen-

sors). In this sense, the information in the other (the IR sensors) is

``communication'' of information that the agent already has, at least

partly. From the perspective of generating diversity, the informa-

tion from the IR sensors is still necessary for the agent to remain

adaptive: the situation may turn out to be a novel one, in which

case the prediction is incorrect. For example, some black objects

don't re¯ect IR radiation well, which leads the agent to predict that

no object is nearby, whereas in fact one is. The visual system has to

continue to do its jobÐit cannot fully rely on the IR system.

Accidental Redundancy

So far we have been talking about redundancy designed into the

robots. But another type of redundancy is not designed but natu-

rally incorporated in a particular physical substrate: It could be

called accidental redundancy. Evolution (both natural and arti®-

cial) can exploit this accidental redundancy in interesting ways.

For example, uses have evolved for various properties of waste

products. The smell characteristics are used for informatory pur-

poses: The smell of urine can be exploited to mark territory.

Hormones seem to have sprung from waste products of cellular

metabolism and later been employed as messengers to carry signals

within the organism (e.g., Holenstein 1985).1 When we say that

evolution is exploiting redundancy, we are of course adopting an

observer's perspective.

This phenomenon is also known from arti®cial evolution. Recall

our discussion in chapter 8 of Adrian Thompson's experiments to

evolve an electronic circuit that distinguishes between a high- and

a low-frequency signal. In Thompson's experiments, evolution

exploited the properties of the physical material, the silicon. In

particular, it made use of subtle interactions between cells. The

cells shaded in gray were not connected by wires to the rest of the

circuit (®gure 8.14b). Nevertheless, when clamped to a ®xed value,

1The technical term used for these kinds of phenomena is functionalization of epi-

phenomenal structure.
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the circuit ceased to function properly. So because some of the

constraints were dropped, evolution was free to exploit all the rich

dynamics of the silicon.

Information Theoretic Aspects

We now turn to a more formal discussion of redundancy and look

at information theory. This section is slightly formal and may be

skipped without losing the general thread of the argument.

What we have said about the redundancy principle can be

described more formally in information theoretic terms. If X and Y

are the variables representing the signals from two sensory modal-

ities or channels (e.g., IR and touch), and H�X� and H�Y� are the

respective entropies, we can de®ne the mutual information

I�X ;Y� � H�X� �H�Y� ÿH�X ;Y�: �13:1�
Formally, entropy is de®ned as

H�Z� � ÿ
XN

i�1

p�zi� log�p�zi��; �13:2�

for a discrete variable zi with probability distribution p�zi� and N

possible states. We can assume that the sensory signals assume

discrete values corresponding to the sensory states (e.g., 1,024 in a

typical IR sensor). Intuitively, the entropy is a measure of disorder,

of negative information. H�x; y� is the joint entropy, which is

de®ned as

H�X ;Y� � ÿ
X

x

X
y

p�x; y� log p�x; y�; �13:3�

where p�x; y� is the joint probability distribution. If the signals in

the two sensory channels are uncorrelated, H�X ;Y� is minimal:

There is less disorder, more order. The more the two are correlated,

the higher the mutual information will be. Note that mutual infor-

mation is also high if the entropy in the individual channels is

high. We return to this point shortly. The concept of mutual infor-

mation is a special case of redundancy, namely, redundancy for

two channels. These ideas can be generalized to more than two

channels, for example, to an agent with an IR sensor, a sonar, and a

vision sensor.

This standard information theoretic picture can be found in any

textbook on information theory (e.g., Cover and Thomas 1991). We
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now want to apply these ideas to autonomous agents. Normally, H

and I are properties of communication channels. In the case of an

agent, we are interested in the entropies and in the mutual infor-

mation as the agent is engaged in various behaviors. The entropies

H�X�, H�Y�, and so forth, of the individual sensory channels, the

joint entropy H�X ;Y ; . . .� and mutual information I are measured

over a set of behaviors in a particular environment, preferably over

the entire task environment. The individual entropies account for

the variability in the sensory channels, the potential diversity of

patterns of stimulation. The joint entropy is due to correlations, the

redundancy contained in the sensory channels, for example, during

sensory-motor coordination. If the sensory channels were always

correlated, there would be no meaning in having two channels.

Because of the different physical processes operating on different

channels, the chance that the channels will always be correlated is

very small. So we see that the mutual information reaches its max-

imum value when there is, at the same time, a lot of variation in the

individual sensory channels and a lot of correlation among them.

Mutual information can also be viewed as a measure of com-

plexity: the higher the mutual information, the higher the agent's

complexity. We are clearly not talking about the complexity of a

sensory channel here, nor the complexity of the entire agent, but

about the complexity of an agent given a particular task environ-

ment: The entropies and the joint entropy depend on the proba-

bilities of the sensory states, which in turn depend on the task

environment. The more diverse the agent's behavior, the more

variability there is in the various sensory channels, and if the

behaviors involve sensory-motor coordinationÐleading to low

joint redundanciesÐthe higher the mutual information. This cor-

responds to our intuitions of complexity. A similar measure has

been developed by Tononi, Sporns, and Edelman (1994, 1996) to

measure brain complexity (see below). This measure also contains,

indirectly, a characterization of the complexity of environments,

not in isolation, but with respect to an agent's sensory system,

which in turn is stimulated depending on the diversity of the

agent's behavior.

So far we have been talking about the observer's perspective: We

have analyzed the activation of different sensory channels. Now

we turn to the agent's perspective. Let us assume that the agent

encounters a new object. It explores the object, which leads to cor-

related activation, for example, in the visual and the haptic chan-
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nel. Mutual information is high. Through Hebbian mechanisms,

correlations are learned. Over time, the neural network has picked

up some of the mutual information contained in the sensory signals

during real-world interaction. After some time, it is no longer

necessary for the agent to experience full sensory stimulation to

recognize a particular object: It can exploit the mutual information

now contained in the neural network.

13.3 The Principle of Ecological Balance

The principle of ecological balance brings together the ecological

niche, the desired behaviors of an agent, and the agent itself. It

states that the ``complexity'' of an agent has to match the complex-

ity of its task environment. In particular, given a certain task envi-

ronment, there has to be a match in the complexity of sensors,

motor system, and neural substrate. It is best to illustrate the idea of

ecological balance with a number of examples.

Augmenting a Braitenberg Vehicle

Let us conduct an amusing thought experiment. A particular Brai-

tenberg type 1 vehicle, has one sensor, say for light intensity, and

one motor (®gure 13.7a). It is wired in such a way that the higher

the light intensity, the faster the motor is driven. Its environment

consists simply of varying light intensities. We have also looked

at this vehicle's behavior: It seems to dislike brightly lit areas and

a b c

Figure 13.7 The principle of ecological balance. (a) Standard Braitenberg 1 vehicle. (b) Braiten-
berg 1 vehicle with augmented brain capacity. (c) Braitenberg 1 vehicle with high-
resolution camera only. Vehicles (b) and (c) don't have any real advantage over (a).
Only if all sensors, brain, and motor system are augmented will they have a true
advantage over (a).
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prefers dim ones. Its ``brain'' consists of one neuron, so it's not

much of a brain. Let's turn it into a more realistic brain, like an

insect brain with 1 million neurons (®gure 13.7b). What would

the vehicle do with its enormous brain? It's hard to think of a

good answer. In fact, such a brain would be pretty useless. Since

ecological balance depends on the task environment, let's also

increase the environment's complexity by introducing enemies. It

is advantageous for the vehicle to recognize these enemies at a

distance. Instead of a large brain let us now add a high-resolution

camera to the vehicle (®gure 13.7c). This would be equally useless,

because the camera input could not be processed. So, let's now add

the brain from vehicle (b) to this vehicle. Now it might be possible

in principle for the vehicle to recognize the enemies (but note the

dif®culties with mapping a sensory stimulation onto an internal

representation), but it couldn't really avoid them, because all it can

do is go either faster or slower, though it might stop if it recognized

an enemy far away. The best solution would seem to be to augment

the capacity of all three systems, sensory, brain and motor. Then,

the agent could actually change its behavior and exploit the aug-

mented sensory and motor systems to meet the increased demands

of its environment.

Further Illustrations of Ecological Balance

Let us elaborate the principle of ecological balance a bit further.

People who, through some accident or illness, become blind start

exploiting other resources to compensate for the loss of their sight:

They start using their auditory, tactile, and proprioceptive (that is,

their internal sensors) systems in novel ways. Prior to the loss of

sight, they had not exploited the capacity of the auditory system

because there was no need. The extra capacityÐthe part they had

not tapped into prior to losing their sightÐrepresents redundancy.

As we stated above, it is always good design to have redundancy,

especially if the additionalÐmostly unusedÐcapacity is cheap.

``Cheap'' in this case means having low running costs (energy and

processing power) and low reproductive costs (genetic transmis-

sion). The task environment for the people who have turned blind

has now changed. They can no longer engage in a number of

behaviors, for example driving a car, playing tennis, or watching

a movie. Their reduced sensory capabilities have curtailed their

behavioral repertoire; in particular, those behaviors requiring
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spatial information are now more taxing. But they can still engage

in many behaviors, because spatial information, for example, can

also be acquired from other sensory systems. While walking, the

auditory system provides valuable spatial information. Note that

the systems still intact can be better exploited by engaging in new

behaviors, such as the exploration of the immediate surroundings

with a stick, thus producing additional auditory, tactile, and pro-

prioceptive feedback. Novel behaviors can generate sensory input

that canÐat least to some extentÐreplace the input from the visual

one, as in the scanning of Braille script. Exploiting the previously

unused capacity of sensory systems is possible only if there is suf-

®cient neural plasticity, and fortunately, in humans, this is devel-

oped to a high degree. As the nervous system reorganizes to adjust

to the loss of sight, the task environment gradually changes again.

Through the better exploitation of the auditory system, walking

becomes easier. But because the auditory system is now better

exploited, music is heard differently and perhaps becomes more

important. So we see that metaphorically speaking, some overall

balance is maintained.

Another illustration of the principal of ecological balance comes

from developmental studies. Bushnell and Boudreau (1993) sug-

gested that there is a kind of coevolution of the sensory and the

motor system in human infants. They investigated the motor com-

ponents of haptic perception and those of visual depth percep-

tion. In both cases, they found a high correspondence between

unfolding perceptual abilities and the acquisition of particular

motor patterns. For example, children's performance on a task

where they had to follow the gaze of the experimenter improved

dramatically as soon as they started crawling (discussed in Thelen

and Smith 1994, p. 201). These ®ndings directly relate to the prin-

ciple of sensory-motor coordination. Generating the ``right'' sensory

stimulation requires the ability to generate the appropriate move-

ments. At a more general level, the ecological balance principle

describes the inseparability of perception and action.

A further illustration of the principle comes from the animal

world: the phenomenon of rudimentary organs. Let us look at a few

examples. The eyes of the European mole are very small but still

functioning. By contrast, the North American mole is entirely

blind. The bodies of the two species are very similar. It would be

interesting to study in what ways the behavior of the two moles

differs. Does the additional sensory capacity in the European mole
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imply a different behavioral repertoire, that is, can European moles

exploit the additional sensory capacity? Another example is the

family of proteidae. Normally, individuals belonging to this family

live in dark caves under water. Below the skin of their head, they

have the rudiments of eyes, however, as a rule they don't develop:

They are blind. But if proteidae larvae are raised under red light,

their eyes develop in ways similar to those of other kinds of newts.

Again, the question would be whether the behavior repertoire is

different in these newts. It would also be of interest to see to what

extent this additional sensory ability changes the exploitation of

other sensory abilities. These questions may be hard to investigate

in natural systems, but we can study them using the synthetic

methodology.

Experiments

One of the fundamental differences between natural agents and

robots is that natural agents undergo a process of development

during which their body, sensory, motor, and neural systems grow

and change. It is currently not possible to reproduce these phe-

nomena on real robots. But we can approximate the developmental

process by building redundancy into the robot on the sensory and

the motor side. For example, we can put a high-resolution camera

on a simple two-wheeled robot, as well as a redundant manipulator

(A redundant manipulator is one with many degrees of freedom, so

that a particular task like picking up an object can be done in a

number of different ways.) But we do not initially exploit the full

capacity of the camera: We put a crude ®lter over it in such a way

that the resolution is minimal, for example, yielding only, say, a

16� 16 pixel image, to which only very simple processing is

applied. The rest, that is, the additional capacity for higher resolu-

tion, is redundancy to be exploited whenever a more demanding

task environment requires it. If we want to perform experiments to

explore how redundancy can be exploited, we have to get the robot

to actually do something, to make use of its setup. This necessitates

a value system. Only if the agent gets additional value from better

exploitation of its sensory-motor apparatus does it actually engage

in related behaviors. When working with agents, this point imme-

diately becomes obvious; we have generously glossed over it in our

verbal descriptions of natural systems. In our experiments, then,

we start with a simple task environment and make it successively

more taxing.
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An illustration of how this might be done can be found in the

robot ecosystem developed by Steels and McFarland (Steels 1997)

that we introduced in chapter 9. Recall that this ecosystem con-

tained boxes with lamps consuming energy. The robots had to push

against the boxes to dim their lights to reduce the energy consump-

tion of the boxes. The darker the boxes, the more current there was

in the charging station, which meant more energy available to the

robots. The robots were equipped with various sensors that could

be coupled to motivations. The point was that if the environment

was made more taxing, for example, by increasing the number of

energy-consuming boxes, the robots had to exploit these sensors to

produce bene®cial sensor-to-motor couplings. The primary source

of value was energy level, for which there was a special sensor. The

robots could get more value if they better exploited their sensors.

At the start of the experiments, the sensors were not used; they

constituted redundancy. An example of a sensor that was not

exploited initially is the sensor for being in the charging station. As

the environment was made more demanding, for example, by

introducing more competitors or other robots, the robots had to

exploit those additional sensors to learn the right couplings that

would lead to more ef®cient exploitation of the resources. For

example, by using the sensor for changing speed in the charging

station, the robots could learn the appropriate couplings to the

motors, that is, couplings that would slow them down as soon as

they entered the charging station, which in turn would result in the

robots' receiving more electricity. Note that this is a hard learning

problem because of the delayed reinforcement (which the next

chapter discusses). The robot ecosystem nicely demonstrates how

environmental pressure can force agents to exploit their redundant

sensory apparatus. So far, this has been done only on the ontoge-

netic scale. We could also imagine that the entire procedure was

embedded into an evolutionary cycle. In this case, we would not

explicitly have to de®ne value (as the energy level) but could

simply take as the ®tness criterion how long an agent survived, that

is, how long its energy level remained above 0. And then we could

observe, for example, whether ``something'' evolved, whether the

agents started exhibiting behavior, that we, as observers, might

want to associate with a value system.

With this example, we wanted to illustrate how one might think

about conducting experiments that relate to the principle of eco-

logical balance. Because we deal with complete agents, we have to
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think about motivational issues, about value. So the task environ-

ment has to be designed in such a way that the agents can realize

this value. If we want the agent to better exploit the capacity of its

high-resolution camera, we have to produce an incentive for it to

do so (for example, getting value from small objects, the manipula-

tion of which requires exploiting the camera's additional capacity).

This complicates matters considerably, but at the bene®t of poten-

tially producing more ecologically valid results. Instead of using

real robots, we can opt to use a simulation task environment. We

can also employ arti®cial evolution (which will eventually enable

us to simulate actual growth of an organism; see Eggenberger's

model of cell growth discussed in chapter 8). Arti®cial evolution

can then be used to systematically explore the kind of balance that

evolves in the agent's setup as a function of the task environment.

Another consideration in the choice of task environment relates

to the frame problem. In chapter 3, we identi®ed the frame problem

not only as one of the fundamental problems of classical AI sys-

tems, but also as a problem inherent to any modeling approach:

Keeping the model in tune with the environment. Intuitively, larger

brains are only of advantage to an agent's adaptivity. They aug-

ment the potential for generating diversity. But there is also a danger

in having large brains: The larger an agent's brain, the more informa-

tion about the environment it can potentially acquire the more

complex the models of the environment can be. If the environment

is changing rapidly, the chance increases that this information

becomes inaccurate, that the models do no longer correspond to

reality and thus are no longer of value. Such information is only

costly, consumes energy, and offers no bene®t for behavior, for

acquiring additional value. If the complex models in the brain have

to be updated, this has to be achieved, in a situated agent, through

its sensory system in the interaction with the real world. The

amount of information that can be transmitted to the brain is

therefore always limited and may not be suf®cient to accurately

update the world models. So eventually, systems with overly large

brains run into trouble, although increasing brain size may,

depending on the particular task environment, be bene®cial to an

agent. In particular, increased brain size may host redundancy that

can be exploited for generating diversity. However, we can be cer-

tain that there is a limit beyond which further increasing the brain's

size leads to a decrease in performance. This is because of the

frame problem (the dif®culty in keeping complex models in tune
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with the world) and the energy consumption at the brain. Building

a brain the size of the moon is certainly not a very good idea, at

least in those task environments that we can currently think of

(see Issue 13.1).

Measuring Complexity

Let us now turn to a more formal treatment of ecological balance.

Again, this section can be skipped without losing the thread of our

argument.

If the principle of ecological balance is ever to achieve the status

of an empirically testable hypothesis, we need to be more quanti-

tative: we need a measure of complexity. This measure should take

into account not only the agent's low-level speci®cations, but also

the agent's task environment. We cannot look only at the states of

the various sensory and motor channels in measuring complexity.

Intuitively, we understand that an agent that exhibits a great variety

of different behaviors is more complex that one always engaged in

the same behavior. Behavioral diversity also requires diversity in

sensory, motor, and internal states. As we noted above, the mutual

information function I�X ;Y ; . . .� captures these intuitions in a for-

mal way.

Tononi, Sporns, and Edelman (1994) have presented a measure

for characterizing brain complexity similar to the mutual informa-

tion function. They started from the well-known assumption that

there is both functional segregation of brain areas that differ in their

anatomy and physiology and global integration of these areas dur-

ing perception and behavior; their measure of neural complexity

captures these two aspects of brain organization. Functional segre-

gation concerns the fact that different areas of the brain are devoted

to the processing of different types of signals, say of visual, audi-

tory, tactile, or motor signals. During perception and behavior, the

processing of these areas has to be coordinated to achieve overall

coherence, that is, to achieve global integration that leads to appro-

priate behavior. Functional segregation within a neural system is

formally expressed as follows: The brain region is partitioned into

small subsets, then the relative statistical independence of these

subsets is determined. Functional integration is calculated in terms

of deviations from statistical independence in large subsets. Tononi

and colleagues obtained their measure of complexity, CN , from

estimates of the average deviation from statistical independence for
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subsets of increasing size. This measure is high when functional

segregation coexists with integration and low when the compo-

nents of a system are either completely independent (segregated) or

completely dependent (integrated). Again, this is in line with our

intuitions. If different areas are always integrated, it is not clear

why different areas would need to exist in the ®rst place: a single

one would be suf®cient. Conversely, if different areas are always

segregated, no redundancy would exist to exploit for learning.

As we saw in our discussion of the principle of parallel, loosely

coupled processes, correlations can come about not only through

connections between various processes but also through interac-

tion with the environment. The principle of sensory-motor coordi-

nation capitalizes on coordination through the environment. So we

want to characterize not only brain complexity as such, but also the

overall complexity of the agent in which the brain is embedded as

it behaves in a particular task environment. Tononi, Sporns, and

Edelman took a ®rst step in this direction, extending their measure

CN to include sensory stimulation in a second measure called the

matching complexity �CM �. It is calculated as follows:

CM �X ;Si� � C T
N �X� ÿ C I

N �X� ÿ C E
N �X�; �13:4�

where X is the neural system; Si the sensory subsystem involved in

processing the sensory stimulus i; C I
N �X� is de®ned as CN above,

that is, the complexity when the system is isolated from sensory

stimulation, called the intrinsic complexity; C T
N �X�, called the total

complexity, is what we observe when the system processes a stim-

ulus in subsystem Si; and C E
N �X�, the extrinsic complexity, is the

complexity of the sensory stimulus itself, calculated by setting the

neural connectivity in X to 0. To ®nd the matching complexity,

the brain complexity and stimulus complexity have to be sub-

tracted from the total complexity. This brings us already closer

to our intuitions: Matching complexity CM takes into account an

aspect of the task environment: sensory stimulation. In an agent

context, this sensory stimulation has its origin largely in the agent's

behavior. In a sense, this sensory stimulation re¯ects the agent's

behavioral complexity: the more diverse the agent's behavior, the

more variation in the sensory channels, and the higher the entropy

in the individual channels. But CM takes only the stimulus into

account, not the fact that this stimulus may or may not be due to

the agent's behavior. We are interested not only in complexity due

to sensory stimulation, but also in complexity due to self-generated
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sensory stimulation. Equation (13.4) may therefore have to be

extended to include aspects of the motor system's complexity.

Making this extension is a hard research task. As a ®rst step, one

could apply CM to various agents in different task environments,

which is dif®cult because we would have to assess the probability

distributions of the different sensory channels. These distributions

in turn depend on the task environment and the agent's motor

abilities, in particular the agent's capacity for sensory-motor coor-

dination. This in turn implies that we would have to take the

low-level speci®cations into account, that is, where the sensory

channels are positioned within the agent's morphology, as ex-

pressed in the redundancy principle. Exploratory empirical studies

might provide us with some direction.

Issues to Think About

Issue 13.1: Complexity and IQ

We have maintained that if we are to perform empirical tests on the

design principles we have articulated, we need to be more quanti-

tative about complexity. We examined some preliminary ideas on

how such a measure might look. The measure has to capture our

intuition that a system whose components are sometimes func-

tioning independently and sometimes in a coordinated way is more

complex than one in which all the components are always inde-

pendent, or one in which they are always coordinated. We saw that

coordination can come about through appropriate interaction with

the environment, through sensory-motor coordination. Tononi,

Sporns, and Edelman (1996) introduced a measure of brain com-

plexity vis-aÁ-vis a certain statistical distribution of sensory stimula-

tion. In some sense, this distribution re¯ects the task environment,

the agent-environment interaction: depending on an agent's behav-

ior, this distribution looks different at different times. (We noted

that this measure does not capture the origin of this sensory stimu-

lation, the fact that the agent itself can move and generate sensory

inputs.) Now think a moment about what we have just done: We

have just mapped the complex agent-environment interaction onto

one single number. Given our characterization of intelligence in

chapter 1 in terms of diversity and compliance with the rules, we

can ask ourselves if we now have a measure of intelligence in one
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number. This reminds us very strongly of the IQ discussion in

chapter 1. The question then becomes what this single number tells

us about the agent. Does it reveal interesting properties of an agent?

In what sense can we use it to compare agents? In what sense do

agents with similar complexity in fact seem similar to us under this

measure? The advantage of the synthetic methodology here is that

we can make systematic experiments to explore this issue. We can

vary aspects of our agents and task environments by changing the

agents themselves or by introducing more competitors into the

ecological niche and compare the resulting complexities.

Issue 13.2: Walking: A Passive Dynamic Process?

Imagine that you are walking through Zurich. When you observe

yourself, do you feel that you are a ``passive dynamic walker'' or

that your brain is controlling the walking? Or do you think that the

truth is somewhere in between (which is most likely what you

think)? If you had the task to design a walking robot, how would

you proceed in designing the control architecture? One way would

be to start with a passive dynamic walker, then successively add

small pieces of neural circuitry until the desired set of behaviors

could be achieved. Another would be to analyze human walking by

incorporating insights from neuroscience. Do you have other sug-

gestions on how you might proceed?

Points to Remember
1 The principle of cheap design states that good designs are ``cheap.''

``Cheap'' as used here means three things: First, it implies exploit-

ing the physics of the system-environment interaction. Second, it

means exploiting the constraints of the ecological niche. And third,

it means parsimonious.
1 The house¯y achieves cheap navigation by exploiting the system-

environment interaction, namely the phenomenon of motion par-

allax. Motion parallax refers to the phenomenon in which the

speed at which an object's image travels across a visual ®eld is low

when the object is in front of the agent and high when it is on the

side. More precisely, its speed follows a sine law. The facette eye of

the ¯y has narrowly spaced visual segments in front and wider

spaced ones on the side so that it can use identical neural circuits

to detect motion for the entire eye.
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1 Examples of environmental constraints that can be exploited are

closed environments, ¯at ¯oors, and objects standing on the ground

(ground plane constraint), as well as statistical properties of the

particular environment (no XORs to be learned). Often the con-

straints are not provided by the environment but can be generated

in the agent's interaction with the environment through sensory-

motor coordination. By exploiting the constraints of the ecological

niche, learning problems that at a purely computational level seem

intractable can often be turned into benign ones.
1 The passive dynamic walker is a robot that exploits physics in

interesting ways. It illustrates that very natural walking can be

achieved ``without a brain.''
1 Emergent designs are typically cheap. If desired behaviors emerge,

then normally fewer processes need to be designed. An example is

the self-suf®cient robot from chapter 11 that grasped pegs even

though no special process had been designed for grasping.
1 Cheap designs are parsimonious: The most parsimonious design is

to be preferred among competing alternatives.
1 The redundancy principle states that an agent has to incorporate

redundancy; more speci®cally, in terms of sensory processes, the

principle states that sensors have to be positioned on the agent in

such a way that there is potential overlap in the information

acquired from the different sensory channels.
1 There are several forms of redundancy: (1) repetitive transmission

of the same message over one channel, (2) duplication of channels,

(3) restrictions on the use of characters transmitted across the

channel, and (4) communicating something already known to its

addressee. These can be translated into an agent context. Sensory

channels can be interpreted in an agent context as ``communication

channels.''
1 Redundancy is either exploited by direct coupling or by sensory-

motor coordination for learning. In the former case, the redun-

dancies are given directly in the interaction: The agent does not

have to do much (except for move around). The more general case

is the second, in which the data are generated through a sensory-

motor coordination.
1 Entropy is a measure of disorder or diversity in a system, for

example, in sensory channels. Entropy is high if there is a lot

of variation in the sensory channels, otherwise it is low. Mutual

information is de®ned as the sum of the entropies in the different

sensory channels, minus the joint entropy. The joint entropy rep-
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resents the correlations among the channels. Mutual information is

high if the individual entropies are high and if the joint entropy

(the correlations) is high: It is high if there is a lot of variation but

also a lot of correlation.
1 The principle of ecological balance states that the complexity of an

agent has to match the complexity of its task environment. In par-

ticular, given a certain task environment, there has to be a match in

the complexity of sensors, motor system, and neural substrate.
1 Natural agents exploit redundancy in sensory systems if one of

their existing sensory systems is damaged by an accident or by ill-

ness. Better exploitation of the sensory systems not damaged may

also require novel behaviors.
1 Developmental studies provide evidence for the principle of eco-

logical balance. For example, it has been shown that there is a

coevolution of perceptual and motor abilities in human infants.
1 Experiments for investigating processes of exploiting redundancy

for generation of diversity must provide a motivation for the agent

to actually make use of the extra potential available. This motiva-

tion has to be related to value and environmental pressure. The

robot ecosystem is an interesting illustration of how this might be

achieved.
1 There are complexity measures for the brain. They capture the fact

that complexity should be low if there are no correlations among

the different brain areas, but it should also be low if the activations

are always correlated. Other measures include sensory stimulation,

which indirectly includes the task environment. These measures

must be augmented to include the idea of self-generated sensory

stimulation. In other words, the agent's motor system has to be

included as well.

Further Reading
Garcia, M., Chatterjee, A., Ruina, A., and Coleman, M. (in press). The simplest walking

model: Stability, complexity, and scaling. ASME Journal of Biomechanical Engineer-

ing. (A very technical paper that demonstrates how a passive dynamic walker can be

designed that walks down a shallow slope with no control. In other words, the

researchers have developed a walking machine without a brain.)

Tononi, G., Sporns, O., and Edelman, G. M. (1996). A complexity measure for selective

matching of signals by the brain. Proc. Natl. Acad. Sci., USA, 93, 3422±3427. (This

paper develops a measure of complexity that takes the statistical distribution of the

sensory inputs into account. We think that we will need this kind of formal measure

of complexity to characterize more quantitatively the principles in this chapter.)
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14 The Value Principle

In this chapter we elaborate the value principle, which encom-

passes value systems, self-organization, and learning in autono-

mous agents. This principle states that the agent has to be equipped

with a value system and with mechanisms for self-supervised,

incremental learning employing principles of self-organization. It

is related to the principle of sensory-motor coordination, and the

complete-agent principle (®gure 14.1).

Let us brie¯y introduce the three topics of this chapter. The

notion of value is important for the following reason. If an agent is

to be autonomous and situated, it has to have a means to ``judge''

what is good for it and what is not. A value system provides this

means; it also modulates the learning process, either explicitly or

implicitly. In an explicit value system, value signals that modulate

learning are generated as consequences of behavior. In an implicit

value system, modulation is achieved by mechanisms that select

interactions with the environment for learning, leading to increased

adaptivity. Self-organization has become a popular term that is

used, often metaphorically, in a large number of scienti®c ®elds. It

has been applied, for example, to thermodynamics, ¯uid dynamics,

neurobiology, psychology, managment science, and sociology. (For

an overview, see Dalenoort 1989.) There is no generally accepted

de®nition of the term ``self-organization.'' Rather, self-organization

can be looked at in different ways, as certain ideologies and schools

of thought conceptualize it. We cannot possibly review them all

here; we focus instead on those aspects relevant to understanding

self-organization in autonomous agents.

Learning is a phenomenon with which everyone is familiar. It

has been studied extensively in many scienti®c ®elds, such as psy-

chology, neurobiology, and arti®cial intelligence. Learning comes

in a large number of forms and variations. One type that is of fun-

damental importance for any kind of agent, natural or arti®cial, is

value-based learning. We will show that if we want to equip robots

with self-organized learning mechanisms, we need value systems,



because consequences of behavior must modulate the strengthen-

ing of synapses. Those self-organizational processes that lead to

adaptive behavior should be reinforced. We introduced control

architectures that employ value-based learning (the SMC agents) in

chapter 12. Value, self-organization, and learning are important

aspects of adaptive behavior. For an agent to be adaptive, there

must be a very large number of possible states. These are given by

the low-level speci®cation and the control architecture (see chapter

4). What is then needed are mechanisms for generating candidate

states for selection. Mechanisms of self-organization can be used to

generate such states, and value systems ensure that states of value

to the agent are being selected. Finally, learningÐthrough struc-

tural changes in the systemÐincreases the probability that states of

value will reoccur. Before going into the details of value-based

learning, we ®rst discuss the general ideas of value systems and the

foundations of self-organization theory as well as the basic con-

cepts and paradigms of robot learning.

Figure 14.1 Overview of the design principles. The value principle (highlighted) relates directly to
the principle of sensory-motor coordination and to the complete-agent principle.
Moreover, the capacity for learning and self-organization (the links between the value
principle and the sensory-motor coordination principle) depend on the ecologi-
cal balance principle: Ecological balance is a prerequisite for learning and self-
organization. The same holds for the redundancy principle.
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14.1 Value Systems

Autonomous agents face a continuously changing stream of input

data. Extracting from all this input the data relevant for the current

task is a dif®cult task for an agent. Learning cannot take place

without some value placed on the various types of sensory-motor

coordinations in which an agent can engage, without some mecha-

nisms being better in a given context than others. Even more fun-

damentally, we have to ask why an agent should do anything in the

®rst place: ``Something has to start the process in the ®rst place.

Something has to motivate infants to look, to reach, to mouth, to

seek out information about their worlds'' (Thelen and Smith 1994,

p. 313). This issue also arises in the case of autonomous agents.

How should this motivational force be conceptualized? How or

what drives agents to explore their environment and learn about it?

The psychological literature addressed this issue by introducing

the concept of instrinsic motivational forces such as ``drives.''

Piaget (1952), for example, suggested that the driving force under-

lying infants' behaviors was the need to adapt to the environment.

According to Piaget, this need is internal to the agent and a biolog-

ical given. Similarily, Gibson (1988) suggested that a ``baby is pro-

vided with an urge to use its perceptual system to explore the

world'' (p. 7). The essence of these proposals is that this internal

driving force introduces biases into the agent. These biases make

the agent prefer one behavior over another, given the current

external and internal context. Biases implicitly or explicitly encode

what ``is good'' for the organism; in other words, they encode what

is of value for an agent (Reeke et al. 1989). Such values need not be

complex internal structures. Rather, ``simple, relatively low-level

valencesÐfor edges, for movement, for light, for sounds in the

range of human voices, for warmth, for touchÐcan initiate the

developmental process'' (Thelen and Smith 1994, p. 315). An

illustration of this idea is the attraction of young infants to faces,

which begins with an initial re¯ex in newborns (Johnson and Mor-

ton 1991; cf. Thelen and Smith 1994) whose main result is an

increased probability that the infant encounters high-contrast

``blobs'' corresponding to the eyes and the mouth. Given that

infants often see such con®gurations in real faces close up during

nursing, changing, and socializing, even a small initial bias toward

such blobs leads to rapid learning of the mother's (or some other

caretaker's) face. Similar biases have to be incorporated into

autonomous agents. In the case of reaching, for example, an agent

The Value Principle 469



might incorporate a value scheme that treats the hand being in the

proximity to the object as ``good''; mechanisms similar to rein-

forcement learning (see below) would then reinforce those sensory-

motor con®gurations underyling the behaviors that arrive at this

favorable state.

Let us brie¯y look at the similarities and differences between

value systems and reinforcement learning techniques. Value sys-

tems generate value signals that modulate Hebbian learning. More

speci®cally, the activation of value systemsÐthe value signalsÐ

enter the weight update rule in a multiplicative way. Recall from

chapter 5 that basic Hebbian learning strengthens a weight between

two neurons by multiplying their activations. In other words, the

weight change is essentially.

Dwij � h � ai � aj ; �14:1�
where wij is the weight, h is the learning rate, and ai and aj are the

activations of the neurons. (See equation (5.9) for a more elaborate

version of this basic rule.) The hallmark of value-based learning,

that is, learning modulated by the activity in value systems, is that

the activity of the value system enters this update rule:

Dwij � V � h � ai � aj ; �14:2�
where V is the summary term for the contribution of the value sys-

tem and ai and aj are the time-averaged activations of the two neu-

rons (i.e. the activations are averaged over a certain period of time).

We discuss the reason for introducing time-averaged activations

shortly. Let us ®rst concentrate on the V term. If this term is large,

then the weight increase between the neurons will be large, and

vice versa. In other words, whenever the value system is strongly

activated, the weights between the currently active neurons are

strengthened. This implements the idea referred to above: Value

systems should bias learning in a way that strengthens sensory-

motor con®gurations resulting in favorable states (by setting V to

same value > 0). We call such value systems that explicitly modu-

late the learning process by the multiplicative term V in equation

(14.2) (or variants thereof) explicit value systems.

We discuss the speci®cs of value-based and reinforcement learn-

ing in more detail below. We want to make three important points

here, however. First, in value-based learning, the modulation of

learning happens a posteriori. Value systems are activated only

after an agent has performed a behavior; they have an evaluative
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character. For example, the value system in the SMC I agent was

activated only when the robot had grasped an object. When that

behavior resulted in a sensory-motor con®guration that was of

value for the agent, for example, the agent could lift the object, the

value system was activated. In a similar vein, Thelen and Smith

suggest that infants learn through experiencing the consequences of

their behaviors. We can now address the reason for taking time-

averaged activations in update rule 14.2. Neurons whose connec-

tions are modulated by value signals have been activated before

the behavior occurred. For example, the SMC agent's grasping was

triggered by its circling around a small cylinder (see chapter 12). As

it is grasping, the sensory stimulation that triggered the grasping is

no longer present. The value signals, however, are triggered later,

once the agent has successfully grasped the object. In other words,

there is a delay between the start of the behavior, the activation in

the respective neurons, and its evaluation by the value signal. To

implement value-based learning in this situation, one needs a

kind of ``memory'' of the recent history of the neuron activations

responsible for the movement that triggered the value signal. The

simplest such memory is time averaging of the neurons' activa-

tions, (see equation 14.2). The main result of time averaging is that

these neurons are still suf®ciently active when the value signal is

triggered for value-based learning to work. We return to this issue

in the last section of this chapter, in which we discuss value-based

learning in more detail.

Second, value-based learning as shown in equation (14.2) differs

from supervised learning schemes such as back-propagation in

which the correct answer is given to the system and the weights are

updated according to the difference between the system's answer

and the correct answer. Here, the system is only ``told'' whether its

behavior was good or bad. We return to this issue below.

Third and ®nally, value-based learning differs from reinforce-

ment learning approaches as practiced by the machine learning

community where the environment (somehow) gives the reinforce-

ment signal. This latter philosophy is not compatible with the idea

of a situated agent, since situated agents build up their experience

through interaction with the environment from their very own

perspective. So reinforcement has to be generated from within the

agent rather than from the environment, unless the agent is capable

of interpreting such a reinforcement signal with respect to its own

value system. For example, if a mother tells her child that what
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he did was good, the child has to perceive what his mother said,

understand it, and interpret it as a positive reinforcement signal.

Despite this difference in focus between the two approaches, tech-

nically, value-based learning bears strong similarities to reinforce-

ment learning approaches as we show below.

Let us now reconsider the issue raised at the beginning of this

section: Why should agents do anything in the ®rst place? And how

does the notion of value systems address this problem? We have

said that value systems act a posteriori, after the agent has moved

in some way. This leaves open the problem of establishing the

driving force that actually generates the movements that value sys-

tems can evaluate. A popular idea is to assume that infants (and

robots) perform random movements that value systems can then

evaluate. Such an approach has limitations, because the random

exploration of favorable states is very time consuming. Technically

speaking, such a learning process typically does not converge

because not all states in a very large state space can be visited. The

approach taken by most people to overcoming this limitation is to

introduce biases into these random explorations or to present the

agent with situations from which it can learn important aspects of

the task (shaping). (We only discuss the former; for a review of

shaping in autonomous agents, see Dorigo and Colombetti 1997).

These biases most often take the form of re¯exes. Viewed in this

way, re¯exes are mechanisms that select interactions with the

environment for learning that lead to increased adaptivity or value;

they increase an agent's probability of receiving explicit value for a

particular action. For example, the EBA processes underlying the

SMC I agent were re¯exes that increased the agent's probability of

entering favorable states. To express this idea informally, the agent

somehow had to ``like'' collecting objects: Collecting objects was

``good for'' the agent. This was accomplished as follows: A value

signal was generated whenever the agent successfully grasped an

object. A basic re¯ex was added to increase the chances that the

agent would successfully grasp something: Whenever the agent

received lateral sensory stimulation for a period of time, it made a

grasping movement. This re¯ex was part of the implicit value

system of the SMC I agent and represented a bias analogous to

the initial orienting bias in human infants. The main difference

between the two is that in the infant's case, the bias is a result of

evolution, and in the robot, it is introduced by the designer. The
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main purpose of the bias is to accelerate the learning and thus make

the agent more ®t for its particular ecological niche. Biasing the

learning process by introducing such re¯exes is also a technique in

reinforcement learning (e.g., Kaelbling, Littman, and Moore 1996).

The important point is that learning does not happen without these

biases (Thelen and Smith 1994).

In summary, value systemsÐwhether explicit or implicitÐcan

be understood as basic evolutionary adaptations that de®ne broad

behavioral goals for an organism in terms of their recognizable

consequences. In other words, they are very general biases that are

the heritage of natural selection (in the case of natural agents) or are

prede®ned by the designer (in the case of arti®cial agents) (Reeke

et al. 1989). If we now try to apply these ideas to designing auton-

omous agents, we have to deal with the following hard problem:

There is a trade-off between speci®city and generality of value sys-

tems. If value systems are too speci®c, the system is not suf®ciently

¯exible; that is, it is unable to generate diversity. On the other

hand, if value systems are very general, they are of little selectional

value and insuf®ciently constrain the very large space of possible

movement patterns. A similar problem is encountered in arti®cial

evolution, which has only a global value measure, the ®tness func-

tion (see chapter 8). Indeed, Sporns and Edelman have indicated

their belief that ``the issue of value constraints and their number

presents one of the greatest future challenges to selectional theories

of brain function'' (1993, p. 969). Work in embodied cognitive

science will help to clarify this issue further by providing the pos-

sibility of testing a large number of different value systems, from

speci®c to very general, in a variety of tasks.

Another fundamental issue underlying the above discussion is

how we should conceptualize development. Should we view de-

velopment as a process of selecting from among a great number of

possible behaviors those that lead to value (selectionist develop-

ment)? Or should we conceptualize development as a construction

process in which new structures are built on top of already existing

ones (constructionist development)? There is a hot debate in the

neurosciences about which of the two should be preferred given

the current evidence on brain growth (see, e.g., the discussion

between Purves, White, and Riddle 1996, 1997, and Sporns 1997).

Selectionist theories hold that ``the organism spontaneously gen-

erates a multiplicity of internal variations and the interaction with
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the environment merely selects or ``selectively stabilizes'' some of

these endogenous variations'' (Changeux 1986). In this view,

learning does not create novel connections, but rather contributes

to either the strengthening or the elimination of preexisting ones.

This is the core idea of ``neural Darwinism'': Development works

analogously to natural selection. There is an immense redundancy

(or degeneracy, as Edelman (1987) terms it) of synaptic connec-

tivity from which only the ®ttest ones are selected, that is, those

that result in value. The implication is that ``when we think we are

learning something, we are only discovering what has already been

built into our brains'' (Gazzaniga 1992, p. 68). The constructionist

position, on the other hand, (e.g., Purves et al. 1996) holds that

there is a gradual and ongoing elaboration of neuronal connec-

tivity, suggesting ``increasing, not decreasing, numbers of synapses

during maturation'' (Purves et al. 1996, p. 461). Learning consists,

in the constructionist view, of adding new connections between

neurons and not in eliminating existing ones.

The debate between selectionist and constructionist approaches

is re¯ected in developmental psychology. For example, Thelen and

Smith (1994) extensively argue for a selectionist view on develop-

ment and support their argument with evidence about reaching

behavior in infants, the development of which seems to be consis-

tent with selectionist principles. On the other hand, Rutkowska's

view on development ``diverges from the selectionist approach by

moving onto Piagetian territory, where the development of action is

a process of construction not just selection'' (1997, p. 294).

We pursue this issue no further, but instead point out that there

is currently no decisive experiment to allow us to decide between

the two views. Both have their merits and disadvantages, and both

can be challenged or supported by empirical evidence. Moreover,

both principles might well be jointly employed in development.

Since learning and development are core issues in embodied

cognitive science, we expect that many more experiments with

autonomous agents need to be conducted in order to explore the

selectionist versus constructionist debate. These explorations will

help us elaborate those aspects of the two views that differ fun-

damentally and identify areas where the two might be com-

plementary. Given our interest in value systems, redundancy, and

self-organization, we focus on the selectionist aspects of develop-

ment. Let us now turn to the second major topic of this chapter,

self-organization.
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14.2 Self-Organization

The phenomenon of self-organization can be looked at from (at

least) two perspectives. In the ®rst, processes of self-organization

lead to structural changes in a system. In neural networks, for

example, the learning process leads to changes in the connec-

tion weights, which amounts to a change in the structure of the

network (e.g., a Kohonen map) brought about by self-organization.

In the second self-organization involves no structural changes to

the system and thus is not directly related to learning; rather, self-

organization leads to a reversible formation of patterns. This

distinction is important for understanding intelligence: Quite

obviously individuals do change over time, in particular during

ontogenetic development. Edelman and his coworkers demon-

strated that the two forms in fact interact during development and

that this interaction is important for the development of the ner-

vous system (Tononi, Sporns, and Edelman 1992). (The German

psychologist Norbert Bischof, capitalizing on this distinction, even

coined special terms to differentiate the two: self-ordering (for self-

organization without structural changes) and self-organization (for

self-organization with structural changes). Although Bischof's terms

do make the distinction explicit, we do not further use these terms

because they are not widely employed). Let us look at a few exam-

ples to illustrate these concepts further.

Self-Organization without Structural Changes

In the autonomous agent domain, self-organization without struc-

tural changes is frequently found in collective phenomena, that is,

phenomena involving many individuals.

THE DIDABOTS ARE CLEANING UP

Recall the robot experiment that we used in chapter 4 to illustrate

the importance of embodiment (®gure 4.10). The robotÐthe Dida-

botÐpushed cubes when the sensors were placed appropriately,

but did not push cubes when the sensors were moved to the front of

the robot. In what follows we summarize experiments conducted

by Maris and te Boekhorst (1996), who studied a collective heap-

building process by a group of Didabots. Instead of prede®ning

``high-level'' capacities, they exploited the robots' physical struc-

ture and the self-organizing properties of group processes. The

main idea behind the experiments was that seemingly complex
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patterns of behavior (such as heap building) can result from a lim-

ited set of simple rules that steer the interactions between entities

(e.g., robots) and their environment. This idea has been success-

fully applied to explain, for example, the behavior of social insects

(see below).

Figure 14.2 shows an arena with a number of Didabots. (The

experiments by Maris and te Boekhorst typically employed three to

®ve.) The Didabots are programmed as simple Braitenberg vehicles

with only one type of sensor, for proximity. All they can do is avoid

obstacles. In the sequence of pictures shown in ®gure 14.3, a num-

ber of cubes are initially randomly distributed. Over time, a num-

ber of clusters form, and by the end, there are only two clusters

and a number of cubes along the walls of the arena. Maris and te

Boekhorst performed these experiments many times: The result

was very consistentÐthere were always a few clusters and gener-

ally a few cubes left along the walls. What would you say the robots

are doing? ``They are cleaning up''; ``They are trying to get the

cubes into clusters''; ``They are making free space'': These are

answers that we often hear, and they are ®ne so long as we remain

aware that they the represent an observer perspective. They de-

scribe the robots' behavior. The second also attributes an intention

by using the word ``trying.'' The designers can say very clearly

what the robots were programmed exclusively to do: to avoid

obstacles! (In fact, it would be more precise to say that they are

programmed with the control rule: if sensory stimulation on left,

turn right; if sensory stimulation on right, turn left.)

Figure 14.2 Didabots in their arena. The experiments by Maris and te Boekhorst (1996) involved
an arena with a number of Didabots, typically three to five. The robots have the
control architectures of simple Braitenberg vehicles with only one type of sensor, for
proximity: All they can do is avoid obstacles.
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Figure 14.3 Heap building by Didabots. Initially the cubes are randomly distributed (a). Over
time, a number of clusters form (b). At the end, there are only two clusters and a
number of cubes along the walls of the arena (c).
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The complexity of the robots' behavior with the cubes results

from a process of self-organization of many simple elements: the

Didabots, with their simple control rule. The Didabots use only the

sensors on their front left and front right. Normally, they move for-

ward. If they get near an obstacle within reach of one of the sensors

(about 20 cm), they simply turn toward the other side. If they en-

counter a cube head on, neither the left nor the right sensor mea-

sures any re¯ection, and the Didabot simply continues to move

forward. At the same time, it pushes the cube. (However, it pushes

the cube because it does not ``see'' it, not because it was pro-

grammed to push it.) For how long does it push the cube? It will

push it until it encounters another cube to the left or the right. It

then turns away, thus leaving both cubes together. Now there are

already two cubes together, increasing the chance that another cube

will be deposited near them. Thus, the robots have changed their

environment, which in turn in¯uences their behavior. Although it

is impossible to predict exactly where the Didabots will form

the clusters, we can predict with high certainty that only a small

number of clusters will be formed in environments with the geo-

metrical proportions used in the experiment. We said in chapter 11

that collective approaches also instantiate the principle of parallel,

loosely coupled processes. The Didabot experiment offers a further

example of this point. Each robot can be seen as one such process.

Coupling emerges through the interaction of each agent with the

environment. This interaction, as we have seen, changes the envi-

ronment, which in turn changes the other agents' behavior.

Principles similar to those observed in the Didabot experiments

can also be found in natural agents. Let us look at an example from

ant societies.

ANTS FIND THEIR WAY TO A FOOD SOURCE

In their experiments on ants, Deneubourg and Goss (1989) asked

whether the complexity of social interactions may be attributed to

individuals or to their interactions. For instance, colonies of certain

species of ants appear able to select the nearest food source among

several present at varying distances from the nest. Attributing the

complexity of this phenomenon to the individual ants would imply

that individual ants compare the distances to several food sources

and on the basis of this knowledge choose the nearest food source.

This would entail ample cognitive calculations. Instead, however,

Deneubourg and Goss found a much simpler explanation, one
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based on self-organization. Ants mark their path with pheromones

when they leave the nest to search for food as well as on their

journey back to the nest. At crossings where several paths intersect,

they choose the direction most heavily marked with these pher-

omones. Ants return sooner from nearer food sources, and as a

consequence, shorter paths are marked more intensively than those

leading to sources further away. Once a path is heavily marked, the

probability that ants will follow it and add additional pheromones,

is increased, thus leading to positive feedback. Such poitive feed-

back is a particular instantiation of self-organization. Such pro-

cesses have been invoked to elucidate several other aspects of

insect behavior as well, for example, the strict spatial distribution

of honey, pollen, and youngsters observed in the combs of bees

and the way a comb is built. In all cases, assuming processes of self-

organization forms an alternative to the idea that patterns are con-

trolled centrally by a blueprint or the high cognitive capacities of

the individuals.

In summary, we have seen that the phenomena illustrated by the

Didabots, and the ants, are examples of self-organization without

structural changes in the system: The Didabots, for example, did

not change during the heap-building process. If we started a new

experiment with the blocks randomly distributed in the environ-

ment, the Didabots would behave in exactly the same way as in the

previous trial: They would try to avoid obstacles.

Self-Organization with Structural Changes

We now turn to another type of self-organization: self-organization

involving structural changes. In contrast to self-organization with-

out structural changes, this type of self-organization leads to per-

manent changes in the system. For example, the Distributed

Adaptive Control architecture, the SMC agents, and the Darwin

models are systems that change their structuresÐthe weights con-

necting the neuronsÐby means of self-organization. Let us look at

an example in more detail.

HIERARCHIES EMERGE IN SOCIETIES OF ARTIFICIAL CHIMPS

Primates are known for their high cognitive capacities, which are

thought to be especially manifest in their social behavior, particu-

larly their coalition formation. Coalitions are a part of primates'

dominance interactions. Dominance interactions consist of threats
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and attacks that take place usually between two individuals only.

Sometimes, however, a third individual intervenes by attacking

one of the two, thereby supporting the other. This is called coali-

tion formation. Primates are generally assumed to be highly strate-

gic in their decisions when to form coalitions and with whom. For

instance, they are thought to repay received support. To be able to

do so, they are presumed to keep records of the frequency of sup-

port received from every partner. Yet in her individual-based com-

puter simulations, Hemelrijk (1996a,b, 1997) made a ®rst step toward

showing how complex patterns of coalition formation may emerge

in the absence of sophisticated cognitive re¯ections. Inspired by a

simulation by Hogeweg (1988), Hemelrijk implemented a world in

which creaturesÐarti®cial chimpsÐdwelled. These creatures were

able to move and to see one another. Furthermore, if creatures per-

ceived someone nearby, they engaged in dominance interactions;

otherwise, they followed rules of moving and turning (®gure 14.4)

that kept them aggregated (because real primates live in groups).

Interactions among these arti®cial chimps are triggered just by the

proximity of others, not by record keeping or other strategic con-

siderations. The creatures were not even endowed with rules to

support others in ®ghts. Yet support was recorded as an emergent

event, occurring if creatures happened to attack others that appeared

to be already involved in a dominance interaction with another

move onothers < persspace?

others < maxview?

select random partner others < nearview?

yes no noyes

noyes

move to
other

turn search angle at
random to right or left

dominance
interaction

go to
opponent

flee from
opponent

ego wins ego loses

Figure 14.4 Flow chart of the behavioral rules for Hemelrijk's (1996a, 1996b, 1997) artificial
chimps. The left side of the figure delineates dominance rules: After winning, ego
approaches the opponent; after losing, it flees from it. The right side concerns ag-
gregation rules: Creatures look for others at increasingly larger distances. If they see
nobody at all, they turn at some point by a search angle to search for others.
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creature. Dominance interactions in the model incorporated the

so-called loser-winner effect established to exist in many animal

species, such as insects, reptiles, birds, mammals, and humans. It

implies that the effects of losing (and winning) are self-reinforcing,

meaning that after losing a ®ght, an individual's chance of losing

the next ®ght is larger (even if the opponent is weak). The winner

effect is the converse.

This is another instance of a positive feedback loop that leads

to the phenomenon of self-organization. In running the model,

Hemelrijk noted several forms of emergent social behavior, as

shown in ®gure 14.5. A dominance hierarchy arose, a social-spatial

structure, with dominants in the center and subordinates at the

periphery. Remarkably, exactly this same social-spatial structure

has been described for several primate species. Furthermore, sup-

port in ®ghts appeared to be repaid, despite the absence of a moti-

vation to support or keep records of it. The support observed was a

consequence of series of cooperation that consisted of two crea-

tures alternatively supporting each other to chase away a third;

these situations originated because by ¯eeing from the attack range

of one opponent, the victim ended up in that of the other opponent.

This typically ended when the spatial structure had changed so

that one of both cooperators attacked the opponent. These series

were particularly seen in loose groups, because chimps were less

disturbed and distracted by others. Additionally, chimps that were

more aggressive appeared to cooperate more because of their longer

attack range.

Figure 14.5 Emergent hierarchies in artificial chimps: spatial-social structure with concentric
rings of entities of different rank categories. The x- and y-axis represent the position
of the individuals in the two dimensional, simulated world. Gray-levels correspond to
the rank of the individuals, the darker, the lower the rank.
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Thus, Hemelrijk's model has shown how complex social inter-

action patterns may arise from local interactions only. It follows

that this may also apply to real animals, and interaction patterns

need not be genetically or cognitively prede®ned in the individu-

als. Furthermore, the model points to some new questions con-

cerning real primates that would not be asked when approaching

social behavior from a cognitive perspective only. For example, is

cooperation (such as repayment of support) more generally found

in loose than cohesive groups and more prevalent among strongly

than mildly aggressive animals? Through lost or won dominance

interactions, the internal dominance value of the individuals

changes, which leads to different spatial distribution of the indi-

viduals in the environment (that is, the environment changes from

the perspective of the individuals), which in turn in¯uences the

probabilities of interacting with other individuals, which again

changes the internal dominance value. If an individual with a

history is exposed to an environment like the initial one, it will,

in constrast to the Didabots and the ants, react differently: there

has been a structural change. Because the change has come about

as a result of agents equipped with simple rules interacting with

their environment (with no teacher or homunculus present), we

also talk about self-organization with structural changes. In the

context of neural networks such processes are often called unsu-

pervised learning, but sometimes there is explicit mention of self-

organization, for example, when one talks about self-organizing

feature maps (Kohonen maps).

We now have covered the two main forms of self-organization

important in embodied cognitive science. Let us now discuss how

self-organization can be used in agent design.

Self-Organization in Agent Design

One argument often heard is that, in the real world, events, object

shapes, and the like are unpredictable, which requires some form

of unsupervised or reinforcement learning: Robots for such envi-

ronments cannot be directly programmed. However, architectures

like subsumption, in which often everything is preprogrammed,

seem to prove the contrary, namely that reactive systems can be

extremely robust. Thus, from an engineering perspective, focusing

mainly on performance, learning may not be of great interest.
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Brooks and Mataric, evaluating the progress in the area of robot

learning, conclude that ``there has been scant demonstration of

robots being better off for having learning'' (1993, p. 196). Although

subsumption-based, preprogrammed systems are often very robust,

they may be so precisely because the tasks for which they have

been designed are typically not demanding in terms of catego-

rization capacity. Thus, direct programming is in those instances

indeed possible. The advantage of nonpreprogrammed categories

becomes evident only as the complexity of the assigned tasks in-

creases beyond the level considered by Brooks and Mataric. If we

are interested in cognitive science, one of the widely agreed pre-

requisites for intelligent systems is that they have the capacity to

learn. Thus, from a cognitive science perspective, we are interested

in robot learning not primarily because a robot might perform

better on a particular task, but because one core element of intelli-

gence is the capacity to learn from experience. In addition to the

fact that we are simply interested in learning, there are some

important in-principle arguments why robots require learning, in

particular learning involving processes of self-organization. We

discuss each in some detail, because they are of signi®cant theo-

retical relevance.

DESIGNER-DEFINED ONTOLOGIES

As discussed in chapter 4, ontological commitments must be made

whenever designing a system of any kind. This holds for autono-

mous agents just as for computer systems like database or operating

system. We saw that for classical systems, a high-level ontology or

domain ontology has to be designed. In contrast, the designer

commitments in agent design have to be low-level, concerned with

the physical setup of the agent, its body, sensory, and motor sys-

tems. Whatever the agent learns about its environment should then

emerge from the agent's interaction with the environment. We have

called these designer commitments a low-level speci®cation. The

important point with respect to self-organization is that low-level

speci®cations typically span a space that contains many more

states than high-level ontologies. For example, a black-and-white

camera with only two intensity levels (activation or no activation)

and a 100� 100 image yields roughly 1030 different states. The im-

plication is that there is a lot of redundancy, leaving room for pro-

cesses of self-organization to exploit the redundancy. Self-
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organization is thus necessary in autonomous agents because it is

impossible to prede®ne meaningful con®gurations in this such a

large state space. Through self-organizing processes some of these

con®gurations are selected because they turn out to be useful to the

agent, that is, the agent gets additional value. States that do not

provide value will simply not be selected.

GENERATION OF DIVERSITY

The availability of a very large number of states is a prerequisite for

generation of behavioral diversity: There must be many potential

states of the sensory-motor system (i.e., there must be redundancy)

on top of which selection by a value system can take place. One

important mechanism by which this redundancy can be exploited

to achieve behavioral diversity is learning. In the SMC II agent that

we encountered in chapter 12, diversity was generated by means of

cross modal associations. Through this association, the agent could

link previously independent modalities and thereby establish a

new behavior: It could avoid objects from a distance instead of

having to approach them closely; moreover, it showed cross-modal

transfer: When it perceived an object with its camera, it invoked the

corresponding haptic ``image.'' These new behaviors resulted from

a self-organized learning process modulated by value. Moreover, as

the world changes, and it is continuously changing, new categories

may be required. Again, programming a new category into an agent

might not be too dif®cult in simple worlds, but might be very hard

for more complex ones. Moreover, the observer might not know

when it is time to program a new category into the agent. Thus a

learning mechanism is required by which the robot can incre-

mentally learn categories. The important point here is that learning

can generate behavioral diversity, that is, can lead to new solutions

that make an agent more adaptive. In other words, learning is

needed if we are to design truly intelligent agents.

SITUATEDNESS AND AUTONOMY

The issue of self-organization also relates to situatedness and

autonomy. If the robot is to be autonomous, it has to be able to

acquire its own history. It can acquire this history only through its

own sensory system in interaction with the real world. Because it

must be situated, it must ``know'' by itself what to learn, that is,

what to incorporate into its own history and what to ignore. In

other words, it needs a value system and a self-organizing learning
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scheme. Value-based learning is thus necessary for the design of

autonomous, situated agents.

14.3 Learning in Autonomous Agents

Now that we have motivated the need for learning in autonomous

agents, we can examine more closely the various approaches and

paradigms suggested in the literature.

Learning in Natural Agents

Natural agents engage in many different types of learning. We do

not discuss them in detail but instead focus on aspects relevant to

autonomous agents. There are many excellent reviews on learning

in animals and humans (e.g., Barker 1994; Hawkins, Kandel, and

Siegelbaum 1993).

Learning phenomena can be divided into two broad classes,

nonassociative and associative learning. In nonassociative learning,

the subject learns about the properties of a single stimulus. The

most important phenomena are habituation and sensitization. The

term habituation is used if an agent shows a reduced intensity in

its response to repeated stimulation. We talk about sensitization if

an agent's response becomes more intensive each time the stimulus

is presented. We do not further elaborate on this point, but focus on

associative learning. Associative learning is the most common type

of learning in natural and arti®cal agents: A subject learns about

the relationship between two stimuli, or between a stimulus and a

response. In psychology, the former is called classical condition-

ing, and the latter is referred to as operant conditioning or rein-

forcement learning. In classical conditioning, a neutral conditioned

stimulus (CS) becomes associated with an unconditioned stimulus

(UCS), which re¯exively causes an unconditioned response (UCR).

After learning has taken place, the CS comes to elicit a response of

its own, the conditioned response (CR), which closely resembles

the UCR or some part of it. For example, in the classical experi-

ments by Petrowitsch Pawlow, a Nobel laureate in physiology who

became famous for his experiments on classical conditioning, a dog

is repeatedly presented with ®rst the sound of a bell (the CS) and

then its food (the UCS), which causes the dog to salivate (the UCR).

Eventually, the sound of the bell alone causes salivation (the CR).

The other important type of associative learning, operant con-
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ditioning or reinforcement learning, is described below. Let us ®rst

look at some more general issues related to robot learning.

The Robot Learning Problem

Although the engineering and cognitive science perspectives are

different in many respects, they both have to deal with very similar

problems when it comes to learning in the real world using real

robots. It might be helpful to list some of the requirements for

learning algorithms that have to function in the real world. We

have argued throughout the book for the importance of taking real-

world properties into account. Learning requires some additional

considerations (e.g., Mahadevan and Connell 1992). Here are the

most important requirements for a robot learning mechanism:

1. Noise immunity: This requirement holds for any system operating

in the real world: it is one of the reasons for using robust, noise-

tolerant neural networks.

2. Fast convergence: The algorithm should converge quickly, since

actions are required to collect the experienceÐto get feedback

about the success of these actionsÐand it takes too much time to

execute a very large number of actions;

3. On-line learning: The algorithm should allow the robot to learn as

it performs its task. Since the robot itself generates the ``examples''

through mechanisms of sensory-motor coordination, this enables

the robot to explore its environment more quickly and generate

better examples, because it continuously improves its performance.

4. Incremental learning: Learning must never stop. If the agent is to

be adaptive, which is necessary in a changing world, it must always

be ready to change. Since the data are not known beforehand, there

can be no distinction between a learning and a performance phase

as in the supervised learning paradigm. Incremental learning is at

the core of the value principle.

5. Tractability: The learning algorithm should be computationally

tractable; that is, every iteration should be capable of being per-

formed in real time.

6. Groundedness: The technique should depend only on informa-

tion that can actually be extracted from the sensors or information

acquired by the robot over time. This is also the perspective of sit-

uatedness (design principle 2): Any learning should be based on

the agent's view of the world, not that of the designer or observer.

For example, Cartesian approaches to robot navigation that assume
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location information in terms of x and y coordinates are of only

limited value for real robots.

These constraints and requirements in¯uence the design of learn-

ing algorithms. In what follows, we provide an overview of the

main approaches to robot learning, showing their chief advantages

and problems.

Robot Learning Paradigms

Robot learning is a relatively new ®eld of research. Over the last

few years, however, much pertinent work has been done. Since we

are interested in autonomous agents, we focus on learning in

mobile robots. There is currently no unifying theory or commonly

accepted approach to robot learning. Rather, there are different

approaches each with its own characteristics. Following the termi-

nology introduced in the section on learning in natural agents, we

can classify the ®eld as follows. Most approaches to learning in

robots study associative learning. The units and mechanisms of

association, however, differ widely and range from models of clas-

sical conditioning to machine learning algorithms, symbolic as

well as neural network based. Table 14.1 summarizes the learning

paradigms discussed in the chapter. It is, of course, impossible to

give an exhaustive account of the ®eld. Those approaches relevant

to understanding adaptive behavior are elaborated in detail. In the

next section, we brie¯y summarize the others.

SUPERVISED LEARNING IN AUTONOMOUS AGENTS

Supervised learning was introduced in chapter 5, where we pre-

sented the NETTalk model. Recall that NETTalk learns to pro-

nounce English text. The input consists of a widow of seven letters,

the output of a phoneme encoding of the letter in the middle of the

window. ALVINN (Autonomous Land Vehicle In a Neural Network)

is a well-known application of supervised learning to robot control,

or rather to the control of an autonomous car (Pomerleau 1993).

The input layer of the neural network receives sensory input from a

video camera and from a distance sensor (a scanning laser range

®nder); the output layer is a vector of units representing different

steering responses ranging from a sharp left to a sharp right turn.

The network receives as input an image of the road ahead and

produces as output the steering command required to keep the car

on the road. Recent versions of ALVINN perform with reasonable
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success on several types of roads (small, highway). Because of its

supervised learning procedure, there is a learning and a perfor-

mance phase: ALVINN is trained off-line using recorded camera

images. Once it is performing in the real world, learning no longer

takes place. Thus, ALVINN cannot incrementally adjust to changes

in the environment. It is therefore not compatible with the value

principle.

UNSUPERVISED LEARNING IN AUTONOMOUS AGENTS

To equip mobile robots with means of unsupervised learning,

appropriate mechanisms have to be found. We said earlier that in

natural agents, associative learning as expressed in conditioning

phenomena is ubiquitous. One possibility for deriving mechanisms

for conditioning phenomena is to exploit the Hebb rule (see equa-

tion (14.1)). Remember that the Hebb rule essentially states that

when a cell A repeatedly and persistently takes part in ®ring

another cell B, then A's ef®ciency in ®ring B is increased. This is a

neural mechanism that leads to classical conditioning. Sutton and

Table 14.1 Overview of robot learning paradigms.

Robot learning

paradigm Description Synonym Learning Rules Example

Location

in text

Unsupervised
learning

No explicit learning
goal; learning based
on correlations of
input data

Classical
conditioning

Hebb rule Distributed
Adaptive Control
Darwin II

Chapters 5,
9, 12, 14

Kohonen rule Cairngorn
Darwin II

Chapters 5,
12, 14

Self-supervised
learning

Learning based on
reward/punishment
resulting from
behavior

Operant
conditioning

Chapter 14

(1) Reinforcement
learning

Q-learning Soccer-playing
robot

Chapter 14

(2) Value-based
learning

Variation of Hebb SMC I, II
Darwin III
Nomad

Chapters
12, 14

Supervised learning Learning based on
direct comparison of
output with known
correct answers

Delta rule
Back-propagation rule ALVINN

Chapter 5
Chapters 5,
14
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Barto (1981), among others, proposed several models along this

line. These models typically involve only a few neurons, called

adaptive elements, that become associated with each other. In a

more recent attempt to build neural mechanisms for classical con-

ditioning by Verschure and Coolen (1991), these elements have

been extended to adaptive ®elds with a large number of neurons.

This model forms the basis for the Distributed Adaptive Control

architecture, which we described in chapter 5. We can reinterpret

what the Distributive Adaptive Control robot does in terms of clas-

sical conditioning, as shown in ®gure 14.6. Recall that the robot is

equipped with proximity sensors and collision sensors. The condi-

tioned stimuli (CS) are the activations of the proximity sensors. The

unconditioned stimuli (UCS) are modeled as the activations of the

collision and target (light) sensors. In addition, there is an uncon-

ditioned response (UCR) ®eld in which the motor responses are

stored. The UCS ®elds are connected to this UCR ®eld. The condi-

tioned response (CR), in this case, is not only similar to the UCR,

but is in fact identical. As we described in more detail in chapter 5,

each time the robot hits an obstacle, the corresponding node in the

collision layer is turned on. This is the UCS, which causes the robot

to turn away from the obstacle. Because now there is activation in a

collision node and simultaneously in several proximity nodesÐthe

CS ®eldÐthe corresponding connections between the CS ®eld and

the UCS (i.e., the active collision node) are strengthened through

Hebbian learning. This means that next time, more activation from

Figure 14.6 The Distributed Adaptive Control architecture, interpreted in terms of classical con-
ditioning. The activations of the proximity sensors are the conditioned stimuli. The
unconditioned stimuli are modeled as the activations of the collision or target (light)
sensors. The motor responses are stored in the unconditioned response field. The
CR and the UCR are identical.
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the CS ®eld will be propagated to the UCS ®eld. Conditioning

works as follows. Assume that the robot hits obstacles on the left

several times. Each time it hits, the corresponding node in the UCS

®eld becomes active; simultaneously, there is a pattern of activa-

tion in the CS ®eld. The latter is similar whenever the robots hits an

obstacle from the left. Thus, the same connections are reinforced

each time. Nodes in the UCS ®eld are binary threshold, so the acti-

vation originating from the CS ®eld at some point becomes strong

enough to raise the UCS node above threshold without a collision.

When this happens, the robot has learned to avoid obstacles

through principles of classical conditioning.

Another unsupervised learning paradigm is Kohonen maps (see

table 14.1 and chapter 5), which are frequently used in autonomous

agents, most often for categorization, (cognitive) map-building and

motor control tasks. We present only a few examples. Cairngorn is

a robot employing the Kohonen network for location recognition

(Nehmzow et at. 1992). It learns to recognize a particular location

based on information from motor signals. In particular, it measures

the time between turn actions. It can build simple internal repre-

sentations of its environment by a process of self-organization;

there is no explicit world model. Another application of Kohonen

maps has recently been developed by Ferrell (1996), who used the

Cog robot (chapter 7) to study orientation behavior, that is, behav-

ior in which the agent positions itself to get optimal sensory stim-

ulation. A common example is turning head and eyes toward a

source of noise. The ability to orient to multimodal stimuliÐvisual,

auditory, or tactileÐis an important skill for agents that interact

with and explore the real world. In the nervous system of mamma-

lian vertebrates, a brain structure called the superior colliculus is

known to be specialized for integrating these multimodal stimuli.

This integration is topographic, that is, there is a common coordi-

nate system to register and align the multimodal stimuli. Ferrell has

implemented such topographic maps in Cog by means of Kohonen

maps. In contrast to Distributed Adaptive Control, learning in the

Kohonen algorithm is not incremental. Although the agent can

learn while it is performing its task, learning stops at some point.

From there onward, the robot is no longer adaptive.

REINFORCEMENT LEARNING IN AUTONOMOUS AGENTS

The term ``reinforcement learning'' has been used in many ap-

proaches to denote different things. As with a number of other

Chapter 14 490



terms widely used, there is no commonly accepted de®nition of

reinforcement learning. The term is used in three important areas

of research: First, in psychology it is equivalent to operant con-

ditioning. Second, the machine learning community uses this term

in a very speci®c and technical sense. Finally, the value-based

approaches to robot learning again have their own notions of rein-

forcement. We do not further discuss operant conditioning here,

but rather focus on the other two approaches to reinforcement

learning in robots, namely reinforcement in machine learning and

value-based learning.

Reinforcement in Machine Learning

Reinforcement learning in its technical sense refers to a sub®eld of

machine learning (e.g., Kaelbling, Littman, and Moore 1996; Sutton

and Barto 1998). This type of learning is very popular and is often

used in robot learning architectures. In essence, learning in this

view amounts to learning a mapping from perceived states to

desired actions. Such a mapping is called a policy. The goal is

to ®nd a policy that maximizes the system's performance at the

particular task assigned. For example, in a pole-balancing problem,

the goal is to learn not to drop the pole. Most reinforcement learn-

ing algorithms try to infer a policy that optimizes a reward func-

tion. This policy, once learned, should enable the agent to perform

optimal actions with respect to the reward function. The funda-

mental assumption underlying most reinforcement learning models

is that agent-environment interactions can be modeled as a Markov

decision process. According to this assumption, both the agent and

its environment can be modeled as ®nite state machines acting in

discrete time steps. The interaction dynamics are then modeled as

follows (®gure 14.7): First, the agent senses the state of the envi-

Figure 14.7 Reinforcement learning. The agent perceives the state of the world and executes an
action. It then receives a reinforcement signal, the level and sign of which depends
on how optimal the action has been with respect to the reward function.
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ronment and uses this information to perform an action. Next,

because of the agent's action, the environment changes to a new

state. Finally, the agent receives a reinforcement signal from the

environment, and the whole loop starts again.

Although this approach has been very successful for Markovian

domains such as formal games like chess or backgammon (e.g.,

Tesauro 1991) or for simulated agents that operate in grid worlds

(e.g., Whitehead, Karlsson, and Tenenberg 1993), there have been

problems with its application to mobile robots that interact with

the real world. Most of these problems are related to the Markovian

assumption, which does not hold true in the real world. For exam-

ple, it is not realistic to assume that the agent and the environment

consist of discrete states with synchronized transitions. Rather, the

environment has its own dynamics which are not discrete but con-

tinuous. Another problem is that these reinforcement learning

algorithms converge only after thousands of trials, which makes

them too slow for applications on a real robot. This sluggishness

arises from the fact that reinforcement learning algorithms usually

need to have ``visited'' every possible state in the environment,

because only then is the policy function complete. Many rein-

forcement learning algorithms are not able to generalize. If a system

employing a reinforcement learning algorithm has learned that in

world state (X1, Y1), it should perform action A1, it cannot gener-

alize this information to state (X2, Y2), which in a real robot could

be the next sensor reading. Thus it cannot exploit correlations

among successive sensor readings. Clearly, this severely constrains

application in the real world.

Consider, for example, the simple IR sensors of Khepera. These

eight IR sensors each have 1,024 states. It is easy to imagine that

waiting until each of these states has been learned could take for-

ever. Thus, reinforcement learning algorithms do not meet the

requirements listed above.

A number of approaches have attempted to address the problems

with reinforcement learning algorithms. Some have argued that

one should not use these algorithms at all in real robots because

of their unrealistic assumptions (e.g., Mataric 1994). Another

approach has been to incorporate biases in the form of re¯exes,

as we argued earlier in our discussion of implicit value systems

(see also Kaelbling, Littman, and Moore 1996). Others have tried

to improve the algorithms to reduce their convergence time. For

example, Mahadevan and Connell (1992) decomposed the learning
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problem into a collection of smaller ones: In their approach, a

reinforcement signal is given for each behavior separately. More

speci®cally, they separated a pushing task into three subtasks:

``®nding a box,'' ``pushing a box,'' and ``getting unwedged.'' They

used Q-learning (see focus 14.1) to learn each of these subtasks

separately. Finally, Asasda and his colleagues suggested a method

they call ``action-based state space construction'' (e.g., Uchibe et al.

1996). They constructed the state space so that states that led to

identical actions were merged into one single state. In other words,

they simpli®ed the learning problem by reducing the state space

which enabled the agent to generalize. Action-based state space

construction was ®rst used to make a real robot learn to shoot a ball

into a goal. In a subsequent step, a goalkeeper was added, and the

robot had to learn to shoot the ball into the goal while avoiding this

goalkeeper. This work is very promising, and it will be interesting

to see how far action-based state space construction can be pushed.

Let us now look more closely at value-based learning.

VALUE-BASED LEARNING

The ®rst section of this chapter introduced the concept of value

systems. In brief, value systems can be understood as basic evolu-

tionary adaptations that de®ne broad behavioral goals for an organ-

ism in terms of their recognizable consequences (Reeke et al. 1989).

For example, one general value implemented in the SMC I models

is that it is good for the agent to grasp objects. Value systems are

very general biases that are the heritage of natural selection. Value-

based learning is learning modulated by activities of value systems

(see ®gure 14.8).

Consider again equation (14.2), which illustrates the basic idea

underlying value-based learning. Whenever the value system is

activated, the weights between the currently active neurons are

increased. An explicit value system biases learning in such a way

that sensory-motor con®gurations resulting in favorable states are

strengthened. This modulation occurs a posteriori: Value signals

(and reinforcement signals) are generated after an agent has per-

formed a particular behavior. Let us now look at two speci®c

examples of value-based learning, Darwin III model and Nomad.

Darwin III

Darwin III is the third of a series of models built by Gerald Edelman

and his group (e.g., Reeke et al. 1989; Edelman 1992). We discussed

Darwin II in chapter 12. Recall that the goal of these studies is to
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Focus 14.1: Basic Concepts of Reinforcement Learning

Reinforcement learning assumes that the robot's behavior can be specified
by a control policy that describes which action to execute given the robot's
current state. Formally, this policy is a function from states to actions
�f �x� : S ! A�, where f �x� denotes the action the agent has to perform in
state x. The robot's task is to learn a control policy that maximizes some
measure of the total reinforcement or reward accumulated over time. Usually,
a measure based on a discounted sum of the reward received over time is
chosen. This sum is referred to as return:

return�t � �
Xy
n�0

gnr t�n ; �1�

where g is called the temporal discount factor �g A �0; 1��, and r t�n is
the reinforcement received at time t � n. The value of gn decreases with
increasing values of n. This can be interpreted in several ways. An intuitive
way is that rewards far in the future (large values of n) are normally less
trusted than the current one and the ones in the immediate future. It can also
be seen the mathematical way, as a trick to bound the infinite sum. The goal of
any reinforcement learning algorithm is to find a policy that maximizes this
return (or the expected return, if the process is stochastic).

Q-learning, introduced by Watkins (1989), is one of the best-known
reinforcement algorithms. We describe only the main ideas here. In Q-
learning, the robot incrementally learns an action value function Q�x ; a�,
which it uses to evaluate the utility of performing action a in state x. That is,
Q�x ; a� is defined as the return the robot expects to receive given that it starts
in state x, applies action a next, and follows policy f thereafter. Initially, all Q
values are set to some value, e.g., 0. Next, the robot's initial control policy, f,
is established by assigning to f �x� the action that locally (e.g., in the next
step) maximizes the Q-value. In other words,

f �x� � a such that Q�x ; a� � max
b A A

Q�x ; b�; �2�

where A is the set of possible actions in state x. The robot then enters a cycle
of acting and updating Q-values and policy. First, the robot senses the current
state, x. Next, it selects an action a to perform next. This action is specified
most of the time by the robot's policy f �x�; occasionally, however, the robot is
forced to chose an action at random. This is important because the robot
needs to explore the entire environment, and choosing an action at random is
one simple mechanism for achieving this. In the next step, the robot performs
the selected action which leads to the next state of the environment, y, where
it receives a reward r which is defined for each state of the environment. Then
the Q-values are updated. Initially, the Q-values are not very accurate. If they
have all been set to 0, for example, they do not contain any information about
the environment yet. The agent has to visit states of the environment to learn
about the environment's rewards. Through learning (i.e., by updating Q-values
and policy), the agent successively accumulates knowledge about these
rewards (which is reflected in the Q-values) so that the Q-values become more
and more accurate estimates of the optimal Q-values. Learning is done as
follows.
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demonstrate that one can build automata that have some capa-

bilities of animals (e.g., categorization) without having to use

information processing algorithms. Like its predecessor, Darwin III

is based on Edelman's theory of neuronal group selection (TNGS).

It is a simulated agent that has sensors for three modalities:

vision, touch, and kinesthesia. Its nervous system consists of four

neuronal subsystems: an oculomotor system, a reaching system, a

tactile system, and a categorization system. Finally, Darwin III is

equipped with an eye and an arm with which it can manipulate

objects in the (simulated) environment. One of the skills Darwin III

learns is to foveate on a particular object. Learning is achieved by

Focus 14.1 (continued)

Q new �x ; a� � �1ÿ a�Q old �x ; a� � a�r � gU�x��; �3�
where

U�y� � max
b A A

Q old �y ; b�

is the maximum estimated reward the agent can receive based on its current
knowledge about the environment, which is reflected in Q old �y ; b�. y is the
next state if action a is taken in state x. (Note that the Q-value itself does not
tell us anything about which action should actually be taken, that is the task of
the policy function f.) In the second term of (3) the value of U�y� is multiplied
by a discount factor g that indicates how much weight is given to this estimate
in relation to the immediate reward r. Similarly, a, the learning rate, indicates
how much old Q-values are taken into account in the update cycle. If a is very
high, say 1, then �1ÿ a� is 0, that is, the agent's prior knowledge, represented
by [Q old �x ; a�], is entirely ignored. If a is small, �1ÿ a� is large, meaning
that a lot of weight is given to past experience. Finally, the new Q-values
Q new �x ; a� are used to update the policy function according to (2). If this
procedure is repeated over time, the Q-values represent the true distribution of
the rewards in the environment and the policy f yields maximum reward (for a
mathe-matical proof, see, e.g., Watkins 1989).

Figure 14.8 Value-based learning. Two maps of neurons (MAP1, MAP2) are connected to one
another by reentrant weights. The activation in a value system modulates the update
of these weights.
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®rst making random movements. If these random movements bring

the object closer to the fovea, the respective movements are rein-

forced by changing the appropriate synaptic weights according to a

value-based learning scheme. The details of this learning scheme

are given in focus box 14.2. After some time, Darwin III is able to

quickly foveate on an object that enters its visual ®eld.

Let us now look at a ®nal example of value-based learning.

Verschure et al. (1995) compared three different learning rules in a

robot, Nomad, that had to solve a block-sorting task. The environ-

ment presented red and blue blocks: The blue blocks were con-

ductive, and the red ones were nonconductive. Nomad had to learn

to collect the red blocks while avoiding the blue ones. It was

equipped with a magnetic snout with which it could sense the

conductivity of blocks and a color camera that served to extract the

blocks' color. Basic, prede®ned re¯exes made Nomad avoid con-

ductive blocks and pick up nonconductive ones. The robot used

learning to associate the color of the blocks with these basic

re¯exes. The three learning rules studied were:

(1) Dwij�t� � hn�t�ai�t�aj�t� ÿ en�t�ai�t�wij�t�,
(2) Dwij�t� � hai�t�aj�t� ÿ eai�t�wij�t�, and

(3) Dwij�t� � hai�t�aj�t� ÿ ewij�t�,
where h is the learning rate, n�t� is the average activation of the

value system, ai�t� is the activation of the postsynaptic neuron, aj�t�
is the activation of the presynaptic neuron, and e is the forgetting

rate. Update rule (1) depends on a value signal; that is, it is an

instantiation of value-based learning. It is a more elaborate version

of the basic scheme introduced earlier in this chapter (equation

14.2). Update rule (2) is the same as (1), but is lacks a value signal.

The last learning rule, update rule (3), implements classical Hebbian

learning (with a forgetting term). Note that in all rules, the forget-

ting term includes the weight itself. This is a way of dynamically

limiting the range over which the weight is allowed to vary. In es-

sence, the presynaptic neurons were activated by the blocks' color,

and the postsynaptic neurons by their conductivity characteristics,

and the value signals were triggered by the activation in the mag-

netic snout. The main results were as follows. The value-based

learning scheme (1) was found to be slower than the others (rules

(2) and (3)), because learning occurs less frequently in (1) due to its

dependence on the activation in the value system. The behavior

resulting from (1), however, was more robust. Hebbian-based rules
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Focus 14.2: Learning in Darwin III

Learning in Darwin III occurs through continuous changes in synaptic weights
very much as in standard connectionist models. Darwin III implements the
two main ideas of value-based learning: First, the weight changes depend on
input from a value system that reflects the system's evaluation of its behavior.
This input from the value system is functionally similar to an internal
reinforcement signal. Second, because learning occurs a posteriori, that is,
once an action has been executed by the system. Darwin III uses moving
averages of past activations for Hebbian learning. Using moving averages
allows the strengthening of connections between neurons that have been
active just before the system effected a motor act. If, for example, Darwin III
makes an eye movement that brings an object close to the fovea, the
connections between neurons that led to this movement are strengthened.

The learning rule in Darwin III is a variation on value-based learning rule
14.2

wij �t � 1� � wij �t � � hf�wij ���si ÿ yi ��mij ÿ yJ ��nÿ yn�R ; �1�
where

wij is the connection strength between cell j and cell i,
h is the learning rate,
f�wij � is the sigmoid function (see chapter 5)ÐIt constrains the values of

the connection strengths wij to be in the range �0; 1�,
�si is the time-averaged activation of cell i,
yi is the threshold of the postsynaptic cell,
mij is the average concentration of a hypothetical postsynaptic

``modifying substance'' produced at a synapse made on cell i by
cell j (see below),

yJ is the threshold of the presynaptic cell,
n is the value signal,
yn is the threshold for the value signal, and
R is a so-called rule selector. R takes the values ÿ1, 0 or 1.

There are several things to be noted about this learning rule: The increase of
the connection strength (the second term in equation (1)) depends in a
multiplicative way on the connection strength itself. The larger the connection
already is, the larger the increase in connection strength. The sigmoid function
f is used to avoid an infinite increase in connection strengths. The rule
selector R can be used to switch between learning �R � 1�, no learning
�R � 0� or unlearning/forgetting �R � ÿ1�. Typically, R � 1 when a value
signal is present and both the presynaptic and postsynaptic cells are active
(that is, exceed their threshold), and R � ÿ1 when one cell is active and the
other is not.

A large number of different learning rules can be implemented in this way.
The ``modifying substance'' mij is simply the time-averaged activity of the
presynaptic cell sj . In the simplest variant of the learning rule, mij can be set
equal to sj , which then gives

wij �t � 1� � wij �t � � hf�wij ��si ÿ yl ��sj ÿ yJ ��nÿ yn�: �2�
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(2) and (3) led to learning that showed overgeneralization: Nomad

learned even when the correlations in the activations of the pre-

and postsynaptic neurons were due to noise. The value-based

learning scheme was more robust because it constrained learning

to occur only in relevant situations: In other words, augmenting

Hebbian learning with the modulatory activitiy of a value system

can make an agent's behavior more robust with respect to irrelevant

signals originating from noise.

Issues to Think About

Issue 14.1: Value and Evolution

We have looked at value in this chapter in terms of ontogentic

development and learning. Value systems have an evaluative char-

Focus 14.2 (continued)

The learning rule thus implements a Hebbian association mechanism between
the presynaptic activity sj and the time-averaged activity of the postsynaptic
cell si , if there is a value signal n that exceeds a certain threshold yn (negative
values of n are not allowed and are set to 0). Thus, learning occurs only if
there is activity in the value system. This is the basic scheme of value-based
learning discussed previously (see equation 14.2). In the more general case
(1) the increase in synaptic strength depends on the presynaptic cell's being
active for one or more steps before the update occurs. (Presynaptic activity
increases the modifying substance mij .) This can be seen as a form of
stabilization: Transient short-term activations in the presynaptic cells do not
lead to structural changes. In this way artificial activations (e.g., those caused
by noise in the system) do not influence the learning process.

Given the learning rule (1), we can now summarize the learning process in
Darwin III as follows: If there is activity in a presynaptic cell for some time
(this time being specified by the decay rate of the modifying substance mij ),
activation in the postsynaptic cell for some time, and a value signal, the
connection between the two cells is strengthened if R � 1 and weakened if
R � ÿ1. As mentioned in the main text, the value signal is triggered only
when Darwin III performs a behavior that is in some way ``good'' according
to the value system. The value signal then leads to a strengthening of
connections between the sensory and the motor nodes that have actually
caused this behavior. These cells have been active before the action occurred.
This activity is reflected in the time-averaged activities of the presynaptic �mij �
and the postsynaptic �si � cell. It becomes clear that to implement value-based
learning, one needs a kind of ``memory''Ða kind of working or short-term
memoryÐof the recent history of the cell activations.
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acter: They evaluate consequences of behavior. On the phyloge-

netic time scale, the ``evaluation'' is achieved by natural selection.

In arti®cial evolution, selection schemes are based on the evalua-

tion of individuals with respect to the ®tness function. Given our

discussion of ®tness functions in chapter 8 and value systems in

this chapter, try to identify similarities and differences between

these two types of value.

Issue 14.2: Teaching: Supervised Learning?

Supervised learningÐin the technical sense of the word, that is, as

error-directed learningÐis a method popular in many connec-

tionist models. Recall, for example, the NETTalk model from

chapter 5 or the ALCOVE model from chapter 12. These networks

are models of human learning behavior. The value principle states

that methods of self-supervised learning employing principles of

self-organization should be used. An often heard argument for the

use of supervised learning is that it seems to resemble the way a

mother teaches her child. In this view, the child can use the teach-

ing signal from the mother to adjust its responses by means of a

supervised learning scheme. Although this might be plausible at

®rst sight, it becomes less so upon re¯ection. Such a scheme

implies, that the feedback from the mother has to be translated into

error signals. In other words, complex perceptual problems are

implied. We do not want to continue our argument here, but rather

encourage the reader to re¯ect upon his own learning experience.

Does it make sense to conceptualize your learning behavior, for

example, in school, in terms of supervised learning (in the techni-

cal sense of the word)? Or should different learning mechanisms be

used to account for the in¯uence of the mother on a child's learning

processes?

Points to Remember
1 If an agent is to be autonomous and situated, it has to have a means

to ``judge'' what is good for it and what is not. This is achieved

through the value system. Value systems are basic evolutionary

adaptations that de®ne broad behavioral goals for an organism in

terms of their recognizable consequences. They modulate the

learning process. This modulation can be explicit or implicit. In an

explicit value system, value signals that modulate learning are
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generated as a consequence of behavior. Implicit modulation is

achieved by mechanisms that select for learning interactions with

the environment leading to increased adaptivity.
1 In value-based learning, modulation of learning occurs a posteriori.

Value systems are activated only after an agent has performed a

behavior; they have an evaluative character.
1 The term ``self-organization'' is used in a number of ways. From an

agent perspective, it is important to distinguish between systems

without structural changes and systems with structural changes.

Examples of the former are collective systems such as the Didabots

or ants; examples of the latter are unsupervised learning algorithms

such as Kohonen map, or the arti®cial chimps of Hemelrijk.
1 Self-organization is important in agent design because (a) agents

need to be able to acquire their own experience over time (sit-

uatedness), (b) agents may have to form new categories because of

changes in their environments (generation of diversity), and (c) the

very large sensor space implied by the low-level speci®cations

makes it impossible to prede®ne categories, which have to be

formed on-line (domain ontologies): relevant con®gurations have to

be selected using a value system.
1 We have discussed three robot learning paradigms: supervised

learning, unsupervised learning, and self-supervised learning.

Value-based learning and reinforcement learning are examples of

self-supervised learning.
1 The term ``reinforcement learning'' has three different meanings:

(a) as a synonym for operant conditioning in psychology, (b) in the

technical sense of learning a policy in machine learning, and (c) for

a particular kind of value-based learning in the autonomous agents

community.
1 In the machine learning sense, reinforcement learning reduces to

learning a mappingÐthe policyÐfrom perceived states to actions.

The goal is to maximize some reward function that the environ-

ment provides. The optimal policy provides the best action for each

perceived state. It is assumed that the agent-environment inter-

action can be modeled by a Markov process. This assumption does

not hold for real-world environments.
1 There have been several suggestions as to how to overcome the

problems of traditional reinforcement learning. First, re¯exes can

be used to simplify the learning of the policy function. Second, the

overall problem can be broken down into a number of sub-
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problems, in each of which learning occurs autonomously. Third,

the method of shaping can be used to speed up learning.
1 Value-based learning is learning modulated by a value system. The

value system provides a kind of basic motivation for the agent. It

guides the process of self-organization.

Further Reading
Connell, J. H., and S. Mahadevan. (Eds.). (1993). Robot learning. Boston: Kluwer Aca-

demic Publishers. (A collection of papers illustrating various issues involved in robot

learning. Examples include the credit assignment problem, reinforcement learning,

and supervised-learning.)

Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Reinforcement learning: A

survey. Journal of Arti®cial Intelligence Research, 4, 237±285. (An excellent over-

view of the ®eld of reinforcement learning by one of the leading researchers in the

®eld. Illustrates all major paradigms, and gives examples of speci®c applications to

robotics.)

Sutton, R., and Barto, A. (1998). Reinforcement learning. Cambridge, MA: MIT Press.
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15 Human Memory: A Case Study

We have almost completed our tour of the vast ®eld of embodied

cognitive science. All along the way, we have been arguing that

autonomous agents provide a productive tool for studying various

aspects of intelligence. In this chapter, we apply the insights gained

so far to human memory. We show how insights from autonomous

agents research can not only be applied to building better robots,

but can also be transferred productively to issues in the psychology

of memory.

We have already discussed memory a number of times in this

book. The reason for this is obvious: Intelligence without some-

thing like memory is hard to imagine. Thus any truly intelligent

creature, any autonomous agent, must incorporate something like

memory. In chapter 2, we outlined the information-processing view

on memory. We discussed Atkinson and Shiffrin's (1968) model.

We also discussed the neural mechanisms that underlie memory

formation: the modulation of synaptic strengths, both biological

and arti®cial (chapter 5). In this chapter, we take a broader view and

include a discussion of the traditional ideas concerning memory

together with alternatives that have been suggested in the litera-

ture. We focus on how memory can be understood from the per-

spective of a complete agent interacting with its environment. This

perspective leads to surprising ideas that go well beyond the stan-

dard view that memory is a place to store information. We start by

looking at some de®nitions, then discuss some problems with the

storage view of memory. In the subsequent section, we investigate

memory from a complete agent's perspective, focusing in particular

on the thorny frame-of-reference problem. We then present a num-

ber of alternatives and conclude by summarizing the main impli-

cations for the study of human memory that result.

15.1 Memory De®ned

De®nitions can be useful as starting points, although their value

should not be overestimated. Let us examine a few of the various

de®nitions of ``memory'' that have been advanced:



1. ``Human memory is a system for storing and retrieving information,

information that is, of course, acquired through our senses''

(Baddeley 1997, p. 19).

2. ``Consider memory to mean the mental processes of a acquiring and

retaining information for later retrieval, and the mental storage

system that enables these processes. Operationally, memory is

demonstrated when the processes of retention and retrieval in¯u-

ence your behavior or performance in some way, even if you are

unaware of the in¯uence'' (Ashcraft 1994, p. 11).

3. ``Memory is an indexed encyclopedia; stimuli evoke the appropri-

ate index entries, which point, in turn, to the relevant information''

(Vera and Simon 1993, p. 10).

4. ``[Memory] . . . is a concept that the observer invokes to ®ll in the

gap caused when part of the system is unobservable'' (Ashby 1956,

p. 117).

5. ``Human memory is a capability to organize neurological processes

into a con®guration which relates perceptions to movements simi-

lar to how they have been coordinated in the past'' (Clancey 1991b,

p. 253).

6. ``Memory is best viewed as a set of skills serving perception and

action'' (MacLeod 1997, p. 30).

De®nitions (1), (2), and (3) clearly suggest the existence of a system

in which certain processes are responsible for storing or retaining

information for later use. These de®nitions make two main points:

(a) Memory is concerned with information, and (b) The information

is stored somewhere. So, they adhere, in essence, to an information-

processing view of memory. The hallmark of this view is the

``storehouse metaphor,'' (Koriat and Goldsmith 1996) according to

which memory is a depository of input elements that can later be

retrieved by a search process. Ashby's idea (de®nition 4) is more

an operational de®nition that concerns an agent's unexplained

behavior if part of the agent is unobservable. We will see that this

de®nition departs in important ways from the storehouse view of

memory. Finally, as Clancey indicates, memory might have some-

thing to do with sensory-motor coordination, with the ability to

``relate perceptions to movements'' in a way biased by previous

experiences. Clancey's suggestion, although seemingly metaphori-

cal and abstract, is made more speci®c below, in our discussion of

the embodied cognitive science view on memory. Paul Broca,

famous for this work on the neuropsychology of speech, sug-
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gested a similar view more than 100 years ago when he argued ``not

[for] a memory of words, but a memory for the movements neces-

sary for articulating words'' (Broca 1861, p. 20; cf. Clancey, 1991b,

p. 407). Broca's conception is very similar to MacLeod's assertion

(de®nition 6) that memory should be viewed as a set of skills, of

which the skill to articulate words is just an example. Note the

difference between this de®nition and the storehouse metaphor.

The de®nition is not about storing and retrieving information,

but rather about coordinating behavior in a way similar to past

experiences.

The view of ``memory as stored information'' or ``memory as

stored structures (or representations)'' (e.g., Clancey 1991b) is still

very popular, and a signi®cant number of psychologists, memory

researchers, and nonscientists as well maintain this view. If one

asked a layperson what memory was, more than likely his answer

would be something like ``a place in the brain where information is

stored.'' In everyday language, we often describe mental processes

as objects in an actual physical space. For example, we speak about

storing something in memory, of searching through memory, or of

holding ideas in our minds; like physical objects, memories may be

lost or hard to ®nd, and so forth. About 75% of the analogies used

as models of memory assume storage and search (Roediger 1980),

from Aristotle's famous notion of memory as a wax tablet on which

experience writes, to James's (1890) analogy between remembering

something and searching a house for a lost object. The storehouse

view expressed in the computer analogy is yet another example:

It clearly shows up in the ®rst three of the six de®nitions listed

earlier.

It should be noted that a closer look at the current literature does

not reveal in all cases such an adherence to the storehouse meta-

phor. In their recent review of the various memory metaphors,

Koriat and Goldsmith (1996) point out that ``although perhaps no

investigator today would endorse such an extreme version, it is

important nonetheless to confront its implicit logic, which still

pervades much contemporary research and thinking about mem-

ory'' (p. 169). The storehouse metaphor comes so naturally that it is

hard to see what other possibility there could be. There are, how-

ever, viable alternatives, and we discuss them in this chapter. The

main motivation to look for such alternatives originates from the

empirical and theoretical problems with the storehouse view that

have been identi®ed over the past decade.
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15.2 Problems of Classical Notions of Memory

In the literature on memory there seems to be agreement that

memory is not one homogeneous system but a complex, multi-

faceted entity. The evidence offered in this chapter has been taken

mostly from several textbooks: Alan Baddeley's Human Memory:

Theory and Practice (1997), Mark Ashcraft's Human Memory and

Cognition (1994), and Don Norman's Learning and Memory (1982).

This idea of memory as a multifaceted entity reminds us of our

initial discussion on intelligence in chapter 1. There is an essential

difference, however. Many peopleÐexcept for the real cognitivistic

hard-linersÐagree that intelligence is not so much a component of

thing, but rather a property of an organism that emerges from the

interaction of a number of diverse subsystems (like perception,

memory, planning, and so forth). Memory is considered to be much

more of a system. It may consist of many subsystems that in turn

are memory systems of their own, perhaps with differing charac-

teristics, but they are all memory systems, and in all of them infor-

mation is stored.

One of the ®st things that attracts our attention when browsing

through the classical memory literature is the large number of

different terms, concepts, distinctions, and types of memories or

memory systems that have been proposed (®gure 15.1). One of the

key distinctions among these systems can be made according to

their temporal properties. For example, we encountered in the

Atkinson-Shiffrin model a well-known distinction between short-

and long-term memory. Instead of short-term memory the terms

working memory and primary memory are used. Similarly, long-

term memory is sometimes called secondary memory. Then there

are memories for the various sensory modalities, again differ-

entiated with respect to temporal properties. For example, in the

visual modality, a distinction is made between iconic memory,

short-term visual memory, long-term visual memory, and ¯ashbulb

memory. Iconic memory is a very short-term store for visual

impressions, or icons. The retention period, that is, the period over

which an image can be stored, is on the order of 100 ms. Short-term

visual memory stores items over a few seconds, whereas long-term

visual memory lasts from days to years. The term ``¯ashbulb

memory'' is used to describe very vivid memories that may have

happened a long time ago. A very famous example is people's

ability to remember very precisely and report in great detail where

they were in 1963 when they heard that John F. Kennedy had been
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Figure 15.1 Researcher trying to make sense of all the different notions of memory. He is par-
ticularly puzzled by the large number of different memory conceptions.
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assassinated. Distinctions similar to those for visual memory hold

roughly for auditory memory, also called ``echoic memory.'' There

is also memory for smells (olfactory memory) and touch (haptic

memory), although standard textbooks on memory often exclude

them. Another modality of memory concerns sensory-motor skills,

like playing tennis, juggling, or driving a car. Typically such

sensory-motor skills are conceptualized as programs that can be

``run'' or activated if required. Within long-term memory, a number

of additional distinctions, such as episodic memory and semantic

memory, concern the kind of information stored or the form in

which it is encoded. Episodic memory concerns an individual's

experiences, whereas semantic memory includes general world

knowledge and language. Autobiographical memory, related to

episodic memory, deals with people's recollections of their earlier

lives. Yet another distinction is the one between procedural and

declarative memory, which is very similar to semantic memory.

Procedural memory contains ``know-how,'' programs on how to do

things, whereas declarative memory contains facts. These varying

types of memory are strongly intermixed. For example, a person's

memory of the sight and sounds of Zurich's trams (sensory mem-

ory) is associated with the memory of that person's last visit to

Zurich (episodic memory), and with the meaning of the term

``tram'' (semantic memory).

EncodingÐthe format in which the memories are storedÐdiffers

among the various types of memory. One of the issues in visual

memory is whether the representation involved is propositional or

pictorial in nature. (See the debate between Kosslyn and Pylyshyn,

e.g., Block 1981). ``Propositional'' means ``in the form of a logi-

cal expression or symbol structure.'' (Recall the physical symbol

systems introduced in chapter 2). Another conception of memory,

schema-based memory, maintains that memory is built out of

certain types of schemas, like the restaurant script we encountered

in chapter 2, or frames, which have become particularly popular in

classical AI. In a sense, schemas epitomize the ``memory as stored

structures'' metaphor. Most of the classical AI models employed

schema-based memories in one way or other. Later, with the advent

of connectionism, distributed memory, which is based on neural

network models, became very popular. Still more distinctions can

be found in the memory literature. For example, memory access is

sometimes included in the memory concept. A pertinent distinc-

tion is the one between implicit and explicit memory. In the notion
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of implicit memory, prior experience affects long-term memory

performance, but the individual may not be aware of this in¯uence.

Explicit memory, on the other hand, indicates that long-term

memory performance requires deliberate recollection or awareness

on the part of the individual. The literature makes a distinction

between unconscious (or subconscious) and conscious memories in

a way that relates to the distinction between implicit and explicit

memories. One could go on in this vein for a considerable amount

of time, but the point should be clear: An enormous number of

different types of distinctions, concepts, and phenomena are

involved. Conway (1996) suggests, instead of theory, certain fun-

damental assumptions are made that facilitate the generation of

accounts of speci®c experimental ®ndings. Such accounts are

nearly always limited to the data they are intended to ``explain''.

This is, of course, not very satisfactory and indicates that some

fundamental problems may underlie the storehouse metaphor of

memory. Although there is nothing intrinsically good or bad about

having many different concepts in a research ®eld, this extreme

diversity makes one wonder if there might not be underlying prob-

lems. Let us look at some of them.

First, the metaphors employed in the literature on memory, in

particular the storehouse metaphor, are sometimes taken too liter-

ally (Kolers and Roediger 1984). An example would be that the

storehouse metaphor leads the researcher to actually search for a

particular storage location and for the neural mechanisms under-

lying the storage and retrieval processes for the memory structures.

Second, observations of behavior often seem to be mixed with

hypotheses about mechanisms, a classical frame-of-reference issue.

An example of this can be seen in de®nition 2 above, in which

mechanisms (``processes of retention and retrieval'') are used

simultaneously with an operationalization of memory in terms of

behavior (``processes in¯uencing your behavior'').

Third, research in the ®eld has largely overlooked important

issues and questions about memory. In his seminal paper ``Mem-

ory: What Are The Important questions?'' Neisser argued that ``the

orthodox psychology of memory has very little to show for a hun-

dred years of effort, perhaps because it has always avoided the

interesting issues'' (1978, p. 3). Neisser went on to suggest that

these ``interesting'' issues could be found only in an ecological,

naturalistic approach to memory in which the everyday use of

memory is studied. We discuss the ecological approach to memory,
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initiated by Neisser's (1978) paper, below (see also Neisser 1982). It

is one of the important alternatives to the traditional approach.

Fourth, a number of phenomena are dif®cult to explain using the

classical idea of ``memory as stored structures.'' Consider Rosen-

®eld's questions: ``When we speak of a stored mental image of a

friend, which image or images are we referring to? The friend doing

what, when and where?'' (1988, p. 163; italics in original). How can

we explain, in a stored-structures conception of memory, the fact

that, for example, in tennis every stroke is different from previous

strokes, that every stroke is unique? Let us illustrate this with a

quote from Bartlett's, famous book ``Remembering'':

It is with remembering as it is with the stroke in a skilled game. We

may fancy that we are repeating a series of movements learned a

long time before from a text-book or from a teacher. But motion

study shows that in fact we build up the stroke afresh on the basis

of the immediately preceding balance of postures and the momen-

tary needs of the game. Every time we make it, it has its own char-

acteristics. (Bartlett 1932, p. 204)

Indeed, it is dif®cult to explain this phenomenon on the basis of a

memory with stored structures, as programs that are run. This

notion could not explain the diversity of tennis strokes. Let us look

at other examples. If a piece of music is represented in memory as a

stored structure, how can a different rendition of the piece be rec-

ognized as the same piece (Bursen 1980)? This point has a lot of

similarity to that concerning the memory for tennis strokes: Each

time, the sequence is new, different from all previous ones, but we

can still recognize it with no problems whatsoever. Let us look at a

®nal example. We usually remember names, telephone numbers, or

passwords without great effort. Although we certainly remember a

phone number, we do so in a particular context: ``Phone numbers

and log-on passwords are not retrieved, but are speaking or typing

or dialing behaviors that occur in the context of other perceptual

and motor processes. You can establish this context by sitting in

front of the keyboard, by visualizing a phone, etc.'' (Clancey 1991b,

p. 256). How the original event corresponds to the way it is being

remembered and the in¯uence of context on recall are issues at the

core of the ecological approach to memory (see below).

Fifth, there is the homunculus problem: Recall from chapter 3

that the homunculus problem refers to a kind of circularity of psy-

chological explanations. Postulating a memory consisting of stored
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structures implies postulating an agent, a homunculus, that is going

to process and interpret these structures. In other words, the

homunculus is used to explain the memory processes the model

was intended to explain in the ®rst place. Often the metaphor of

an executive controller that coordinates the processing activities

to interpret the memory structures is invoked (®gure 15.2). This

executive controller is like a homunculus, an internal executive

that directs and controls the activity in memory. Bursen (1980) has

illustrated this problem effectively on philosophical grounds.

Finally, ¯owchart ``models'' are often presented to describe

human memory. We saw one classic example, proposed by Atkin-

son and Shiffrin (1968), in chapter 2. Figure 15.2 shows another,

more recent example. Whereas such models are useful to highlight

the main concepts involved and their relations, they do not indi-

cate the mechanism underlying memory.

Having discussed some of the problems with the storehouse

metaphor, we now examine carefully some of the implications of

the frame-of-reference problem.

15.3 The Frame-of-Reference Problem in Memory Research

We have already encountered an instance of the frame-of-reference

problem: Behavior and mechanism, as we noted, are often con-

Figure 15.2 Flowchart model of memory. The model includes sensory memories that register
environmental input, a short-term/working memory, and a long-term memory. An
executive controller manages the information flow among these memory systems.
(Redrawn from Ashcraft 1994, p. 68.)

Human Memory: A Case Study 511



founded. In this section, we look at the issues involved in the

frame-of-reference problem in more detail. Before doing that, let us

brie¯y look at the nature of metaphors, because we are concerned

with the problems of the storehouse metaphor.

Metaphors are cognitive vehicles that help us focus on the cru-

cial aspects of a natural phenomenon, such as memory, and orga-

nize our thoughts about them. The main role of metaphors is to

serve the development of concrete and testable models and

theories. They are neither right nor wrong; rather, they are more or

less productive. The main problem with the storehouse metaphor,

and its instantiations in various theories and models, is that it has

turned out not to be useful in accounting for a signi®cant number

of memory phenomena, in particular those concerning real-world

situations outside the laboratory (Neisser 1988). In fact, as we try to

show in the remainder of this chapter, the storehouse metaphor not

only is problematic on empirical and theoretical grounds, but it

may in fact even be unnecessary altogether.

The following quote is taken from Ashby's excellent book An

Introduction to Cybernetics:

Thus, suppose I am in a friend's house and, as a car goes past

outside, his dog rushes to a corner of the room and cringes. To me

the behaviour is causeless and inexplicable. Then my friend says,

``He was run over by a car six months ago.'' The behavior is now

accounted for by reference to an event of six months ago. If we say

that the dog shows ``memory'' we refer to much the same factÐthat

his behavior can be explained, not by reference to his state now but

to what his state was six moths ago. If one is not careful one says

that the dog ``has'' memory, and then thinks of the dog as having

something, as he might have a patch of black hair. One may then

be tempted to start looking for the thing; and one may discover that

this ``thing'' has some very curious properties.

Clearly, ``memory'' is not an objective something that a system

either does or does not posses; it is a concept that the observer

invokes to ®ll in the gap caused when part of the system is unob-

servable. (1956, p. 117; see ®gure 15.3)

So the issue of memory, for Ashby, is linked to the observability

of a system. This is quite an unusual way of looking at memory.

Ashby's operational de®nition of memory implies that memory

might be more a property of the relation between the observer and

the observed subject (in Ashby's case, the dog who had been hit by

a car), rather than a property of the subject itself.
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Let us elaborate on this idea a little using a classical psychologi-

cal experiment on list learning. A subject is shown a list of words

to remember, and later asked to reproduce the words on the list.

As the experiment is performed, certain regularities in subjects'

behavior in the second half of the experiment can be observed:

Depending on what words were induced on the lists with which

they were presented, they utter, when asked to reproduce the list,

certain words and not others (at least not many others). These

words are typically words from the list (with errors, of course). We

explain these regularities by referring to the theoretical construct

of a memory. Obviously, some change has taken place within the

individuals so that they display a behavior that can be well pre-

dicted by proposing a memory or a system of memories. Note that

when Ashby refers to memory as being a theoretical construct, he is

not addressing the issue of underlying mechanisms. There is no

doubt that behavioral change over time, behavior that we associate

with memory, is ultimately achieved by mechanisms of neural

plasticity. Again, it would be a category error to confound a con-

cept used to describe behavior with mechanism (and vice versa).

We said that the subjects in the experiment were able to repro-

duce the list of words later on because of some kind of memory.

This behavioral characterization of memory is perfectly satisfac-

tory; a problem arises only if, from these descriptions, it is inferred

that there is a storage mechanism in memory that also works on the

basis of lists, that is, if we say that the words on the list are stored

a b

Figure 15.3 Ashby's concept of memory. (a) A dog is hit by a car. (b) After a while, it still runs
away at the noise of cars. An observer attributes memory to the dog. In this view,
memory is a concept that the observer invokes to fill in the gap caused when part of
the systemÐe.g., the dog's car accidentÐis unobservable in the present context.
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in memory, implying that there is a storage area, as in a computer

where the lists are stored for later retrieval. By analogy, the storage

view of memory is like modeling a camera's mechanisms by

describing the photographs it produces. (Clancey 1991b). In other

words, there is a frame-of-reference problem. More speci®cally,

Clancey refers to the perspectives issue of the frame-of-reference

problem. Whose perspective are we talking about? We said in

chapter 4 that adopting inappropriate perspectives leads to cate-

gory errors. In particular, we pointed out that descriptions of

behavior must not be taken as the internal mechanisms. With

respect to memory, the issue is that although we can describe a

certain behavior as recall or retrieval, we should not take this

description as the basis for our model of the mechanism underlying

that same behavior.

If we think about the problem for a moment, we realize that the

empirical evidence we have for memory is one situation in which

the subjects study the lists and a different situation in which sub-

jects reproduce the items on the initially presented list either by

speaking, by writing, or by pressing keys on a keyboard. But we

have no idea whatsoever what is going on inside the person, at least

not from this kind of empirical evidence. And then we have to be

careful with the choice of our words. We said ``inside'' the person,

but much of the person's response is happening not ``inside,'' but

in the interaction with the outside world. As a simple example,

consider that in calling a friend on the telephone, we quite fre-

quently can remember the phone number only while sitting in front

of the phone and actually punching in the number.

If we look at it this way, we can see that memory may not be

something really located within the individual, but rather some-

thing that manifests itself in the individual's interaction with the

environment. As research has shown many times, the kinds of

materials subjects produce differ enormously depending on the

setting in which recall takes place and on what happened between

when they encountered the original stimulus and when they were

asked to recall it. This has led to a new approach in memory re-

search, called the accuracy-oriented approach to memory (Koriat

and Goldsmith 1994). The focus in the accuracy-oriented approach

is on the faithfulness of memory, on the correspondence between

what is remembered and what actually occurred. Typical areas of

research are autobiographical memory and eyewitness testimony.

Studies involving this approach have revealed that memory is cru-
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cially context dependent. For example, the accuracy of a witness's

response to a question is extremely sensitive to the witness's choice

of whether or not to volunteer a response, and how precisely the

response must be reported (Fisher 1996). Therefore, ``any explana-

tion of the behavior and performance of the memory system must

account for the pragmatics of the situation, that is, the task itself,

the particulars of the task environment, the dependence of memory

on context, and the historic nature of the task'' (Alterman 1996,

p. 189). In other words, memory depends very much on the inter-

action with the environment; it cannot be considered and studied

as an internal entity in isolation.

The simple fact that something an observer describes as a list of

words (which is presented to the subjects) is later reproduced (by

the same subjects) in some form that we also describe as a list of

words is not suf®cient to postulate some kind of a storage entity

with roughly the same characteristics as our description (as

experimenters, or observers). Memory is an abstract concept, and

therefore certain assumptions have to be made when trying to

account for a behavior by means of the concept. The most popular

assumption, as we have pointed out, is that memory is a storage

place from which items can be retrieved by a search process. But

where is the evidence? All we know for certain is the behavior and

the behavioral changes over time that we want to explain. Note that

we are not adopting a behaviorist position. Rather, our point is that

we have to reconsider the empirical evidence that has been taken

as evidence for the storehouse view, because storehouse accounts

for a given data setÐrecordings of the behavior of a subject in

an experimentÐare interpretations based on certain assumptions.

These assumptions are problematic, and the data in favor of the

storehouse model must therefore be reinterpreted.

Another signi®cant reason why the classical notion of memory is

problematic is that memory is viewed in information processing

terms, as suggested by classical cognitivistic thinking. We do not

have to repeat the arguments (see chapter 3)Ðthey can be applied

one to one to the study of memory.

If all of this is true, and the classical notion of memory as storage

is indeed problematic, what alternative is available for conceptual-

izing memory? There are indeed viable alternatives; however, they

are harder to understand, they are more dif®cult to describe and

communicate, and they cannot be easily represented graphically.

Koriat and Goldsmith (1996) point out that there is no single con-
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crete metaphor (like the storehouse) that alone can provide the

essential features for an alternative conception of memory. One of

the main reasons why the notion of memory as storage has had

such a great in¯uence in science and in everyday thinking is that it

seems so plausible, and that it can be described in a straightforward

way. The alternative views described next cannot (yet) be cast in

similarly neat concepts, but that does not imply that they are less

valid. Representing structures is just simpler than representing

dynamics. There are, however, commonalities among the various

alternative approaches. These commonalities provide the starting

point for an alternative, equally principled and speci®c approach

to memory that focuses on system-environment interaction instead

of storage. A number of models, supported by recent experiments,

incorporate this alternative view. Perhaps the most important point

is that these alternative notions require a different kind of thinking.

This thinking also strongly in¯uences the particular methods used

in empirical research. This is an important point: When we change

the focus from storage to embodiment and system-environment

interaction, we also change the type of studies we conduct, the

methods we use, and the kinds of questions we ask. For example,

instead of asking how many items a subject can remember, people

now study how memory is used in such natural tasks as dish-

washing, driving, or even walking (Karn and Zelinsky 1996). Here

the alternatives to the storehouse metaphor have their strongest

impact: They trigger new experiments, new models, and new ways

of thinking about memory. Let us now look at these alternative

approaches.

15.4 Alternatives

Let us brie¯y review some of the proposals in the literature, then

draw some conclusions.

The hallmark of the alternative approaches discussed here

is a focus on how memory relates to embodiment and system-

environment interaction. For example, the ecological approach to

memory as introduced by Neisser (1978) investigates how humans

``use'' memory in their everyday activities, in particular contexts

and situations. We put the term ``use'' between quotation marks to

indicate that in most of the alternative views, memory is not a box

inside an agent and thus cannot be ``used'' in the standard sense

of the word. The approach of memory as recategorization views
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memory as emergent from processes of sensory-motor coordina-

tion involving the agent as a whole. The approach put forward by

Freeman (1991) and his coworkers has its origins in the theory of

dynamical systems (see chapter 9). It revolves around the meta-

phor of chaotic attractors as a means of conceptualizing memory

phenomena. Such chaotic dynamics, so Freeman's argument goes,

enable a system to react rapidly to incoming stimuli. In other

words, theoretically speaking, chaos enables an agent to interact

with the environment in real time. Because of this focus on the

dynamics of memory, we brie¯y discuss Freeman's work later in the

chapter. The other alternatives discussed focus more on embodi-

ment, which is, of course, at center stage in embodied cognitive

science. They conceive of memory not as a place where informa-

tion is stored, but rather as emergent from a set of underlying

mechanisms that enable the agent to interact with its environment

in real time and to remain adaptive over extended periods of time.

Given this perspective, memory can clearly be understood only

from the perspective of embodiment. There is, in fact, evidence

demonstrating the interrelationship between embodiment and per-

formance on memory tasks.

As an example, consider ®gure 15.4. The ®gure shows a four

point path. If you study the ®gure for a few seconds, then try to

perform the following actions without looking at the ®gure:

1. Without rotating your body, point to 1 as if standing at 3 facing 4.

2. After rotating your body 180 degrees, point to 4 as if standing at 2

facing 1.

You will ®nd that the ®rst judgment is hard, the second is (rela-

tively) easy. Why? Bodily movement helps remembering. In a

similar experiment by Montello and Presson (1993), subjects were

asked to memorize locations of objects in a room. The subjects were

then blindfolded and asked to point to the objects. In this setup,

pointing was fast and accurate. In a subsequent step, half the sub-

Figure 15.4 Embodied memory: the four-point path.

Human Memory: A Case Study 517



jects were asked to imagine rotating 90 degrees and to point to the

objects again. This resulted in a dramatic decrease of pointing

accuracy and speed. The other subjects, while blindfolded, where

asked to actually rotate 90 degrees and to point to the objects.

These subjects were as fast and accurate as when pointing origi-

nally. Thus, embodiment strongly affects even a task like mentally

keeping track of the locations of objects, typically believed to be a

purely cognitive problem.

Glenberg (1997) has recently argued for an embodied view of

memory according to which memory works in the service of per-

ception and action. We discuss his approach below. The point we

want to make here relates to the peer commentary on Glenberg's

paper, in which several authors have argued that, although it is

an important step beyond simple storehouse views on memory,

the embodied approach cannot capture several aspects of human

memory. Most of these criticisms, however, relate to aspects of

human memory involving conscious recall, for example, our ability

to reexamine our past. We agree with Karn and Zelinsky (1996) that

these conscious operations, though interesting in themselves, are

relatively infrequent compared to the unconscious use of memory

in natural tasks. Similarly, Kolers and Roediger (1984) argue that

conscious recollecting may be of only limited importance to many

activities in our daily lives. Moreover, it is generally believed,

in embodied cognitive science, that we can learn a lot about

human intelligence by studying how animals solve the tasks they

encounter. It is thus not a good idea to couple memory a priori with

consciousness, which is itself an ill-de®ned concept. In traditional

cognitive science, the umbrella term for the unconscious use of

memory is implicit memory. As mentioned above, implicit memory

denotes those experiences that never seem to enter conscious

awareness, or that cannot be explicitly remembered later on, but

nonetheless can have important effects on performance. For exam-

ple, Jacoby and Dallas (1981) found that regardless of whether

subjects could recognize a particular passage as one they had read

before, they read passages that they had previously encountered

more rapidly the second time. Thus, irrespective of whether people

are consciously aware of their in¯uences, these memory processes

help people be adaptive. Although the notion of implicit memory

suggests something passive, there is always an active component to

adaptive behavior, as we argued in chapter 1. This is the main idea

underlying alternative conceptions of memory. Let us now look at

some of these alternative notions.
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The Ecological Approach

The ecological approach to memory is discussed here because its

fundamental concerns, the study of memory in naturalistic con-

texts with a focus on how a complete agent operates in the real

world, are very similar to those of embodied cognitive science. The

approach has its origins in early work by, among others, Bartlett

(1932), who studied several aspects of memory in natural contexts.

The most in¯uential contribution to the ecological approach to

memory was, however, Neisser's (1978) in¯uential paper that we

referred to above. Neisser presented his paper at the ®rst Confer-

ence on Practical Aspects of Memory. This talk was a milestone in

the psychology of memory.

In our discussion of the ecological approach, we do not examine

methodological details such as the problem of how to conduct

controlled studies outside the laboratory (see Cohen 1996 and

Koriat and Goldsmith 1996 for such a discussion), but rather

describe the conceptual advances in this ®eld that are compatible,

often identical, to those of embodied cognitive science. Our point

is to illustrate how memory researchers have, based on empirical

research, reached conclusions about the nature of memory similar

to those of researchers in embodied cognitive science, based on

agent experiments.

The main idea underlying the ecological approach is nicely

summarized in the following quote by Neisser: ``Rather than

beginning with the hypothetical models of mental functioning,

ecological psychologists start with the real environment and the

individual's adaptation to the environment'' (1988, p. 153). Simi-

larly, Karn and Zelinsky have concluded that ``memory, like per-

ception, can be more fully understood in the context of action''

(1996, p. 198). Two main points should be taken from these state-

ments. First, focus has shifted away from mechanisms of internal

processing (e.g., storage, retrieval) to mechanisms of system-

environment interaction, implying, in turn that one has to study

how a complete, embodied agent uses memory. Remember that

expressions like ``using memory,'' or ``memory use'' should not be

taken to imply that there is a box inside the head that can be

``used.'' Rather they designate the experience of an individual that

has been described in terms of memory, that is, how past experi-

ences in¯uence his actual behavior. Instead of studying how people

remember isolated items in a list, memory researchers have begun

to focus on how memory is used in such natural tasks as driving,
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walking, grasping, speaking, or dishwashing, Consider, for exam-

ple, the task of driving along a familiar road. Although this seems to

be an almost automatic routine, Karn and Zelinsky (1996) point out

that this task involves memory for motor sequences (e.g., hand

movements to shift gears), for decisions as to which direction to

turn, and for direct interactions with the environment (e.g., stop-

ping for lights). Researchers have often ignored this type of memory

use, but we agree with Karn and Zelinsky that humans apply pre-

cisely this type of memory use most often (compared to, for exam-

ple, conscious recall of the past), and thus this is what should be

studied. We show below that even simple robots, such as the SMC

agents discussed in chapter 2, demonstrate behaviors that can be

described by invoking the concept of memory. Second, focus has

also shifted to what purpose memory serves in an agent that inter-

acts with its environment, that is, what memory is for. Glenberg

(1997) addressed this question in a paper, entitled ``What Memory

is For.'' He suggests that rather than for the purpose of memorizing,

memory evolved in service of behavior in a three-dimensional

environment, and that memory is embodied to facilitate interaction

with the environment. Just as in the case of memory use, when

asking about the function of memory, one has to be careful not to

postulate that there is such a thing inside an agent, that there exists

a box or other entity that we might label ``memory.'' Rather, and

this is what we think Glenberg really meant, we should ask what

the neuronal plasticity is for, why neural mechanisms exist that

allow an agent to use past experiences in its current situation.

Interpreted in this way, Glenberg's idea of an embodied memory

that serves an agent in behaving within its environment is, of

course, an instantiation of how embodied cognitive science con-

ceptualizes memory and its function for behavior (see below).

In the ecological approach, memory is conceptualized in terms of

global changes in behavior: ``Clearly something in the system must

change as a result of experience, but the changes may be diffuse

and widespread modi®cations of the whole cognitive system so

that the system now interacts with aspects of the environment in a

different way, rather than events being recorded speci®cally and

discretely like events on a video recorder'' (Craik 1983, p. 356; cf.

Koriat and Goldsmith 1996). This is an important idea: Memory

might not be some location inside an agent but rather manifests

itself in global changes in the entire system, leading to different

interactions with the environment, interactions that we, as observ-
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ers, might describe by invoking the memory concept. This is pre-

cisely what Ashby meant when he suggested that memory is a

theoretical construct invoked to explain behavior by referring to

events that happened in the past.

Because of the distributed nature of memory stressed here, we

are reminded of connectionist models of memory (e.g., Rumelhart

and McClelland 1986; Hintzman 1990). We saw in chapter 5 that

neural networks store their information in a distributed way, not in

a particular location; rather, the whole system changes over time,

and learning is distributed across the entire system. It is therefore

not surprising that many memory researchers interested in alter-

native approaches to the storehouse view look to connectionist

models as a promising vehicle for developing ecological memory

models. We have pointed out several times throughout this book

that connectionist models deliver on this promise only if these

models are embedded in an agent that interacts with its environ-

ment. For example, we pointed out in chapter 5 that the classi®ca-

tion learned by NETTalk has to be interpreted by a human.

Moreover, the network's output has no effect whatsoever on the

behavior of the network itself. Because the human designer is still

mediating the system's interaction with the environment, con-

nectionist models per se do not lend themselves to a truly ecologi-

cal and embodied conception of memory. (See chapters 5 and 12

for a similar argument in the context of connectionist catego-

rization models.) Nevertheless, connectionist models are a starting

point toward models of memory that go beyond simple storehouse

ideas.

In summary, the ecological approach stresses the importance of

viewing memory from a complete-agent perspective, in which the

focus is on not how much information an agent can store, but rather

how it adapts to its environment and how context in¯uences

memory performance. From an embodied cognitive science per-

spective, the ecological approach's main value is that it pro-

vides empirical evidence for the embodied view of memory. As an

empirical approach, however, the ecological approach is less con-

cerned with the particular mechanisms that underlie the behaviors

investigated. In the remainder of this section, we discuss a number

of approaches that show how such mechanisms might look, that is,

how the notion of embodied memory might actually be imple-

mented in agent models. One core idea underlying the embodied

cognitive science approach is that embodied agents can exploit
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ways of interacting with the environment to simplify problems

such as learning, categorization, and memory. In chapter 12, we

showed how this basic idea can be used to enable agents to learn

about categories in their environment. Here we discuss how

embodied agents can employ this same idea to simplify what they

have to remember about the environment.

Memory as Recategorization

Psychological research makes a clear distinction between catego-

rization and memory. Categorization pertains to terms like proto-

types and exemplar-based models, whereas memory relates to

concepts like short and long-term memory and so forth. But recent

research, mainly within the ecological approach introduced earlier,

has shown that the two cannot be separated. Moreover, as we show

in this and the following section, both are closely related to sensory

and motor processes. This view is supported by recent evidence

from neuroscience that suggests that the same cortical areas that

serve us to perceive and move in the world serve us to remember

(Fuster 1997). The following quote by Rosen®eld summarizes these

issues:

The hypothesis of a ®xed record [the storehouse hypothesis] may

have been formulated prematurely, before suf®cient attention could

be paid to the means by which we recognize objects and events. We

are probably much better at recognition than we are at recollection.

We recognize people despite changes wrought by aging, and we

recognize personal items we have misplaced and photographs of

places we have visited. We can recognize paintings of Picasso as

well as adept imitations of Picasso. When we recognize a painting

we have never seen as a Picasso or as an imitation, we are doing

more than recalling earlier impressions. We are categorizing:

Picasso and fakes. Our recognition of paintings or of people is the

recognition of a category, not of a speci®c item. People are never

exactly what they were moments before, and objects are never seen

in exactly the same way. (1988, p. 163)

Rosen®eld's quote offers several key insights. First, in saying that

people are never exactly what they were before, Rosen®eld dis-

misses the idea of an ideal recording device that stores information

for later retrieval, implying instead that remembering is always a

coordination between what has been experienced in the past and
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the current context (see de®nition 5 above). Second, he suggests

that remembering is a form of categorization, but since our catego-

ries change continuously, it is actually a recategorization. For

example, assume you meet a friend you have not seen for a while.

Remembering him means that you can recognize him. The point is

that you are not retrieving a picture of your friend from an internal

store but rather categorizing him using your past experiences with

him and the current situation. Since you have changed since you

last saw your friend, your categories have changed, too. Therefore,

your remembering is a recategorization (see also Fuster 1997). Let

us pursue this issue a little further, because it involves two funda-

mental points about memory.

Freeman and his colleagues have aptly illustrated how categories

Ðand thus, memoryÐchange with experience (e.g., Freeman 1991).

Freeman has investigated the cooperative behavior of millions of

neurons spread throughout the rabbit's brain. The patterns shown

in ®gure 15.5 were obtained by recording electroencephalograms

(EEGs) simultaneously from 60 to 64 sites covering a large part

of the surface of the rabbit's olfactory bulb, the part of its brain

responsible for smell. The recordings from each EEG site re¯ected

the excitation of pools of thousands of neurons just below the EEG

electrode. The rabbit was trained to recognize different odorants.

An important result was that a reexposure to a certain category led

to the emergence of a different spatial pattern than when the cate-

gory was ®rst presented. More speci®cally, the EEG pattern shown

in ®gure 15.5a was recorded from a rabbit that had been condi-

Figure 15.5 EEG patterns recorded from a rabbit's olfactory bulb during a classification task. (a)
Pattern for sawdust at initial presentation. (b) Pattern for banana, presented between
the two presentations of sawdust. (c) Pattern for sawdust at second presentation.
The striking result is that the patterns for (a) and (c) are completely different (re-
printed with permission).

Human Memory: A Case Study 523



tioned to associate the scent of sawdust with a particular rein-

forcement. The animal was then presented with the smell of

banana, leading to the spatial pattern shown in ®gure 15.5b. After

reexposure to sawdust, a new spatial pattern for sawdust emerged

(®gure 15.5c), different from the one originally observed. In other

words, the activation of the olfactory bulb for the category ``saw-

dust'' changed as the animal learned to respond to a different cate-

gory, ``banana.'' Because the animal showed the same response in

the situations that lead to the EEG patterns in ®gures 15.5a and

15.5c, we can conclude that the animal had remembered the scent

of sawdust, but the category was represented by a different pattern

of activation in the respective neurons. This dynamical change due

to experience is what Rosen®eld referred to when he said that

people are never exactly what they were moments before.

This example yields two main points, both fundamental when

thinking about memory. The ®rst is that brain representations are

dynamic processes and not ®xed structures, as the storehouse

metaphor would have it. So, rather than looking for representations

in terms of actual structures within the agent, we have to look at

dynamics, which leads to the second point. It relates to the ques-

tion already raised in chapter 12: Where are the invariances that

reveal categorical knowledge despite all these changes in brain

representations? Figure 15.5c suggests that these invariances cannot

be found at the level of EEG patterns. More generally, the invari-

ances cannot be found at the level of internal dynamics only. In

chapter 12, we de®ned categorization with respect to invariances in

behavior (i.e., a system-environment interaction). For example, we

said that the agent has learned the categories ``small object'' and

``large object'' if it consistently picked up small objects and ignored

large ones. We strongly suspect that the rabbit's behavior at both

presentations of sawdust was roughly the same. The invariances we

are seeking are, so goes our suggestion, not to be found at the level

of EEG patterns, orÐto use the terminology of embodied cognitive

scienceÐat the level of internal mechanisms only, but rather in the

behavioral response of the complete agent. (See our discussion of

the frame-of-reference problem in chapter 4.) Edelman (e.g., 1987)

uses the term ``recategorization'' to refer to the continuously

changing pattern of activation in the brain.

Rosen®eld's notion of a recategorizing memory is based on

Edelman's framework, in which perception, memory, and cate-

gorization are closely interrelated. Edelman views memory as an
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ability to organize the world into categories: ``Memory is the

enhanced ability to categorize or generalize associatively, not the

storage of features or attributes of objects as a list'' (Edelman 1987,

p. 241). Note that this is a behavioral characterization and does not

imply speci®c mechanisms. Moreover, memory is not viewed as a

static storage place but rather as an activity. It is therefore more

correct to talk about ``remembering,'' instead of ``memory'' or

``retrieving.''

Edelman views remembering similarly to the ecological

approach, as a property of a complete system. The results of motor

processes are considered to be an integral part of categorization and

recategorization. There is no linear chain from sensors to cortical

areas to motor activity. Recategorization depends crucially upon

the interplay between sensory maps and motor maps, which inter-

act to to enable categorization. As a consequence, remembering and

categorizing are not properties of one small portion of the nervous

system, but rather a property of the whole system. Or, as Edelman

put it: ``It is the entire sensory-motor system and its repetitive

activity and responses coordinated with the function of classi®-

cation couples in global mappings . . . that leads to memorial

response'' (1987, p. 266). The emphasis here is on the complete

agent involved in memory responses. Recall that the principle of

sensory-motor coordination states that perception, categorization,

and memory involve the complete agent, that is, the sensors, motor

system, and neural substrate. Remembering, like categorizing, thus

is not the activity of a module inside the brain, but rather involves

the agent as a whole.

Fuster (1997), a brain researcher, has presented a memory

modelÐcalled network memoryÐderived from neuroscienti®c

evidence on various aspects of memory that strongly supports the

view of memory as recategorization. Fuster starts from the obser-

vation that memories are networks of interconnected neuronsÐ

with the connections formed by associationÐthat contain our

experience in their connectivity. On the neuronal level, the acqui-

sition of memory basically consists of the modulation of synaptic

weights between neurons (see chapter 5), as shown in ®gure 15.6.

The ®gure shows how the neural substrate of memory is formed by

simple Hebbian-type learning processes. Two inputs that arrive at

the same time increase the strength of the respective synapses. To

use our terminology from chapter 5, the weights are increased. In

the absence of input, this increased strength might be seen as pas-
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sive long-term memory. The inputs can originate from any sensory

modality. In ®gure 15.6d, a visual and a tactile input arrive at the

same time (for example, the agent has touched an object at which it

was looking). Thus the connections between the nodes represent-

ing visual input and those representing touch are strengthened.

This scheme, suggested by Fuster (1997), is nearly identical to parts

of the architecture of the SMC II agent we encountered in chapter

12. This equivalence between Fuster's notion of memory formation

and the category learning process in the SMC II agent supports our

earlier claim that categorization and memory cannot be separated,

since memory constitutes a process of recategorization.

Figure 15.6 Memory formation and activation by sensory association. Active neurons are shown
in black. (a) Two visual inputs arrive at the same time; through Hebbian learning the
synaptic strengths between the simultaneously active nodes are increased. (Note that
the same holds for other modalities such as smell, audition, or touch.) (b) Passive
long-term memory resulting from the learning process; endpoints with a black
marker indicate synapses with increased strengths. (c) Because of this increased
strength one of the inputs from (a) can now activate neurons previously activated
only by the other visual input. (d) A visual and a tactile input arrive at the same time.
(e) Again, endpoints with a black marker indicate synapses with increased strength;
there is now a bimodal (vision and touch) network of long-term memory. (f) Touch-
ing an object alone is now sufficient to activate the associated visual image of the
object (after Fuster 1997).
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We can now also discuss the relation of memory formation to

sensory-motor coordination and value-based learning. The process

of sensory-motor coordination, that is, the active manipulation of

the world, generates the temporally correlated input to the memory

networks and thus makes Hebbian learning work. Moreover, a

value system is needed that modulates this learning process. As

Fuster has pointed out, the neural substrate of such a memory-

related value system might be found in a particular area of the

brain, the temporal lobe.

We stress again that this neuronal processing and adaptation

must be embedded in a sensory-motor system, for this embedding

enables such processes to occur in the ®rst place. The implication

is, as Edelman has pointed out, that memory encompasses the

complete agent and is not found at the level of synaptic strenghts

only. This line of thinking is compatible with Ashby's memory

de®nition. After having interacted with its environment for a while,

the SMC II (and SMC I) agent showed an increased ability to cate-

gorize. As it encountered an object, it recognized very quickly

whether the object was graspable or not. It showed a behavior it did

not show before. Following Ashby, we attribute memory to the

agent, saying that its current behavior can be explained only by

reference to events that happened some time ago. The ``events'' in

this case are the ``encounters'' with objects of various categories.

Another important issue brought up by Fuster's framework is

that there is no distinction between different types of memory pro-

cesses, say for episodic or semantic memory (nor for any of the

other types of memory introduced at the beginning of this chapter).

This suggests a view of memory that does not involve separate

storage systems coordinated by a central executive, but rather

focuses the distributed, self-organizing nature of memory formation

in a complete, embodied agent that interacts with its environment.

At the basis of this alternative approach is the neural plasticity that

enables associations to be built up between different brain areas.

This association process, in turn, relies on mechanisms of sensory-

motor coordination that provide the neural substrate with appro-

priate, spatially and temporally correlated input, enabling Hebbian

learning. An important issue in such a view is how these processes

can work in real time, as the agent interacts with the environment.

The problem of how the brain is able to deal with the complexity of

the world in real time is the focus of the ®nal alternative memory

approach on our list, dynamical systems.
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Attractors and Memory

One reason for studying autonomous agents that move around is

that we are faced with real time issues. As we pointed out earlier,

these are fundamental issues, not merely issues pertaining to lack

of computational power. Memory, if it is to be of any use at all in a

real-time context such as car driving, skiing, or dancing, must be

fast. We argued earlier that we are interested in memory perfor-

mance in precisely such real-time contexts, that is, in activities in

everyday life. The crucial issue then becomes, What mechanisms

underlie memory performance in real time?

Freeman addresses, from a neurobiological perspective, precisely

this problem, namely the speed at which animals and humans per-

ceive, classify, and memorize, even when the stimuli are complex

and the context in which they arise varies (Freeman 1991). Free-

man, like others (e.g., Kelso 1995; Thelen and Smith 1994), con-

siders the brain to be a dynamical system (see chapter 9 for some

basic dynamical systems concepts). He proposes that the brain's

ability to process complex stimuli in real time is based on a global

chaotic attractor. A chaotic attractor is formed by repeated episodes

of learning under reinforcement. Recall that a chaotic attractor is a

region in phase space that is bounded but whose trajectory cannot

be predicted. During each of these learning episodes, synaptic

change leads to the emergence of novel neural activity patterns, in

turn implying that new states become possible. According to this

model, chaotic dynamics provide an essential interface between

the environment's in®nite complexity and the brain's ®nite capac-

ity. Freeman has speculated that ``chaos underlies the ability of

the brain to respond ¯exibly to the outside world and to generate

novel activity patterns'' (1991, p. 34). More speci®cally, Freeman

observed that in the rabbit's olfactory bulb, chaos results when

large collections of neuronsÐanalogous to Edelman's neural

groupsÐshift instantaneously and simultaneously from one acti-

vation pattern to another in response to the smallest changes in

incoming signals.

Recurrent connections link neuronal groups in the rabbit's cortex

to the olfactory bulb. Excitatory input to one part of a neuronal

group when the rabbit sniffs excites other parts via synaptic con-

nections. Next, those parts reexcite the ®rst, and so forth, so that

the inputÐa sniffÐrapidly leads to an ``explosion'' of neuronal

activity in the group. The activation of the group then spreads to
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the entire bulb, which leads to the macroscopic chaotic activation

Ða chaotic attractorÐobserved in EEGs of rabbits trained to re-

member certain odors (see ®gure 15.5). For each odor the organism

can discriminate, there is a chaotic attractor. In Freeman's model of

the olfactory bulb, remembering is achieved by jumping between

different chaotic attractors (i.e., one for sawdust, one for banana,

and so forth). Each attractor is the behavior the system settles into

when it is presented with a particular input, that is, an odor it has

learned to recognize. Categorization, in this view, consists of a

transition from one chaotic attractor to another. Whenever a new

odor becomes meaningful to the system, another attractor is added,

and all the others undergo slight changes. An odor becomes

``meaningful'' whenever several sensory and motor activities are

somehow integrated in response to the odor. Thus, what is mean-

ingful to an agent is, in essence, a sensory-motor coordination.

Whereas Edelman provides detailed descriptions of the mecha-

nisms by which such a coordination might occur, Freeman focuses

on the internal dynamics of the processes.

In Freeman's model, remembering and categorization are again

intrinsically related and dynamical. There is no such thing as stor-

age or retrieval. Rather, remembering is ``a step in a trajectory by

which brains grow, reorganize themselves and reach into their

environment to change to their own advantage'' (Freeman 1991,

p. 85). Note that Freeman talks about reorganizing, which reminds

us of Edelman's idea of recategorization. Moreover, remembering

``reaches into'' the environment, that is, is not internal process-

ing only, but crucially includes processes of system-environment

interaction. Freeman's model can be seen as an instance of the

general class of attractor neural networks (see Amit 1989 and

Hertz 1995, for a reviews), in which remembering is modeled as

transitions between attractors. The model summarizes 30 years of

empirical research on the rabbit's olfactory system. It represents an

attractive alternative to the storehouse metaphor of memory. To

assess its real power and its capabilities for dealing with the inter-

action with the real world, the model will have to be embedded

into a complete agent.

This concludes our discussion of alternative views on memory. It

is now time to tie together the various ideas presented in the pre-

vious sections, which is the task of the following section.
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15.5 Implications for Memory Research

We started this chapter arguing that one of the most in¯uential

ideas in cognitive science, the view of memory as a storehouse,

should be revised because it involves considerable theoretical and

empirical problems. What, if not a place where we store our expe-

riences, could memory be? In what follows, we extract from the

various ideas represented in the approaches just discussed what we

think are the main ingredients in a new view on memory, a view

fundamentally rooted in the core metaphor of embodied cognitive

science: a complete agent interacting with its world to solve a

number of tasks.

The most radical idea presented in this chapter is Ashby's (1956)

claim that memory is not something inside an agent's brain, but

rather a construct evoked by an observer to account for an agent's

behavior in terms of events that have occurred in the past. Memory,

in this view, is a property of the relation between an observer and

the observed agent, in Ashby's example the dog that had been hit

by a car. In the embodied cognitive science framework, the frame-

of-reference problem addresses the relation between observer and

observed agent. We said that with respect to memory, the issue in

the frame-of-reference problem is that although we can describe

a certain behavior as recall or retrieval, we should not take this

description as the basis for our model of the mechanism underlying

that same behavior. Doing so would be, to use Clancey's (1991b)

analogy again, like describing a camera's workings by the photo-

graphs it produces. So a particular memory construct, although

useful to describe a large number of phenomena, should not be

taken as a starting point when thinking about the mechanisms

underlying those phenomena. As we have extensively argued, this

holds particularly for the memory construct used in the computa-

tional, information processing framework.

You might argue that there must be certain internal processes

that lead to the behavior we describe by invoking the memory

construct. Yes and no. Yes, because there certainly are internal

processes in the brain that relate to remembering (see ®gure 15.6).

No, because these changes cannot be seen in isolation: Behavior we

describe as showing memory effects is, like all behavior, emergent

from the agent's interaction with the environment and cannot be

reduced to internal processing only. As such, it is not suf®cient to

reduce memory to synaptic changes in a neural network, whether

synthetic or biological. Rather, as stated in design principle 2Ð
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the complete-agent principleÐwe must consider the complete,

embodied agent in its interaction with the environment. The prin-

ciple of sensory-motor coordination suggests that memory, like

perception or categorization, involves the whole agent, including

sensory and motor systems. This is re¯ected in the claim put for-

ward by both the ecological approach and Edelman's theory,

according to which changes in memory affect the complete system,

and thus its interactions with the world. Recall Craik's (1983) claim

that these changes may be diffuse and widespread modi®cations of

the whole cognitive system. Their main consequence is that the

system interacts with aspects of the environment in a different way.

This is not an argument for a holistic conceptualization of memory.

Rather, the deeper underlying reason why this view should be

seriously considered is that the invariances underlying memory

performance cannot, so our argument goes, be found on the level of

internal mechanisms only. Freeman's EEG data, shown in ®gure

15.5, exemplify this idea. Recall that because of the brain's enor-

mous plasticity, the rabbit's representation of the category ``saw-

dust,'' as measured by EEG recordings, changed as the animal

learned to respond to a different category, ``banana.'' This is illus-

trated by the different patterns for sawdust (®gures 15.5a and

15.5c). The conclusion we have drawn from this astonishing phe-

nomenon is that if we are ever going to ®nd the invariances under-

lying memory performance, we must ®nd them at a different level,

one that takes the behavior of the organism and thus embodiment

into account. From this perspective, it would be of great interest to

record neural activity from multiple locations in the brain, while

the animal was behaving in the real world, so that behavior and

mechanism could be related to one another. But we realize the

enormous technological problems involved in such an experiment.

Although there have been dramatic and impressive methodolog-

ical and conceptual improvements in the neurosciences, there are

currently still strong methodological limitations when it comes to

recording from multiple sites in a behaving animal (Dudai 1994).

Only such analyses, however, would reveal how brain activity

relates to behavior and where we can ®nd the invariances that

correlate with memory performance. There is, however, a way to

study such processes: Autonomous agents provide us with a tool to

investigate, simultaneously, neuronal dynamics, synaptic changes,

and the behavior of an agent solving a task. We expect that this

framework will yield valuable insights as to where one might ®nd

Human Memory: A Case Study 531



invariances in such a complex system, and what these invariances

will look like. Some examples of how this might be done are dis-

cussed in chapter 12.

This concludes our case study. The overview we have presented

is still speculative and will need much more empirical and syn-

thetic work to support its basic claims. Moreover, although we have

tried our best to bring the various ideas together, the alternative

framework presented here still lacks the conceptual clarity of its

counterpart, the storehouse view. We nevertheless think that these

alternative views should be pursued further, for they represent the

starting point for a new, embodied theory of memory, a memory

that consists of cross-modal associations formed during sensory-

motor coordination and modulated by value systems.

Issues to Think About

Issue 15.1: How Many Memory Systems?

We have seen that the literature on memory has suggested a large

number of memory systems. Recall our example of a person's

memory of the sight and sounds of Zurich's trams (sensory mem-

ory) that is associated with the memory of that person's last visit to

Zurich (episodic memory), with the meaning of the term ``tram''

(semantic memory), and with the concept of public transportation

(conceptual memory). Think about your own memory. How many

memory systems can you identify? Do you think that these mem-

ories are really different, or might there be an underlying common

denominator?

Issue 15.2: Embodied Cognitive Science and Common Sense

This chapter has summarized alternatives to the storehouse

approach to memory. These alternative approaches suggest a

number of mechanisms (recategorization, attractors) that lead to

behavior that can be described by invoking the concept of memory.

There is a discrepancy between the suggestion that only a few

mechanisms underlie the behavior that we describe by resorting

to the memory construct, and the claims for multiple memory

systems. One of the great challenges facing the embodied cogni-

tive science view of memory discussed in this chapter is to test
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whether these mechanisms are suf®cient to produce behavior that

an observer would describe by resorting to the various types of

memory constructs described in this chapter. Additional mecha-

nisms might well be needed.

Points to Remember
1 Most de®nitions of memory focus on information processing

aspects. Moreover, they often do not make clear distinctions

between behavior and mechanism.
1 De®nitions of memory at the behavioral level are given by Ashby

(memory as a theoretical construct evoked to explain behavior of

an incompletely observable system by reference to an event in the

past), Clancey (memory as a capability to relate perceptions to

movements similar to how they have been coordinated in the past),

MacLeod (memory as a set of skills serving perception and action),

and Edelman (memory as the enhanced ability to categorize).
1 Most theories or models of modern cognitive psychology, arti®cial

intelligence, and cognitive science endorse, explicitly or implicitly,

a view of ``memory as stored structures.''
1 The information processing view of memory presents a number of

problems. First, there are very many memory topics in this view.

Statements about behavior and mechanism are often intermixed.

And many memory phenomena have no proper explanations in

terms of the storehouse metaphor. Finally, a homunculus is

required to interpret the memory structures.
1 One of the main problems with information processing theories of

memory relates to the perspectives issue of the frame-of-reference

problem. It is exempli®ed by Ashby's de®nition of memory.
1 The ecological approach, the notion of memory as recategorization,

and the idea of attractors underlying memory provide viable alter-

natives to the information processing view. The latter two provide

mechanisms for memory.
1 Neurobiological evidence supports the view of memory as recate-

gorization. This evidence is summarized in the network memory

model of Fuster.
1 Memory encompasses the complete agent. Memory-related regu-

larities that we observe, for example, in Ashby's dog or in the SMC

agents are not solely located in the corresponding neuronal activity

or connectivity patterns.
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1 We should not treat perception, categorization, and memory as

separate systems, but rather focus on their common underlying

mechanisms.
1 In spite of the enormous differences between humans and today's

autonomous robots, the latter provide an excellent metaphor for

shedding new light on issues in memory research. For example,

they prevent the researcher from focusing on the information

processing aspects only: the robot's entire behaving system must be

taken into account.
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V Design and Evaluation

In part II we laid the foundations for a framework for design. In part

IV, we complemented this framework with a set of design princi-

ples, formulated at a relatively abstract level, that speci®cally

characterize intelligent agents. Now we need to discuss in more

concrete terms how to actually go about designing an agent to in-

vestigate a particular issue. One of the surprising insights, to us, is

the extent, the vastness, and the variety of considerations that need

to be taken into account, ranging from basic scienti®c re¯ections,

the search for a goal for investigation, the consideration of the re-

search environment with all its resources including funding, and

the availability of expertise, all the way to the selection of particu-

lar sensors and motors. The way of proceeding we advocate is by

no means linear, step by step, but rather chaotic and highly inter-

twined.

Once we have designed our agent, we need to ask the question of

how good it is. Does it ful®ll its purpose? If it was designed to in-

vestigate a natural agent (e.g., an ant or a human infant), does the

agent appropriately mimic the natural system's behavior? At what

level do we want to make the comparison? How can we compare,

for example, a robot's behavior to that of an ant if the robot is a

hundred times larger than the ant? Similarly, how can the behavior

of a robot with a simple gripper be compared to that of a human

infant? We can also ask if the agent is well designed, that is, if it

complies with the design principles of autonomous agents. We also

want to ®nd out what will need to be changed in the agent's design

in the future. And most importantly, we have to ask what we have

learned by building this particular agent. Proper evaluation is im-

portant: If embodied cognitive science is to become a proper

science, we have to go beyond the early standard, under which

simply saying ``it works'' was suf®cient.

Chapter 16 discusses the issues involved in agent design. Al-

though the focus is on agent design, the discussion has been

embedded into the general design literature, because a great deal of



pertinent know-how is already available in many areas. Design is

not only about the agent's physical setup (its low-level speci®ca-

tion), but also about its internal mechanisms, which include con-

trol architectures and formalisms. Pertinent design considerations

are also included here. Chapter 17 tackles evaluation. Again, it is

important to point out that evaluation is not a one-dimensional task

but includes many levels and facets.
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16 Agent Design Considerations

We have now worked our way through a number of approaches

and theoretical considerations as well as technical and conceptual

details: It's time to get our hands dirty and run some experiments.

But even if you don't intend to run experiments, to engineer actual

robots, or even if you do not want to build simulated agents, you

might still ®nd interest in reading this chapter. The complete-agent

principle tells us that agents have to be embodied: There have to be

sensors, otherwise the robot cannot acquire any information about

its environment. If there is no energy source and no motors, the

agent does not move, nor does it move if it lacks means of locomo-

tion: wheels, legs, ®ns, or wings. If it has no gripper, no arm, no other

means of manipulating objects, it is unable to pick up anything.

This chapter has two main goals. First it is intended to give you a

feel for what we are glossing over easily when we talk lightly about

a complete agent. Everybody is aware of the enormous complexity

of a human being. If we look at something comparatively simple

like a robot, we may be surprised how complicated it is, all the

topics and issues one has to think about, design, and build before

anything moves. At that point, we start appreciating the complete-

agent principle and the kinds of abstractions, simpli®cations, and

omissions we make when designing our models, be they computer

or robot models. Second, this chapter is intended to provide some

intuition about all the considerations involved in designing an

agent. Design is not a straightforward activity, but rather highly

involved and hard to capture precisely. In chapter 4 we laid the

groundwork for designing agents. There, we introduced (high-level)

domain ontologies and low-level speci®cations. We argued that we

want to design the low-level speci®cations of our autonomous

agents rather than the high-level ones, because we are interested

in emergence. High-level ontologies require a designer-based pre-

classi®cation of the world and leave no room for emergence. We

then looked at many examples of particular designs, such as

Braitenberg vehicles, subsumption-based robots, agents designed

by arti®cial evolution, designs based on microeconomic consid-



erations, and so forth. In chapter 10, we summarized the design

principles underlying embodied cognitive science, which are rela-

tively abstract. As we show in this chapter, these principles can

strongly inform even something very practical like the selection of

sensors. We also show in this chapter how these principles can be

mapped onto concrete steps in agent design when conducting agent

experiments.

All our discussions in the chapter are conceptual: They are not

recipes on how to actually build robots. For example, we do not

discuss the issues involved in engineering basic motor control,

such as the design of H-bridges (which is a particular type of elec-

tronic circuit frequently used for this purpose). That is the task of

other textbooks (e.g., Jones and Flynn 1993). Fortunately, commer-

cial robot platforms often include libraries of basic sensor and

motor functions, so you do not need to engineer everything down

to the very low level yourself. As mentioned before, we have added

a set of programming examples. We have provided some pseudo-

code. You can download the full code from our Internet page,

which should enable you to create and conduct experiments on

your own. For those who want to dig into robot building or heavy

programming, for example, the Internet page also provides refer-

ences to the technical literature, and pointers to Internet pages that

in turn contain a wealth of materials. But since this is not a tech-

nical book about robot building and agent programming, you need

to refer to additional specialized literature if you want to do either

of those things.

We start with some general comments about design, then turn to

agent design in particular. We delineate the steps in designing

agent experiments, giving some practical advice on how to go about

choosing the desired behaviors and ecological niche and designing

an agent for them. We demonstrate that the design principles of

autonomous agents have a direct impact on practical decisions

such as choice of sensors. We then turn to a discussion of design

issues for the motor system: Most of the topics that need to be dis-

cussed are research issues to be resolved, which is why most agent

experiments are conducted with relatively simple motor systems.

Next we discuss choice of control architecture and formalism. We

conclude by pointing out a fundamental design issue concerning

digital microcontrollers for mimicking intelligent systems.

Before we start our discussion, a note on the role of arti®cial

evolution in design is in order. In chapter 8 we pointed out that
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in evolutionary circles sometimes the slogan ``Design is outÐ

evolution is in'' is used to argue that arti®cial evolution can be

employed to overcome biases of the human designer. We argued

that the real question is what to design and how to design, not

whether to design. So the distinction between evolutionary and

``hand design'' approaches is not that in the former no design is

required whereas in the latter a lot of design is involved, but rather

where the designer commitments are made. Surely the kinds of

considerations for evolutionary systems will be different. But we

expect that just as many underlying implicit assumptions would

come to the fore if the kind of analysis suggested in this chapter

were applied to evolutionary approaches. Because evolution is not

the central focus of this book, we do not discuss those explicitly

here, but rather focus on design considerations in general, and the

ones related to ``hand design'' of autonomous agents in particular.

16.1 Preliminary Design Considerations

In chapter 10 we de®ned the design problem for an agent infor-

mally as follows: Given the intended ecological niche and the

desired behaviors, how do we design the agent? But this does not

yet say anything about how to actually design the agent. Let us look

at a de®nition by one of the leading industrial designers of our

times, Nam M. Suh of MIT: ``Design may be formally de®ned as the

creation of synthesized solutions in the form of products, processes

or systems that satisfy the perceived needs through the mapping

between the functional requirements in the functional domain and

the design parameters in the physical domain, through the proper

selection of the design parameters that satisfy the functional

requirements'' (Suh 1990, p. 27). Functional in this context refers

to the functions the device is to perform, that is, the speci®cations of

the device. Physical means the actual realization of the speci®ed

functionality as a physical system, the product to be designed. De-

sign, in Suh's terms, consists of a continuous interaction between

the functional and the physical spaces. Thus we have to de®ne the

functional requirements, devise the solution, analyze whether the

solution is consistent with the problem de®nition, and ®nally

check whether the solution is really what was wanted in the ®rst

place. This de®nition applies, of course, also to agent design. Al-

though the needs of industrial design are quite obviously different

from those of cognitive science, these steps are generally valid for
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both. Our ``steps in running agent experiments'' ®t in well with

Suh's concept.

General Issues in Design

Design is an almost universal activity. Engineers design cars, air-

planes, and computers, but also simpler things like tables, soda cans,

pens, tea bags, shoestrings and paper clips. Architects design build-

ings. Fashion designers design clothes. Scientists design experi-

ments. Artists design logos, Internet home pages, and magazine title

pages. Computer programmers design software. Teachers design

materials to be used in their classes. And last but not least, re-

searchers in our ®eld of embodied cognitive science design physi-

cal and simulated agents. Virtually every object we use in our

lives has been designed at some point: our watches, T-shirts, shoes,

cameras, bicycles, glasses, combs, stoves, coffee cups, note pads,

telephones, ¯ower pots, bus tickets, knapsacks, key rings, and

pillow cases. As might be expected, an enormous wealth of design

knowledge has been accumulated in many areas.

To demonstrate the complex considerations that go into engi-

neering design, we brie¯y describe some of the criteria. In our

treatment, we draw inspiration from Henry Petroski's thoughtful

and entertaining book Invention by Design (1996). Petroski uses

examples from paper clips to modern passenger airplanes to large

buildings. Whereas Suh focuses on industrial design, Petroski's

interests are somewhat more general. We present the following list

of factors usually taken into account in a design process, without

commenting on it in detailÐthat would require another bookÐto

demonstrate the broadness and variety of considerations that go

into design: mechanics, energy-related issues (production, running,

disposal), visibility of function, naturalness of mapping of controls

to function, availability of raw or recycled materials, ease of

manufacturing, markets, cost (production, running, disposal),

safety, potential manipulation errors and failures, smoothness and

ease of use, corporate policy, prospects for patent application,

psychological (emotional), esthetic, environmental, ethical, cul-

tural. From this impressive list of considerations it is obvious that

design is not something simple, something that can be formalized

easily. As prominent psychologist Don Norman, author of the en-

joyable book The Design of Everyday Things (1988), put it: ``Engi-

neering design is a very human activity, with social and cultural
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factors playing as much a role as science and mechanics'' (quoted

on cover jacket of Petroski 1996).

The design process can be formalized, but only for relatively

restricted, well-de®ned domains. This typically includes indi-

vidual components of more complex objects or systems. Well-

formalized are the designs of shapes of cogs for transmission boxes,

turbine blades, bearings, pistons, rotor blades, fuel ducts, and so

forth. Logic circuit design is especially well formalized, most likely

because it is typically very clear what function the circuit should

achieve, and the components to be used are usually given. Such

individual components, in particular logic circuits, can thus be

designed mostly in a top-down manner. The top-down way of pro-

ceeding implies a design philosophy in which the complex ®nal

product to be designed is decomposed into individual components

that are designed separately and ®nally put together. The underly-

ing assumption here is that the components only interact via well-

de®ned interfaces or that they do not interact, (or at least that the

interaction can be neglected). It is well known that such inter-

actions can often be the source of problems. But it is certainly

plausible to assume that the hands of a watch do not signi®cantly

interact with the battery. However, they do interact with the glass

that covers the watch: depending on the shape of the glass, the

hands may be seen as enlarged or distorted. Headlights on a car

usually don't interact with the tires: These two components can

safely be assumed to be decomposable and separately designable.

At some level, of course, all components of an artifact interact.

Because of the tires' limited capacity for adhesion, it takes some

time to brake. This limitation in turn necessitates a certain range of

vision that leaves the driver enough time to brake, which in turn

implies that the headlights must have a certain range. Of course,

the situation is more complicated, because these processes are

mediated through the driver's sensory-motor systems and the car's

braking system. But for all practical purposes headlights and tires

can be considered independent. Simon (1969) has used the ex-

pression ``near decomposability.'' We know that all components or

subsystems interact, but we assume that most, at least, are largely

independent, a necessary assumption because we cannot analyze

and design a complex system all at once.

Decomposition is normally driven by the philosophy ``one func-

tion±one module.'' It leads to modular designs. Recall that this is

also the approach of traditional AI. We have called it the modu-

larity principle (chapter 2). Headlights have the function of pro-
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viding the basis for vision at night, tires of keeping contact between

the wheels and the ground while absorbing potential shocks from

uneven ground. From an engineering perspective, such a philoso-

phy has enormous advantages. Separate development teams can

work on separate components. Fault diagnosis is reduced to the

comparatively simple task of identifying the malfunctioning

module. Repair consists simply of replacing this module. In soft-

ware engineering, modularization is one of the essential virtues.

Modules can be tested independently of one another and com-

bined in larger programs in arbitrary ways. Agent design, however,

is somewhat different.

Issues in Agent Design

Agent design presents a signi®cant con¯ict. On the one hand, an

agent is a product of engineering that has to function properly. As

such, its construction should follow the principles of engineering

design, such as modularity. On the other, the functions in natural

systems are often shared: One component serves several purposes,

particularly in the neural system. Arms, for example, are used for

object manipulation, for maintaining balance in walking, for pro-

tection, and for communication. They can also be applied for loco-

motion (crawling). This kind of resource sharing has to be kept in

mind when designing agents.

We also have to take into account the principles delineated in

chapter 10. Principles of this overall nature do not apply to engi-

neering design in generalÐfor example, that sensor, motor, and

neural systems depend on one another, that they must be ``bal-

anced'' with respect to a particular task environment. Although

there is some general notion of ``balance'' in industrial design, most

products lack sensory and motor systems. A robot for industrial

purposes, say a manufacturing robot, has to meet very different

criteria. For example, it has no need for self-suf®ciency: We simply

attach the robot to a power cable. And we don't want autonomy:

We want the robot to perform exactly the tasks it is supposed to.

The major differences between the two design philosophies are, of

course, due to the different goals.

16.2 Agent Design

Let us now turn to the steps in designing agents for the purpose of

investigating issues in intelligence. Well-established disciplines
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like cognitive psychology or experimental biology have standard

ways of proceeding. However, in the ®eld of embodied cognitive

science, such a consensus does not (yet) exist. Our suggestions are

meant to be a start in turning this ®eld into a discipline with

scienti®c standards as they are known from other ®elds without

sacri®cing its creative potential and its playful, synthetic character.

We go through the steps outlined in chapter 4 (table 4.5) in more

detail and focus on design issues. We delay the discussion of the

more methodological questions until the next chapter. We restrict

our discussion here to the design of individual robots; to design

groups of robots involves yet other considerations (e.g., Mataric

1995).

Research Goals

Before we start designing anything we have to be clear about our

research goals. What scienti®c questions do we want to answer?

Do we want to study how babies learn to make distinctions in the

environment? Or are we interested in ants' navigational system?

Do we want to know more about why and under what conditions

animals eat, sleep, or forage? Or are we interested in how people

learn and forget? Or do we want to build a robot for data collec-

tion on Mars? Often this very general kind of decision is easy:

It is given by the current research environment. Then the really

hard part starts. We have to de®ne the agent's ecological niche

and the desired behaviors, and then we have to design the

agent. This is the classical design problem. In chapter 10, we

mentioned that there are alternative ways of proceeding. We can

also start with an agent and a particular ecological niche and ask

what behaviors will emerge. This was the approach taken in

chapter 6 when discussing the Braitenberg vehicles. Alternatively,

we can start with an agent and a set of desired behaviors and ask in

what kinds of environments the agent will exhibit the desired

behaviors. This perspective might be adopted by a robot manufac-

turer, who wants to design a robot that assembles a motor from

parts on a conveyer belt. In this chapter, we focus on the classical

design problem. There is an overall goal to be pursued in agent

design. We would like the desired behaviors of the agent to be

emergent; i.e., we want to design for emergence (as Luc Steels

called it). Earlier we elaborated in detail that agent designs must

be emergent, because we cannot design behaviors into the system
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(chapter 10). The idea is that once we have a good understanding of

emergence, we can de®ne a design methodology that starts from

desired behaviors.

Currently such a methodology does not exist. Given a certain task

or set of desired behaviors, for example, to mow the grass of a very

large soccer ®eld, how do we design robots so that the appropriate

mowing behaviors will be emergent? This is a basic research issue.

But the situation is not as bad as it sounds. Although there

is no general methodology, in particular cases determining what

processes are required to achieve a particular behavior is often

straightforward. For example, to generate circling or wall-following

behavior, we need three processes: move forward, turn toward, and

turn away. The interaction of these three processes as the agent is

near an object results in the desired behavior (chapter 12). If we

want the agent to engage in categorization behavior, it needs pro-

cesses to get near the object and processes to explore and manipu-

late the object. If exploration is to be in the form of circling, we can

plug in the processes just described for circling. This is the same

evolutionary philosophy that we described for the subsumption

architecture in chapter 7. And then, we have the design principles,

which impose constraints and provide guidance. Upon re¯ection, it

is no surprise that there is no top-down methodology for designing

autonomous agents. Assume that there were such a methodology.

Designing agents would no longer be interesting from a scienti®c

perspective: We could simply build them. For the time being, de-

signing for emergence in general is an unresolved issue; it requires

creativity and ingenuity.

Task Environment

Once we are clear about our research goals, we have to de®ne

the task environment, that is, the tasks, desired behaviors, and

ecological niche. This is the equivalent of determining functional

requirements. We have been careful to talk about desired behav-

iors, rather than internal modules, to be clear about the frame-of-

reference issue. This use of terminology also stresses the point that

the agent must actually behave. Say we want to study perception.

The question is what the desired behaviors are. What is the con-

text? We will see that the interesting behaviors from the perspec-

tive of embodied cognitive science differ considerably from those

in more classical approaches.
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Perception is a popular and important research topic. Broadly

speaking, it involves ``those processes that give coherence and

unity to sensory input'' (Reber 1985, p. 549). So to study percep-

tion, we ®rst have to ®nd a behavioral context. For example, in

foraging, the agent (e.g., ant) moves toward a food item and picks it

up, then brings it back to the nest, which in turn requires naviga-

tional behaviors. Navigation may require that the agent recognize

Ð``perceive''Ðthe food items, certain landmarks, and the nest. The

question now is how these behaviors are to be achieved. This

includes many issues that relate to perception.

Another example is a human infant learning to sort objects into

different piles. He can be said to ``perceive'' the objects, but all we as

observers see is whether he does the sorting correctly. The internal

mechanisms for these two kinds of ``perception,'' one in the forag-

ing agent and other in the infant sorting objects, are likely quite

different. It is always important to have a clearly de®ned behavioral

context, because the processes involved strongly depend on the

overall behavior. Milner and Goodale (1995) have made this point

for visual perception. So we see that navigation and sorting provide

a good behavioral context for studying issues in perception, which

is one of the reasons why these behaviors are so popular in the

®eld. They are also suitable for studying learning and memory.

Learning and memory involve how behavior changes over time.

Learning is not something to be looked at in isolation but again in a

behavioral context. The following task requires learning: The agent

has to collect objects in an unknown environment. It has to learn

about its environment, it has to ®nd out where the objects to be

collected are located, it has to ®nd its way to a charging station, and

it has to ®nd its way back to the home base where it has to bring the

objects. Moreover, it has to learn to make distinctions between the

objects to be collected and those to be left alone. Recall the SMC

agent that had to learn the distinction between small and large

objects, a typical learning task. The desired behaviors were as

follows: Initially, the agent should treat all objects the same. By

interacting with the environment, it should change its behavior,

gradually treating different types of objects differently, so that it

picks up only the small ones while leaving the large ones alone.

Learning long lists of words or numbers would not be a suitable

task for a robot: there is no relevant behavioral part to the task. The

same holds for problem solving, reasoning, and logical-inferencing

tasks, which are unbalanced tasks because they mostly require

Agent Design Considerations 545



central processing. Tasks requiring balanced designs are poten-

tially more interesting to study.

Intelligence is also associated with social behavior, with com-

munication and cooperation. We may choose to employ groups of

agents rather than individuals, in which case we have to be partic-

ularly careful that we leave room for emergence, that we do not

prede®ne too much. The clustering behavior of ants inspired the

desired behaviors in the Didabot example (chapter 14). The clus-

tering behavior in the Didabots was emergent from processes

related to obstacle avoidance. More complex behaviors are required,

for example, when agents have to play soccer. This task environ-

ment requires many competences: recognizing the direction and

speed of the ball and the opponent's goal; manipulating the ball;

fast and precise locomotion; anticipating the behaviors of others,

opponent and team mate alike; cooperating; passing; and so forth.

All of these competences can be studied from the perspective of

learning. This is the idea underlying the RoboCup, which we dis-

cuss in chapter 18.

Desired behaviors can be de®ned only with respect to a par-

ticular ecological niche. Behavior, by de®nition, is the result of a

system-environment interaction. For example, we have to decide

what kinds of objects have to be sorted: little pegs on a table, or

garbage in the real world. Or we have to say where the navigation

behavior is to take place: in an environment speci®cally built for

the robots, in an of®ce setting, in a less-structured outdoor envi-

ronment such as a university campus, the Sahara desert or in the

sewage system of a large city. And this leads to an important design

consideration: Depending on the choice of desired behaviors and

environments, signi®cant engineering problems will arise that must

be mastered ®rst, before the scienti®c issues can really be tackled. If

we are to study navigation behavior in sewage systems, we ®rst

have to develop a robot that can move about in this environment

consisting of slippery, wet, cluttered pipes of very different sizes.

For other kinds of behaviors, like object manipulation, robots with

suitable motor capabilities can be bought off the shelf.

The choice of tasks, desired behaviors, and ecological niche

strongly in¯uences the robot's design. If a garbage-collecting robot

has to operate only in the streets, it can be equipped with wheels,

and wheeled locomotion is much easier to design than walking (see

below). However, if it has to collect garbage deposited in people's

backyards, it might need the ability to walk. If we are interested in
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investigating the navigation behavior of the desert ant Cataglyphis,

we know that its ecological niche, a salt pan in the Sahara desert, is

very ¯at, very hot, and very windy. We also know that any agent

designed to study its behavior should exploit the polarization

pattern of the sky, as Cataglyphis itself does (e.g., Wehner 1994).

From chapter 4 we know that we have to make good abstrac-

tions. Exploiting the polarization pattern requires sunlight and a

partially open sky. Indoors, there is no partially open sky and not

much sunlight. Thus, the experiments will have to be conducted

outdoors. In Zurich or Boston, there is often no sunlight, or not

enough to get a good polarization pattern. Quite in contrast, in the

desert there is virtually always sunshine. So perhaps the experi-

ments should be conducted in the desert itself. But that would be

impractical: We would have to travel there, there are no well-

equipped workshops, and it is very hot and dusty. Moreover, the

desert has a particular surface. Is the particular surface relevant for

the navigation behavior? Would there be suf®ciently many sunny

days in Zurich that the experiments could be run there? Do the

differences in the polarization patterns between Zurich and the

desert matter? Does the ecological niche require walking or wheels?

Should a real robot be used or should a simulation be developed?

How hard would it be to model the polarization pattern of the

sunlight? As we see, many issues are involved in the choice of the

ecological niche to run the experiments.

Once these issues have been settled and the ecological niche has

been chosen, we have to decide on the behaviors desired of the

agent. Here thoughts about evaluation already creep into our delib-

erations. Should the agent perform the full spectrum of navigation

behaviorsÐleaving the nest, foraging, going back to the nest in a

straight line, using landmark navigation near the nest? Should we

start with one part only? What does it mean for the robot to ``®nd

food''? How are we going to compare the agent's behavior with that

of the ant? How do we account for the potential differences in size?

If the robot is 100 times the size of the ant, does it have to travel 100

times further than the ant? That would mean between 20 and

30 kilometers which is unrealistic. So we probably want to decide

that these size relationships are irrelevant. But would that be a

good decision? Note that if the robot had to travel 20 km energy

would suddenly turn out to be an essential factor, and we have

stressed the importance of self-suf®ciency for intelligent behavior.

Undoubtedly, we will still decide to use shorter distances, but we
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have to be aware that this is again a simpli®cation. It is not feasible

to list all these possible points systematically. They very closely

depend on the particular area of investigation. The idea has been

merely to illustrate the relatively disorderly types of thoughts

involved.

If we are to study category learning in human infants, the situa-

tion is entirely different. In that case, we need various types of

objects to be manipulated in the ecological niche. Presumably

the required experiments can be run indoors, which is, of course,

always the most convenient solution: We can structure our envi-

ronment and tailor it to our needs more closely there. One idea

might be to approximate the experimental settings of the psycho-

logical experiment: It depends on how closely we want to repro-

duce the experiment. Should the agent manipulate exactly the

same types of objects as the human infant? Would that make sense,

given that it has a very different sensory-motor system from the

infant? Is it necessary to actually reproduce psychological experi-

ments, or can we generally run category learning experiments on

the robot and still say something relevant about humans? Again,

the answers to these questions in¯uence the choice of tasks and

experimental setting (i.e., the ecological niche). We pick up this

issue again in chapter 17 in the context of evaluation.

Low-Level Designer Speci®cation and Choice of Platform

All the considerations above have direct implications for the low-

level speci®cation, that is, the basic designer commitments, which

in turn in¯uence choice of platform and control architecture. Once

again, we see that although all the steps speci®ed for designing

agent experiments are required, there is no neat sequence in reality

(even though in theory this might seem possible). Remember

that the low-level speci®cation represents an abstract de®nition of

the physical agent's setup as well as basic interconnections of its

components.

Once we have the agent's speci®cation we have to choose a

platform. This implies searching for the appropriate hardware

and software, or if we are using simulated agents, searching for a

simulation platform or developing our own. Now things get really

messy, because the considerations are no longer of a purely scien-

ti®c nature. We have to take into account practicality, available

skills (Is the know-how and manpower available?), ®nancial con-
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siderations and the state of the art in technology (Can we afford

to buy the latest technology?), as well as aesthetic issues (Does

the robot have to look ``cool''?), ecological issues (Can we use

rechargeable batteries?), temporal issues (Can we build the robot in

a very short period of time?), and ergonomic issues (Can the people

who need to do the experiments actually work with this kind of

agent?). Moreover, the choices made here may in fact have an

in¯uence retroactively on the low-level speci®cations. For exam-

ple, certain parts may turn out be unavailable or to have delivery

times so long that you do not want to wait. So you may have to

change the goals of your experiments, at least somewhat.

The number of potential design considerations is virtually un-

limited. Let us look at a few examples. The Mars Sojourner has to

be able to navigate on the surface of Mars. This implies, among

other things, that it has to be able to detect obstacles and target

objects, mainly rocks, and to navigate around them, or move up

to them. Thus its low-level speci®cation has to include means of

perceiving rocks and perhaps other kinds of objects (such as the

home base). Many different types of sensors could be used for this

purpose. The designers of the Sojourner opted for vision sensors

(cameras), bumper sensors, and proximity sensors. Moreover, its

body had to be built in such a way that it could overcome obstacles

of signi®cant height. We mentioned in focus 4.2 that this is why

the Sojourner has been equipped with six instead of four wheels:

Six-wheeled robots can overcome obstacles three times larger than

four-wheeled ones. Of course, the Sojourner's designers knew that

they would be designing their robot from scratch. Therefore, they

had the liberty of choosing any sensors they pleased. Normally,

however, the situation is quite different.

Assume that a researcher has tentatively decided to use a real

robot for his experiments, but perhaps he is not really sure yet.

One of the decisions to be made is whether he should buy a robot

off the shelf, or whether he should build his own. Say he is a psy-

chologist planning to run experiments on category learning. Most

likely, then, he will not have an engineering laboratory, circuit

designers, mechanical workshops, and robot specialists at his im-

mediate disposal. If expertise, workshops, circuit board designers,

and mechanical engineers are lacking, designing a robot from

scratch is out of the question. Then the question becomes whether

it is really necessary to use a real robot, or if a simulation can be

used as well. He might want to consult table 4.2, which compares
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robotic and simulated agents. If he should decide that a real robot

is needed, he may want to purchase one. There are many good

alternatives on the market. Here, practical considerations about

space, price, and again available skill are important. Some plat-

forms, like the Nomad 200 or the Khepera, require only a little

knowledge of hardware: Programming skills are enough to operate

them. But then, they are not cheap. There is a third alternative,

namely getting a robot construction kit. The reader might consult

our Internet page for pointers to pertinent information.

Imagine now that he has convinced your psychology department

to buy a Khepera robot. He is certainly not going to follow the

steps as outlined. Rather, he knows that he will be using Khepera

for your experiments. Thus, the low-level speci®cationÐand, of

course, its implementation, the Khepera robot itselfÐis largely

given. However, if he has a ¯exible robot platform and the skill to

add to, remove from, and modify it, he is less constrained in

thinking about the low-level speci®cation.

Choice of Sensors

One choice that always has to be made is the kinds of sensors to

employ, irrespective of whether simulation or real robots are used.

Let us now take a list of criteria for choosing sensors from the

literature (Everett 1995), go through it, and show how the design

principles we outlined in chapter 10 strongly in¯uence the answers

to the questions raised by the criteria. Before we do that, however,

a more general comment is necessary. Principle 2, the complete-

agent principle, states that we must always take the complete agent

into account. Combined with the principle of ecological balance,

this tells us that we should not choose sensors or motor setup in

isolation, but that they have to be chosen together and with the task

environment in mind. Let us now look at the list of criteria we

mentioned, which is found in table 16.1.

The ®rst entry in the table concerns ®eld of view. This is a

typical issue for vision sensors. First, the required ®eld of vision

depends on the agent's motor capabilities: If the agent has suf®cient

mechanical capacities, speci®cally suf®cient ¯exibility to move the

®eld of vision in a particular direction, the ®eld of vision can be

reduced. This is important, for example, in active vision. The ®eld

of vision depends also on the task environment. The issue of ®eld

of view is coupled with points 2 (range capability), 3 (accuracy and
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Table 16.1 Overview of design considerations for sensors. (Adapted and extended from Everett
1995.)

Design criterion

Comment

(design principles involved) Examples of sensors

1. Field of view Opening should be wide enough with
suf®cient depth of ®eld; equally,
opening should be restricted to limit
processing; depends on tasks but also
on motor capabilities (ecological
balance)

Camera opening normally restricted
Sahabot II uses 360� camera
horizontally, vertical view is
restricted between ÿ15� and �15�

with respect to the horizon; active
vision dynamically adjusts camera
parameters such as ®eld of view

2. Range capability Minimum and maximum range of
detection; must be balanced with
speed and other motor capabilities
(ecological balance)

Touch sensors have a range of 0;
cheap sonars: typical range .4 m to
10 m (inaccurate); IR sensors on
Khepera up to 4 cm

3. Accuracy and resolution Both must be in keeping with the
needs of the given tasks; should be
balanced with accuracy of motor
system (ecological balance;
redundancy; sensory-motor
coordination)

Cheap sonars and IRs are inaccurate
but may suf®ce for a given task; they
are often suf®cient for navigation and
obstacle avoidance

4. Ability to detect all
objects in environment

Objects can absorb emitted energy;
target surfaces can be specular as
opposed to diffuse re¯ectors; ambient
conditions and noise can interfere
with the sensing process (point 7,
redundancy, below)

IR radiation is absorbed by matte
black surfaces; use a camera
in addition

5. Real-time operation Update frequency must provide rapid,
real-time data at a rate commensurate
with the platform's speed of advance;
this consideration trades off with point
3, accuracy, and resolution (ecological
balance; parallel, loosely coupled
processes)

In particular cheap frame-grabbers
for CCD cameras often have low
frame-rates (depending on the
resolution of the image); be careful:
high frame-rates may require lot of
processing

6. Concise, easy-to-interpret
data

Output format should be realistic from
the standpoint of processing
requirements; too much data can be
as meaningless as not enough; some
degree of preprocessing and analysis
may be required to provide
appropriate sensory output (cheap
design; sensory-motor coordination)

Often a high-resolution camera is
given, but for a particular task only
low resolution is required (cheap
vision); low resolution can be
achieved through preprocessing

7. Redundancy System should provide graceful
degradation and not become
incapacitated because of the loss of a
sensing element; multimodal
capability would be desirable to
ensure detection of all targets, as well
as to increase con®dence level of
output (redundancy)

IRs are often used in addition to a
camera for obstacle avoidance; in
contrast to normal cameras IRs also
function in the dark; redundancy in
sensors is also important for learning
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resolution), and 5 (real-time operation). If the task requires the

robot to move fast, it needs suf®cient range capabilities to minimize

risk of hitting. Vision sensors are well-suited for this purpose. If the

vision sensors have high resolution, a lot of processing is required,

and we may not be able to meet the real-time demands. This is

where the principle of parallel, loosely coupled processes comes

in. To meet real-time demands, we have to organize the architec-

ture in terms of parallel, largely peripheral processes. If internal

processing is minimal, there is a good chance that the sensory data

can be processed fast enough. It may be a good idea to have a

number of specialized distance sensors that operate in parallel, or a

very simple, low-resolution visual sensor, with just enough resolu-

tion to achieve the task of moving fast while avoiding obstacles.

Remember Ian Horswill's robot Polly which used low-resolution

vision for navigation? By looking at the y-axis only, Polly could

measure relative distance very quickly (assuming that the obstacles

stood on the ground). As a result, it could move really fast, much

faster than other, more sophisticated robots. If obstacle avoidance

is the only task, cheap sonars or IR sensors might be suf®cient. A

low-resolution visual sensor can also be contrived by having a

high-resolution camera but processing only parts of the image it

transmits, for example, by using a horizontal one-dimensional

Table 16.1 (continued)

Design criterion

Comment

(design principles involved) Examples of sensors

8. Simplicity System should be low cost and
modular to allow for easy maintenance
and evolutionary upgrades, not
hardware-speci®c (cheap design;
parallel, loosely coupled processes)

Simple and cheap sensors like sonars
or IRs are often entirely suf®cient; they
can be used in parallel and relatively
independently

9. Power consumption Power requirements should be
minimal in keeping with the limited
resources on board a mobile vehicle;
(important for self-suf®ciency
considerations)

Often there is an accuracy-power
consumption trade-off: high-precision
laser scanners consume a lot of
energy

10. Size Physical size and weight of system
should be practical with regard to
intended vehicle (ecological balance;
self-suf®ciency)

Often high-resolution devices are
larger, e.g. high-resolution cameras;
small high-resolution cameras are
more expensive
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array, by processing only 1 out of 25 pixels, or by taking an average

over a square area. The closer to the periphery this can be done, the

better criterion 5, real-time operation, can be ful®lled. For reasons

of ¯exibility, this kind of ®ltering can also be done in software. An

interesting solution to this trade-off between resolution and pro-

cessing requirements is to use space-variant vision sensors (e.g.,

Ferrari, Nielsen, and Sandini 1995), that is, sensors with high

resolution in the center and low resolution toward the periphery.

This design that is found in the retinas of many animals has the

advantage that due to the low resolution at the periphery, pro-

cessing is signi®cantly reduced. Because the periphery is only used

for motion detection, low resolution is suf®cient.

So far we have been talking about constraints originating from

the task environment. If we are interested in modeling natural

agents, the system we model imposes additional constraints. For

example, ants, the desert ant Cataglyphis in particular, have a

compound eye with almost 360-degree vision. The Sahabot, used to

model the navigation behavior of Cataglyphis, had a camera with

360-degree vision and a vertical opening that varied somewhat

between �15 degrees (above the horizon) and ÿ15 degrees (below

the horizon). As an aside, 360-degree vision, or omnidirectional

vision, can be achieved cheaply by having a camera face a conic,

hyperbolic, or spherical mirror from below. Figure 16.1b shows

such a camera. The compound eye of an ant has individual facettes,

the ommatidia, all of which have a particular opening angle that is

given and that might have to be reproduced more or less precisely.

An example in which adjustment of resolution and accuracy

through software might be useful is infant development. As pointed

out earlier, the acuity of an infant's visual distinctions increases

over time (and is coupled to an increase in precision of motor

movements). The design strategy would be to use a camera with

enough resolution for those stages requiring the highest resolution.

Initially, a ®lter placed over the camera would simply prevent it

from being exploited to its full capacity; such a ®lter is typically

generated via software. This is another case of redundancy being

employed: The camera provides redundant signals that are not

exploited initially but may be exploited later if required by the

needs of the motor system. This in turn is a consequence of the

principle of sensory-motor coordination.

Consider now point 4, the ability to detect all objects in the

environment. A robot that has to operate at night cannot use visual
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Figure 16.1 The Sahabot II robot, developed to investigate the navigation behavior of the desert
ant Cataglyphis, in particular to study landmark navigation. (a) The robot with its
exchangeable wheels. (b) The omnidirectional camera, based on a conical mirror. To
imitate the ant's visual input, an unprocessed stripe (c) was extracted from the direct
camera image.
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sensors exclusively but will have to incorporate active sensors, in

addition, such as IRs or sonars (ultrasound). A robot equipped only

with IR sensors for obstacle avoidance has problems, for example,

with black matte surfaces that absorb IR radiation. It must therefore

be equipped with additional sensors, for example, visual ones.

Note that we have just introduced a certain amount of redundancy

into our agent.

Point 6 tells us that we should aim for just the right amount of

data: Too much is just as bad as too little. This exempli®es the

principle of cheap design. We should add that appropriate motor

action may signifantly reduce the amount of data required.

Through appropriate sensory-motor coordination, a problem seem-

ingly requiring a lot of data, like recognizing an object, may be

turned into a much simpler one, as the principle of sensory-motor

coordination states.

Point 7, an explicit reference to redundancy, adds an interesting

twist to these considerations. On the one hand, having multimodal

capabilities can increase reliability of recognition. Moreover, it

permits graceful degradation: If one sensory modality ceases to

function, others can, at least partially, compensate for this loss. An

IR sensor can partly take over from a vision sensor, though possi-

bly only at short range. Note that optimal redundancy is achieved if

the sensors are positioned so that there is a potential information

overlap, as the redundancy principle states. If the sensors function

based on different physical properties, that increases adaptivity. On

the other hand, multimodal associations enable category learning.

Thus, if learning experiments are planned, this has a direct in¯u-

ence on the choice and the positioning of the sensors.

Point 8 states that the sensors should be low cost and modular,

which refers to the principle of cheap design. Often, if the con-

straints of the niche are exploited, really cheap sensors can be

used. The idea of modular sensors also relates to the principle of

parallel, loosely coupled processes: If we rely on parallel processes,

additional sensors can be added and only minimal modi®cations

to the existing sensors and architecture have to made. Ecological

balance must also be taken into account: Depending on the task

environment, primitive motor systems often require only primitive

sensors.

Point 9 relates to self-suf®ciency and to the fact that some sen-

sors, especially high-precision ones, may require a lot of energy.

But high precision may simply not be required by the task involved.
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Finally, point 10 states that the sensors' size should be practical:

if too large, they will not ®t or be too heavy; if too small, they might

be dif®cult to handle. Again, the idea of ecological balance is

involved here.

We are still not quite done. We do not simply want to build

robots, we also want to run experiments and evaluate our robots'

behavior. Step 7 in agent design (table 4.5) tells us that we have to

think about the data that we plan to collect about the agent in an

experiment. This potentially implies additional sensors. For exam-

ple, we might want to register deviations in direction. A magnetic

compass could make this possible in the Sahabot. We might want to

include means that make it easy for the agent to record its position,

for example, by using GPS-based devices. GPS, the Global Posi-

tioning System, can be used to record position anywhere on earth.

So far we have proceeded only to the speci®cation of the sensors.

Similar considerations would arise in choosing other system com-

ponents. We hope that we have demonstrated, however, that agent

design is not a straightforward, linear activity. Rather, it requires a

lot of creativity. It requires thinking about many issues and con-

straints simultaneously. And the considerations are not only of a

technical or scienti®c nature. Software designer Morten Kyng

coined the term ``situated design'' (Greenbaum and Kyng 1991).

He describes design as a dynamic process in which the designer

continuously interacts with the evolving artifact and with other

members of the design team. This implies that even if the design

decision just discussed has been made, as the process of building

the agent starts, there will be an iterative process, implying poten-

tial revisions of previous decisions.

The choice of sensors is an important part of working out the

low-level speci®cations. But alas, it is only one among many: We

also have to devise the motor system, the body and the potential

connections, and ultimately the processors and the power supply.

De®ning motor systems and building controllers for the sensor and

motor systems are also nontrivial and involved problems. We do

not, however, outline our approach to making the required choices

in the same detail as we did for sensors.

Choice of Motor System and Mechanical Parts

Sensors cannot be chosen in isolationÐthe intended task and the

motor system must also be taken into account. We have been con-

sidering aspects of the motor system already as we pondered our
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choices for sensors. Let us now pick out for closer examination two

of the most prominent components of motor systems, namely those

for locomotion and for object manipulation. Other components of

motor systems are concerned with body movement, facial expres-

sion (see also the ``face robot'' in chapter 19), movement, of the

neck, the eyes, the vocal cords, and so forth. Because we are inter-

ested only in illustrating some design considerations, we omit from

our deliberations some forms of locomotion, such as swimming

or ¯ying. The choice of motor components is closely tied to the

control architecture, which is why this section already discusses

many aspects of control architecture.

FOR LOCOMOTION

Locomotion is clearly one of the most elementary capacities of a

mobile agent: If it can't move, it's not mobile. The means we choose

for locomotion depend, of course, on the agent's desired behaviors.

Let's again take the example of the Sahabot. Since it was designed

to mimic the desert ant Cataglyphis, does its locomotion have be

legged? Or can we abstract from the type of locomotion and use a

wheeled robot? Wheels are very common in robots that move on

solid ground. Robots equipped with wheels have many advantages

over legged ones: They are easy to build and control, they are in

general cheaper than legged robots, they have fewer joints than

legged ones, they can carry more weight, they are robust, they

canÐto some extentÐbe used in rough territory, they move back-

ward easily, they are fast, and they can vary their speed con-

tinuously. The designers of the Sahabot decided that navigation

mechanisms are independent of a particular way of locomotion, so

they used wheels rather than legs. But their re¯ections were not

entirely ``pure'': They were not driven exclusively by scienti®c bi-

ological considerations only. The Sahabot's designers knew that

they would want an onboard PC, batteries with at least half an hour

of operating time, a polarization sensor module of considerable

weight, an adjustable 360-degree camera, and several fans to keep

the agent cool in the heat of the desert. Moreover, they knew that in

the desert's dusty, salty, and sandy environment, wheeled locomo-

tion would be easier to engineer. So, the choice to use wheels was

made quickly. An additional requirement was easy maneuver-

ability, in particular, turning on the spot. The solution can be seen

in ®gure 16.1a.

The other main means of locomotion for agents on solid ground,

besides wheels, is walking. Walking has de®nite advantages for

Agent Design Considerations 557



locomotion over rough terrain and stairs. Walking's disadvantages

are that it is harder to control, it requires limbs that may be quite

complex, in nature it occurs at only a few speeds (the various gaits),

and the speed at which it can occur has an upper limit. Moreover,

as pointed out above, walking robots can carry less weight. It is also

more dif®cult to make them really small. When researchers develop

walking robots, most of the time, walking itself is their research

area. For example, the MIT Leg Lab has legged locomotion as

its main research area. A great deal of engineering expertise is

required to design and build walking robots. Figure 16.2 illustrates

this point. It shows a dinosaur designed by Peter Dilworth at the

MIT Leg Lab. Its legs have many degrees of freedom, thus making it

an especially hard problem to generate its walking behavior. It has

speci®cally been designed with the goal of investigating control

architectures for complex walking behaviors. In design environ-

ments, where expertise in agents exhibiting walking behaviors is

lacking in most cases designers are better off using wheeled loco-

motion for their agents. For those whose research interest is not in

walking per se, the effort involved in employing a walking agent

might be very high compared to the additional insights gained.

FOR OBJECT MANIPULATION

Another major function of the motor system is object manipulation.

Humans and animals manipulate objects in their environment with

great ease. A variety of devices for object manipulation exist from

Figure 16.2 A special walking robot being designed and built by Peter Dilworth at the MIT Leg
Lab. The robot is modeled after the dinosaur Troodon. It has legs with many degrees
of freedom. At some point it should be able to stand up, walk, run, walk, and sit
down again with smooth transitions. It will have its power supply and controller on
board (reprinted with permission).
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which to choose. Figure 16.3 shows a number of them with varying

degrees of freedom, including wire loops, grippers, hands with

several ®ngers, and robot arms and shoulders. Some are available

commercially; others have been developed in research labs. The

point, however is not only the manipulation device as such, but its

control. The fundamental problem is the control of a large number

of degrees of freedom. We do not go into the details hereÐthat

would be beyond our scope and competence. This topic in itself

constitutes a vast research ®eld in engineering and in neuroscience.

From the perspective of autonomous agents, it is important that the

problem not be viewed as a computational one, but as one where

dynamics play an essential role as well (as stated in the principle of

cheap design). A promising approach in this respect has been

developed by Matt Williamson (1996) of the MIT AI Lab, who built

controllers for Cog's arm. Williamson was speci®cally interested in

modeling humanlike behavior in Cog's arm. The arm needed also to

be safe for people to interact with: It needed to be compliant. For

example, it needed, when it touched a person, to yield elastically

rather than push harder, as numerous existing robotic arms would

do. To achieve this compliance, Williamson has mimicked, using

electric motors, the springlike properties of human arm muscles.

This leads to a distributed system: The (simulated) springs work

continuously and independently of what happens elsewhere in the

system, embodying the principle of parallel, loosely coupled pro-

cesses. Cog can manipulate certain kinds of objects: It can swing a

pendulum or turn a crank.

From the perspective of autonomous agents, Williamson's re-

search is highly relevant. But Cog's capabilities need to be extended

to more complex kinds of manipulations if it is to be used to study

category learning based on sensory-motor coordination. In particu-

lar, sensors, most importantly tactile sensors, must be mixed in

with the motor systems (as stated in the redundancy principle).

Another big ``problem'' with Cog is that it is not commercially

available, and even if it were, it would beÐat least at the moment

Ðtoo expensive for most research labs to afford.

MOTOR SYSTEMS: A CHALLENGE

Some sensor systems are well developed. They seem to be much

easier to deal with than motor systems. Researchers in the ®eld of

autonomous agents work with IR sensors, sonars, laser scanners,

standard cameras, omnidirectional cameras, specialized sensors
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Figure 16.3 Devices for object manipulation: (a) wire loop, (b) gripper, (c) Salisbury hand, (d)
Cog's arms. As the number of degrees of freedom increases, it becomes more diffi-
cult to control the manipulator (c and d reprinted with permission).
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(like polarization sensors), tilt sensors, and accelerometers, to name

the most common ones. But most employ robot platforms that have

comparatively simple motor systems. The robots with which they

work are wheeled, have simple manipulators, and have a camera

with perhaps two degrees of freedom. Many even lack facilities for

object manipulation. This sparsity of motor equipment on most

robots re¯ects the fact that motor systems, in particular sophisti-

cated motor systems, are very hard to synthesize. As we have seen,

investigating motor systems is a research issue in the neurosciences

and in engineering. We have argued all along that motor systems

are of crucial importance, that we should not consider the sensory

side in isolation. So how should we proceed, given this dif®culty:

Should we employ only agents with simple motor systems? There

is no clear answer. If we want to develop agents with more complex

sensory-motor coordination, we need more complex motor sys-

tems. But such motor systems are not readily usable off the shelf.

This represents a challenge for the current research in the ®eld.

Some of the current problems with motor systems may be due to

the materials employed (e.g., electrical motors instead of muscles),

others due to issues concerning the control architecture. If we want

to develop autonomous agents, the application of the synthetic

methodology using embodied systems may eventually provide new

perspectives on issues in motor control, as illustrated by Cog's arm.

But currently, the lack of better motor control systems indeed

represents an obstacle. However, experience shows that by working

even with simple motor components like grippers, a great deal of

progress can already be made.

Other Considerations

Choosing a motor system involves many additional considerations.

To conclude our discussion, let us mention just two more: choice of

processors and energy supply. The choice of processors for the

agent depends again on many factors, such as processing require-

ments from the sensory and motor systems, including number

and type of ports (for input-output operations); availability of pro-

gramming environments and public domain software; visualization

tools; and available expertise; but weight, power requirements, and

robustness also have to be taken into account. One decision that

must be made is whether onboard computing is to be used, as is

desirable if the agent is to be autonomous. That decision has con-
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sequences in terms of the agent's weight, size, and power supply.

For ¯exibility and easy of use, PCs are convenient, but they require

a great deal of space and power. The latter is a problem only if the

power supply is to be onboard, in which case the robot has to be

equipped with batteries, and batteries are very heavy; this in turn

creates a problem in particular for walking robots. Using an off-

board power supply, on the other hand, makes it necessary to con-

nect the robot to its power supply via a cable or in some other

way that limits its mobility. Concerning the choice of processors,

instead of having one powerful central processor, one might also

think of having many small processors that run independently, as

would be desirable from the point of view of parallel, loosely

coupled processes. This is the approach taken in Cog. In an off-

the-shelf platform, the designers have mostly already made these

decisions and there is no need not worry about them. If building

robots per se is not the focus of the research, given the many con-

siderations that we have outlined, there is something to be said for

off-the-shelf solutions.

If simulation instead of a physical agent is used, many issues

concerning the hardware don't have to be considered. But then

there are the problems outlined in chapter 4, namely that it is hard

to simulate the dynamics of a physical robot and of an environment

realistically, especially if the simulated agents have many degrees

of freedom, whereas in the real world the dynamics are simply

given. A de®nite advantage of simulation, on the other hand, is that

since most of the hardware considerations can be omitted, there is

more time to focus on the conceptual issues of agent design.

16.3 Putting It All Together: Control Architectures

We saw in chapter 11 that control architectures are the means for

putting together the sensory and motor systems to achieve the

desired behavior: They make it all work. In that chapter, we pre-

sented an overview of the different architectures in the ®eld of

embodied cognitive science. We showed there that the hallmark of

these architectures is that they employ a number of parallel, loosely

coupled processes, each of which is directly connected to the

robot's sensory-motor apparatus. Agents designed in this particular

manner have the potential for emergence, so the goal is to employ

architectures that support emergence. We also mentioned in chap-

ter 11 that one important issue in designing an architecture is the

formalism selected to implement these processes. In this section,
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we discuss some of the considerations involved in selecting the

agent's architecture and formalism.

Choice of Architecture

We have introduced a number of architectures throughout the book,

for example, Distributed Adaptive Control (chapter 5), Braitenberg

architectures (chapter 6), and Extended Braitenberg Architectures

(chapters 6 and 11), subsumption (chapter 7), schema-based archi-

tectures (chapter 9), Process Description Language (chapter 11),

and action selection dynamics (chapter 11). Given a particular

low-level speci®cation and a set of desired behaviors, how should

we decide which one to choose? Unfortunately, it is the same story

again: There is no recipe, no top-down procedure for making such

a decision. As we have already pointed out a number of times, the

low-level speci®cations are never worked out in isolation. But we

normally have an idea about the architecture in mind before we

start. Then we simply make it work. The architectures we have

discussed are not formally speci®ed. Thus, there is a lot of freedom

in how they are to be interpreted (which has obvious advantages

and disadvantages). Given what we have discussed in this book,

the important choice is not a particular architecture. What does

matter is that certain principles of embodied cognitive science are

observed and that there is room for emergence. The choice of

an architecture does not free us, however, from the fundamental

design problem: Given a particular task environment, how do I

design the agent?

One frequently asked question in this context is whether we

should choose an architecture that includes learning or adopt an

evolutionary approach. This question is especially relevant, since

so far, learning agents have not shown signi®cantly better perfor-

mance on most tasks than hand-designed robots (e.g., Brooks and

Mataric 1993). If you are interested in the study of intelligence, it is

always a good idea to include learning of some sort (see also chapter

14, concerning the value principle). Similar considerations apply

to arti®cial evolution. This brings us to the next topic, the choice of

formalism.

Formalisms for Agent Design

If you want to implement an architecture, you have to choose a

formalism: There is no way around it. Verbal descriptions simply
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don't run on computers. Several formalisms have already been

discussed as we introduced the various approaches, including

neural networks of various kinds (chapters 5, 6, 11, 12, 14), ®nite

state machines and augmented ®nite state machines (chapter 7),

evolutionary algorithms (chapter 8), differential equations (chapter

9), immune system formalisms (chapter 11), and Q-learning (chap-

ter 14). Of course, there are many more in existence, like classi®er

systems, control theory, fuzzy logic, and Markov models, but the

ones we have discussed are among the most frequently used in the

®eld of embodied cognitive science. Let us brie¯y go through each

and inspect the design decisions involved (see table 16.2 for an

overview).

But before we start, a note on terminology is in place. The

term ``formalism,'' with its etymological connection to the word

``form''Ðoften used in opposition to ``content''Ðsuggests some-

thing essentially free of content or at least not dependent on it,

something that can be used to represent a theory formally. Differ-

ential equations very much have this content-free character, but

the other formalisms presented here do not. They are not really

theories, but they imply a signi®cant amount of content about the

subject matter they describe: Neural networks relate to real bio-

logical neurons (perhaps only remotely, but still they do), evolution-

ary algorithms endorse the idea of arti®cial evolution, Q-learning

implies that learning of this particular kind is basically a good

thing, and immune system algorithms capitalize on (abstractions

of) mechanisms found in natural organisms. In our discussion of

the formalisms we therefore sometimes make reference to cognitive

science, even though if we were talking about pure formalism, this

would be inappropriate. Some of these formalismsÐneural net-

works, classi®er systems, immune system formalisms, and dynam-

ical systemsÐhave been shown actually to be equivalent (Farmer

1990). This is, however, a purely mathematical equivalence. From

a cognitive science perspective, it still makes a great deal of sense

to distinguish between the different formalisms: One can get very

different kinds of inspiration from each of them.

Neural networks

By far the most popular formalism is neural network. Let us recall

the reasons for their popularity: They are fault and noise tolerant,

they are intrinsically learning systems, and they can generalize,

i.e., they are robust. Moreover, because they are inspired by natural
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Table 16.2 Overview of formalisms used for autonomous agents.

Formalism Comments Pros Cons

Neural
networks

Extremely popular in
autonomous agents ®eld;
come in many variations
(spiked, nonspiked,
synchronized, asynchronous,
feedforward, recurrent)

Large number of parameters
available; for certain types of
networks, parallel
implementation possible; well-
suited for adaptive behavior;
capture nonlinear phenomena;
integrated learning; intrinsic
robustness; many simulation
tools available

Many types not appropriate for
adaptive behavior (e.g., MLPs
with back-propagation); large
number of parameters to
adjust (weights, learning
parameters, temporal
characteristics)

Differential
equations

Universal tool used in all
sciences

Well-established formalisms;
focus on dynamics; global
characteristics can be
extracted; attractive metaphors
(attractors, chaos)

Integration computationally
expensive; systems of
differential equations get
complicated for complex
systems; nonlinearities prevent
analytic solution; ®nding
appropriate operationalization
(i.e., choice of variables and
parameters) may be hard; use
for synthetic purposes not
clear

Finite state
machines and
augmented
®nite state
machines

Used in the context of the
subsumption architecture;
®nite state machines too
limited for real worldÐ
augmented ®nite states
machines must be used

Simple, straightforward to
implement; programming
language available (Behavioral
Language); encourages
architectures with only little
internal state

Learning not included;
prespeci®cation of priorities
required (inhibition and
supression links)

Evolutionary
algorithms

Popular in ALife and
autonomous agents

Well-suited for generation of
diversity and emergence;
intrinsically robust

Computationally expensive;
design of ®tness function not
straightforward; restricted to
simulation if applied to
complete agents

Immune
system
formalisms

Popular in ALife community;
currently not widely used in
the ®eld of autonomous
agents

Well-suited for generation of
diversity and emergence;
massively parallel

Computationally expensive;
understanding dynamics can
be dif®cult

Q-learning Popular in machine learning
community

Mathematically clean
formalism with optimality
properties

Mostly grid-based simulations
requiring constraining
assumptions; not easily
interpretable in terms of
natural intelligence

Classi®er
systems

Mostly used in ALife
community; not widely used
for real robots

Lend themselves to parallel
implementation; integrated
learning

Computationally expensive
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brains, it is relatively straightforward to implement in neural net-

works ideas from neurobiology. One of these ideas is the parallel

nature of neural systems. Parallelism is required for adaptive real-

time behavior. Moreover, neural networks can be embedded in

physical robots in natural ways.

Neural networks are widely used in many ®elds and their basic

principles are well understood. Because of their parallel nature,

they lend themselves to parallel implementation, especially adap-

tive networks. (Some neural network learning algorithms require

global control, like back-propagation, and the parallel implemen-

tation of global control is not straightforward.) Because of their

many free parameters, in particular the weights, they incorporate a

suf®cient amount of redundancy for adapting to novel situations.

Of course, there are also trade-offs, but they are minor ones com-

pared to their advantages. The many parameters of neural networks

must be adjusted. In addition to the weights, there are learning

rates, thresholds, time constants, and forgetting rates. Moreover,

because of their many free parameters, they can be computationally

expensive andÐespecially for large networksÐtheir dynamics is

not always easy to follow.

Examples of neural networks we have seen are the Distributed

Adaptive Control architecture, the SMC agents, Beer's walking

insect, and Sims' virtual creatures. Neural networks are often used

in combination with evolutionary algorithms.

When designing a neural network, the type of network to be

employed has to be decided: one using activation levels or one

using spiked neurons. Whenever temporal characteristics play a

crucial role, spiked neurons may have to be used. We also have

to decide on the network architecture. (Be careful here: network

architecture is not the same as control architecture.) The appropri-

ate network architecture always has to be determined in the context

of a particular task. If possible simple forms of learning should be

used exclusively, like Hebbian learning, which is entirely local,

that is, it requires the activation levels only of those nodes to which

it is directly connected. As a general heuristic, if the data are such

that you need powerful learning mechanisms, there may be some-

thing fundamentally wrong with your design.

Finite state machines and augmented ®nite state machines

Finite state machines are used to implement the subsumption

architecture. In chapter 7, we used the example of a turnstile to

illustrate the basic idea. Finite state machines are characterized
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by states and transitions. As such, they are relatively limited. For

example, they do not incorporate a time component. Often we want

the robot to do a particular action for a certain amount of time, such

as turning or moving backwards. Finite state machines have there-

fore been augmented to make them usable in robots (see chapter 7).

As in the case of neural networks, the formalism of augmented

®nite state machines imposes a bias on how control architectures

are designed. For example, it makes designers think about prob-

lems in terms of states and state transitions, which is natural for

many robot problems: The robot is in a particular state, such as

moving fast, and given a certain input, such as a sensory stimula-

tion pattern indicating an obstacle, the robot changes to a state with

motor speed low.

Finite state machines are simple entities that run asynchro-

nously. Moreover, because augmented ®nite state machines are

simple and run asynchronously, theyÐimplicitlyÐencourage

the designer to apply the principle of parallel, loosely coupled

processes. The last point to mention is that the formalism of aug-

mented ®nite state machines is not really essential to the subsump-

tion architecture. Many robot designers who in principle adhere to

the subsumption architecture, employ general purpose program-

ming modules instead (typically in a language like C). The latter

has the additional advantage that subsumption-like architectures

can easily be augmented with neural networks.

Evolutionary algorithms

Evolutionary algorithms, which we discussed in chapter 8, are very

popular formalisms in the ®eld of embodied cognitive science and

arti®cial life. As pointed it out in the introduction, the design

decisions that have to be made when applying evolutionary algo-

rithms are different from the ones made in the other formalisms.

Still, they can be used to design, or rather to evolve, control archi-

tectures. Some of the dif®cult design decision in this case are: What

information should be encoded in the genome and how should it be

represented? What is the ®tness function to be applied to the agent?

Further design challenges (evolving physical robots, simulation vs.

hardware, coevolution of morphology and control architecture, and

so forth) are discussed in chapter 8.

Differential equations

Differential equations are universal mathematical tools used in all

sciences. Whenever temporal evolution is primary, differential
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equations are well suited for the task. Any dynamical system, an

(arti®cial) neural network, or a physical system can be described by

a set of differential (or difference) equations. We encountered these

equations in chapter 9 when discussing the dynamical systems

approach. We pointed out in that chapter the temptation offered

by metaphors such as attractors, chaos, fractality, and sensitivity to

initial conditions. Nevertheless, this formalism has not been widely

employed in the autonomous agents community, one main reason

being that it is a descriptive rather than a synthetic tool. Also, the

concrete description of complex systems like robots in this formal-

ism turns out to be highly involved. One of the few attempts to use

this tool to actually synthesize behavior was made by Steinhage

and SchoÈner (1997; see chapter 9).

Immune system formalisms

Immune system formalisms are highly promising, especially be-

cause of their ability to evolve novel behaviors. Thus in the con-

text of generating diversity, they are certainly tools to be taken

into account. Moreover, because they are entirely distributed, they

can be implemented on parallel architectures. But potential users

should beware of their heavy computational cost. To date, immune

system approaches have become fairly prominent in arti®cial life,

but they have not been widely used in the embodied cognitive

science community. An exception is the work of Ishiguro and his

colleagues, which we discussed in chapter 11.

Q-Learning

Q-learning has become very popular in recent years in the machine

learning community because of its mathematically clean represen-

tation and its optimality properties. The goal of Q-learning was to

make reinforcement learning more ef®cient. It was not intended to

provide a model of learning in natural systems, which is why it is

not widely applied in the cognitive science community in spite of

its mathematical rigor. Moreover, although there have been certain

attempts to do so, it has not been extensively used on real robots.

For a detailed discussion of this issue, see Mataric 1995.

Classi®er systems

The last formalism that we want to discuss is classi®er systems,

which have been around for a long time and have been used both in

classical arti®cial intelligence (e.g., Holland et al. 1986), and in the

®eld of autonomous agents (e.g., Colombetti and Dorigo 1993).

Classi®er systems are attractive because they combine evolution
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and learning and because they are highly distributed. Interestingly,

they are nevertheless only used by a relatively small group of

researchers, presumably because similar results can be achieved

with a combination of evolutionary algorithms and neural net-

works. And the latter two are, at least at present, the clear leaders in

the ®eld. We do not discuss classi®er systems any further here,

other than to note that a simpli®ed version of classi®er systems can

be shown to be equivalent to Q-learning.

We have not given a very comprehensive answer here to the ques-

tion of how to go about choosing a formalism. We have merely

presented a review of some common existing formalisms and raised

some issues you might consider when choosing a formalism. As

with architectures, what speci®c choice you make is not essential

as long as you observe the design principles. And last but not least:

Let's be honest. What formalism will a psychologist or biologist

choose? Presumably one in which expertise is available in his lab

or his surroundings, and one that is already used and enjoys a cer-

tain popularity. He might even take into account what formalisms

look good to a funding agency. Again, this is not quite a scienti®c

perspective, but reality in design. This observation connects to

some of the points made in general about the rather chaotic nature

of design.

16.4 Summary and a Fundamental Issue

We have shown in a rather practical way how the design principles

of autonomous agents in fact exert a direct in¯uence on the design

of agents. Thus, the design principles not only are general overall

standards or beliefs, but also provide guidance for design. Although

they do offer guidance, they are not precise step-by-step recipes.

Trying to devise such recipes is neither desirable nor possible: We

do not want merely to build something that works for a particular

purpose. We want to build agents to explore issues in the study of

intelligence. This requires innovation and ingenuity, not rigid pre-

scriptions and top-down methods.

One of the crucial questions in agent design is the choice of task

environment. The successÐwhether you gain interesting insights

Ðcrucially depends on a good choice of task environment. Here,

the principle of ecological balance is particularly relevant. For

example, it helps us avoid studying tasks that are too computa-
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tional or tasks that are beyond the current technology (with respect

to sensory-motor complexity; neural complexity is, given today's

microprocessor technology, not a problem). The appropriate be-

havioral context is also central (complete-agent principle and three

constituents principle, see chapter 10).

The space of possible designs, or to put it more bluntly, the num-

ber of possible agents is obviously unlimited. Even if the purpose

of a product to be designed is precisely given, such as in the case

of a paper clip, an enormous number of considerations still go into

its design, as Petroski (1996) has shown us very convincingly.

Except for those designed for speci®c applications, the exact

purpose of an autonomous agent is in general not given beforehand.

Thus, the number of considerations and possibilities is even larger.

Then, the complexity is considerable, given that there are sensors,

motor systems, power supply systems, computers, communication

lines, and so forth. In other words, there is absolutely no hope that

we can ever achieve a neat top-down methodology for designing

autonomous agents.

Actually building a robot draws attention to the enormous com-

plexity of behaving systems. It also shows us very clearly all the

assumptions we are making, all the processes that we are leaving

out when we focus only on internal ``high-level'' processing, as in

the cognitivistic paradigm. So, a psychologist, a neurobiologist, or

an ethologist who never wants to build actual robots may have

been surprised at all that is required to build a complete robot. And

one can imagine that even more is involved in natural systems with

their higher degree of sophistication.

We have argued throughout this book that building agents leads

to important insights. But a fundamental problem remains. All our

robots have used some kind of digital microprocessors. The signals

from the sensors are converted to digital signals, to data; they are

transmitted across a data bus to a processor. The data are pro-

cessed, a motor signal is calculated, transmitted across a bus, and

converted to a voltage that can be applied to control the motor

system. If we look at natural systems, matters seem to work very

differently. There are no data buses, and brains don't simply run

programs. So ultimately, we may want robots functioning on a dif-

ferent, more natural principle, a principle that does not rely on

processors and programs.

A ®rst step in this direction has been made in the ®eld of neuro-

morphic engineering, that is, the designing and building of chips
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that mimic certain brain structures. Carver Mead and his colleagues

(e.g., Mahowald and Mead 1991; Mead 1989) at the California

Institute of Technology in Pasadena, California, initiated the ®eld.

The technology used is analog VLSI. In contrast to digital circuits,

analog circuits directly exploit physical processes, rather than

transforming the physical process into a ``digital'' one. They also

consume orders of magnitude less energy than digital circuits.

The most prominent piece of neuromorphic engineering devel-

oped so far is the arti®cial retina (e.g., Douglas, Mahowald, and

Mead 1995; Mahowald and Mead 1991), an example of which is

shown in ®gure 16.4a. Retinas, in contrast to standard sensors

(such as standard cameras), perform a great deal of processing at

the periphery. This is an especially important consideration when

fast real-time response is required. Some features can be extracted

directly by the retina at the very periphery. Examples are detectors

for direction, edges, or motion. Retinas are extremely useful, and

natural systems are almost universally equipped with some kind of

a

b c

Figure 16.4 Neuromorphic engineering. (a) The basic functionality of a retina chip, represented
schematically. (b) A sensory-motor chip. (c) The robot Morpho, equipped with the
sensory-motor chip. The retina chip was developed by Carver Mead and Misha Ma-
howald at the California Institute of Technology, the sensory-motor chip and Morpho
by Marinus Maris at the University of Zurich.
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retina. Recall that the principle of sensory-motor coordination tells

us that we should not focus exclusively on the sensory or the input

side, but rather include sensory-motor processes in our consider-

ation. For this reason, some researchers have started to build

neuromorphic sensory-motor chips, which contain not only light-

sensitive cells and feature extraction mechanisms, but also the

necessary circuitry to generate a motor signal. Figure 16.4b shows

a sensory-motor chip designed by Marinus Maris and Misha

Mahowald at the University of Zurich in Switzerland. Such a chip,

this one speci®cally for line following, was tested on a robot called

Morpho, which is shown in ®gure 16.4c. As always, there are trade-

offs. Morpho demonstrates the in-principle feasibility of having

direct sensory-motor loops without an intervening digital pro-

cessor, an idea with great potential, and one that is highly appeal-

ing if we are interested in studying natural systems. However,

analog VLSI chips have so far been developed only for relatively

simple tasks. Analog VLSI is also very hard to design, and once it is

built, it cannot be changed. It therefore lacks ¯exibility, and ¯exi-

bility accounts for the success of today's information technology.

Thus unless neuromorphic engineering happens to be your re-

search area, you are better off, given today's technology, with the

more traditional microprocessor solution. But we should closely

watch the developments in neuromorphic engineering.

Issues to Think About

Issue 16.1: Making Design Considerations Explicit

Choose a problem from your own research environment that you

have been working on recently. Now look at it from the perspective

of what we have said in this chapter. As you will immediately rec-

ognize, there are many design issues involved. This is of course

true if you have been working with autonomous agents already. But

it is also the case if you are, for example, designing psychological

experiments. Try to make all the design decision explicit. We sus-

pect that you will be surprised ®rst at how many decisions were

actually involved and second at how many assumptions you have

made. Moreover, your examination will reveal that design is nei-

ther step by step nor top-down: It is very chaotic. But the result is

well-structured.
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Issue 16.2: Simulation and Real Robots

Take again a problem from your own research. If you are a psy-

chologist, for example, this might be related to category learning or

if you are a biologist to ant navigation. Imagine that you are going to

investigate certain issues using the autonomous agents approach.

Think of how you would go about designing a simulation study.

What would the design considerations be? What would they be if

you were to employ a real robot for this problem?

Points to Remember
1 Design can be formally de®ned as the creation of synthesized solu-

tions in the form of products, processes, or systems that satisfy

perceived needs through the mapping between the functional

requirements (what the product is for) in the functional domain

and the design parameters in the physical domain (how the product

is realized).
1 If design is performed by means of arti®cial evolution, the designer

commitments have to be made at a different level. Two essential

design decisions concern the encoding in the genome and the ®t-

ness function.
1 Design is a highly complex process that involves considerations

that go way beyond the technical problems involved. They include

safety, social, cultural, environmental, esthetic, psychological,

market, corporate policy, practicality, and legal considerations.

Thus, the design process can be formalized only for restricted,

well-de®ned domains, examples of which are shapes of mechanical

parts and logic circuits.
1 It is good engineering practice to modularize functions. Although

modularization is present to some extent natural systems, a great

deal of resource sharing also occurs. If we are interested in under-

standing natural intelligence, we have to consider the potential for

resource sharing.
1 As we have argued throughout the book, we should design for

emergence. We have to answer the following general design ques-

tion: Given the functional requirements, the task environment in

the case of an agent, how should the agent be designed? Although

there is currently no general methodology for design, it is in many

cases clear how to proceed. If we had such a methodology, building

agents would no longer be of scienti®c interest: We could simply

build them.
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1 Research questions always have to be translated into task environ-

ments. The choice of the task environment strongly in¯uences the

low-level design speci®cations for the agent and the platform (robot

hardware or simulation) to be used. The task environment is in turn

in¯uenced by considerations concerning evaluation, that is, how

the agent will be evaluated later on.
1 The choice of platform not only depends on the low-level speci®-

cations for the agent but also on considerations about available

skills and other resources, costs, ergonomics, and perhaps even

esthetic and political concerns. Such considerations may in turn

force you to change your task environment and the experiments

you had in mind.
1 Not only are the design principles we have articulated general

guidelines, but they also have a direct in¯uence on choice of sensor

and motor systems. When choosing sensors, one has to think about

the motor system and evaluation, since these last two may require

additional sensors.
1 The main types of locomotion on solid ground are driving

(wheeled) and walking (legged). Legged locomotion is hard to

design properly and still subject to basic research. Wheeled loco-

motion is much easier to achieve. Unless walking is your research

area, you are normally better off using a wheeled agent, always

assuming, of course, that you can justify that what you are inves-

tigating does not crucially depend on the kind of locomotion.
1 Object manipulation is also the subject of current research, espe-

cially in embodied cognitive science. The ideal complex manipu-

lators for many of our experiments are currently only available

in research labs. Although complex manipulators are desirable

to comply with the principle of sensory-motor coordination and

ecological balance, even a simple manipulator is helpful: It changes

the design focus from sensor-processing to sensory-motor processes.
1 Simulation has an advantage over physical agents in that the

hardware-related issues of developing an agent can largely be

neglected, and all that is needed is a computer to conduct experi-

ments. The trade-off, that is, the disadvantage, is that it is hard to

simulate the dynamics of systems with many degrees of freedom

realistically.
1 The crucial point in choosing an architecture is compliance with

the principle of parallel, loosely coupled processes.
1 Although formalisms are in principle ``neutral,'' the choice of one

in¯uences the kind of system built. Formalisms ``suggest'' particu-

lar ways of proceeding.
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1 Studying design of autonomous agents directs our attention to

the potential complexity of behaving systems and the kinds of

abstractions we are making when we simulate only internal, high-

level processing (as in the cognitivistic paradigm).
1 Neuromorphic engineering proceeds by reproducing functions of

the nervous system in analog VLSI. This technology leads to more

natural designs that eliminate data buses and digital processors.
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17 Evaluation

In this chapter, we address the problem of evaluation. What do we

exactly mean by evaluation? When we read papers in the ®eld of

autonomous agents, we often encounter phrases like ``it works.''

Although this kind of ``gestalt'' assessment is certainly valuable

and an important part of the research process, it is, scienti®cally

speaking, not quite appropriate. It constitutes a kind of evaluation,

but it is not what we are looking for. In contrast to many other

scienti®c ®elds, such as experimental psychology or biology,

there is no generally accepted way to evaluate work in cognitive

science. We speculate on the underlying reasons for this situation

below. How, then, should an agent's behavior be assessed? How

can we tell a good design from a bad one? This chapter addresses

that question.

In the last chapter, we saw that some of the major decisions to

be made in agent design involve the agent's desired behaviors, its

low-level speci®cations, and the platform on which it will operate.

In our discussion, we pointed out that issues of evaluation show up

as early as the beginning of the design process, when we have to

specify the desired behaviors our agents should exhibit. Evaluation

is closely related to the problem of running agent experiments: For

these experiments to be useful, we have to know how we want to

evaluate an agent's behavior. Evaluation considerations strongly

in¯uence how we set up our experiments and the particular experi-

mental factors we want to manipulate. Because of this close rela-

tionship between evaluation and agent experiments, this chapter

includes a discussion of issues involved in robot experiments.

Evaluation is always conducted with respect to something. There

is no ``absolute'' evaluation; it depends very much on the goals we

have in mind. We have pointed out that we can pursue three basic

goals with the autonomous agents approach:

1. building a robot for a particular task or a set of tasks

2. studying general principles of intelligence

3. modeling certain aspects of natural systems, that is, humans or

animals



In our discussion here, we focus on (2) and (3), because these are

the main goals we are pursuing in embodied cognitive science.

We proceed as follows. First, we discuss general considerations

in the evaluation of autonomous agents. We then summarize the

main characteristics of agent experiments. Next, we examine issues

involved in measuring behavior, followed by a look at some addi-

tional considerations in the evaluation of agents.

17.1 The Basics of Agent Evaluation

Typically, the autonomous agents that we develop are complex

artifacts, and we can expect that their evaluation criteria depend

on the goals we have when building them. Even though the goals

pursued cannot always be neatly identi®ed and are often mixed,

the discussion is structured with respect to the goals of modeling

natural systems and using agents to explore general principles of

intelligence. The most important criteria for agent evaluation are:

1. Task performance

2. Comparison with natural agents

3. Compliance with design principles

4. Heuristic value

5. Cost-bene®t as compared to other approaches

Depending on the particular goals, these criteria are more or less

relevant. For example, when developing an agent for a particular

task, say garbage collection, we are not interested in whether it

mimics a human or an ant. We are interested in its performance

on the task: It should do the task better than humans or other

machines; it should be cheap, reliable, ecological (in terms of

pollution, noise, etc.). Also, compliance with the design principles

of autonomous agents is not an issue in this case, whereas when

exploring general principles of intelligence or modeling a natural

agent, compliance with these principles is crucial. We will take

these criteria into account as required in our discussion.

Before we start, a short note is necessary. In this chapter we fre-

quently make reference to the SMC agents introduced in chapter

12. For the purposes of this chapter, it is not necessary to be famil-

iar with the details. We brie¯y summarize the essential points here.

The SMC agents (for sensory-motor coordination) are based on the

generic architecture introduced in chapter 5: they have a ring of IR

sensors and a gripper for picking up objects. Their task is to learn
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the distinction between small and large cylinders. Large objects are

too heavy to be picked up, only small ones can be lifted. Every time

the SMC agent successfully picks up an object, its behavior is rein-

forced by means of a value signal. It identi®es the objects (small

or large) by circling around the objects. Initially, it tries to pick up

all objects (small and large). Over time, because picking up is

successful only for small objects, it learns to ignore the large ones.

Moreover, the circling time, the time to identify the type of object,

is signi®cantly reduced.

Agent Models of Natural Systems: Synthetic Modeling

CHARACTERIZATION

In previous chapters, we have encountered various examples of

how autonomous agents can be used for synthetic modeling, that is,

for building models of natural agents. We have discussed, among

others, Barbara Webb's robot cricket (chapters 1 and 4), Rodney

Brooks's Cog robot (chapter 7), Randy Beer's simulated insect

(chapters 8 and 9), Demetri Terzopoulos's arti®cial ®sh (chapters 4

and 8), and the Sahabot robot (chapters 4 and 16). In this section,

we distill the main characteristics underlying these projects. First

and foremost, all are models of natural agents. Models play a fun-

damental role in science. There is hardly any science that doesn't

use models. Models can be formulated in a number of ways, from

verbal descriptions to mathematical formalisms. Here we focus on

models that have been implemented in an autonomous agent, that

is, in a mobile robot. There are some similarities, but also impor-

tant differences, between agent-based models and more traditional

models (e.g., connectionist models) implemented in a computer.

Let us ®rst look at some characteristics of models in general.

In essence, models are a particular way of describing, predicting,

and explaining behavior, of capturing the essential features of the

behavior of interest in a compact way. Models are not just simpli-

®cations: They assert that certain aspects are important and others

are not. For example, the Sahabot robotÐa model of the navigation

behavior of the desert ant Cataglyphis that we discussed in chap-

ters 4 and 16Ðimplicitly assumes that legs are not crucial to cap-

ture the essence of the ant's navigational system: It uses wheels to

navigate. In the last chapter, we discussed in some detail why and

how such decisions are made. In particular, we saw that both
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scienti®c and pragmatic considerations enter the decision pro-

cess. The important point to be noted here is that a model always

abstracts from the system it models, otherwise it would not be a

model, but rather an exact duplicate.

Implementing a model in a computer program has several im-

portant advantages over natural language or ¯owchart models. The

key advantages are

1. the precision of the model,

2. the claritiy of the underlying assumptions,

3. the ease of judging the model's internal validity, and

4. the relatively unambiguous communication among scientists using

the same formal language.

(For a more complete overview, see Taber and Timpone 1996.) The

last point holds particularly for agent models: Autonomous agents

are, as we hope we have shown in this book, a cognitive vehicle for

discussing a large number of concepts concisely and precisely. For

example, we can look at the behavior of a Braitenberg vehicle that

seems to be attracted to light sources. It looks as though the vehicle

``likes'' light. Would you call this behavior ``emotional''? If so,

why? If not, why not? We can look at certain behavioral patterns or

at internal states and reason about their relation to what we would

call attraction. We can speculate about the minimum requirements

such a vehicle must have for us to attribute emotions to it.

We said above that models play a fundamental role in science. In

chapter 4, we contrasted classical, computer-based models with

agent models. The core difference between these two approaches,

we argued, is that in contrast to agent simulations, a computer-based

model has no interaction with its environment. For example, it

lacks embodiment and situatedness, autonomy and self-suf®ciency.

Agent models can be thought of as extensions of such computer-

based models. Currently the most popular computer-based model-

ing approach in traditional cognitive science is connectionism. We

have presented several instantiations throughout the book, in par-

ticular, in chapters 5 and 12. Connectionist models have been

formulated for a large number of cognitive phenomena, from pat-

tern recognition to memory. (See, e.g., Quinlan 1991 for a review.)

These models are important in that they specify mechanisms

underlying these cognitive phenomena. From an embodied cogni-

tive science perspective, it is important that they are embedded in

an agent by connecting their input to sensors and their output to
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the motor system: In other words, they have to have an interface to

the world which is provided by embodiment. We have shown that

embodiment can be exploited in several ways to reduce the com-

plexity of internal processing.

Agent models do have a potential drawback, however. In contrast

to more traditional modeling tools such as mathematical formal-

isms or connectionist models, agent models typically require a

full speci®cation of all the model's parts. For example, we have

to decide which type of sensor and motor component to use,

even when the model's focus is on something entirely different,

say mechanisms of leg coordination. We cannot abstract from the

sensory-motor interface. Suppose you want to model how infants

perform a sorting task. In an agent model of sorting, we would have

to specify the visual processes, the neural mechanisms, and the

reaching behavior involved. We would have to decide which type

of sensor to use, its resolution, how many degrees of freedom the

arm should have, and so forth. But what from among all this is

relevant for the observed regularities? What if the model does not

produce the desired behavior: Which parts should we change?

Consider an alternative model based on a simulated robot model. In

a simulation, we can neglect certain aspects that we have to con-

sider when using a real robot. For example, we can simplify the

input to the model by using abstract representations of the objects

to be sorted, rather than the input from a camera. The problem with

the latter approach, however, is that it easily biases thinking: In

more abstract models, we tend to neglect the in¯uence of embodi-

ment. An example is the neglect of realistic amounts of noise. One

of the main results of the Sahabot project was a new interpretation

of how the neurons in the ant's brain exploit sensory signals for

navigation. Previous models had only been employed in simula-

tions. Their input consisted of signals generated by a mathematical

function that the designer had chosen to mimic the real sensory

input. When running experiments with the robot in the ant's actual

habitat, the Tunisian desert, it became clear that the signals from

the real sensors were not suf®cient to control the robot with the

required precision using for the mechanisms previously proposed.

Upon inspection of these sensory data it further became clear that a

different mechanism, based on additional neurons that had so far

not been considered to be relevant, had to be at work in the ant.

This was referred to as the ``triple-unit solution.'' The authors point

out that ``if there had been smooth signals available, like those
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obtained in computer simulations, we would probably not have

considered a possible triple-unit solution'' (Lambrinos et al. 1997).

The Sahabot project highlights another important advantage of

agent models: We can, in principle, test such models in the same

environment or experimental setup as the natural agent. This

ability is not restricted to insect modeling. For example, we can

envision robot models in the psychophysical domain, for example,

models of perceptual or attentional processes, that can be tested

with the same stimuli presented to the human subjects. (Egner and

Scheier 1997 offers an example.) This also simpli®es the evaluation

of these models, because in addition to the two having the same

experimental setup, the same or similar methods can be used to

evaluate the model and the natural system. Let us pursue the issue

of evaluating agent models a bit further.

EVALUATION

The core question in evaluation is how to tell a good agent model

from a bad one. It is generally believed that the most important

goal for any scienti®c statement is that it be true. In practice, this

means that we have to assess the correctness or accuracy of our

models. The following dimensions of accuracy are usually con-

sidered in making such assessments: outcome validity, process

validity, internal validity, and reliability (e.g., Taber and Timpone

1996). Let us start with reliability. In essence, reliability means con-

sistency over multiple runs of the model that is, if we run several

experiments, the model produces the same or similar behavior each

time. Reliability has to be assessed whenever a model is not deter-

ministic that is when different runs of the experiment do not lead to

exactly the same behavior, as is the case in agent models: Autono-

mous agents interact with the real world, which has its own dy-

namics; their sensors and actuators are subject to a considerable

amount of noise, and most fundamentally, their behavior is emer-

gent from their interaction with the world. These aspects of agent

models are the main reason why we have to run systematic experi-

ments to evaluate them. We return to these issues in the section on

robot experiments below.

A model is internally valid if it faithfully represents the theory

from which it has been derived. Internal validity relates to a

model's intrinsic quality. In embodied cognitive science, the most

important way of assessing a model's intrinsic quality is to compare

it to the design principles from chapter 10, in particular those con-
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cerned with morphology, architecture, and mechanisms. Another

aspect of internal validity is the consistency of the modelÐit

should not contain logical errors and contradictions.

One example is the requirement, derived from the design princi-

ples, that the agent be cheap. It is not easy to de®ne clearly what

cheap means; we made some effort to clarify the term in chapter

13. In modeling jargon, the term ``parsimonious'' is used: Cheap

designs are more ``parsimonious'' than others. We related this idea

to Occam's razor, a generally accepted principle in the philosophy

of science. Occam's razor is generally accepted in spite of the fact

that parsimony cannot be directly quanti®ed. Another example of a

design principle that can be used to assess a robot model's internal

validity is the following: We would say that we prefer designs

based on value systems, self-organization, and learning to those in

which everything is preprogrammed (design principle 3 in chapter

10). We would say this even though in terms of performance, a

robot without learning mechanisms might be just as good or even

better. We consider agents that embody these design principles to

have good designs because we believe, as we stated in chapter 10,

that designs based on these principles lead to behaviors we call

intelligent. However, this line of argument has a whopper of a

problem: It is circular. We have simultaneously argued that designs

based on our principles are good because they lead to intelligent

behavior by agents and that such agents demonstrate intelligent

behavior because our design principles are good. If we apply these

design principles to build agents, obviously they will incorporate

these principles. Most models, however, do not incorporate all the

principles at once. The design principles help to identify those

parts of the model that, from an embodied cognitive science per-

spective, are compatible with our assumptions concerning intelli-

gent behavior. Models that violate a signi®cant number of the

design principles, for example, models that employ supervised

rather than nonsupervised learning methods, that are based on

hierarchical processing or explicit representations of actions rather

than parallel, loosely coupled processes, can be said to be less

internally validÐfrom an embodied cognitive science perspective

Ðthan others that incorporate these principles.

Another method of assessing a model's internal validity (in par-

ticular its consistency is sensitivity analysis. When implementing a

model, the designer has to make speci®c choices: He has to choose

the parameter values, de®ne the number of neurons, initialize the
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weights at certain (often random) values, and so forth. In sensitivity

analysis, the values of the parameters or other model components

(e.g., number of neurons or connectivity in a neural network) are

systematically changed to see how the change affects the model's

behavior. A good model should be robust with respect to small

changes in its parameter values. If we are employing robotic agents,

sensitivity analysis is less readily performed, because now the

positions of the sensors and the properties of the motor system are

also subject to variation. This can make it time consuming to per-

form sensitivity analysis, but the folklore says that variation at the

hardware level is often the reason why robot models do not yield

the expected behavior. Thus, special attention must be given to

robustness with respect to variations at the hardware level.

After a model's internal validity has been established, we can

assess its process and outcome validity. Process validity denotes

the correspondence between a model's mechanisms and those of

the behavior of interest. It is very hard to test directly for process

validity; it can usually only be approximated. One approach is to

have experts in the ®eld judge the plausibility of the model's pro-

cesses. Do they seem reasonable to experts in the ®eld? Ideally, one

could use a Turing test (see chapter 1): If a model's performance

cannot be distinguished from that of the real system by indepen-

dent human evaluators, the model is considered process valid.

Further, something may already be known about the mechanisms

that generate the behavior in the real system. In the case of ant

navigation (see chapter 4), a lot of pertinent knowledge is actually

available (Wehner, Michel, and Antonsen 1996). Remember that

the ant uses polarization sensors to derive compass information.

We can use this as a constraint on our model by specifying that the

model, in some sense, should re¯ect this mechanism.

Finally, we can assess a model's outcome validity. Outcome

validity concerns the degree of correspondence between a model's

predictions and the behavior of the real agent. Ideally, the model

should not only account for data from experiments that have

already been conducted (from which its outcomes are in fact not

real predictions), but also predict how the system will behave in a

number of different conditions. The model's most interesting pre-

dictions concern situations in which the natural agent has not been

tested. This seems very natural and straightforward: When the

model's behavior is close enough to the real behavior, the model

is outcome valid. There is a problem, however: Many different
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models can predict the same kinds of behavior. This fact is also

known as Moore's Law (Moore 1956). It implies that pure behav-

ioral performance measures are not suf®cient for assessing the

quality of a model. A similar conclusion has been put forward by

Oreskes, Shrader-Frechette, and Belitz in their important paper on

how to evaluate models:

If we compare a result predicted by a model with observational

data and the comparison is unfavorable, then we know that some-

thing is wrong, and we may or may not be able to determine what it

is. Typically, we continue to work on the model until we achieve a

®t. But if a match between the model result and observational data

is obtained, then we have, ironically, a worse dilemma. More than

one model construction can produce the same output. This situa-

tion is referred to by philosophers as underdetermination. Model

results are always underdetermined by the available data. Two or

more constructions that produce the same results may be said to

be empirically equivalent. If two theories (or model realizations)

are empirically equivalent, then there is no way to choose between

them other than invoke extraevidential considerations like sym-

metry, simplicity, and elegance, or personal, political, or meta-

physical preference. (1994, p. 642)

The problem of undertermination is inherent in all modeling

efforts. Thus, as Oreskes and colleagues suggest, additional criteria

have to be applied. We have already mentioned some of the most

important ones: reliability, internal validity, cost-bene®t compared

to other modeling approaches, and compliance with design princi-

ples. Below we discuss another: the heuristic value of models; that

is, one important value of models is that they help generate new

ideas on the behavior and mechanisms of natural agents.

Studying General Principles of Intelligence

So far, we have been discussing the characteristics of agent-based

modeling. In cognitive science, and particularly in AI, one often

thinks of a model's behavior not only in terms of speci®c empirical

phenomena, but also as a phenomenon in its own right.

CHARACTERISTICS

We can study on autonomous agent's behavior without relating that

behavior to some particular empirical phenomenon, although, in
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general, we always try at least to relate its behavior to what is

known about related phenomena in the empirical sciences. For

example, the SMC agents presented in chapter 12 are not models

in the strict sense of the term; that is, they do not try to account

for a certain set of data from particular categorization experiments.

Rather, they capture our hypotheses about categorization in gen-

eral. We can study the SMC agents as psychologists study infants:

We can ask speci®c questions about their behavior, we can test

their performance on a number of tasks, we can test their limita-

tions by presenting them with dif®cult tasks, and so on. Such agents

are actually categorizing their world; they are not just modeling

categorization. The mechanisms we provide are the only means

these agents can use to perform their tasks. We are not interested,

however, in just any mechanism leading to categorization behavior.

Rather, we focus on those mechanisms that can also be observed in

natural agents. For example, we can look at the literature in devel-

opmental psychology and try to incoporate into our system those

aspects that have been shown to be crucial in infant categorization.

In some respects a real robot faces problems similar to those of an

infant: It is faced with a continuously changing stream of input

from a three-dimensional world that has its own dynamics. When

thinking about mechanisms by which the agent could confront this

task, we have often realized that our ideas turned out to be similar,

if not identical, to the principles discovered in, for example,

developmental psychology.

EVALUATION

How should we evaluate agents that model general principles of

intelligence? We have said that their main value is to illustrate a

way of thinking about and tackling a particular problem. In other

words, we mainly evaluate these agents by assessing their heuristic

value. Do they further our understanding of a particular problem?

Do they lead to new ways of thinking about a problem? Do they

inspire others to implement similar solutions? Do they inspire

psychologists or biologists to think differently about their data?

We judge the quality of designs, then, by estimating the insights

we have gained from implementing them. We hope we have

shown throughout the book that autonomous agents have enormous

potential in this respect. They make us ask questions that other

approaches have not addressed. A fundamental question that

emerged in the studies involving the SMC agents was how catego-
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ries are linked with actual behavior: How should we represent

sensory and motor processes so that they lead to categorization

behavior? Where are categories represented in such a system?

Where are the invariances that underlie these agents' categorization

behavior? Standard connectionist models do not have to address

these questions, because their output does not result in actual

behavior. Categories are represented in the output layer, and cate-

gorization terminates when a node is activated corresponding to

the category to which the input is known to belong. We could go on

for a long time with examples of questions that are unique to agent

implementations, but instead we stress again the impressive heu-

ristic value of autonomous agents for cognitive science research.

In addition to assessing the heuristic value of an agent imple-

mentation we have to consider the cost and bene®t compared to

those of other approaches, in particular simulations. Does it make

sense to use a real robot in our research, or can the same insights be

gained with a simulation? We addressed this question in chapter 4,

where we listed the advantages and disadvantages of using real and

simulated robots. We said, for example, that a problem in using

simulated robots is that many aspects of the real world are very

hard to simulate.

Consider, for example, the humanoid robot Cog. Imagine the

effort involved in building even a moderately realistic simulation of

this robot! We also argued, however, that despite these dif®culties,

simulations are important in various respects. Now that we have

seen additional examples of simulated agents, let us brie¯y pick up

again our discussion of chapter 4 weighing the advantages and

disadvantages of real versus simulated agents. Recall, for example,

the case studies of Beer (1996) and Nol® (1996) that we presented

in chapter 12, which showed that simulated evolutionary processes

can result in categorization mechanisms very similar to the ones we

have identi®ed in our experiments with real robots. Moreover, in

simulation we can test very rapidly a large number of different

morphologies and their in¯uence on the resulting categorization

behavior. When running experiments on real robots, on the other

hand, we are constrained by the available hardware. Since we are

interested in embodiment, it is of value to explore in simulation

how categorization behavior results when different shapes, for

example, of a rectangular, circular, or asymmetric shape, are used.

Moreover, we can freely position the sensors and motor compo-

nents on a simulated agent and explore how this affects the resulting
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sensory-motor coordination. All this does not, of course, diminish

the role of real robots in embodied cognitive science. As the type of

robots in which we are interested become more complex, it grows

progressively harder to write realistic simulators for them. In con-

clusion, whether one uses a real or a simulated robot to study

general principles of intelligence largely depends on the particular

research issues, and practical aspects such as the availablity of a

hardware platform.

Independent of the particular platform one chooses and the par-

ticular goal one pursues when building an agent, at some point one

has to actually run experiments. In what follows, we introduce

some important issues that have to be considered when performing

agent experiments.

17.2 Performing Agent Experiments

We have said that the type of evaluation one conducts depends

on the goal one pursues when building an agent. Irrespective of

whether one studies general principles of intelligence, formulates

a model of a natural agent, or designs an agent for a particular

application, certain general aspects of evaluation need to be taken

seriously. In particular, in all three approaches to agent design we

must run experiments with our agents to assess their value. This

section summarizes the main issues that emerge when performing

experiments with agents (simulated or physical). The ®rst issue

addressed is why we should run experiments in the ®rst place.

We then describe different types of experiments one can conduct.

Finally, we look more closely at the various ways behavior can be

measured.

Why Systematic Agent Experiments?

Looking at the literature in embodied cognitive science reveals that

for the most part, research papers focus on a particular approach or

implementation thereof but rarely present data from more than one

run, if at all. Papers that evaluate a particular agent architecture by

means of statistical analyses are the exception. This situation is not

speci®c to embodied cognitive science, of course. In his survey of

150 papers in the Proceedings of the Eighth National Conference on

Arti®cial Intelligence (1990), Cohen (1995) discovered that only 42

percent of the papers suggested a program had been run on more
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than one example; only 30 percent assessed performance in some

way; and just 21 percent formulated hypotheses or made predic-

tions. This situation is in sharp contrast to that in empirical sci-

ences such as biology and psychology, where most papers present

extensive statistical analyses in support of their hypotheses. What

is the underlying reason for this lack of evaluation in the synthetic

approaches? Consider Newell and Simon's perspective:

Each new program that is built is an experiment. It poses a ques-

tion on nature, and its behavior offers clues to an answer. Neither

machines nor programs are black boxes; they are artifacts that have

been designed, both hardware and software; and we can open them

up and look inside. We can relate their structure to their behavior

and draw many lessons from a single experiment. We don't have to

build 100 copies of, say, a theorem prover, to demonstrate statisti-

cally that it has not overcome the combinatorial explosion of

search in the way hoped for. Inspection of the program in the light

of a few runs reveals the ¯aw and lets us proceed to the next

attempt. (1976, p. 114).

To a large extent this point also holds for agent experiments: A

lot can be learned from a very few runs performed on a robot. If a

¯aw is detected (e.g., the robot keeps running into walls), there is

no need to carry out additional experiments with the same agent;

we know that something must be changed. However, in contrast to

classical AI, there is still a need to perform systematic experiments:

First, as has been stressed repeatedly throughout this book, behav-

ior cannot be reduced to internal mechanism. In other words, by

looking at the source code of even the simplest Braitenberg vehicle,

we cannot predict in a deterministic way how the system will

behave in different environmental situations. The implication is

that we have to resort to statistical methods to characterize an

agent's behavior, for a number of reasons: Realistic environments

have their own dynamics, making an agent's behavior a complex

function of the underlying mechanism, the current environmental

situation, and their coupling. Second, sensors and motor system are

always subject to noise. Third, as our models grow more compli-

cated, it becomes harder to predict how they will behave in a given

environment, in particular when learning is involved. Moreover, a

signi®cant number of parameters are typically involved, and we can

usually only guess how a particular parameter con®guration affects

an agent's behavior. For example, the choice of the learning and
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decay rates in a neural network-based architecture dramatically

affects the resulting perfomance, and most of these effects are not

fully predictable.

On the other hand, an agent's behavior must show some regu-

larities, otherwise the agent would be useless in the ®rst place.

Except in trivial cases, though, behavior cannot be characterized

deterministically, but rather has to be assessed in a probabilistic

way. Because of this nondeterministic nature of behavior, we have

to rely on statistical methods to measure an agent's performance on

a given task. An architecture must be tested by performing multiple

runs in a number of different environmental settings, parameter

con®gurations, and tasks, which implies that studying a synthetic

agent's behavior is similar to studying that of natural agents.

Therefore, we can and should take advantage of the sophisticated

methodological tools developed in the empirical sciences to mea-

sure behavior. Both natural and arti®cial agents share the important

property that their behavior can only be described probabilistically.

Accepting these similarities does not deny the differences between

empirical and synthetic studies, however. As we show below, in

contrast to what is possible in most studies in the empirical

sciences, we can simultaneously look at and record both the internal

dynamics of a synthetic agent (e.g., neural network activations,

evolution of weight patterns) and its behavior. In this way, autono-

mous agents offer an important advantage: They allow us to inves-

tigate the relationship between internal dynamics and external

behavior.

Once one accepts that behavior must be measured in systema-

tic ways, one can begin to ask how such measurements should

be made. What strategies should one adopt? What types of mea-

sures should be considered? How can these measures be assessed

statistically? In what follows, we look at each of these issues in

turn.

Types of Experiments

There are two broad classes of experiments: exploratory and con-

®rmatory. The term ``exploratory'' is used in two rather different

ways. In the autonomous agent context, the term is often used

informally to designate the rapid development and testing of

agents. In statistics, it has a technical meaning that we elaborate on
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in this section. Cohen (1995) compares exploratory experiments to

a test kitchen and con®rmatory experiments to recipes in cook

books. Typically, one starts with exploratory experiments before

more precise questions can be addressed by means of con®rmatory

studies. The goal of exploratory studies, then, is to identify speci®c

features of the architecture (or model in general) by collecting,

visualizing, and analyzing large sets of data from different ex-

perimental conditions. Such studies typically analyze the resulting

data in a number of different ways to ®nd relevant invariances.

Exploratory data analysis does not simply consist of applying

statistical methods, but instead crucially involves conceptual work

that guides the quantitative analysis: What variables should be

considered? How should they be measured? At what level of reso-

lution? How should they be analyzed? These questions have no

general answers. Rather, one has to try out a number of different

measurements and different ways of looking at the data before sat-

isfactory results can be found. An important part of this process are

pilot experiments, which explore different parameter settings in an

informal way. Before actually collecting massive amounts of data

and investing a lot time in analyzing them, it is often useful to run

the system, sometimes in a simpli®ed version, a number of times to

get a feel for its behavior in different parameter settings and envi-

ronmental situations. This is a highly interactive process whereby

an agent is tested, re®ned, tested again, and so forth until a solution

is found that seems worth exploring and analyzing in more detail.

To be sure, even when such a solution has been found, the process

is not linear. Rather, one usually re®nes the architecture on the

¯y, incorporating new parts or throwing away parts that have

been found to be either wrong or super¯uous. We saw in chapter

16 that this iterative process is characteristic of agent design in

general.

Let us now look at con®rmatory studies, the kind of studies most

often conducted in the empirical sciences. We summarize only the

main ideas here. In contrast to the paucity of literature on explor-

atory experiments, a large number of textbooks exist on how to

perform con®rmatory experiments: what methods to choose, their

requirements and assumptions, and so on. Cohen (1995, chapters

4 and 5) offers a nice review of the most important techniques,

including more recent ones such as bootstrap methods, as well as

their applications to examples from (traditional) AI.

Evaluation 591



In essence, con®rmatory studies test precise hypotheses about

the effects of certain factors on speci®c results. Assume, for exam-

ple, that you have built two agents, A and B, that play soccer

against each other. Agent A wins ten and loses three out of ®fteen

games, the remaining two games being undecided. One statistic

that characterizes this situation is the sample proportion of games

A has won, p � :67. The fundamental question in statistical terms

is whether this result is representative for agent A's general capa-

bility to win over B, or whether this result has occurred by chance.

In other words, we want to know whether agent A is in general

a better soccer player than agent B. To answer this question de®-

nitely, we would have to have the two agent's play a very large

number of soccer games, which would be very time consuming. A

better way would be to estimate how well the result obtained in a

small number of experiments, 15 in the example above, approxi-

mates the ``true'' result, that is, the result obtained from a very large

number of experiments. Let us denote by the symbol T the ``true''

proportion of games A would win in a very large number of games.

We can now ask speci®c questions about the performance of our

agents based on our much smaller sample of games. For example,

we can test the hypothesis that one agent is a better soccer player

than the other as follows. First, we assume that they are actually

equally good, that is, that T equals .5: Both agents have the same

chance of winning. We have already run 15 experiments and

observed that the proportion of games A won was p � :67. We can

now assess the probability that this result occurs, given T � :5. If

this probability is very smallÐif it is very unlikely that A would

win two-thirds of the games against B if they are equal in soccer

abilityÐwe can reject our assumption that T � :5 and that the two

agents play soccer equally well. Much more could be said about

hypothesis testing (see any textbook in statistics, or consult Cohen

1995), but for our purposes it suf®ces to stress the point that only

by testing results statistically can we really judge the value of these

results. For example, assume that you read a paper describing

two soccer-playing agents and presenting as the main result the

observed proportion of games won by A, say p � :67. How could

you assess whether this result was due to chance or whether it

represented a signi®cant difference in the two agents' soccer-

playing capabilities? Without more information, you couldn't: The

result could have been obtained on the basis of as few as three

games, with one agent winning two out of the three.
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17.3 Measuring Behavior

We have now discussed various aspects that have to be considered

when running experiments with agents. There is one important

issue that we have not addressed: how to actually measure behavior.

Preliminaries

Measuring behavior is a nontrivial task. What constitutes behavior?

Which aspects should be measured to assess an architecture's or an

entire agent's quality? Consider again the Sahabot project. Should

the agent involved perform the full spectrum of navigation behav-

iors: leaving the nest, foraging, going back to the nest in a straight

line, using landmark navigation near the nest? Should we start with

one part only, say foraging? We have already touched on these

issues in chapter 16. There we asked how we should compare the

agent's behavior with that of the ant. For example, how should we

account for the potential differences in size? If we build an agent

to model certain aspects of a human infant's reaching behavior,

should the agent manipulate exactly the same types of objects as

the infant? Would that make sense, given that it has a very different

sensory-motor system than the human infant? Is it necessary to

actually reproduce psychological experiments, or can we generally

run category learning experiments on the robot and still say some-

thing relevant about humans?

These issues have no straightforward solution. Note, however,

that such considerations are already part of the research process.

The better we understand what the important factors are in the

behavior of the agent we want to study, the better we know what

parts of that behavior the agent model should reproduce and what

parts of the resulting behavior should be measured. For example,

if we knew that the type of object is irrelevant for the reaching

behavior in human infants, it would then be safe to assume that we

could choose any type of object in our agent experiments. A very

important advantage of building agent models is that we are forced

to ask such questions in the ®rst place. The questions we ask when

we are trying to build an agent model can themselves be valuable

for the experimentalists, because they are derived from a different,

synthetic perspective.

In sum, then, building an agent model and measuring its behav-

ior involve asking fundamental questions about the nature of the

task and agent being modeled. In the following discussion, we
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assume that these questions have somehow been answered and that

we are in a position to measure the behavior of a complete agent

built either to study aspects of a natural agent or to study general

principles of intelligence. The ®rst issue then becomes: What tools

can we use to measure behavior?

Tools

Measuring the behavior of an autonomous agent involves two

aspects, in rough terms: recording the trajectories of the agent, or

aspects thereof (e.g., heading directions, distance traveled, arm

movement), and recording the internal dynamics (e.g., process

activations, network activations, weight patterns, energy levels,

sensor activations, motor speeds, joint angles, forces on limbs). Let

us ®rst look at how trajectories can be recorded.

Recording the details of an agent's trajectories involves taking a

``bird's eye'' view of its behavior. A simple tracking system such as

the one illustrated in ®gure 17.1 can accomplish this. In this par-

ticular setup, which is by no means the best solution to the prob-

lem, a video camera is mounted on a stand or the ceiling and faces

down on the desk. The camera is focused on the agent's current

position. Two approaches for tracking the agent's trajectories can

be used. First, a camera with a wide-angle lens can be employed to

capture the entire environment. In that case, the robot is always

Figure 17.1 Robot movement tracking system using a wide-angle lens. A video camera is
mounted on a stand, facing down over the desk. The robot has to be marked to
facilitate its tracking.
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in the camera's ®eld of view. Second, an active vision system

(see chapter 12) can be used that follows the robot. From the

resulting gaze angles of the camera, the trajectory of the robot can

be reconstructed.

Making a tracking device operate reliably thus involves some

effort, but once the selected algorithms work, we have an excellent

opportunity of measuring all aspects of an agent's behavior. The

next step is to process the raw image data using a program that

extracts the agent's trajectory, that is, the sequence of (x; y) coor-

dinates, or in the case of ¯ying or underwater vehicles, the sequence

of (x; y ; z) coordinates. The resulting data can then be used to check

whether the robot indeed does what it is supposed to do. Figure

17.2c shows an example of such a trajectory.

Once the data have been recorded, they are open for any kind

of analysis. We discuss some of the more common types below.

In addition to behavioral data, we can and should record values of

internal variables. In principle, and this is an important difference

from empirical studies of natural agents, we can store every single

internal state of the robot, from motor speeds to activations in a

neural network. One important practical issue is that the recording

of the internal variables has to be synchronized with the trajectory

data. This involves marking the data with time stamps indicating at

what time step a particular portion of the trajectory and the corre-

sponding internal variables were recorded. Trajectories are usually

recorded by camera, as just described. Images of the camera are

``grabbed'' with a so-called frame grabber. Frames have to be

grabbed at a certain frequency, for example, 30 frames per second.

Two issues have to be considered with respect to this frequency.

First, it should be matched with the robot's speed. If the robot is

fast, we have to grab frames at a higher frequency. Some robots,

such as Khepera, move at a relatively low speed, in which case

lower frequencies suf®ce. We want to grab frames fast enough to

record all relevant changes in the robot's behavior, but we do not

want to do it too fast, because then we ``oversample'' the behavior,

resulting in unnecessary storage of identical frames. Second, a

problem arises when the agent's internal variables change more

frequently than we can sample images with the frame grabber. In

this case, we cannot really synchronize the internal variables

with a particular point in the robot's trajectory. The frequency

with which the frame grabber operates therefore constitutes an

upper bound for the temporal resolution at which we can compare
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internal data to behavioral data. In such cases, we usually inter-

polate the high-frequency variables between different frames. It

should be noted, however, that in most applications, in particular

those involving large neural networks, frames grabbed at a reason-

able frequency, say 30 frames per second, are suf®cient, because

the internal processing itself is time consuming. In general, the

trajectory-recording device has to be tuned so as to yield sensible

results, the main constraints being the speed of the internal pro-

cessing and the resulting behavior. Let us now look in more detail

at the issues involved in measuring behavior.

Measures of Behavior

Storing all possible data generated by the agent can lead to data ®les

of signi®cant size. We emphasized, in our discussion of the steps

involved in running agent experiments (table 4.5), that it is impor-

tant to formulate predictions (hypotheses) before the experiments

are run. Deciding what types of variables to record is like looking

at an agent's behavior through various lenses: Sometimes, we are

interested only in global variables such as distance traveled or

number of objects collected; at other times our focus might be more

on the underlying internal dynamics, in which case we can focus

on the particular weight patterns that have evolved in a neural

network or examine the time series of a network's activations.

Ideally, we should consider all aspects involved in explaining

the behavior being studied. Recall that there are three different time

a b c

Figure 17.2 Recording robot behavior: (a) raw camera picture; (b) trajectory with direction of
robot; (c) plain trajectory.
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perspectives that can be applied to explain a given behavior (see

chapter 4): short-term, ontogenetic, and phylogenetic. With respect

to measuring behavior, the implication is that the particular per-

spective we adopt and the speci®c variables we measure crucially

depend on our research goal, and on the particular theoretical

position we prefer. The following discussion is therefore meant

only to highlight the most common measures and by no means

provides a comprehensive list of possible measures of behavior.

The core question in assessing an agent's performance is whether

it works. Several aspects have to be addressed in answering this

question. For example, an agent might learn just about everything

in its environment, but it might take it days to do so, whereas

another agent might learn only certain speci®c aspects and con-

sume about half the time to solve its task. Which one should be

preferred? The more accurate one or the faster one? Again, there is

no straightforward answer, because it depends on one's aims with

the robot, not how one measures its performance. The most fre-

quent questions asked to assess the performance of an agent are

how fast, how accurate, and how ef®cient the agent is in solving its

task. The answers to these questions are only the ®rst step in a true

evaluation of an agent's behavior. The next steps, then, involve

correlating internal and sensory-motor states with behavioral data

(the trajectories) in order to generate explanations of the behavior.

This can be done in the short term, or over extended periods of

time, as required in learning experiments.

Recall that the latter involves relating the agent's actual behavior

to events that have happened in the past. Since the data about the

agent's past, internal and behavioral, have all been recorded, such

explanations can now be generated.

The simplest and most often used assessments of performance

are descriptive statistics. The most common examples are simple

visualization techniques such as frequency histograms (counting

how often a certain value occurred) and scatterplots (plotting sev-

eral variables against each other). Another approach, equally sim-

ple, is to compute the mean, standard deviation, and variance over

a number of experiments. For example, we can compute the mean

number of times an agent has reached a target location in, say, 50

runs of 3 minutes each. Or we can calculate an agent's mean cate-

gorization accuracy. Assume, for example, that we have established

a particular agent's mean accuracy to be 85 percent; that is, it cate-

gorized 85 percent of the objects it encountered correctly. We still
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cannot tell whether this result is better than one achieved by a dif-

ferent agent without applying the statistical inference process dis-

cussed above. Nevertheless, such descriptive statistics allow us to

assess the robustness or reliability of an agent's behavior provided

we compute, in addition to the mean, the standard deviation over

all runs. If the standard deviation is very large (e.g., as large as the

mean itself), we know that the robot behaved very differently in the

different runs. Thus, its behavior is not reliable in the statistical

sense.

Take our SMC I agent introduced in chapter 12. It had to learn

how to distinguish between objects of different sizes. To quantify

this learning process, we used the following performance mea-

sures: We measured the time the agent spent circling around the

different types of objects before engaging in the appropriate behav-

ior. Measurements were taken at the beginning of a trial and after

the agent had encountered 10 objects. Our hypothesis was that once

the categories were acquired, that is, the agent could distinguish

between small and large objects, the agent would need signi®cantly

less time to categorize the objects. To assess the reliability of the

agent's behavior, measures were taken over 50 runs. In essence, our

hypothesis was con®rmed: The number of steps the agent circled

around objects decreased after learning had taken place. But was

this decrease signi®cant in the statistical sense? More speci®cally,

were the two means signi®cantly different? Again, we can tell only

by applying statistical tests. Note that these results do not tell us

why the robot solved the problem. Rather, they indicate that its

behavior was robust; that is, the results were similar in the 50 runs

(indicated by the small standard deviations we calculated). More-

over, the results do not allow us to judge whether this particular

agent was better or worse than an agent with a different architec-

ture. To determine that, we would need to compare this particular

agent with other agents that solve the same problem, i.e., perform

an analysis similar to the one concerning the two (hypothetical)

soccer-playing robots discussed earlier.

Another important evaluation step is comparing a robot's behav-

ior to some external standard. In most agents used to study general

principles of intelligence, such external standard is not available.

In some cases, we have two different implementations to achieve

the same task which we can compare. In the case of agent models,

however, we can use the natural agent's behavior as an external

standard to which we can compare the robot's behavior. In other
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words, we can assess the agent's outcome validity. We have already

pointed out that this is particularly interesting in the context of

agent models because we can test the model and the natural agent

in the same environment, and in addition use the same methods

and tools to measure their behavior. This was done, for example, in

the Sahabot project and in Barbara Webb's experiments on cricket

phonotaxis that we discussed in chapter 4.

Finally, let us address some other ways to measuring an agent's

behavior. Given our focus on system-environment interaction, it

would be interesting to know something about the relation between

a robot's internal mechanisms and its behavior. Smithers (1995)

viewed the agent-environment system as a dynamical system in the

sense of the mathematical theory (see chapter 9). He suggested tak-

ing the amount of time (in milliseconds) the agent spent with motors

in forward mode (rather than in turn or reverse mode) as an ``inter-

action variable.'' Though it is an internal variable, it is a character-

istic of the interaction. If the environment offers no obstacles, this

variable is much larger than if it has a lot of obstacles and impasses,

forcing the motors to stop or to go into reverse mode. Although

potentially interesting, it is not obvious from Smithers' research

where this kind of analysis will go and what it actually tells us.

Although perhaps limited at the moment, Smithers' analysis

opens an interesting new direction for methods of evaluation. A

large number of methods are being developed in the dynamical

systems community (e.g., Scheier and Tschacher 1996). At least

some may well prove useful in investigating the dynamical struc-

ture of autonomous agents' behavior. Let us look at another exam-

ple in which dynamical systems theory is used in a different way

for evaluation, namely for a qualitative characterization of behav-

ior. In chapter 9, we discussed Beer's analysis of evolved leg con-

trollers. Beer suggested employing concepts like point attractors

and limit cycles to describe the behavior. The advantage of this

kind of qualitative assessment is that it does not rely on strong

assumptions and is based directly on the behavioral data. Its

disadvantage is that for reasons of visualization, we can work

with only a very few dimensions. Since problems are often of high

dimensionality, by looking only at a few dimensions, we may miss

important aspects of the dynamics.

One of the essential goals of any method of evaluation is to test

the limitations of a particular design. This can be accomplished by

systematically varying the environment, for example the density of
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obstacles or the size of the objects to be collected, then listing the

cases in which the desired behaviors are clearly present and when

they cease to be displayed. Although this kind of analysis is

important, it is limited to situations the agent has encountered in

the experiments. But there are ways in which certain predictions

can be made not only on the basis of the empirical evidence, but

also on the basis of theoretical re¯ection. Given a spherical object,

if the opening of the agent's gripper is smaller than the diameter of

the sphere, it is not able to grasp the sphere: We do not need to

conduct the experiment to determine this.

In conclusion, evaluation is not a simple matter in which a ®xed

scheme can be followed, but a complex task. It is hard, and it

requires a lot of creativity and thinking, as well as a combination of

quantitative and qualitative methods.

Issues to Think About

Issue 17.1: Total Turing Test

In chapter 1 we introduced the idea of the Turing test. Harnad

(1995), who elaborated the symbol-grounding problem that we dis-

cussed in chapter 3, suggested an extension of the Turing test for

autonomous agents. He suggests that an agent ``should be able to

discriminate, manipulate, categorize, name, describe and discourse

about the real-world objects, events, and state of affairs that its

symbols1 are about; it should be able to do so Turing indistin-

guishably from the way we do.'' (p. 280). Harnad called this test the

Total Turing Test, and he suggests it can be used to evaluate an

agent's intelligence. What do you think such a test would have to

look like? What precisely would an agent have to do to pass this

test? Is it a sensible test in the ®rst place?

Issue 17.2: Explanation of Behavior

We have discussed a considerable number of ways to evaluate an

agent's behavior. One of the important goals of the methods dis-

1Note that Harnad does not dismiss the idea of symbols, but rather suggests that they

should be grounded in an agent's interaction with the world. We have argued that the

symbol-grounding problem is really an artifact of symbolic systems and ``disappears'' if a

different approach is used.
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cussed is to improve the understanding of the behavior and ulti-

mately to explain it. For example, when we conduct sensitivity

analysis, we systematically explore in what ways the agent's be-

havior changes if we change a parameter, for example, the learning

rate of its neural network. Alternatively, we can systematically vary

the agent's ecological niche, for example, by varying the changes

and shapes of the objects an agent has to sort. More generally, sci-

entists conduct experiments to explain behavior. What would you

accept as a good explanation of behavior? What would it have to

include? And most fundamentally, what constitutes an explanation

of behavior in the ®rst place? Does it have to include the type of

evaluation suggested in this chapter or are additional ingredients

needed? If so, what are they?

Points to Remember
1 The most important criteria for agent evaluation are: Performance

on a task, comparison with natural agents, compliance with design

principles, heuristic value, and cost-bene®t as compared with other

approaches.
1 Models, agent or otherwise, are a certain way of describing, pre-

dicting, and explaining the behavior of a natural agent, of capturing

the essential features of the behavior of interest in a compact way.

Models are not just simpli®cations: They assert that certain aspects

are important and others are not.
1 Key advantages of computer program models over verbal descrip-

tions or ¯owchart models are (1) the model's precision, (2) the

clarity of its underlying assumptions, (3) the ease with which

the model's internal validity can be judged, and (4) the relatively

unambiguous communication it makes possible among scientists

using the same formal language.
1 The main difference between agent models and computer-based

models is that the latter have no means of interacting with the

environment because they lack embodiment. By contrast, in agent

models all parts have to be fully speci®ed, and abstractions are

harder to make than in computer-based models.
1 One aspect of a model's evaluation involves the assessment of its

accuracy. The most important dimensions of accuracy are outcome

validity, process validity, internal validity, and reliability. Outcome

validity refers to the correspondence between a model's behavior

(its outcome) and the behavior of the system it is intended to
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model. Process validity is established when a model's mechanism

corresponds to the real system's mechanism. Internal validity is

high if the model faithfully represents the theory from which it has

been derived. (This includes the internal, logical consistency of the

model). Reliability means consistency over multiple runs of the

model.
1 One fundamental problem in establishing a model's outcome

validity is underdetermination, that is, the fact that two or more

models can sometimes produce the same results. If the models are

empirically equivalent, then additional criteria such as parsimony,

reliability, internal validity, cost-bene®t ratio compared to other

approaches, and compliance with the design principles have to be

applied.
1 We evaluate agents designed to explore general principles of intel-

ligence mainly by assessing their heuristic value and cost-bene®t as

compared to other approaches. In addition, however, we have to

assess an agent's performance, that is, how well it can actually

perform its task.
1 Because of behavior's nondeterminism, we have to rely on statisti-

cal methods to measure an agent's performance in a given task,

implying that studying the behavior of a synthetic agent is similar

to studying that of natural agents. We can and should take advan-

tage of the sophisticated methods developed in the empirical

sciences to measure behavior.
1 There are exploratory and con®rmatory experiments. Exploratory

studies identify speci®c features of the model by collecting, visu-

alizing, and analyzing large sets of data from different experimental

conditions. An important part of this process is pilot experiments,

in which different parameter settings are explored in an informal

way. Con®rmatory studies test precise hypotheses about the effect

of certain factors on speci®c results.
1 Measuring the behavior of an autonomous agent involves two main

aspects: (1) recording the trajectories of the agent or aspects thereof

and (2) recording the internal dynamics. Recording the details of an

agent's trajectories involves taking a bird's-eye view of its behavior

by means of a tracking system. These data must be synchronized

with the data about internal dynamics.
1 The most frequent questions asked to assess the performance of an

agent are how fast, how accurate, and how ef®cient the agent is at

performing its task. The simplest and most often used assessments

of performance are descriptive statistics. The most common exam-
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ples are simple visualization techniques such as frequency histo-

grams and scatterplots.
1 An important evaluation step is to compare a robot's behavior to

some external standard. In the case of agent models, we can use the

natural agent's behavior when exploring general principles of in-

telligence, such a standard is normally not available.

Further Reading
Cohen, P. R. (1995). Empirical methods for arti®cial intelligence. Cambridge, MA: MIT
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Oreskes, N., Shrader-Frechette, K., and Belitz, K. (1994). Veri®cation, validation, and

con®rmation of numerical models in the earth sciences. Science, 263, 641±646.

(De®nition and critical review of various concepts in relation to evaluating the qual-

ity of models.)

Taber, C. S., and Timpone, R. J. (1996). Computational Modeling. Sage Thousand Oakes,

CA: Sage University Papers. (A review of the main issues involved in evaluating

computational models.)

Evaluation 603





VI Future Directions

Having covered a lot of rough and messy territory, having studied

many examples, approaches, principles, and theoretical concepts,

we attempt, in this last part of the book, to bring the large variety of

topics and issues together, to point the way toward future devel-

opments, and to examine how our view of intelligence has changed

since the beginning of the book. Initially, we outlined various

intuitive notions of intelligence, we gave a number of de®nitions,

and we characterized the commonalities of the various concepts.

The issue that we want to explore here is what we see differently

now, what questions we would ask in another way or what new

questions would we ask now, and what kinds of explanations

we are looking for now. Where do we feel that the most pressing

research topics are, and where are the most crucial technological

problems that must be resolved, so that progress can be made? For

example, we know that fast computer hardware is not the major

factor: Since we now know about the importance of embodiment,

other aspects are more important, like the development of afford-

able robots with sophisticated sensory-motor systems. The devel-

opment of applications is also a concern here. If we can in fact

build intelligent machines in the form of autonomous agents, we

should also be able to develop sophisticated applications, and in-

deed the potential for novel types of applications seems almost

unlimited. These kinds of applications may have a major impact on

society. But it is not only in applications where we see an impact.

We also feel that embodied cognitive science may change the way

we think not only about intelligence, but about human nature in

general. For this change in thinking to take place, these ideas need

to be spread, need to be made available to a wide audience.

Research directions, necessary theoretical and technological

developments, and applications of strategic importance are dis-

cussed in chapter 18. Chapter 19 outlines the ®rst steps toward a

theory of intelligence and the rami®cations of such a theory in so-

ciety, today and tomorrow.





18 Theory, Technology, and Applications

In this chapter we outline some research directions in which we

think the ®eld of embodied cognitive science should go. We also

discuss a number of applications and projects that suggest ways

autonomous agents might become part of our society. How the ®eld

will evolve largely depends on certain developments. First, exist-

ing limitations have to be overcome, and the hard problems in

the ®eld have to be addressed, including basic research involving

both theoretical and technological advances. If theoretical ad-

vances are to be made, the appropriate tools have to be available,

which necessitates technological progress. Second, the framework

and methodology of embodied cognitive science needs to be made

accessible to a broad audience. This again requires both theoretical

and technological advances. A number of books have recently been

or are currently being published that make the ®eld attainable to a

wide audience beyond the researchers actively involved in the

®eld. Examples include Franklin 1995; O' Nuallain 1995; Hendriks-

Jansen 1996; Arkin 1998; Brooks and Breazeal in press; and, of

course, this book. In terms of technology, ¯exible, cheap, and easy

to handle robot platforms are needed. By analogy to Bill Gates's

slogan ``computers for the masses,'' we think that ``agents for the

masses'' are required that enable a large number of people to work

with real robots to study principles of intelligence.

We begin with a discussion of some of the hard research prob-

lems that need to be resolved if the ®eld is to make signi®cant

progress. Then we consider the interaction between theory devel-

opment and technology. We then move on to describing applica-

tions that have great potential.

18.1 Hard Problems

Before we start, a disclaimer is in order. The following hard prob-

lems represent those that the authors consider, from a larger selec-

tion of hard problems, to be of general importance to the ®eld of

embodied cognitive science. Moreover, although we have tried to



make a coherent argument, the hard problems we discuss are at

various levels of abstraction, from the very detailed to the much

more abstract. We nevertheless hope that the following discussion

provides some inspiration for productive research topics. This sec-

tion contains material mostly of interest to active researchers and

may be skipped without losing the thread of the argument.

Embodied cognitive science capitalizes on building autonomous

agents as its main methodology. Throughout the book, but speci®-

cally in the previous chapter, we tried to sketch how agent experi-

ments can be conducted in productive and systematic ways. We

hope we have shown that the methodology is indeed productive

and powerful, but it needs to be further developed. For example,

how can neurobiologists use autonomous agents to explore brain

function in a behavior context? How can psychologists design new

types of synthetic experiments to complement existing empirical

research? What is needed to embed currently existing models into

autonomous agents? From a model-theoretic perspective, it will be

interesting to see how these models can be used to generate actual

behavior. Many models are suggestions of mechanisms for various

types of behaviors, but often they are tested only in simulated

worlds. Autonomous agents are the methodology for providing

these models with an interface to the real world. In addition, it

is necessary to develop appropriate metrics to compare such ex-

tended models to empirical data. Let us now turn to some hard

problems that emerged in our discussion of the design principles.

In our discussion of cheap designs in chapter 13 we mentioned

that often shapeÐmorphologyÐcan be traded for computation (or

neural processing): If the appropriate shapes are used (e.g., of an

eye), computation may be reduced by orders of magnitude. The

trade-off is less ¯exibility. In fact, there are two fundamental issues

here. First, there is a question as to when it makes sense in general

for an agent to embody more capabilities in the morphology and

when ¯exibility is required. Second, the morphology does not have

to be ®xed once and for all. Living beings can change their shape,

and depending on the shape, they can perform different functions.

A hand that is ®rst open and then closed can be used for grasping,

a ®st is good for hitting, or a slightly bent hand can be used for

typing. The question now becomes where to have rigid structure,

where to have changing shapes, and where ¯exibility at the neural

level is required. We can actively explore these issues in experi-

mental studies. For example, we can ask, given a particular task
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environment, what is the optimal mix of ®xed morphology, ¯exible

morphology, and ¯exible neural processing? But how would we

explore this? We would need a way to evolve entire agents, to

coevolve morphology and sensory, motor, and neural systems.

Currently, we have a good idea of how to evolve controllers for

existing agents, and we have some ideas on how to evolve shapes.

Karl Sims has demonstrated that entire agents can indeed be

evolved. In his experiments, Sims showed that morphology,

sensory-motor systems, and neural substrate can be coevolved.

However, his developmental processes were preprogrammed.

Developmental processes are also the focus of Eggenberger's model

of cell growth. A combination of both is needed: We need to be able

to grow shapes and neural substrate and to model cell differentia-

tion vis-aÁ-vis a particular task environment.

To achieve all this, we need to have a good understanding of

(arti®cial) evolution and ontogenetic development. If we had this we

could also investigate the information-theoretic issues in sensory-

motor coordination: Where do we have to position the sensors to

get interesting kinds of cross-modal association? Again, if the

agent's shape is not given, this question has an enormous number

of degrees of freedom. Studies of this nature would reveal a lot

about the question of ``ecological balance'' as well. One could

explore the relation of the complexity of the sensory, motor, and

neural system given a particular task environment.

In chapter 11, we saw that one of the hard problems when work-

ing with multiple, parallel processes concerns their coordination.

We called this the coordination problem. The two main coordi-

nation mechanisms proposed in the literature are competitive

and cooperative coordination. In the former, only one process is

allowed to write its outputs to the motors, while the other processes

are deactivated or inhibited. In the latter, the output of two or more

processes that involve the same effector are combined into a single

output that is then sent to the effector. The most popular coop-

erative coordination scheme is linear summation. We saw that

with this relatively simple mechanism, surprisingly sophisticated

behaviors can be generated. It is important, however, to go beyond

summation and devise more sophisticated means of cooperative

coordination. Of particular interest are approaches that include

learning. Currently, most coordination schemes are ®xed a priori.

In the subsumption approach, for example, the relations between

the different layers of competence are prewired; in the EBA
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approach, the designer de®nes the weights connecting the pro-

cesses to the motors. It would be desirable to have agents learn the

coordination themselves as they interact with their environment.

This would have to include value systems that incorporated certain

basic biases that the agent could exploit to learn the coordination.

Moreover, we have to better understand the role of the environment

in coordinating processes. We have pointed out that coordination

should not be seen as an internal problem only, but rather one that

crucially involves the environment. We currently have no system-

atic ways to exploit the environment for coordination, however.

Exploiting the environment for the coordination problem implies a

better understanding of ecological niches. In chapters 4 and 13, we

pointed out the need for a characterization of niches. Although

such a characterization is important and would be very helpful, it

has so far resisted explication. The main problem that we have

identi®ed is that such characterizations must be done not in isola-

tion but with respect to the agent's capabilities. Another issue along

this line concerns the de®nition of the basic processes. Again, in

most approaches the designer de®nes the basic processes needed to

achieve a desired behavior. It would be interesting, however, to

have agents learn the required processes themselves. To this end,

one could, for example, equip the agent with a largely unstructured

neural network and have it learn the processes needed to solve a

task by inducing structures in that network.

A more general issue concerns the relation between the agent's

behavior and the functional modules used in the traditional

approaches. We saw in chapter 11 that traditional approaches to

behavior control decompose behaviors into modules such as per-

ception, memory, planning, and action. Often, these modules

are arranged hierarchically. We contrasted this view with that of

parallel, loosely coupled processes. We need, however, a better

understanding of how the two approaches relate. In particular, it is

important to understand better what basic processes produce be-

havior that we would describe by resorting to functional modules.

Ultimately, we would like to show that the functional modules the

traditional approaches describe can emerge from the joint process-

ing of parallel processes. We made one such attempt in chapter 12:

The SMC agents learned categories without having an explicitly

represented categorization module. We saw that these agents

learned about objects by means of sensory-motor coordination,

rather than by mapping stimuli onto an internal representation of
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the categories. We stressed that categorization is a property of the

complete agent. The problem that has emerged is the identi®cation

of the invariances underlying categorization behavior. If we dis-

miss the idea of an internal categorization module and postulate

that categorization is instead an emergent phenomenon, we have

the hard problem of identifying where the invariances are located

that make the agent categorize its environment. We cannot simply

point to some internal representation such as an output node in a

back-propagation network. Of course, there are regularities: They

are to be found in the agent's behavior. For example, whenever the

SMC I agent encountered small objects, it consistently picked them

up while it avoided large objects. This raises two important issues:

First, where are the invariances underlying this consistent behav-

ior? Second, how can the behavioral regularities be exploited? Let

us start with the ®rst issue. Because there is no one-to-one mapping

of the behavioral regularity onto some internal module, we can

®nd the underlying invariances only if we take multiple levels

into account, including the weights, the activations of the neu-

ral networks, the morphology of the agent, its interaction with the

environment, and the structure of the particular niche in which

the agent is operating. Future work needs to address what the

important levels are and come up with characterizations of the

invariances.

Let us now turn to the second issue: The exploitation of behav-

ioral regularities. Patterns and regularities, though emergent, are

objectively measurable. Recall, for example, that we computed the

regularitiesÐthe correlations in the sensory dataÐgenerated by the

SMC I agent. These regularities can be potentially observed and

used by the agent itself. This, in fact, might form the basis on which

the agent could eventually develop a sense of ``self''1 that would be

grounded in physical interactions rather than an abstract entity

living in the agent's head. It would enable the agent to develop

knowledge about its own sensory-motor setup and its relations

to the world. Eventually, the agent might employ such a self to

increase its adaptivity. We should note, however, that such devel-

opments would have to be embedded in appropriate task en-

vironments. It makes sense for an agent to use the self-generated

regularities only if the task environment imposes a need to do so. It

might well turn out, for example, that such a need is only present

1We owe this idea to Yasuo Kuniyoshi of ETL in Tsukuba, Japan.
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in social environments, where the agent has to be able to commu-

nicate about his own needs or capabilities. These ideas are still

rather speculative, but we can easily envision their concrete expe-

rimental operationalizations. As soon as the agent generates emer-

gent regularities, and any truly intelligent agent should be able to

do so, we can start to think about how the agent can extract, learn

and use them in various ways. This is an exciting line of future re-

search that should eventually shed light on such important con-

cepts as ``self,'' empathy, and more generally, social intelligence.

One of the most frequently asked questions in this ¯edgling

®eld of embodied cognitive science is whether the approach will

eventually scale to human levels of intelligence. This question is

certainly justi®ed: We want to use the synthetic methodology to

understand human intelligence. Can we build robots that have the

complexity of humans? We suggest that a distinction should be

made here. Are we trying to understand human intelligence, or

are we trying to build an enormously complex robot, comparable

in complexity to a human? If the goal is the former, we have

shown that even the relatively simple agents we have used can be

employed to study issues in human intelligence (e.g., category

learning). In this case, we are talking about a model, whose purpose

is not so much to perform a task as to help us understand some-

thing else, that is, humans. So, the point is not so much one of

scale, but one of how to employ models in the scienti®c process.

Whenever we build models, we have to make abstractions and

simpli®cations. Extracting the essence of a phenomenon is what

models are for. And models are always to be seen in a theoretical

context. Building a model is not the only goal. We are just as much

interested in the theoretical understanding that informs the model-

building process. Let us now look at the other case, in which

building a highly complex robot is the issue. This is indeed the real

scaling issue. Concerning this issue, we feel that currently we have

not found any in-principle reasons why the approach should cease

to work at some level of complexity. But whether it will work

remains to be seen.

18.2 Theory and Technology

To investigate the problems we raised in the last section, progress

in theory as well as technology is needed. This section identi®es

some of the directions in which we think the ®eld should move.
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Basic Research

One obvious development to be expected concerns more complex

and more ¯exible robot platforms. Looking back on the agents

we have encountered in this book, we ®nd that the better part are

relatively simple in terms of their sensory-motor systems, in par-

ticular when compared to a robot like Cog or other humanoids (e.g.,

Kuniyoshi and Nagakubo 1997). Because of this simplicity, we

have been able to work out some of the fundamental principles of

agents. We deliberately decided to discuss simple agents ®rst to

develop a basic understanding of principles of intelligence. Now

that we have a deeper understanding, we can move on to more

complex task environments and agents. Before augmenting the

complexity of the agent, careful consideration should be given to

the question of how much additional complexity is really required

to investigate a particular issue. For many scienti®c questions, it

is neither necessary nor desirable to have the complexity of a

humanoid robot. Modeling human behavior, for example, does

not necessarily require a humanoid robot. Having said that, we

can now speculate on what is required to conduct more complex

experiments.

Let us look at an example. We have argued that category learning

crucially depends on the agent's being able to perform appropriate

kinds of sensory-motor coordinations, directly implying that the

complexity of the categories an agent can acquire depends on the

complexity of its sensory-motor apparatus. In other words, if we

want an agent's categories to evolve beyond simple objects such as

the wooden cylinders used in the SMC agent experiments, we need

more sophisticated sensors and more degrees of freedom in the

motor system. More speci®cally, we need to be able to integrate

the sensory systems ¯exibly with the motor systems. For example,

manipulators need to be equipped with skin sensors that can pro-

vide feedback from the object exploration process. This requires

both theoretical and technological advances. Theoretically, the

challenge is to apply the principle of parallel, loosely coupled

processes: We do not want to control a manipulator by means of

a complex, internal control policy but prefer instead solutions

that are largely peripheral. In the object exploration example, this

requires the control to be located largely in the hand itself. In terms

of technology, this indicates that manipulators need to be dextrous,

have some processing capacity (e.g., very small microcontrollers) at

the periphery, and be covered with skin sensors. If we take the
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current technology as a starting point, making such modi®cations

would increase signi®cantly their weight and size, which is obvi-

ously undesirable. It is not obvious that the current technology

with electrical motors is the way to proceed. For example, arti®cial

muscles may turn out to be necessary to achieve this level of per-

formance, like the McKibben pneumatic arti®cial muscles used in

systems that mimic characteristics of human arms (e.g., Chou and

Hannaford 1997). More generally, new materials may be required

alltogether. Given our focus on embodiment, it would be interest-

ing to experiment with such materials, particularly in combination

with new types of sensors. New types of bodies may well lead to

unexpected intelligent behavior. Having new kinds of materials

also signi®cantly changes the problem of how to control the limbs:

The inherent material properties like stiffness and sluggishness

may turn a very hard control problem into a much simpler one. The

passive dynamic walker illustrates how the control problem can be

simpli®ed by exploiting the physics; speci®c materials impose dif-

ferent constraints that can potentially be exploited. The study of

such properties and how they can be exploited to achieve sophis-

ticated behaviors is an essential research topic. Another research

area likely to play an important role along these lines is the rapidly

developing ®eld of nanotechnology. Within this ®eld, very small

sensors, processors, motor components, and energy supply systems

are developed (e.g., Drexler 1992; Ishihara, Arai, and Fukuda 1996).

Such small devices may enable us to build relatively complex

robots of very small size and weight.

In addition to increasing agents' complexity, we need to increase

that of the task environments. We can envisage two main lines

of developments. First, we can study more elaborate processes of

natural agents. For example, in the Sahabot project, ®rst the navi-

gation with polarized light was investigated. Later, the complexity

of the task environment was increased by adding landmark navi-

gation. The next step in the SMC agents project will be the study of

more realistic object exploration processes. There is no limitation

on the possibilities for mimicking ever more complex behaviors

observed in natural agents. Eventually, this might require the use of

humanoid robots. Kuniyoshi and his colleagues at the Electro-

technical Laboratory in Tsukuba (Japan), for example, use a hu-

manoid robot to study not only sensory-motor processes but also

social interaction, an important research area because so far the

extent to which social interaction relates to sensory-motor devel-
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opment has not been systematically investigated. More generally,

the social context of intelligence needs to be better included in our

modeling efforts.

The other approach to increasing the complexity of the task

environment focuses more on general principles of intelligence. It

is exempli®ed by the Robot World Cup Initiative2 (Kitano et al.

1997), an attempt to foster cognitive science research by providing

(a) a landmark project comparable to the Apollo space program,

which had the goal of ``landing a man on the moon and return-

ing him safely to earth'' (Kennedy 1961; cf. Kitano et al. 1997),

and (b) a standard problem whereby a wide range of approaches,

architectures, algorithms, and technologies can be integrated and

evaluated. The standard problem in traditional arti®cial intelli-

gence has been chess. The RoboCup can be considered the equiva-

lent for embodied cognitive science. Table 18.1 compares the two

problems, largely summarizing the comparison between virtual

and real worlds discussed in chapter 3. We do not repeat the argu-

ments here but simply point out that from an embodied cognitive

science perspective, the RoboCup problem encompasses all major

issues of interest because it involves complete agents that have to

solve a number of tasks in real time. RoboCup consists of three

competition tracks: (a) a real robot league involving physical robots

playing soccer games (®gure 18.1), (b) a software robot or simulator

league involving software agents playing soccer games on an of®-

2The ®rst RoboCup competition was held at the Fifteenth International Joint Conference

on Arti®cial Intelligence in Nagoya, Japan, in 1997.

Table 18.1 Comparison of chess and RoboCup. (Adapted from Kitano et al. 1997.)

Game characteristic Chess RoboCup

Environment states Static
Discrete

Dynamic
No states; continuous

Operators Finite set of possible moves Inde®nite number of possible
moves

Information accessibility Complete Incomplete

Communication with
environment

High-level ontology Low-level speci®cation

Behavior control Hierarchical Parallel, distributed

Theory, Technology, and Applications 615



cial soccer server over a network, and (c) an expert robot competi-

tion for robots that have special skillsÐsuch as shooting a ball into

a goal in particular waysÐbut are not able to play an entire game.

For example, they might not be able to detect and approach the ball

from a distance and pass it on to a teammate; they have only this

one particular skill. The simulator league not only enables a wider

range of researchers to participate but also fosters research on

network-based multiagent interactions, computer graphics, physi-

cally realistic animations, and new technologies to exploit the

Internet. More generally, future research will have to increase the

complexity not only of hardware platforms, but also of simulators.

We pointed out in chapter 4 that simulators play an important role

in embodied cognitive science, but their complexity needs to be

signi®cantly increased if we are to investigate more complex skills

such as playing soccer or basketball.

The ultimate goal in a RoboCup player is ``a humanoid type that

can run and kick or pass a ball with its legs and feet, can throw a

ball with its arms and hands, and can do a heading with its head''

(Kitano et al. 1997, p. 76). This comes very close to our own vision

about the far future of embodied cognitive science illustrated in

®gure 19.4. Such ambitious long-term goals create subgoals that can

be achieved ®rst. In the case of RoboCup, the ®rst subgoal is to

build physical and software robot soccer teams that play reason-

ably well (Kitano et al. 1997).

Figure 18.1 RoboCup competition (reprinted by permission of Eurelios, Paris).

Chapter 18 616



RoboCup is a challenging task environment in terms of both

theory and technology for a number of reasons. First, it requires

sophisticated sensory-motor skills such as shooting balls or avoid-

ing dynamic opponents. A RoboCup player has to engage in multi-

ple desired behaviors such as shooting, dribbling or pushing,

passing, heading, throwing a ball, and avoiding opponents. The

principle of parallel, loosely coupled processes and the approaches

derived from it can be applied toÐand thus tested inÐthe design

of the processes the player needs to produce these desired behav-

iors. Second, the agents have to categorize the ball, the goal, the

opponents, and the members of their own team while moving about

with high speed. We predict that for the players to be really robust

in their interactions with the ball, for example, they will have to

®rst be given some time to explore and learn about it by employing

mechanisms of sensory-motor coordination. Otherwise the category

``ball'' will not be grounded, and problems related to the symbol-

grounding problem will come to the fore. Third, ``because of the

uncertainties in sensory data processing and action execution, it is

infeasible to program the robot behaviors to consider all situations;

thus robot-learning methods seem promising'' (Kitano et al. 1997,

p. 77). Here we can use the value principle to devise value systems

and appropriate self-supervised learning mechanisms. It will be

interesting to see, for example, what type of value system is needed

to make a robot play soccer. And forth, the agents have to be coop-

erative, i.e., possess social skills. Clearly there is virtually no limit

as to the complexity of this task environment.

We said in the introduction to the chapter that in addition to

addressing these problems in basic research we have just outlined,

the ®eld of embodied cognitive science must be made accessible to

a broad audience. Let us now look at this in more detail.

``Agents for the Masses''

The framework of embodied cognitive science outlined in this and

the other books mentioned in the introduction to this chapter can

be applied to the study of intelligence in a number of ways. Some

may prefer to take the framework and use it to theorize about vari-

ous aspects of intelligence, from insect navigation to memory or

language. Others may want to actually use the synthetic methodol-

ogy presented here to build models of various kinds and complex-

ity. A ®rst step might be to download the source code from the Web
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page associated with this book and start playing with the various

architectures or even embark on a new research project. Appro-

priate tools are needed, of course, to do either of these things,

in essence agent simulators and physical agents. We have also

included a number of pointers to agent simulators on our Web

page. All of the experiments suggested in this book can be repli-

cated with these simulators. If one's goal is to use a physical robot

to conduct these (or other) experiments, the situation is a bit more

involved; we discussed the various considerations in chapter 16.

Nevertheless, there is a strong need for more ¯exible, cheaper,

easier-to-handle robot platforms. We envision robot kits that can

be assembled easily without sophisticated engineering skills. Such

kits should enable the user to immediately start experimenting,

without having to solder various parts or program low-level rou-

tines: they should have the ``plug-and-play'' character of modern

software programs. Only then can we expect a large number of

people actually to use physical robots to study intelligence. The

very best scenario would be if this platform were built on top of an

already widespread technology like Lego. There are indeed efforts

underway to equip Technic Lego kits with robotic capacities by

adding sensors, motor systems, and computing power. With the

number of people interested in this ®eld increasing, such agents

should become economically viable in the very near future. Just as

the information age really took off with the advent of cheap per-

sonal computers for the masses, a similar developmentÐon a

smaller scaleÐis needed to boost the use of autonomous agents and

embodied thinking in research, education, and applications.

18.3 Applications

In principle, the framework presented in this book can be applied

to every area of mobile robotics that requires intelligent behavior.

In this section, we present a few such applications that we consider

to be of particular interest.

Agents for Hazardous and Dif®cult Environments

One particularly useful area of application of mobile agents is in

hazardous environments. Demining robots have recently received

increasing attention (e.g., Nicoud 1996). Currently about 100 million

mines remain in the ground in 62 countries. Demining these mines
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is a dangerous business, with one death per 5,000 mines cleared.

Cleaning only the mines in Afghanistan, for example, with the cur-

rently existing methods would take more than 4,000 years. These

statistics are daunting and call for alternative approaches. Robots

are clearly an interesting potential solution. A demining robot has

the task of ®nding all mines within a given area and destroying

or deactivating them. Of course, military motives for demining

differ from humanitarian ones. The military's goal in demining is to

quickly make a breach in a mine®eld to allow troops to progress

without delays. Typically, a tank pushes a mechanical demining

system, and the troops follow. Speed is a primary consideration,

and mine ®nding or destruction rates of about 80 percent are con-

sidered acceptable. For humanitarian mine clearing this is clearly

not suf®cient; for humanitarian purposes, accuracy is the para-

mount consideration: demining systems must have a detection rate

approaching 100 percent (United Nations speci®cations require

more than 99.8%). This is, of course, a very rigorous requirement,

and the task is made even harder by the necessity of vegetation

clearance: Up to 50 percent of a deminer's time is spent in remov-

ing trees and shrubs under 20mm. Burning, though in general a

very quick way of clearing vegetation, is not acceptable in this case

because burnt plastic and unexploded TNT can pollute the soil.

Demining is thus a very challenging task environment for mobile

robots.

Let us look at a few demining robots. Pemex is a lightweight

prototype robot (16kg) developed at the Laboratoire de Micro-

informatique, EÂ cole Polytechnique FeÂdeÂrale de Lausanne, Switzer-

land (®gure 18.2) that is supposed to detect mines but not trigger

them. The robot is equipped with two bicycle wheels with which

it can move 2 meters per second. When searching for mines,

Pemex's head oscillates right and left, covering a path one meter

wide. Another example is Ariel (®gure 18.3), a crab robot devel-

oped by IS Robotics, a spin-off company of the MIT AI Lab. Ariel

is an autonomous legged underwater vehicle designed for mine

countermeasures in the surf zone. These vehicles operate together

to clear the craft landing zone for naval operations. They are

deployed in numbers based on the expected mine density and col-

lectively search a craft landing zone for mines. The idea is that

each robot, secures itself next to a mine it has found; upon a con-

trol signal from the command center, all the robots detonate,

destroying all mines simultaneously. Ariel has six legs and onboard
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power and sensors and is waterproof to a considerable depth. To

better understand the issues involved in locomotion in a surf

zone, the designers have studied the locomotion of real crabs.

Ariel walks sideways just as real crabs do, but in contrast to real

crabs it continues to walk if it is turned upside down, which

can happen frequently in the presence of strong dynamic ocean

currents. Ariel is controlled by a distributed, subsumption-like

architecture.

From an embodied cognitive science perspective, the task envi-

ronment of demining is not as appropriate as, for example, that in

the RoboCup competition discussed earlier. The perfect detection

rate this environment demands typically requires strategies that are

not relevant from a cognitive science point of view, such as the use

of a global positioning system (GPS) that yields global information

about the environment or of prede®ned navigation strategies (e.g.,

systematic search patterns). However, it does comprise certain

Figure 18.2 The robot Pemex. It is a prototype for a demining robot, built at the LAMI-EPFL in
Lausanne, Switzerland (reprinted with permission).

Figure 18.3 The robot Ariel. This crab robot was built by IS Robotics. It is an autonomous legged
underwater vehicle designed for mine countermeasures in the surf zone. It walks
sideways and continues to walk if it is overturned (reprinted with permission).

Chapter 18 620



issues that are of high interest for embodied cognitive science. For

example, no currently existing sensor technology achieves good

detection rates in all types of soil, with all types of mines and false

targets. Redundant sensory systems that provide potential infor-

mation overlap might help achieve these goals. The design and

integration of redundant sensory systems is a problem of great

interest for cognitive science, and some of the research in this area

might well lead to practical solutions that can be used in demining

robots.

Another interesting application in this context are robots for

cleaning up radioactive wastes. A recent example is the project to

clean up the Chernobyl plant, situated near Kiev in the Ukraine.

Tecnomatix Technologies Ltd., an Israeli software company, has

developed a three-dimensional graphic simulation of this plant.

The program allows for the design of a three-dimensional sarco-

phagus into which simulated robots are then moved to clean up the

Chernobyl plant. The main advantage of this simulator is that robot

designers can test whether speci®cally designed robots are capable

of doing the needed work before they are actually built. As in the

case of the Mars Sojourner, it is crucial to test a large number of

designs in simulation before actually building the physical robots.

The software is also indispensable because one cannot bring any-

thing living inside the Chernobyl plant: the high doses of radio-

activity would kill it.

Let us look at a ®nal example: sewage. Sewage systems are

among the largest infrastructural investments of mankind. For

example, in Germany alone, the total length of the sewage system is

estimated to be almost one million kilometers. As documented in a

number of studies, the overall system is not in good condition.

Sewers may be blocked, and sewage may leak out, possibly pollut-

ing soil and ground water. In consequence, much effort must be

devoted to inspecting, maintaining and repairing the sewage pipes.

A large part of the public sewage system consists of circular pipes

with inner diameters of 30±60 cm. They are obviously not accessi-

ble for humans. The current state of the art for maintaining such

pipes uses teleoperated camera platforms that are connected to the

operator by a cord. However, such tethered platforms have severe

limitations in terms of mobility and radius of action. One idea to

tackle these issues is to employ teams of mobile robots that can

undertake sewer inspection autonomously over long periods of

time, in order to support sewers. This task involves a wealth of
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challenges for research and development in robot hardware and

control. In addition to their narrow dimensions, sewage pipes are

slippery, dirty, and wet. They can involve all levels of water from

none to complete ¯ooding. They consist of very different kinds of

materials. Moreover, this ecological niche is very uneven: It con-

tains steps in the connections between pipes of different diameters

and may contain clogs, sediments, cracks, holes, or roots grown

into the pipes through cracks or leaking joints. The research group

of Thomas Christaller at GMD, the German National Research

Center for Information Technology in Bonn (Germany), in cooper-

ation with various universities and industrial companies, has

developed several prototypes of mobile robots capable of navigat-

ing in this challenging ecological niche. One of them, a snakelike

multisegment robot capable of negotiating the dif®cult intersections

of pipes with different diameters, is shown in ®gure 18.4.

Agents for Service

One of the big challenges of the twenty-®rst century is the aging of

the population. How can the life of the elderly be made as agreeable

as possible? How can they be supported in a way that maintains

their independence and autonomy even if their physical systems

start to deteriorate. One suggestion pursued with great force, espe-

cially in countries like Japan with a very high life expectancy, is

service agents. To be sure, service agents are meant to alleviate

problems, not to replace human caretakers. Their purpose is to

Figure 18.4 A prototype of a multi-segment sewage system robot built at the GMD in Bonn
(Germany) (reprinted with permission).
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complement care provided by humans. The potential of service

agents to be helpful is enormous. Especially in hospitals and homes

for the elderly, but also for delivery and for carrying heavy things,

such agents might be employed to great advantage. Takashi Gomi,

chairman of Applied AI Systems in Canada, among other projects

oversees research, development, and marketing of products related

to autonomous agents. He suggested developing robots that simply

follow people. Such robots can be used to carry goods that people

buy, for example, in grocery stores. Gomi is also pursuing the de-

velopment of an autonomous or, rather, semiautonomous wheel-

chair, aimed largely at elderly as potential users. Let us look at this

example a bit more closely.

The ®rst question that comes to mind is why a wheelchair would

ever need any degree of autonomy. Why should it not be controlled

only by a joystick or some other steering device? Gomi, who has

studied the situation in detail, especially in Japan, argues as fol-

lows: Many homes for the elderly are not in the centers of the cities,

but at the periphery. Going to town may take a long time, say on the

order of an hour. The physically challenged mayÐdepending on

the seriousness of their impairmentÐnot be able to control a steer-

ing device over extended periods of time. Even handling a joystick

for more than a few minutes might require too much effort. Thus,

autonomous wheelchairs that can, for example, navigate safely and

autonomously in the streets of a city, can help. Figure 18.5 shows a

prototype of a semiautonomous wheelchair.

The wheelchair problem is interesting not only because it repre-

sents an application that may turn out to be a great boon for society,

but also for scienti®c reasons. Gomi has adopted the strategy of

equipping all his agents, his robots, with subsumption-like archi-

tectures, because he strongly believes that this is the best way to

equip the agents with reliable, cheap real-time behavior. From the

perspective of this book, of embodied cognitive science, it will be

very interesting to see how the approaches advocated by this ®eld

will be able to compete with those offered by the more traditional

ones, especially since traditional approaches currently still domi-

nate the ®eld of mobile robotics.

Yet another tough research issue is involved, the problem of

communication between humans and machines, more speci®cally

between humans and arti®cial agents, or robots. We give this issue

separate treatment in chapter 19. For now, let us just point out that

there must be a smooth interplay between an agent's autonomy and
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a human user's control, that is, when should the human get control

and when should the agent take over? Some of these problems are

known from the airline industry, where these issues have been

addressed in the context of safety. Some of the insights gained

might translate to the agents domain.

Agents for Entertainment

In addition to service and safety, agents can be used for enter-

tainment. Entertainment is one of the largest existing industries,

and enormous growth is yet predicted. The only constraint on the

applicability of autonomous agents to entertainment is creativity.

For example, agents are used in the movie industry to mimic dino-

saurs and other creatures that have sprung from people's fantasies.

Figure 18.5 A semiautonomous wheelchair robot developed by Applied AI Systems in Ottawa,
Canada (reprinted with permission).
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Another example is Craig Reynolds's ¯ocking algorithm, which has

been used as the basis for animations in movies like Star Trek, Lion

King, and Batman Returns. They are also used as pets, as digital

pets in cyberspace, or as dolls displaying facial expression and

emotional reactions.

The most famous example of these is Tamagotchi. Tamagotchi is

a simple virtual creature invented in Japan. Tamago is the Japanese

word for egg; Tamagotchi is a verbal combination of egg and watch.

Tamagotchi hatch from tiny eggs after traveling millions of light-

years through cyberspace. With proper care and feeding, performed

by pushing buttons on the egg, Tamagotchi grow into a virtual

reality pet. Tamagotchi have very crude graphics; the screen is

barely capable of displaying a primitive line drawing of a chicken.

One observes with astonishment how something as primitive as

Tamagotchi has managed to fascinate the masses. Almost in the

entire industrialized world, they immediately sold out. We can

only speculate about the success of Tamagotchi. Using our frame-

work, we strongly suspect that one of the reasons relates to auton-

omy. Tamagotchi has a certain degree of autonomy, a very simple

kind of autonomy, but it is there. For example, as mentioned above,

if the virtual creature is to grow, it has to be taken care of. The

caretaker is forced, for example, to perform certain actions period-

ically like feeding or playing with the pet. If it does not receive a

suf®cient amount of care and attention, the pet will not develop

properly and may even ``die.'' This is an implementation of a

certain environmental pressure that real agents always experience

in their econiches. The caretaker, that is, the child or adult (and

there are many adults playing with Tamagotchi), experiences

dynamics in the environment that are independent of the ``moves''

of the caretaker: Tamagotchi has its own, independent behavior.

Thus, we have a situation that is very different from chess, in which

the world only changes if one of the players makes a move. The

autonomy of Tamagotchi, together with this pressure that forces the

caretaker to act, seems to be evoking a considerable amount of

emotions (empathy, pity, anger), and it also triggers attributions

of various types. (Children attribute feelings to Tamagotchi, for

example, sadness or disappointment if they have neglected their

pet.) It will be interesting to explore further the idea of digital pets

or more generally agent pets with higher degrees of autonomy.

Another example of an agent that entertains people is Silas T.

Dog, developed by Bruce Blumberg and his research group at the
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MIT Media Lab to explore ways in which people can interact with

creatures in cyberspace (e.g., Blumberg, Todd, and Maes 1996). In

particular, Blumberg's research focuses on developing ethologi-

cally inspired architectures for building autonomous animated

creatures that live in virtual 3-D environments. The creatures have

a certain level of autonomy in that at every instant they decide,

within a given set of actions that they can perform, what to do,

based on what they can sense of the world and their internal state

(motivations, ``goals,'' etc.). Silas, an example of such a creature,

navigates in its world by using his nose and simulated vision, and

it has a dozen or so goals, for example, goals related to eating,

drinking, and playing with a ball, which it tries to satisfy. Silas is a

fully situated agent: It experiences the world exclusively through

its own sensors and acts on it via its motor system. It is a virtual

reality creature that has at least some of the properties of a com-

plete, embodied agent and thus bears the potential for intelligence.

Blumberg's experimental setup is as follows. There is a very large

screen, large enough that adults can be visualized on it in full size.

There is a camera that captures the person interacting with Silas.

Silas itself is shown on the large screen in cyberspace and so is the

human. The image and the position of the human are extracted

from the camera image and transferred into cyberspace, where the

human and Silas can be seen on the screen and can now interact.

For example, the human can throw a ball for Silas to play with. The

human can always see himself, together with the dog, in cyber-

space and can determine his actions based on what he sees. Figure

18.6 shows a picture of Silas with his teacher, Dr. J. T. Puppet.

Figure 18.6 The virtual creature Silas T. Dog developed at the MIT Media Lab. Silas can interact
with humans in cyberspace and is equipped with an ethologically inspired control
architecture (reprinted with permission).
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Puppet and Silas can interact through various scenarios. The human

can control Puppet through the camera that monitors the move-

ment of the human. The only difference between this and the pre-

vious setup mentioned is that instead of the human interacting

directly with Silas in cyberspace, the human controls Puppet;

Puppet simply performs the same movements as the human.

Blumberg is also experimenting with emotions. He is interested in

the extent to which emotions will be important in human-agent

interaction. We return to this issue in the next chapter.

Issues to Think About

Issue 18.1: Arti®cial Brains

We have shown throughout the book that to understand intelli-

gence, it is not suf®cient to understand the brain only. The em-

bodied perspective tells us that we have to take the organism in its

entirety into account. But the view that the brain is the sole factor

responsible for intelligence is hard to eradicate. In science, but also

in the society at large, the idea of enormously powerful computers,

of superbrains that will at some point exceed human intelligence

by far, is still common. While for some this vision represents the

ultimate nightmare, building large brains has been a dream of a

considerable number of scientists. Hugo de Garis, a researcher in

the ®eld of ALife who calls himself a ``brain builder'' (see de Garis

(1994) for a review of an arti®cial brain project), has set out to

build a brain ``the size of the moon.'' Assume for a moment that de

Garis were actually to succeed and that at some point in the future

we had such a superbrain. Would we really have to be afraid of it?

In what ways could the brain be harmful to us? First of all, it would

have to have some means of acquiring knowledge about the

world. We have seen that agents cannot simply be programmed

with knowledge, since that would imply a designer-based high-

level ontology that would in turn lead to an ungrounded system, a

system that would not be situated and thus not be capable of inter-

acting ef®ciently with the world on its own. The latter capability

would be required for an autonomous system, and autonomy

would be necessary for true intelligence to emerge. From our dis-

cussion of embodiment we know that the brain would have to be

appropriately embedded in a sensory-motor system. The idea of a
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superbrain seems to be based on a misunderstanding of the nature

of intelligence. Information processing is very powerful in virtual

worlds like chess, but it is not suf®cient to make sense of the real

world. But there is an alternative way for an arti®cial brain to

acquire information, the Internet. Think about such a brain ``sit-

ting'' in the Internet, where it has access to enormous amounts of

information. Would that change the situation fundamentally, that

is, would we really have to be scared of such a brain?

Issue 18.2: Your Own Soccer Player

We have introduced the RoboCup initiative. Now that we have

covered the essentials of embodied cognitive science, we would

like you to think about the following task: How would you design

your own soccer player? What would be its desired behaviors?

What morphology and what sensors would you use, and where

would you position them on the robot? What would be the mecha-

nisms with which you equipped the agent for kicking the ball? How

would you design the learning mechanisms and the value system?

What scheme of behavior control would you use? Would you want

to simply de®ne the task of ``winning the game'' and apply arti®cial

evolution to evolve an entire soccer-playing agent and then observe

the kinds of behaviors that emerge? What would be the pros and

cons of employing this approach? Would you use simulation or

hardware or both? Again, what would be the pros and cons?

Points to Remember
1 A number of hard problems need to be resolved if the ®eld of

embodied cognitive science is to make signi®cant progress. They

include the questions of morphology, that is, trading shape for

computation; of positioning sensors to yield potential information

overlap; of how morphology and interaction with the environment

can be exploited to generate correlated data; of evolving entire

agents through arti®cial evolution; of coordination schemes be-

tween processes; of value systems; and of identifying the appropri-

ate levels at which invariances can be identi®ed.
1 An issue of special interest concerns the question of how an agent

can acquire a sense of ``self.'' It has been suggested that this

will have to be achieved by picking up theÐobjectively measur-

ableÐcorrelations generated as the agent is engaged in a system-
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environment interaction. The mechanisms by which this might be

accomplished are to date unknown.
1 When we ask whether the approach of embodied cognitive science

will scale to human levels of intelligence, a distinction must be

made between a modeling approach and one of robot building. If

agents are used as models, we can, already make statements about

human intelligence. If the goal is to build sophisticated, highly

complex robots, we are faced with an empirical question: We have

to try and actually build such robots before we know; we cannot

decide how far we can get on purely theoretical grounds.
1 Technological advances must be made if the theory behind em-

bodied cognitive science is to advance. The most obvious tech-

nologies required are more-complex sensory-motor systems. In

particular, manipulators must become more ¯exible, cheaper, and

especially smaller which will involve the use of new materials.

Moreover, they must have a certain amount of processing capacity

at the very periphery. Technological advances also need to occur in

the form of a better mix of sensors from different channels, so that

there can potentially be information overlap.
1 Increasing the agent's sensory-motor complexity alone is not suf®-

cient; the task environment must be augmented at the same time. A

particularly interesting and taxing task environment is that of the

Robot World Cup initiative, which provides a great test bed for

virtually all issues in embodied cognitive science.
1 If ideas concerning complete agents, concerning embodiment, are

to spread, we need ``agents for the masses'': cheap and ¯exible

platforms, robot-building kits that do not require a lot of in-depth

knowledge of robot hardware.
1 Applications of autonomous agents can be envisaged in almost any

area that requires intelligence. Examples are demining robots of

various sorts (even though in this ®eld, intelligence is often not the

main criterion, rather 100 percent security), robots for cleaning up

radioactive wastes, those for monitoring sewage systems, service

agents, and agents for the entertainment industry.

Further Reading
Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E., and Matsubara, H. (1997).

RoboCup: A challenge problem for AI. AI Magazine, Spring, 1997. American Associ-

ation for Arti®cial Intelligence, 73±85. (Paper describing the RoboCup and illustrating

its main ideas and scienti®c issues.)
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19 Intelligence Revisited

We have worked our way through a lot of dif®cult territory,

broached a host of topics, and raised many issues. For example,

we have talked about theoretical issues like symbol grounding

and frame of reference, about low-level speci®cations, emergence,

behavior control, robot hardware, control architectures, neural

networks, arti®cial evolution, simulated ®sh, design principles of

autonomous agents, value systems, learning algorithms, self-orga-

nization, complexity, evaluation, and memory, to mention but a

few. This enormous range of topics is unavoidableÐit re¯ects

the nature of intelligence. Intelligence is not something neat and

clean that can be studied and tested in isolation from the real

world. But the minute you do get to the real world, matters become

messy. Just think of all the unsystematic considerations involved in

designing an agent for the real world. In spite of this seemingly

chaotic situation, it is possible to ®nd some underlying structure.

Making this structure explicit is the task we have set ourselves

for this ®nal chapter: It constitutes the ®rst steps toward a theory of

or a theoretical framework for intelligence. From this theoretical

framework, ideas on future developments of theory, and of appli-

cations, as well as implications for society can be derived. We have

looked at applications in the previous chapters. Here we focus on

theory and implications for society. We begin by outlining the the-

oretical framework and conclude with some comments on agents

in society.

19.1 Elements of a Theory of Intelligence

Figure 19.1 provides an overview of a theoretical framework. It can

be seen as a ®rst step toward a theory of intelligence. In the center

of ®gure 19.1 is the complete agent whose behavior emerges as it

interacts with its ecological niche. This center is surrounded by a

number of principles that inform the design process. The method-

ology of embodied cognitive science is synthetic, its goal is under-

standing by building.



We expect from a theory of intelligence an answer to the follow-

ing question: Given an agent, an animal or a human, that exhibits

certain behaviors, what are the underlying mechanisms? Human

infants behave in certain ways on category learning tasks; the

desert ant Cataglyphis shows particular navigation behaviors. In

a synthetic methodology this question is translated into a design

issue: How can we design an agent so that it will exhibit the desired

behaviors? The Sahabot and the SMC agents, for example, are the

result of such a design effort. There are a number of variations on

this question. Once we have designed and built an agent, we can

ask how it will perform if we change its environmental conditions;

that is, we can try to predict an agent's behavior in different en-

vironments. How will the agent adapt to these changes? What

kinds of novel behaviors will it display? This question is of central

importance for the study of intelligence: It pertains to diversity-

compliance considerations that we identi®ed in chapter 1 as being

a core characteristic of intelligence. Diversity-compliance refers

to a trade-off that any intelligent agent must resolve, a trade-off

between a conservative aspect that exploits the givens, and one

that is responsible for generating the diversity required to remain

adaptive. The diversity-compliance trade-off tells us what to look

Figure 19.1 The theoretical framework. In the center is the agent and its task environment. On the
periphery are the various elements of the theory. From this framework, we can derive
implications for society, for applications, and for the further development of the
theory.
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out for: Intelligent agents solve it in interesting, nontrivial ways.

Before going on to discuss the implications of our new view

of intelligence, let us brie¯y mention the other elements of the

theory that inform the design process: frame-of-reference, time

perspectives, and design principles of autonomous agents. Con-

siderations concerning the frame-of-reference problem, such as

the clear distinction of the various perspectivesÐdesigner, agent,

observerÐof the separation of behavior and mechanism, are fun-

damental to any investigation of intelligence, as we have stressed

throughout the book. The time perspectives principle on the right

of the ®gure reminds us that our re¯ections always include differ-

ent timescales, the short, the intermediate (ontogenetic learning),

and the long term (evolutionary). Finally, the design principles of

autonomous agents explicate characteristics of intelligent agents.

They inform us about physical setup, control architecture, learning

mechanisms, and how to design agent-environment interaction. Let

us now look at some implications of this view.

The starting point is a complete agentÐautonomous, embodied,

situated, self-suf®cient agents are what interests us. This follows

from one of the design principles, the three-constituents principle.

Although this idea may look very natural and innocuous, it has

far-reaching consequences. The ®rst thing to note is that because

we have a complete agent, we are dealing with the real world.

Intelligence is not something that can be understood in the abstract:

We must understand how an agent interacts with its environ-

ment. Because the agents of interest are complete, we must analyze

them in their entirety. But we are not postulating some kind of

holistic, ill-de®ned doctrine. Rather, we have established a con-

crete methodology of how the entire agent can be taken into ac-

count: the synthetic methodology. Any time we have a complete

agent, we have an object that is of interest for the study of prin-

ciples of intelligence. From this perspective, we can learn impor-

tant principles from the desert ant Cataglyphis and from human

infantsÐtwo examples of very different agents. Seen from this

perspective, there are no clear distinctions between high and low

levels of intelligenceÐwe always have to consider agent, niche,

and behavior.

A key implication of having a complete agent is that it has to

interact with its environment on its own. Thus, the hard prob-

lems of categorization, of rapidly changing sensory stimulation, of

behaving sensibly in dynamic environments, have to be resolved.
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This perspective forces us always to consider a behavioral context.

If we want to study perception, for example, we have to de®ne a

task environment ®rst, and we have to do it in such a way that the

behaviors we ®nd interesting, that is, the behaviors to which we

would apply the term ``perception,'' occur naturally. Recall our

case studies of category learning (the SMC agents). Categorization

was de®ned with respect to regular behavioral patterns (e.g., pick-

ing up small objects, ignoring large ones), not through internal

representations. Likewise, perception should be investigated from

the point of view of ®nding regularities in behavior rather than

mapping sensory stimulation onto an internal representation. This

leads to a new perspective not only for synthetic investigation, but

also for empirical work: Experimental designs should incorporate

an appropriately de®ned task environment. We realize that this

is not always easy to accomplish. Many experimental methods

investigating perception in psychology and neurobiology have a

focus on the input side: there is no behavioral context. Through

the agent perspective, through embodiment, it becomes clear

that perception's motor aspects are equally important and cannot

be separated. Adopting this perspective often leads to surprising

insights. Remember our self-suf®cient agent discussed in chapter

11? It had to collect pegs and bring them to a home base. In a sense,

through its behavior, it was categorizing the world: It would collect

only small pegs, those that ®t into its wire loop. The ``grasping''

was achieved by an obstacle avoidance process. Although simple,

this example makes the following point vividly: Categorization in

this case is clearly not a decision process but is emergent from the

dynamics of the entire agent's behavior.

Let us now look at potential ways in which the embodied cog-

nitive science perspective could in¯uence empirical work. Most

empirical experiments in cognitive psychology and neuroscience

are conducted within an information processing framework; motor

and sensory-motor processesÐembodimentÐtherefore are usually

neglected in learning, perception, categorization, or memory experi-

ments. Adopting an embodied cognitive science framework implies

a shift in focus from information processing to embodiment and

sensory-motor coordination, which in turn leads to new perspec-

tives on how to design experiments. Let us look at an example.

Vision is still being viewed by many as a process that is indepen-

dent of embodiment. Consider the following quote by Milner and

Goodale (1995):
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Almost all studies of vision in mammals (including humans) have

approached the problem [of vision] in perceptual and cognitive

terms and have largely ignored the visual control of motor output.

Indeed, a theoretical commitment to vision qua perception has

shaped the methodology used to study vision and the visual system

of animals in most laboratories throughout this century. Instead

of examining the relationship between motor outputs and visual

inputs . . . investigators working with mammals have typically

looked at the performance of their subjects on some form of visual

discrimination task. . . . For most investigators, the study of vision is

seen as an enterprise that can be conducted without any reference

whatsoever to the relationship between visual inputs and motor

outputs. (p. 12)

The questions that are typically addressed in vision research con-

cern issues in information processing. Consequently, in pertinent

experiments, various aspects of the stimuli presented to the animal

are manipulated to study how the animal encodes, stores, or re-

trieves this input (®gure 19.2). Moreover, explanations focus on the

relation between the type of stimulus presented and the choice the

animal makes. The animal's actual motor output is considered ir-

relevant. For example, whether a monkey grasps for the object,

a pigeon pecks on a light, or at rat jumps or presses a lever is

considered irrelevant: All that matters is the decision the animal

Figure 19.2 Typical experimental setups used to study discrimination learning in animals. Inde-
pendent of the type of animal tested, it is assumed that the motor output (e.g.
grasping, pecking, or jumping) is irrelevant, since only the choice behavior of
the animal matters. (From Milner and Goodale 1995, p. 12, reprinted with
permission.)

Intelligence Revisited 635



makes when presented with some visual stimuli. Note that the same

approach characterizes the majority of studies in human vision,

learning, categorization, and memory. Categorization studies, for

example, typically require subjects to indicate which stimulus

belongs to which category. Let us recall an experiment from

chapter 15, the four-point task (®gure 15.4): The subjects had to

point in the direction of the other ``points'' on the four-point

path. In one condition, the subjects had to sit in the same position

whereas in the other they were allowed to physically rotate. As we

learned, those that were allowed to physically turn performed

much better. This experiment is an instance of the more general

class of mental rotation tasks. Many view mental rotation as the

epitome of a high-level cognitive task. In a recent paper, Wexler

(1997) presented empirical evidence that questions this view, that

is, the view that mental rotation pertains to information processing

only. The paper's title, ``Is rotation of visual mental images a motor

act?'' makes that point very clear. Subjects had to mentally rotate

an object while at the same time moving a joystick, that is, they

had to mentally and physically rotate. In essence, they showed that

physical rotation with a joystick signi®cantly interacts with mental

rotation processes. For example, the speed of the mental rotation

echoed the speed of the physical rotation: the faster the physical

rotation, the faster the mental rotation. In addition, mental rota-

tion performance was found to be disrupted if the joystick was

moved in the opposite direction. More generally, these experiments

demonstrate how embodiment can lead to new perspectives on

what has been called high-level cognition. They show how em-

bodiment can be taken into account in the design of experiments,

thus complementing experiments within an information processing

framework. We strongly hope that the embodied view will foster a

wealth of new experiments geared toward explicating the in¯uence

of embodiment on cognitive tasks.

To close this section, let us reconsider a few issues we raised in

chapter 1. We said in our discussion of the computer Deep Blue

that although it is certainly a milestone in the history of arti®cial

intelligence, more is required before we can attribute true intelli-

gence to such a system. Now that we have worked out the essen-

tials of the embodied cognitive science framework, we can specify

more concretely what the missing ingredients are. In essence, Deep

Blue is a disembodied system that works only in the formal world
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of chess. True intelligence, however, requires a body and means of

interacting with the real world. An intelligent system needs to be

able to acquire knowledge on its own, using sensors and actuators.

Thus, from our perspective, it would be more sensible to employ

our systems in tasks like RoboCup to really test their intelligence:

Rather than having people play chess against a computer, we

would prefer them to play soccer with our agents. Another inter-

esting way to assess our agents' intelligence would be to have them

interact with primates or young infants. This is currently being

tried at Waseda University in Tokyo in experiments where a

humanoid robot has to interact with a chimpanzee. The idea is

to see how the monkey reacts and interacts with the robot. These

experiments can be seen as a kind of Turing test: If the monkey's

behavior toward the robotic agent is indistinguishable from its

behavior vis-aÁ-vis humans, the robot will have passedÐin a sense

Ðthe Turing test. Similar experiments could be conducted with

human infants and, ultimatly, with human adults. In any case, the

truly hard tests to intelligence are not to be found in formal worlds,

but rather involve a complete agent interacting with the real world

in a given task environment.

In chapter 1 we also said that people often do not consider

perceptual and motor abilities essential for intelligence. We have

argued in complete contrast throughout this book that they are

prerequisites for intelligence: Without a body to perceive and

interact with the world, true intelligence cannot develop. From the

embodied cognitive science perspective, processes like thinking or

intuition emerge from and are grounded in the interplay between

sensory and motor systems. (see Thelen and Smith 1994 for a

detailed discussion). It is thus necessary ®rst to understand the

basics of embodied intelligence before we can tackle these so-

called high-level phenomena. The claim that embodiment is a

prerequisite for intelligence also pertains to intelligence testing,

another issue we raised in chapter 1. We have repeatedly stressed

in this book that in general, it does not make sense to reduce intel-

ligence to a single number such as the IQ. On the other hand, such

numbers may be of value in comparing agents and predicting their

behavior in certain task environments. We outlined the ®rst steps

towards a measure of what we might want to call an ``embodied IQ''

in chapter 13: the complexity measure ®rst introduced by Tononi,

Sporns, and Edelman (1996). If this measure is extended to include
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the motor system, we can start to compare the complexity of dif-

ferent agents in a number of task environments. This characteriza-

tion might eventually help predict an agent's behavior in a given

task environment. How such a measure could be extended to

measure aspects of human intelligence is currently an open issue.

In any case, intelligence tests should include all three constituents

of design principle 1: the agent, the tasks and desired behaviors,

and the ecological niche. Although it is certainly somewhat vague,

this line of thinking might eventually lead to new tests, tests that

capitalize on embodiment and system-environment interaction

rather than abstract thinking and logical reasoning.

19.2 Implications for Society

In this ®nal section, we point out some implications of the em-

bodied view of intelligence for society at large. Our discussion is

by no means exhaustive, and many of the ideas we present are still

rather speculative. Our goal is to highlight some important conclu-

sions we can draw from the embodied cognitive science perspec-

tive, together with pragmatic suggestions of how to communicate

and perhaps implement some of them.

We spend an increasing amount of time in cyberspace. When we

read or send electronic mail, when we order pizza or an airline

ticket over the World Wide Web, or when we surf the Net to ®nd

background information about an opera, theater, or movie, or to

look for job opportunities, we are in cyberspace. Schools and uni-

versities are getting connected to the Internet, and an increasing

number of classes are being taught on the Web. The integration of

the Internet into classwork opens new and fascinating possibili-

ties for teaching, in particular when the world of multimedia is

exploited. Web pages can use three-dimensional graphics and

audio and video snippets to improve the presentation of lecture

notes, and by providing appropriate links, they can take the stu-

dent to other relevant pages. More generally, cyberspace opens new

possibilities for the society at large. We can converse with people

from around the world, we can exchange ideas and feelings with

people we have never met, and we can assume identities of our

own creation and imagination.

This new ``culture of simulation'' (Turkle 1995), where the

boundaries between real and virtual are beginning to erode, is

making its way into our everyday lives and will have profound
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in¯uences on our society. Turkle has pointed out some of the

fascinating and far-reaching implications and possibilities of this

``life on the screen.'' One is that the more time we explore and

navigate cyberspace, the less time we spend in the real world.

Although we can only speculate about the in¯uence of ``life in

cyberspace'' on our intellectual development, it is clear that there

will be signi®cant differences between the concepts we acquire

there and those that we acquire through interaction with the physi-

cal world. Throughout the book, we have stressed the importance

of embodiment, of an agent'sÐanimal, human, robotÐphysical

interactions with the world. We have pointed out, for example, that

an agent's categories are grounded only if they are acquired by

the agent itself through its interactions with the physical objects

involved. In the real world, this interaction leads to the activation

of several modalities, each of which provides separate but over-

lapping information about the object. When we experience an

apple, for example, the experience is visual, but it also involves

the smell of the apple, its taste, its feel, its heft, and a number of

sensations and movements associated with various actions upon

the apple such as slicing it, eating it, making applesauce, and so on.

These signals which are temporally correlated constitute the basis

for the acquisition of concepts such as ``apple.''

Now imagine that you have never experienced an apple and the

®rst time you learn about apples is in cyberspace. Again, your ex-

perience will be visualÐmaybe even three-dimensionalÐbut your

other modalities will not be stimulated: You will not smell the

apple, you will not be able to taste or feel it, nor will you be able

to eat or slice it by using your own body. The sensory input will

contain signi®cantly less redundancy. Your sensory experience

with the apple will be mainly visual, and a computer mouse, with

which you might be able to click on the apple, view it from differ-

ent perspectives, maybe even ``walk'' through it or change its

shape, will mediate your physical interactions with it. Your actions

will be restricted to moving your hand and using your ®ngers to

click on the mouse.

How this will change your knowledge about apples, and how this

knowledge will differ from that acquired through real-world inter-

actions, we do not know. But from the embodied cognitive science

framework, it follows that we should compensate for the increas-

ing amount of time we spend interacting with virtual objects with

appropriate experiences with the real world, since we know that
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the sensory-motor link is crucial to concept acquisition. This is

particularly important in education. As schools and universities

are being connected to the Internet and our children spend a sig-

ni®cant number of hours in cyber- rather than in physical space,

it will be necessary to think about and implement appropriate

compensatory actions. Instead of teaching mathematics with a

computer only, for example, we might use physical representa-

tionsÐobjects they can grasp and assembleÐwith which children

can learn basic ideas by means of physical interaction. Such tools

are important because they enable children to experience the world

by means of all their sensory modalities and behavioral possibil-

ities, an experience of fundamental importance for intellectual de-

velopment that cannot be replaced by even the most sophisticated

virtual animation. Note that we are not arguing against cyberspace

in general, nor are we questioning the role of computers and the

Internet for education. Quite to the contrary: As our society moves

toward a culture of simulation, it will be of critical importance to

be able to understand and use cyberspace. The virtual reality of

cyberspace is being increasingly accepted as a reality in its own

right: ``We come to question simple distinctions between real and

arti®cial'' (Turkle 1995, p. 23). The desktop on our computer screen

has become as real to (many of) us as one mounted on four legs; this

shows that we can learn about and use virtual objects. Such

knowledge is indispensable if we are to take part in modern soci-

ety. We should not forget, however, that it is different from the

knowledge we acquire by direct physical interaction with real

world objects.

Let us now turn to a ®nal point with potentially enormous

implications: communication between agents and humans. In the

previous chapter, we introduced a number of applications, demin-

ing robots, sewage system robots, service agents, and agents for

entertainment. Just as we interact and communicate with our com-

puters and with other machines, we will communicate with agents

in certain ways. We also brie¯y mentioned in the last chapter the

subtle problem of controlling a semiautonomous wheelchair. We

can now ask generally the question of what form communication

with agents should take. One obvious form is talking. As long as we

realize that an agent's understanding of what we are saying is

restricted because of its limited and very different sensory-motor

setup, this poses no problem. However, since we know how readily

people attribute intelligence and even emotions to agents, we
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have to be careful to avoid misunderstandings, to attribute under-

standing to an agent and draw inappropriate conclusions about its

potential behavior. For example, if we give an order to an agent,

and it replies by OK, we must not infer that it has adopted the

responsibility for the task, as we would expect from a human; it is

simply registering that it has heard what was said. As agents get

more autonomous, they are harder to control. It then ceases to be a

question of interface only, but instead becomes one of getting an

intelligent agent to do something for us. In humans, a good means

of assessing another person's state is to look at his face to try to

identify his emotions. Although we cannot infer emotions une-

quivocally from facial expression, it does tell us a great deal about a

person's inner state. Also, faces are extremely important in human-

to-human communication in general. Just imagine the different

nature of a conversation as you are talking on the phone. But what

about human-robot communication? Would it make sense to equip

our robots with faces and exploit facial expressions in the service of

communication?

Hiroshi Kobayashi of the Science University of Tokyo is explor-

ing facial expressions in robot-human communication. Together

with Fumio Hara, a professor of mechanical engineering, Kobaya-

shi built a robot capable of displaying humanlike facial expres-

sions. In particular, it can display a number of basic emotions like

surprise, fear, disgust, anger, happiness, and sadness, as shown in

®gure 19.3. Through its eyes, which are equipped with cameras, it

can also identify facial expressions in humans. In one experiment,

Figure 19.3 Facial expressions displayed by Kobayashi's face robot. On the left is a neutral face.
The other emotions expressed are surprise, fear, disgust, anger, happiness, and
sadness (reprinted with permission).
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the face robot mimics the facial expressions of a human observer.

It is an empirical question to test the extent to which robots with

facial expression will be smooth and agreeable for humans to com-

municate with.

The ``face robot'' can serve as a tool to make progress on this

question, which is especially relevant for our purposes because we

identi®ed emotion as a central component of intelligence. Recall

our discussion in chapter 1 in which Goleman suggested emotional

intelligenceÐrecognizing, using, understanding, and regulating

emotionsÐas an additional key factor in human intelligence. One

might even ask the provocative question whether robots will in fact

need to have emotions, similar to the way humans have emotions.

Without going into detail, what we can say at ®rst consideration is

that because of their different sensory-motor and physical setup,

robots will have emotions of a completely different nature than

human emotions. The communicational skills a robot with such

emotions could be evaluated in a Turing testÐlike situation such

as the one used to assess how a monkey would interact with a

robot.

Using facial expression for purposes of communication is an

instance of a more general means of nonverbal communication.

Earlier, we discussed the RoboCup initiative and mentioned that

the most sophisticated skills including skills for communication

can be tested by having the agents play soccer. Nonverbal commu-

nication, using the body, gestures, and playing the ball in particular

ways, can all be exploited for communication purposes during a

game. Communication is also a crucial factor in cooperation. If

team members are to cooperate quickly and ef®ciently, they need to

employ all communication channels possible. As pointed out in

the previous chapter, this requires truly intelligent agents. In our

embodied perspective, such agents will have passed the ultimate

test for intelligence when the agent team wins a basketball game

against the human team (®gure 19.4).

Points to Remember
1 A theory of intelligence should answer the following question:

given an agent, an animal or a human, that exhibits certain behav-

iors, what are the underlying mechanisms?
1 The elements of a new theory of embodied intelligence are (a) the

three constituents: complete agent, desired behaviors and task, and
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ecological niche, (b) diversity-compliance trade-off, (c) frame-of-

reference, (d) time perspectives, and (e) the design principles of

autonomous agents.
1 The embodied cognitive science framework implies a shift in focus

from information processing to embodiment and sensory-motor

coordination. This in turn opens up new perspectives on how to

design experiments, for example, on mental rotation.
1 Perceptual and motor abilities are prerequisites for intelligence:

without a body to perceive and interact with the world, true in-

telligence cannot develop. Processes like thinking or intuition

emerge from and are grounded in the interplay between perceptual

and motor systems. The implication for intelligence testing is that

new measures that take the system-environment interaction into

account have to be developed.
1 The increasing amount of time we spend interacting with virtual

objects on the Internet should be compensated by appropriate

experiences with the real world. This is particularly important in

education. As schools and universities are being connected to the

Figure 19.4 A team of robotic agents playing basketball against a team of humans. In contrast to
figure 1.1, in which a human plays against a computer that runs a chess program in
a virtual world, the humans in this figure are playing against embodied agents. (Only
one player of each team is shown.)
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Internet, and our children spend a signi®cant number of hours in

cyber space rather than in physical space, it will be necessary to

think about and implement appropriate compensatory actions.
1 From an embodied cognitive science perspective autonomous

agents will have passed the ultimate test for intelligence if a team of

arti®cial agents team wins a basketball game against a human team.

Further Reading
Turkle, S. (1995). Life on the screen: Identity in the age of the Internet. New York: Simon &

Schuster. (A discussion of the in¯uence of the Internet on the society at large with a

focus on how it changes our identities.)

Chapter 19 644



Glossary

action: This term has several meanings: (1) In many disciplines, the term
``action'' denotes the output of the perception-action system. (2) In psy-
chology, an action is always related to an anticipated resultÐa goalÐand
to an intention to reach this goal. In other words, the term ``action'' always
refers to a goal-oriented action. (3) In autonomous agents research,
``action'' is used in two ways, (a) as a synomym of ``behavior,'' and (b) to
denote internal modules, typically in the context of the ``action selection.''
(4) In machine learning, an action is an operator that changes the state of
the environment; a reinforcement signal communicates the value of this
state transition to the agent. In this book, the sense in which the term is
used is always explicitely given.

action selection: The process of selecting a particular action for execution
from a given set of possible actions, depending on the current situation and
context, as well as the internal state of an autonomous agent.

active forgetting: A process by which forgetting takes place only if the agent
learns something new at the same time. In the absense of any interaction
with the real world, the agent does not forget.

active sensor: A sensor that acts upon the environment in order to receive
a signal. Contrasts with passive sensors. Typical example: an Infrared
sensor.

actuator: A mechanical device for moving or controlling objects such as
limbs, wheels, and body parts.

adaptation: Maintaining a given structure under varying environmental cir-
cumstances. In biology, four types are usually distinguished: (1) evolu-
tionary, (2) physiological, (3) sensory, and (4) adaptation by learning. In the
context of evolution, adaptivity refers to the change of a trait due to muta-
tion and favored by natural selection.

agent: The term is used in many ways. (1) As an umbrella term if no dis-
tinction between humans, animals, and robots is intended. (2) To designate
an animated creature in cyberspace. (3) To distinguish a certain type of
simulation model (agent simulations) from others. In agent simulations,
agent and environment are modeled separately and have independent
dynamics. Agents acquire information about the environment only through
their (simulated) sensory systems. (4) In the context of the Internet, to
describe programs (software agents) that perform a certain service for a
user, typically information retrieval.

algorithm: A step-by-step procedure for solving a problem, especially a for-
mal problem. In this book, we are interested in algorithms that can be
implemented as computer programs.

alleles: Alternative expressions of one and the same gene. For instance, a
gene for eye color has the alleles ``brown,'' ``blue,'' ``black,'' etc.



analytic approach: An approach, ubiquitous in all sciences, in which the
object of investigation is separated into component parts that are thenÐin
the empirical sciencesÐinvestigated experimentally. The term is used
here to contrast with the synthetic approach (see synthetic methodology).

arti®cial intelligence: Discipline that seeks to understand natural intelligence
and to build intelligent systems.

arti®cial life: The study of man-made systems that exhibit behavior charac-
teristic of natural living systems. It locates life-as-we-know-it within the
larger picture of life-as-it-could-be. (cf. Langton 1989, p. 1)

augmented ®nite state machine: A ®nite state machine with delay elements
determining how long the machine resides in each state. Augmented ®nite
state machines are used in the subsumption architecture.

arti®cial neural network: Abstract computational model inspired by the
architecture of the brain.

associative learning: A type of learning in which the agent learns about the
relationship between two stimuli or between a stimulus and a response.
Associative learning includes most forms of learning used in the ®eld of
autonomous agents. It includes value-based learning.

attractor: A con®guration in state space that is stable under the given
dynamics. The most important types are point attractors, limit cycles, and
chaotic attractors.

autonomy: Highly involved; no generally accepted de®nition available.
Roughly, freedom from external control; the concept must be viewed rela-
tive to an external ``controller.''

autonomous agent: An agent that has a certain independence of external
control.

back-propagation: A supervised learning procedure for multilayer feedfor-
ward networks Minimizes error between desired and actual output using a
gradient method.

behavior: What an autonomous agent is observed doing. Always the result
of an interaction of an agent with its environment.

behavior control: Set of mechanisms that determine the behavior in which an
agent will engage.

behavioral economics: The study of the behavior of autonomous agents by
assuming that they obey the principles of macroeconomics. An agent's
behavior is determined on the basis of consequences of actions in terms of
utility or costs implied by taking the action.

behavior-based robotics: The term has a narrow and a broad use: (1) Narrow:
approaches to robotics employing variations of the subsumption architec-
ture. (2) Broad: designates the whole ®eld embodied cognitive science, or
New AI (in contrast to traditional AI).

behaviorism: Important orientation in psychology during the ®rst half of this
century that explains behavior in terms of stimulus-response relationships.
The most famous example is Pavlov's dog, which initially salivated only at
the presentation of food; it was conditioned to salivate at the sound of a
bell.

binary threshold: Designates a particular type of node in an arti®cial neural
network. If the summed input exceeds a certain threshold, the neuron
becomes active (activation level 1), otherwise its activation level is 0.
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Braitenberg vehicles: A series of vehicles of increasing degrees of complexity
illustrating fundamental principles of behavior. Originally invented as
thought experiments by the neurobiologist Valentino Braitenberg, who
used them, among other things, to illustrate how simple systems can lure
observers into attributing cognitive and emotional capacities to mindless
machines.

bus: An electronic device for transmitting data shared between the various
components of an information processing system.

category error: In the agent context, the attempt to reduce behavior to
internal mechanism only.

central pattern generator: A neural circuit that produces rhythmic behavior in
the absence of sensory feedback.

Chinese Room: A thought experiment by Searle. He argues that it is possible
to build a system which shows plausible input-output behavior, answering
to questions in Chinese without any understanding whatsoever. There has
been a great deal of argument in the literature as to whether the Chinese
Room argument is sound.

chromosome: A structure contained in every cell of the organism that holds
strings of DNA, a macromolecule that serves as a ``blueprint'' for the
buildup and functioning of an organism. A chromosome can be conceptu-
ally divided into genes.

circadian cycles: Periodic changes of environmental conditions that recur
once per day. Typical examples are changes in temperature and lighting
conditions over a period of one day.

classical conditioning: An experimental procedure in which a conditioned
stimulus (CS), which is, at the outset, neutral with respect to the uncon-
ditioned response (UR) is paired with an unconditioned stimulus (US) that
reliably elicits the unconditioned response. After a number of pairings the
CS will elicit, by itself, a conditioned response (CR) which is very much
like UR. In Pavlov's classic experiments, the neutral CS (a bell) was paired
with a US (food) that reliably produced UR (salivation). After some trials
the bell was suf®cient to produce salivation (the CR).

cognitive science: The interdisciplinary study of the mind. Disciplines
involved in classical cognitive science are computer science/arti®cial
intelligence, psychology, neuroscience, philosophy, and linguistics. In
embodied cognitive science, biology in general and engineering also play
an important role.

cognition: Various de®nitions of this term exist in the literature. The most
widespread use is as a descriptive term for the large class of so-called
higher-level processes, that is, processes not directly driven by the sensory
and motor systems.

cognitivistic paradigm: Paradigm that claims that the mind can be studied at
the level of algorithms, without any need to study its physical realization.

complete agent: An agent that is autonomous, self-suf®cient, embodied, and
situated.

compliance: There are two meanings of this term: (1) Conforming to
requirements (e.g., physical laws). This is the meaning intended in the
diversity-compliance trade-off. (2) The ability of an objectÐoften a limb of
a robotÐto yield elastically when a force is applied. This is the meaning
intended, for example, when talking about a compliant arm.
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computational neuroethology: See neuroethology.

connectionism: A research paradigm that uses neural networks to model
phenomena from the ®eld of cognitive science. The main underlying belief
in connectionism is that intelligent behavior is based on massively parallel
control architechtures.

contralateral: Term used by biologists to designate ``on the opposite side.''

control architecture: Structure that determines the agent-environment cou-
pling, that is how the sensory and motor signals are processed to produce
behavior. In natural agents, control architectures often refer to the structure
of the neural substrate; in arti®cial agents, speci®cally designed arti®cial
neural networks are often used for this purpose.

cross-modal association: Association of sensory signals from different sensory
modalities.

crossover: The main operator used in arti®cial evolution for generating off-
spring from two parents. It works through choosing an insertion point and
exchanging the string on one side with the corresponding string of the
other parent.

degrees of freedom: Number of components that can be independently
moved. A robot with two independently driven wheels has two degrees of
freedom. If a gripper is added that independently controls the elevation
and the opening of the hand, the robot has four degrees of freedom, two
from the wheels and two from the gripper, which controls two different
movements.

dendrite: Fine extension of the cell body of the neuron through which the
neuron receives signals from other neurons.

dexterity: Skill and ease in ¯exibly using the hands. Applies also to body
movements in general.

dimensionality (reduction of): Refers to the number of variables, the ``dimen-
sions,'' that make up a system. There is a reduction of dimensionality when
correlations are present in the data. Dimensionality reduction can, for
example, be achieved by sensory-motor coordination.

diversity-compliance trade-off: Generation of diversity while complying with
the givens of the system. Represents a compromise between, on the one
hand, generating new behavior, and on the other, conforming to existing
conditions. Similar trade-offs are exploration-exploitation (in the evolu-
tionary algorithms literature), and stability-¯exibility (in the neural net-
works literature).

domain ontology: A systematic listÐa vocabulary if you willÐof the funda-
mental categories, relations, and operators that can be used in the design of
a system.

dynamical system: Generally speaking, a system that changes over time.
mathematically speaking, a set of differential equations that describe the
change of state variables as a function of themselves. Formally, a dynam-
ical system can thus be represented as dxi=dt � f �xi�.
dynamics: Three usages are common: (a) Anything that changes over time.
(b) A mathematical discipline that studies a certain class of differential
equations that include time. (c) Term used by roboticists to distinguish
geometric problems from those involving physics (such as forces, gravity,

Glossary 648



inertia, friction, and stiffness of the springs or muscles), the latter being the
type that would be said to involve ``dynamics.''

ecological niche: The ecological niche for an animal is the range in each
variable in its environment, such as temperature, humidity, and food
items, within which a species can exist and reproduce. In the case of
autonomous robots, the term ``reproduce'' has to be replaced by ``survive in
the market.'' Niche occupancy usually implies competition (when animals
of different species use the same resources).

EBA: See Extended Braitenberg Architecture.

ecological balance: Balance in complexity among an agent's task environ-
ment and sensory, motor, and neural systems.

effector: In the context of this book, typically a muscle or motor controlled
by the (arti®cial or natural) nervous system.

embodiment: A term used to refer to the fact that intelligence cannot merely
exist in the form of an abstract algorithm but requires a physical instantia-
tion, a body. In arti®cial systems, the term refers to the fact that a particular
agent is realized as a physical robot or as a simulated agent.

embodied cognitive science: What this book is all about: The relatively diverse
interdisciplinary ®eld of research that aims at explaining the mechanisms
underlying intelligent behavior. There are three main goals of embodied
cognitive science: (1) building an agent for a particular task or a set of tasks,
(2) studying general principles of intelligence, and (3) modeling certain
aspects of natural systems, i.e., humans or animals.

emergence: As used in the ®elds of embodied cognitive science and arti®-
cial life, the term typically has a positive connotation. (a) A surprising
property of a system that is not fully understood. (b) A property of a system
not contained in any one of its parts. Requires many compoments whose
behavior is based on local rules. This is the typical usage in the ®eld of
arti®cial life, dynamical systems, and neural networks. (c) Behavior that
arises from the agent-environment interaction. The term is normally used
whenever several, independent processes interact to produce a particular
behavior and the environment plays a signi®cant role. Contrasts with pre-
planned behaviors, like a trajectory of a hand that has been precalculated
by a planner.

EQ test: Test for ``emotional intelligence.'' Includes the following areas:
Recognizing emotions, using emotions, understanding emotions, and reg-
ulating emotions.

evolutionary algorithm: An umbrella term that includes various types of algo-
rithms that are, in one way or another, inspired by natural evolution.
It includes genetic algorithms, evolutionary strategies, and evolutionary
programming.

evolutionary robotics: Branch of robotics in which methods from arti®cial
evolution are used in design.

exploration-exploitation trade-off: Net bene®t or loss resulting from the com-
bined advantages and disadvantages of exploration on the one hand and
exploitation on the other. Used in the context of search procedures in
general and in the ®eld of arti®cial evolution in particular. Designates the
idea that a solution that seems worthwhile to pursue in a particular situa-
tion may turn out to be globally suboptimal. Thus it is important to pre-
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serve diversity in the search procedure; however, if too much diversity is
maintained, convergence to stable behavior will be slow or will not be
achieved at all.

expert system: Problem-solving system based on classical AI techniques.
The view underlying expert systems is that knowledge can be extracted
from humans and stored in a computer, that is, an expert system.

Extended Braitenberg Architecture (EBA): Architecture that instantiates the prin-
ciple of parallel, loosely coupled processes.

®tness: In biology: (a) The probability that the organism will live to repro-
duce (viability); (b) a function of the number of offspring the organism has
(fertility). In arti®cial evolution: The value of the ®tness function for a
particular individual.

®tness function: In arti®cial evolution, a function that evaluates the perfor-
mance of a phenotype. Used as an optimiziation criterion. Individuals with
high ®tness have a high probability of being selected for reproduction.

foraging: Behavior associated with the harvesting of food. It includes
searching, recognizing, handling, and consuming.

foveal vision: Vision taking place in or affected by the fovea, that is, the
center of the retina. Typically high-resolution vision. The term is used in
opposition to ``peripheral vision,'' in which the resolution is lower but
motion detection is better.

FPGA (®eld programmable gate array): A device used to con®gure logic circuits
within a fraction of a second. Rather than only simulating it, the FPGA
physically constitutes the circuit.

frame-of-reference problem: Conceptualizing the relationship between the par-
ticipants in the design process, namely the subject to be observed, the ob-
server, the designer, the artifact (i.e., the computer program or the robot),
and the environment.

frame problem: Roughly speaking, the frame problem refers to the issue of
how, in a continuously changing environment, the model can be kept in
tune with the real world.

Fungus Eater: A complete, embodied, autonomous, self-suf®cient, situated
agent. The term ``Fungus Eater'' was coined by Masanao Toda (1982). In his
story, Fungus Eaters were sent to a distant planet to collect uranium ore,
necessitating that they had to be autonomous and self-suf®cient (since they
would be well beyond the direct control of humans).

functionalism: As used in this book, this view endorses, in essence, a dis-
tinction between hardware (or wetware, in the case of a brain) and soft-
ware. Take care, however: This term is used very differently in different
scienti®c disciplines.

gene: Parts of the DNA molecule that direct the synthesis of particular
proteins, which in turn are essential in the building up and functioning of
an organism. Certain end results of such processes are recognizable as
traits (for instance, eye color).

genetic algorithm: A special class of evolutionary algorithms originally pro-
posed by Holland.

Genome: The entire collection of genetic materials; the totality of the
genes possessed by an organism. The genome consists of one or more
chromosomes that contain the individual genes.
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genotype: Refers to the particular set of genes contained in a genome, that
is, an individual's genetic constitution.

grandmother cell: Hypothetical neuronal cell that becomes active if an object
or person, for example, ``my grandmother,'' is recognized.

goal: In the context of classical arti®cial intelligence and folk psychology,
a symbolic representation of a desirable state of affairs that differs from the
state that is currently accessible through the sensory system. In embodied
cognitive science, a set values or region of values the agent tries to achieve.

habitat constraint: Term introduced by Horsewill to designate constraints
that hold in a particular environment. For example, of®ce ¯oors are ¯at,
and most objects stand on the ground; this is the ``ground plane con-
straint.'' In this book such constraints are referred to as constraints of the
ecological niche.

haptic: Relating to touch.

Hebb rule, Hebbian learning: In the area of arti®cial neural networks, a
rule stating that if two neurons are simultaneously active, the connection
between them is reinforced.

Homunculus: Literally: Little man. A term whose main use is to criticize
circular accounts of psychological processes that ascribe to some internal
mechanism (the homunculus) the very psychological properties which
were being investigated in the ®rst place. For example, a theory of vision
which says that there is within the brain a mechanism that scans, views, or
inspects images on the retina refers to a homunculus.

Hop®eld net: Fully interconnected neural network, typically with symmetric
connectivity. Many variations on the basic network exist.

information processing metaphor: A position that views intelligence as being
the result of information processing: An input is somehow processed, gen-
erating an output. Classical AI and cognitive science, in particular cogni-
tive psychology, endorse an information processing perspective.

infrared (IR) sensor: Active sensor that sends out a signal (infrared light) and
measures the intensity of the re¯ected signal.

intelligence: No generally accepted de®nition exists. The term is used to
describe complete agents (agents that are autonomous, self-suf®cient,
embodied, and situated) that resolve the diversity-compliance trade-off in
interesting ways. Intelligence must always be seen with respect to a par-
ticular ecological niche.

ipsilateral: Term used by biologists to designate ``on the same side.''

IQ test: General intelligence test, originally invented to see whether certain
children would be better off in a special school. Was later turned into a
general intelligence test, claiming to measure a general intelligence factor
``g''. Controversial because many people now believe that something
as complex as intelligence cannot be reduced to a single number, the IQ.
Another source of controversy concerns the extent to which the IQ is
genetically predetermined or changeable by education.

IR sensor: See infrared sensor.

kinesthetic sensors: An umbrella term encompassing the sensors providing
signals from muscles, tendons, and joints (forces, angles).
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knowledge-based approach: Relates to the cognitivistic paradigm. The knowl-
edge-based approach assumes that knowledge can be formalized and stored
in a computer program. It is exempli®ed by the physical symbol systems
hypothesis.

Kohonen map: Large class of nonsupervised neural networks that map a
high-dimensional space onto a low-dimensional one while preserving the
topology (i.e. neighboring points of the ®rst space are mapped onto neigh-
boring points in the second). Often the term self-organizing map, or self-
organizing feature map, in used to indicate that no a priori knowledge of
the categories is required.

Lamarckism: Evolutionary hypothesis that proposes the inheritence of
acquired traits.

lateral: Term used by biologists to designate ``on the side.'' See ipsilateral,
contralateral.

leaky integrator: An arti®cial neuron whose activation does not instan-
taneously decay but decays at a particular rate. It thus contains a certain
amount of information about the past.

linear threshold unit: A type of model neuron that becomes active if the sum
of its inputs exceeds a given threshold value.

low-level speci®cation: Designer commitments concerned with the physical
setup of the agent, its body, sensory, and motor systems.

map (neural): A number of connected neurons that have the same or a simi-
lar functionality.

Markov (decision) process: Process in which the current state of a system
depends solely on the immediately preceding state of the system. This
implies that given the present state, the future of a system is independent
of its past.

matched ®lter: Biological term for sensory systems that react only to a small
portion of a possibly complex physical stimulation (e.g., they react only to
selected frequencies), rather than ``analyzing'' the complete stimulation
and then selecting the part to which they will react.

means-ends analysis: A process by which an operator or action is chosen on
the basis of how much it reduces the distance to the desired goal. Used for
goal-oriented systems.

MIT: Massachusetts Insitute of Technology. A famous university in Cam-
bridge, Massachusetts, with a strong focus on science and engineering.

morphology: Form and structure of an agent. Includes the positioning of the
sensors on the agent.

neural network: Networks composed of either natural or arti®cial neurons
Ð``brain cells.'' Natural neural networks correspond to the network of
connected neurons in animals, whereas arti®cial ones are simpli®ed formal
models thereof. Arti®cial neural networks are widely employed in the ®eld
of cognitive science and also applied in physics, optimization, control,
time series analysis, signal processing, and pattern recognition.

neuroethology: Studies the neurobiological mechanisms underlying behav-
ior. Computational neuroethology develops computational models for
these mechanisms.
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neuromorphic engineering: The scienti®c discipline that is modeling neural
systems using analog VLSI technology. Rather than just simulating neural
processing, this techology uses the actual physical processes on the chip to
represent the neural signals.

noise (noisy channel): Broadly, any disturbance interfering with the operation
of a device or system. Also, irrelevant or meaningless data transmitted
along with the desired signals.

nonassociative learning: In nonassociative learning, the subject learns about
the properties of a single stimulus. Its most important phenomena are
habituation and sensitization.

nonparametric (statistics): Branch of statistics dedicated to the development of
tests that hold no assumptions about the frequency distribution of the data.
Also called ``distribution-free'' statistics.

nonsupervised learning: A class of learning algorithms that require no prior
knowledge of the functions to be learned.

object invariance (object constancy): General term used for the tendency that
objects can be recognized under wide variations in viewing conditions
(such as color, brightness, distance, size, and form).

Occam's razor: A generally accepted principle in the philosophy of science.
It states that the most parsimonious model/explanation is the best.

olfactory: Relating to smell.

ontology: See domain ontology.

operant conditioning: A type of conditioning in which the reinforcement is
given only if the organism is emitting the desired response (like pressing a
lever). Contrasts with classical conditioning, in which the ``reinforcement''
(the UCS) is given irrespective of the organism's response.

optical ¯ow: The apparent motion of brightness patterns as a camera or an
eye moves.

orienting response: Behavior in which the agent positions itself to get optimal
sensory stimulation. A common example is turning head and eyes toward a
source of noise.

paradigm: A particular set of explicit or implicit assumptions within which
research is conducted.

parametric (statistics): Statistical tests and models that depend on the speci®c
probability distribution of the variables considered. Such distributions are
described by parameters such as mean, variance, and covariance.

parsimonious: Used in the philosophy of science to characterized explan-
ations and models that employ a minimum number of assumptions and
concepts. The most parsimonious explanation is typically favored in sci-
enti®c explanations and models. This principle is also known as Occam's
razor.

passive sensor: A sensor that receives signals from its environment without
acting upon is. Typical example: Standard camera.

PDL (Process Description Language): A programming language that implements
the idea of parallel, loosely coupled processes.

perception: Awareness of the elements of the environment through physical
sensation. This is the standard de®nition. It involves the problematic
notion of awareness, which implies the homunculus problem.
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phase space: See state space.

phenotype: Actual physical appearance of an organism as a result of a
process of development during which the genotype interacts with its
environment.

plan: A sequence of operations that will get an agent from an initial state
to a goal state (Newell and Simon 1972). Similarly, Miller, Galanter, and
Pribram (1960) use the term to refer to hierarchical processes in the organ-
ism that can control the order in which a sequence of operations is to be
performed.

Physical Symbol Systems Hypothesis (PSSH): Empirical hypothesis established by
Newell and Simon (1976) that states that a physical symbol system is a
necessary and suf®cient condition for general intelligent action. Examples
of physical symbol systems are rule-based systems (popular in the early
days of AI), or more generally, computer programming languages like Pas-
cal or C.

principle of rationality: See rationality (principle of).

propagation rule: A rule characterizing the way activation in a neural
network propagates through the net, including temporal characteristics
(how long does it take for the activation to travel across a link, or a synapse;
how much activation is lost along the way and across a synapse). Typi-
cally, a synchronized regime is assumed, in which it takes exactly one time
step to traverse a link.

propositional representation: Representation consisting of a set of logical prop-
ositions like ON(CUP, TABLE), which represents the fact that the cup
stands on the table. Most representations used in classical AI are of the
propositional type.

proprioception: A general term used to cover all those sensory systems that
provide information about the body itself (from kinesthetic sensors or from
the inner ear).

proximity: ``nearness'' to an object. Proximity is the opposite of distance: if
something is said to have high proximity to something else, this means that
the two objects are very near one another.

proximity sensor: A sensor measuring proximity, that is, ``nearness'' to an
object. Equivalent to a distance sensor.

Q-learning: One of the most widely used variants of reinforcement learning.
In Q-learning the agent incrementally learns an action-value function
Q�s; a� that it uses to evaluate the utility of performing action a in state s.
Q-learning leads to optimal behavior, i.e., behavior that maximizes the
overall utility for the agent in this particular task environment.

range sensor: A sensor of measuring distance.

rational behavior: Behavior ful®lling the following four basic requirements:
incompatibility of activities (activities are mutually exclusive), common
currency, consistency, and transitivity of choice.

rational thought: Thought that obeys the principle of rationality.

rationality (principle of): If an agent has a goal and the knowledge that a par-
ticular action will get him closer to the goal, under the principle of
rationality, it will choose that action.
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recategorization: Categories continuously change; they are dynamic. It is
therefore more useful to talk about recategorization rather than catego-
rization (which would suggest static categories).

recurrent network: A neural network with loops, that is, connections that are
not exclusively feed-forward. Recurrent networks retain a certain amount
of information about their past.

redundancy: Generally, whatever can be omitted without signi®cant loss of
functionality is said to be redundant. Applied to the transmission of mes-
sages across information channels, it designates that part of a message that
can be eliminated without loss of information. Redundancy is a prerequi-
site to achieve robust, adaptive behavior.

reentrant connections: Used in particular by Edelman to designate massively
recurrent connections in aÐbiological or arti®cialÐneural network (cf.
recurrent network). To be distinguished from feedback loops, where error
correction is the main purpose.

reinforcement learning: Generally, learning processes based on receiving
a reinforcement signal if a behavior sequence has been successful. In
machine learning, the reinforcement signal is typically given by the envi-
ronment; in value-based learning, by the agent's value system.

retention period: Term used in the literature on memory to designate a
period over which an item can be stored in a particular memory type (such
as an iconic buffer, short-term memory, long-term memory).

scaling problem: The term ``scaling'' is used in different ways, leading to a
number of different interpretations of the term ``scaling problem.'' The
most common are (1) the fact that the sensory stimulation from a particular
object varies greatly, depending on orientation, distance, and lighting con-
ditions, but the visual system is capable of identifying images registered
through this variety as being one and the same object (see also: object
constancy); (2) the question of whether a phenomenon that has been dem-
onstrated in a simple system also applies to larger, more complex ones; (3)
(similar to point 2) the question of whether something that has been shown
in a simple robot or simple animal also applies to human-level intelli-
gence; (4) the issue of whether something that has been demonstrated in
simulation will work on real robots.

schema: Used in many different, typically relatively vague ways. Examples:
(1) A memory structure in classical AI and cognitive science. (2) In Bar-
tlett's view, an active organisation of past reactions, or of past experiences,
which must always be supposed to be operating in any well-adapted or-
ganic response (Bartlett 1932) (3) More speci®cally, a motor schema is the
basic unit of motor behavior from which complex actions can be con-
structed (Arkin 1993).

self-organization: A process by which patterns are formed in systems con-
taining a large number of elements. A distinction is made between self-
organization without structural changes the standard use of the term, and
self-organization with structural changes. Self-organization without struc-
tural changes is completely reversable: given the same conditions, the
system will always show the same patterns. This is in contrast to self-
organization with structural changes. The latter is of special importance in
the study of intelligence.
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self-organizing (feature) map: See Kohonen map.

self-suf®ciency: An agent is said to be self-suf®cient if it is capable of
sustaining itself over extended periods of time.

sensory-motor coordination: Coordination of sensory and motor systems to
perform a particular task. Coordination implies that the motor system is
in¯uenced by the sensory stimulation: Merely turning on the spot or hitting
an obstacle is not a sensory-motor coordination. Sensory-motor coordina-
tion leads to structured inputs that can be exploited for learning.

sigmoid (logistic) function: In the neural network literature, a frequently used
activation function, similar to a threshold function, but ``rounded off'' at
the corners. For values far below threshold, it is 0; for values far above
threshold, 1. It rapidly changes near the threshold value.

situated agent: An agent is said to be situated if it acquires information
about its environment solely through its sensors in interaction with the
environment. A situated agent interacts with the world on its own, without
an intervening human. It has the potential to acquire its own history, if
equipped with appropriate learning mechanisms.

situatedness: A term used to characterize the essential quality possessed by
a situated agent.

SMC models: Models used speci®cally to investigate the concept of sensory-
motor coordination.

state space: In dynamical systems, the mathematical space with each
dimension representing a variable needed to specify the system's state.

subject: A person or animal studied in an experiment.

subsumption architecture: As used here, a particular type of architecture for
autonomous agents, championed by Rodney Brooks, based on the idea of a
large number of parallel, loosely coupled processes connecting sensors to
actuators with relatively little internal processing. Not to be confounded
with the term ``subsumption'' as used in logic.

supervised learning: A large class of learning algorithms, especially in the
neural network literature. During supervised learning, the network is given
prede®ned input-output pairs where the output represents the category
onto which the input is to be mapped (the desired output). Thus a priori
knowledge of the categories to be learned is required. Learning is achieved
by comparing the actual output of the network to the desired output.

symbol-grounding problem: The problem of how symbols acquire meaning and
of how they are grounded in an agent's experience.

synthetic methodology: A methodology that seeks to understand by building.
It is typically applied in a bottom-up way: First simple systems are built
and explored, then their complexity is successively augmented if required
to achieve the desired behaviors.

systems theory: Approach that seeks to understand a system's behavior by
considering the mutual effects that the variables exert on each other.

task: As used in a design context, the designer's perspective on what the
agent should accomplish. A task is accomplished by a set of behaviors.

task environment: Term used to designate an autonomous agent's task and
desired behaviors as well as its ecological niche.
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TNGS (Theory of Neuronal Group Selection): A theory concerning the development
of brain structures that applies principles of evolutionary theory (selection)
to ontogenetic development. The term somatic selection is also used.

tit-for-tat strategy: A game theoretical strategy in which individuals keep
track of passed interactions and pay back services (in return) only to those
from whom they have received favors.

top-down approach: Approach that decomposes the system under investiga-
tion into parts, which are then studied separately.

transitive closure: The set of all states generated by applying all possible
rules to all possible states.

Turing test: An empiricial test for intelligence. Roughly, the test's goal is to
®nd out whether a computer program whose intelligence is to be assessed
can be distinguished from a human. The interaction is mediated via a
computer connection to exclude visual and auditory information that
might help in the distinction.

unsupervised learning: See nonsupervised learning.

value-based learning: A form of learning in which the agent, via a so-called
value system, provides its own reinforcement. We view this as a kind of
self-organization with structural changes.

value system: Value systems are assumed to be basic evolutionary adapta-
tions that de®ne broad behavioral goals in terms of their consequences. In
other words, they are very general biases that are supposed to be the heri-
tage of natural selection. More concretely, value systems modulate learn-
ing. This modulation can be explicit or implicit. Explicit value system:
Based on the consequences of behavior, signals (e.g. neural, hormonal) that
modulate learning are generated. In neural network±based architectures,
the modulation concerns change in synaptic strength. Implicit value system:
Mechanisms that select interactions with the environment for learning that
lead to increased adaptivity. Re¯exes are examples of implicit value: They
increase the probability of obtaining explicit value.

visuomotor loops: Direct couplings between visual and motor processes. A
primary example is eye movements.

VLSI (Very Large Scale Integration) technology: Standard technology used
in today's digital computers. Analog variants are used in neuromorphic
engineering.

von Neumann machine: Two main ideas underly the von Neumann machine:
storing the program together with the data in main memory, and sequential
execution of instructions. Today, most computers are, in essence, still von
Neumann machines, though even in regular PCs there is a certain level of
parallelism.

wheel encoders: Sensors measuring the angle how much a wheel has turned.
This measurement can be used to measure distance traveled (given that the
radius of the wheels is known) and the speed of the turning wheel, if used
with a clock. Wheel encoders are often implemented simply by optical
means.

XOR problem: Exclusive OR: a logical function of a and b. The function is
true if a or b, but not both, are true. It is false if either both are true or both
are false. XOR is harder for an agent to learn than the normal logical OR
(because it is not linearly separable).
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intelligence, 199, 218, 224, 306, 313, 327

memory, 517, 520

in NETTalk, 171, 172

of novel neural activity patterns, 528

in subsumption architecture, 199±200,

218, 224

Emotion, 11, 324, 625, 627, 641

Emotional intelligence, 11, 14, 32

Empirical testing, 324

Encoding scheme, 235±236

Entropy, 453, 465

Environmental pressure, 459, 466

Epigenetic, 402

EQ, 14 (see also Intelligence, emotional)

Ethology, 265, 343

Evaluation, 577±605

agent, 578±585, 601±602

agent evaluation criteria, 578, 601

external standard, 598, 602

Evolution, 190 (see also Arti®cial

evolution)

Darwinian, 190, 228

entire agents, 628

hardware, 255, 258±260

in simulation, 273

staged, 272, 273

strategy, 228

Evolutionary

algorithm, 228, 564, 565, 567

considerations, 84±85

methods, 236±240, 275

principles, 221

process, 232, 275

robotics, 229

Exemplar in categorization models, 380±

381, 522 (see also ALCOVE)

Experiments

agent (see Agent, experiment)

exploratory, 590, 591, 602

con®rmatory, 590, 591±592, 602

pilot, 591

Exploration (see Object exploration)

Exploration-exploitation trade-off, 239,

249

Extended Braitenberg Architecture (EBA),

181, 195±196, 198, 330, 350±354, 376,

609

contrast to Action Selection Dynamics,

352

for garbage collector, 357, 358, 360±374

for SMC I agent, 411

Eyewitness testimony in memory research,

514

Facette (in insect eye), 439, 553

Face robot, 641, 642

Facial expression, 641, 642

Factor g, 12, 32

Fault-tolerance, 63, 139

Feature correlation, detection, in Theory of

Neuronal Group Selection, 403±404

Feature dimension in ALCOVE, 381

Feature map

in Darwin II, 404

haptic, 419

in SMC II, 429, 430

topology-preserving (see Kohonen map)

visual, 419

Feedforward network, 150 (see also Neural

network)

Field Programmable Gate Array (FPGA),

258, 259

Finite state machine, 205±206, 491, 564,

565, 566, 567

Fitness, 235, 239, 246, 252, 256, 257, 275

in categorization task, 397, 398

criterion, 291 (see also Fitness, function)

function, 244, 254, 257, 259, 272, 573

and value, 499

Fitness function design, 272, 273

Fixed threshold model of behavior control,

289

Flocking, 260±263, 305, 625

local rules, 261

robots, 260, 276

Foraging, 85

Forgetting

active, 163

mechanism, 166

rate, 161

Formal game, 59

Four point path, 517, 636

Four whys, 130

FPGA (see Field Programmable Gate

Array)

Frame, 67

Frame grabber, 595

Frame problem, 65±69, 77

Frame-of-reference problem, 79, 81, 82,

164, 194, 202, 203, 263, 285, 292

in autonomous agent design, 112±117,

137, 633, 643
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Frame-of-reference problem (cont.)

in categorization, 387

in memory research, 511±516, 530, 533

Free will, 375

Frequency histogram, 597, 602

Functionalism, 39, 42, 43, 57 (see also

Cognitivistic paradigm)

Functional decomposition of behavior,

201, 375

departure from, 221

Functional perspective for explanation of

behavior, 130

Functional requirements in design, 539

Functional segregation, 461, 462

Fungus Eater, 82±99, 135 (see also Agents,

complete autonomous)

Fuzzy logic, 564

GA (see Genetic algorithm)

Gait, 217

tripod, 217, 244

Gene, 232, 233

expression in autonomous agent, 235

regulatory, in the AES, 251, 252, 253

structural, in the AES, 251, 252, 253

Generalization ability, 63, 75, 77, 165

General problem solver (GPS), 53

Generational scheme (for arti®cial

evolution), 234, 240

Generic agent architecture (see Agent,

generic architecture)

Genetic algorithm, 228, 234±236, 237, 243,

275

for evolving neural networks, 234±236,

398, 399±401

Genetic operators, 240

Genome, 232

Genome-based cell-to-cell communication,

250±253

Genotype, 229, 332, 246, 247, 253, 275

encoding, 252

representation of, 245±246

Ghengis, 213±218

Goal, 54

based systems/designs, 55, 64, 77

directed principle, 52, 376

hierarchy, 54, 327

state in traditional planning systems,

338±340

GPS (see General problem solver; Sensors,

GPS)

Grandmother cell, 433

Grasping (see also Behavior, grasping)

emergent, 362

Group behavior

principles of, 317

Habituation, 485

Hand design, 271, 539, 563

Hannibal, 206

Hebbian learning, 152, 157±161, 167, 407,

455

for conditioning, 488, 489

in Darwin III, 497±498

in network memory, 525±527

in Nomad, 496

in SMC, 421

and value systems, 470

Helping behavior (see Behavior, helping)

Herbert, 206

Hexapod, 241

robot (see Ghengis)

simulated, 241

Hierarchical

control, 307, 327, 340

decomposition of module, 333

organization, 64, 77

Hierarchy, 328±329

of behavior centers, 343

dominance, 479±482

emergence in societies of arti®cial

chimps, 479±482

object, 328

subroutine-call, 328

High-level ontology, 117±119, 126, 134,

137, 176, 386, 557

Homeostasis, 92

Homunculus, 511

fallacy, problem, 73±74, 510, 533

Hop®eld network, 150

Horizon effect, 342

House¯y

navigation, 436, 437, 464

navigation robot, 101, 436

visual system, 436

Human-machine communication, 623±624

Humanoid (see Robot, humanoid)

Hybrid

speci®cation, 125±127, 134

system, 342

Hypothesis testing, 592, 602

of soccer-playing robot, 592

Identi®cation stage in object recognition,

384±385

Immune

network hypothesis, 354

system concepts in behavior control, 354

system formalism, 564, 565, 568

Immunoid approach to behavior control,

354±356, 376

Inclinometer, 214

Incompatibility of behaviors, 284
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Industrial design (see Design, industrial)

Information processing

approach to categorization, 378±386

approach to memory (see Memory,

information processing view)

architecture, 55

central module, 63

in the brain, 139

metaphor, view, perspective, 23, 57

psychology, 23, 36, 45, 47±56

Information

overlap, 311, 449, 465

spatial, 311

theory, 47 (see also Communication,

mathematical theory)

Insect eye (see Compound eye)

Insect walking, 105, 281, 309

evolving a controller for, 241±245

leg coordination, 309

Insect motor scheme as Extended

Braitenberg Architecture, 352

Integration scheme for process outputs,

352

Intelligence

de®nitions and characterizations, 6±12,

631±638

embodied, 92, 642 (see also

Embodiment)

emotional, 14, 32

explanation, 276

high-level, processes, phenomena, 59,

221, 329, 570, 637 (see also Cognition,

high-level)

human, 10, 20, 32, 38, 104, 612, 627,

638, 642

human-level, 223, 629

human-like, 218

multiple intelligences, 13

principles of, 26, 28±30, 99±100 (see

also Design principles, of autonomous

agents)

study, 21±30 (see also Embodied

cognitive science)

testing (see IQ test, Turing test)

theory, elements, 299, 300, 631±638, 642

traditional understanding of, 75

Intuition, 10

Invariance

and direct perception, 394

in Freeman's experiments, 523±524, 531

generation, 392

underlying memory performance, 531

Invariant properties method, 382

Ipsilateral connections, 243

IQ test, 3, 12±14, 30±31, 32, 637

and agent complexity, 563±464

embodied perspective, 637±638

IROS, International Conference on

Intelligent Robots and Systems, 263

IR sensor (see Sensors, infrared)

IS Robotics, 265

Isoutility curve, 286

JL (see Johnson-Laird's Robot)

Johnson-Laird's Robot, 48±54, 58, 332, 340

Joint entropy, 453±454, 465±466

Khepera robot, 155, 192, 255, 359, 360,

397, 427, 492, 550, 595

Kohonen map, 167, 168, 421, 490, 500 (see

also Topology-preserving feature maps)

in SMC I agent, 422±423, 427

Kohonen network (see Kohonen map)

Laboratory for social science, 269

Lamarck, 234

Language (see Natural language)

Leaky integrator, 419, 422

Learning, 9, 49±50, 545

in animals and humans, 485

associative, 166, 449, 485, 487, 488

in autonomous agents, 485±498

based on self-organization, 315, 316

category, 308

distinctions, 397

in Darwin III, 497±498

incremental, 315, 467, 486

in human infants, 308

modulation by value system, 315

nonassociative, 485

nonsupervised (see Learning,

unsupervised))

on-line, 486

phase, 488 (see also Training phase)

rate, 151, 161

reinforcement (see Reinforcement

learning)

rule in neural networks, 146, 151±152,

176

self-supervised, 315, 467, 488, 499, 500,

617

in SMC I, 417±422

supervised (see Neural network,

supervised)

supervised, in autonomous agents, 487±

488, 500

unsupervised, 167, 404, 482, 488, 500

(see also Neural network,

unsupervised)

value-based (see Value-based learning)

Legal system, in¯uence on evolution, 269

Lego, 618

bricks, 192

Limbo in behavior economics, 287, 288
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Limit cycle, 279±281, 599

in Passive Dynamic Walker, 443

Linear threshold units, 148

List learning experiment, 513

Local ®eld, 151

Local rules of interaction, 267, 276

Location recognition, 490

Locomotion (see also Walking)

design considerations, 557±558

®sh, 105, 263±265, 276

for Fungus Eater, 83

insect (see Insect walking)

Sims's creatures, 247±248, 249±250, 260

in surf zone, 620

wheeled vs. legged, walking, 546, 574,

557±558, 574

Logic Theory Machine, 36

Long-term store (see Memory, long-term)

Loser-winner effect, 481

Low-level speci®cation, 111, 117, 119±127,

132, 137, 174, 483, 556, 557, 577, 631

and arti®cial evolution, 245

and choice of platform, 548±550, 574

and complexity, 461, 463

for garbage collecting robot, 359±360

generic, 121, 154

and high-level ontology, 120, 122

and hybrid speci®cation, 134

limitation by, 135, 550

for motor system of legged robot, 122

for Myrmix, 207

redundancy, 311, 446

relation to control architecture, 331, 563

for SMC I agent, 409±410

Machine vision, 382, 431 (see also Vision,

computer)

Map building, 490

Markov

assumption in reinforcement learning,

491, 492, 500

models, 564

Markovian domains, 492

Mars Sojourner, 100, 102±103, 104, 549

Matched ®lter, 101, 310

McGurk effect, 451

McKibben pneumatic arti®cial muscles, 614

Measure

agent complexity, 454, 461

brain complexity, 454, 461, 463

Mechanism (see also Control architecture)

internal, 73, 80, 81, 90, 112, 113, 114,

302

internal, in Simon's ant on the beach, 113

Means-ends analysis, 52

Memory, 9, 50±52, 503±534, 545

accuracy-oriented approach, 514

Atkinson-Shiffrin model, 506

auditory, 508

autobiographical, 508, 514

complete agent perspective, 503, 519,

521, 525, 530, 533

connectionist models, 521

conscious, 509

declarative, 508

de®nitions, 503±505, 533

distributed, 508

dynamical systems perspective, 517,

528±529

echoic, 508

ecological approach, 516, 519±522, 525,

531, 533

embodied, 517, 520, 521

emergent from sensory-motor

coordination, 517

episodic, 508

explicit, 508, 509

¯ashbulb, 506

¯owchart model, 511

haptic, 508

human, 503±534

iconic memory, 506

implicit, 508, 509, 518

information processing view, 51, 504,

515, 530, 533

long-term, 50, 51, 506±508, 509, 522,

525

long-term visual, 506

network, 525±526, 533

olfactory, 508

primary, 506

problems of classical, information

processing notions, 506±511, 515, 530,

533

procedural, 508

as recategorization, 516, 522±527, 523,

524, 525, 529, 533

real-time issues, 528

recall, 514, 530

retention period, 506

retrieval, 37, 45, 56, 57, 504, 509, 514,

522, 529, 530

schema-based, 508

secondary, 506

semantic, 508

for sensory-motor skills, 508

storage, 45, 56, 57, 504, 505, 509, 513,

515, 516, 525, 527, 529

as stored representations, 505

as a set of skills, 505

short-term, 36, 51, 506, 522

short-term, capacity, 36

short-term visual, 506

as stored structures, 505, 533
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storehouse metaphor (see Storehouse

metaphor of memory)

structure, illustration, 52

system, 506, 532

unconscious, 509

as a wax tablet, 505

working, 506

Memory formation

mechanisms, 503

in network memory and value-based

learning, 327

self-organizing nature, 526, 527

Mental

image, 510

operation, process, 38, 337, 504, 505

rotation task, 636

Metadynamics in immunology, 356

Microeconomics, laws, 286

Mines, 618±619, 621

Model

agent vs. connectionist, 110±111

agent vs. traditional, 581, 601

connectionist, 110, 521, 580 (see also

Connectionism)

consistency, 583

internal, 73, 82, 338 (see also

Representation, internal )

object, 383, 384

world (see World, model)

Modularity, 55

principle, 332, 541

Moore's law, 585

Morpho, 571, 572

Morphological constraints, 360

Morphology, 241, 245, 246±248, 250, 275

trade-off with neural processing, 440,

608±609, 628

Motion detection, 437, 439

Motion detector, 439

elementary, 439

Motion parallax, 438, 464

Motivation, 290, 323±324, 500

Motivational

force, 469

issues in agent design, 460, 466

system, 324

Motor behavior, basic unit, 292

Motor space, 123

Motor system

choice, design, 556±561

locomotion (see Locomotion)

object manipulation (see Object

manipulation)

principles, 353

robot vs. simulation, 107

Multiagent systems, 260, 293

Multilayer perceptron (see Neural network,

multilayer feedforward)

Muscles, simulating the properties, 442

Mutation, 231, 236±237, 240, 275

rate, 236, 243

Mutual information, 453±455, 461, 466

Myrmix, 206±213

Nanotechnology, 274, 614, 171±172, 176,

488, 490±495, 500

Natural language, 9±10, 17, 19, 21, 32, 53,

75

Navigation

behavior of Cataglyphis, 28, 97, 304, 547

house¯y (see House¯y, navigation)

landmark, 547, 554, 593, 614

Nature-nurture debate, 14±15, 31, 32, 250

Near decomposability, 541

Negative feedback, 337

in TOTE model, 338

NETTalk, 169±171, 487, 499

Neural Darwinism, 474 (see also Theory of

Neuronal Group Selection)

Neural network, 75, 80, 139±177, 564±566

for adaptive behavior, 139±177

architecture, 154

arti®cial, 140±177

attractor, 529

biological, 140±143

feature analyzing, 405

feedforward, 150

layer, 149

multilayer feedforward, 150, 169, 175,

257, 440

nonsupervised (see Neural network,

unsupervised)

recurrent, 149, 257

supervised, 169±171, 176, 380

types, 167

unsupervised, 167, 176

Neural phonetic typewriter, 168, 173

Neural plasticity, 457

Neuroethology, computational, 181

Neuromorphic

engineering, 570±572, 575

sensory-motor chip, 572

Neuron

activation function, 141, 142, 148

activation level, 142

arti®cial, 140±148

average ®ring rate, 142

biological, 140±144

combination function, 141, 142

comparison of natural and arti®cial, 143

output function, 141, 142

postsynaptic, 167
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Neuron (cont.)

presynaptic, 167

spiked, 566

Neuronal groups, 402

New arti®cial intelligence (see Embodied

cognitive science)

NOAH planner, 342

Node characteristics in neural network,

147, 176

Noise tolerance, 139

Nomad, 496

Nomad_200, 550

Non-formal game, 60

Non-linear systems, 278 (see also

Dynamical systems)

Object constancy, 382, 387±389, 396, 411,

434

Object exploration, 396

haptic, 428

visual, 428

Object manipulation, 83, 458, 460, 537,

542, 546, 548, 557, 558±561, 574

Object model (see Model, object)

Object recognition, 382±386

Object recognition system, 382

Object recognizer, 359

Obstacle avoidance, 114, 166, 160±161,

199, 261, 334, 336, 348, 354, 355, 444,

546, 552, 555

in Braitenberg vehicles, 184±186

through genetic algorithm, 234±236

evolved, 273

in ®tness function, 257

learning, 154±165

and motion detection, 437±438, 439, 445

in subsumption architecture, 208±210

vision-based, 310

Occam's razor, 310, 444, 583

Olfactory bulb of rabbit, 528, 529

Ommatidia, 553

Omnidirectional camera, 553

Ontogenetic

perspective for explanation of, 128

development (see Development)

development in Theory of Neuronal

Group Selection, 402

perspective, 290

Ontology

designer-de®ned, 173, 174, 483±484

high-level, 117, 118±119, 123, 173, 386,

483

high-level, compared to low-level

speci®cation, 120, 122

Operator in STRIPS, 342

Optical ¯ow, 436, 437, 439

Orangutan, 267

Orientation behavior (see Behavior,

orientation)

Origins of life, 270

Parallel, loosely coupled processes, 25,

345, 562, 610

principle (see Principle of parallel,

loosely coupled processes)

Parsimonious design, 310, 465

Parsimony, 310, 444, 583, 602

Parts decomposition method, 383

Passive Dynamic Walker, 443, 464, 465,

614

Pattern

formation, 270

recognition by feature integration, 329

PDL (see Process Description Language)

Pemex, 619, 620

Perception, 11±12, 48±49, 431, 432,

545

and action, 101, 519

and active vision, 431, 432

in context of complete agent, 313, 457,

531, 534

de®nition of task environment, 544±545,

634

Gibson's theory, 393, 394

as information processing, 57 (see also

Vision, classical view)

and memory, 56, 504, 518, 533

research ®eld, 11±12, 91

in sense-think-act cycle, 37, 201, 393

as sensory-motor coordination, 307±308,

393, 433, 525

in theory of neuronal group selection,

402±403

visual, 545 (see also Vision)

Perceptron, 145

Perceptual features of object, 379

Performance phase, 176, 488

Perspective issue, 112 (see also Frame-of-

reference problem, in autonomous

agent design)

Phase space, 279, 528

Phenotype, 229, 232±233, 246, 247, 275

Phonotaxis, phonotactic behavior, 27, 101

in Crickets (see Cricket phonotaxis)

Phototaxis in garbage collecting robot, 358,

366

Physical symbol systems, 42±44

hypothesis, 57

Physical world, environment, simulated,

62, 106, 245

Plan, 37, 75

hierarchical, 53

plan-based systems, 72

and the structure of behavior, 37, 52±53

Subject Index 692



Planning, 337

sequence of actions, 338, 342

situated, 75, 342

systems, 63, 75 (see also STRIPS)

techniques, 342

Platform, 550, 613, 616, 618, 629

choice, 132, 137, 165, 548, 574

and low-level speci®cation, 359, 409,

548

Point attractor, 279, 599

Polarization

pattern of sunlight, 96, 547

sensor (see Sensors, polarization)

Pole balancing problem, 491

Policy in reinforcement learning, 491, 492,

500

Polly, 304, 305, 310, 212, 440, 552

Predecessor link in Action Selection

Dynamics, 348±349

Prediction problem (in the frame problem),

69, 77

Primates, 479±482

Primary repertoire, 402

Principle of cheap design, 303, 309, 310,

366, 435±445, 464, 555, 559

Principle of ecological balance, 303, 312±

315, 410, 455, 456±463, 466, 569

in sensory-motor coordination, 428

Principle of parallel, loosely coupled

processes, 303, 306, 327±376, 567, 574

in choice of sensors, 552, 555

in collective sorting, 478

Principle of sensory-motor coordination,

303, 307±308, 377±431, 433

Principle of rationality, 54, 283

Principle, value (see Value principle)

Problem solving, 8±9, 23, 46, 59, 545

Process coordination, 307, 334±337, 375,

609±610, 628

competitive, 332, 336, 293, 348, 356, 609

cooperative, 293, 332, 337, 347, 362

de®nition, 332, 375

Process Description Language (PDL), 346±

347, 376

Propagation rule, 146, 150±151, 176

Proteidae, 458

Prototype in categorization models, 380,

522

Proximate explanation, 130

Proximity layer, 156±157

Psycho-hydraulic model, 336

Puma arm, 441, 444

Purgatory in behavioral economics, 287,

288

Quali®cation problem (in the frame

problem), 69, 77

Quasiperiodic attractor, 279

Q-learning, 493, 494±495, 564, 565, 568,

569

Q-value (see Q-learning)

Rana computatrix, 293

Rational behavior, 284, 291, 295

basic requirements of, 284, 295

vs. rational thought, 285

Rational thought, thinking, 283, 291

Reactive system (see System, reactive)

Real-time processing, 63, 75, 77

Real world (see World, real)

Recategorization (see Memory, as

recategorization)

Receptor formation in the AES, 251

Recurrent connections, 402 (see also

Neural network, recurrent)

in rabbit's brain, 528

Redundancy, 311, 446 (see also

Information, overlap)

accidental, 452

in auditory system, 456±457

exploitation, 457±460, 465, 466, 484

forms, 446, 465

information theoretic aspects, 543

in low-level speci®cation, 446

principle, 166, 303, 311±312, 446±455,

465

from sensors, 166, 447, 449±451

in sensory system, 125, 446, 483, 555

in Shannon and Weaver's theory, 312,

446

temporal, 447, 448

Redundant manipulator, 458

Reentrant connections, 403, 404

in Darwin II, 405, 406

in SMC II, 429

Reentrant mapping, 402

Re¯ex

arc of behaviorism, 37

as bias, 472

built-in, 154, 156, 163

as implicit value, 315, 472

Reinforcement learning, 265

in autonomous agents, 488, 490±495

in immunoid approach, 356

in neural networks, 171±172, 176

problems and approaches, 492, 500

signal, 430, 492

Reliability, 582, 585, 598, 601, 602

Remembering, 522, 523, 525

in Freeman's model, 529

Representation

brain, 524

central, 307

internal, 60, 71, 129
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Representation (cont.)

law of, 44±45

logic-based, 70

propositional, 65

stored, 187

symbolic, 74

Reproduction, 233, 224, 236±237, 240,

249, 275

in evolution of categorization behavior,

398

Resource sharing, 334, 542, 573

Retina (see Arti®cial, retina)

Return in reinforcement learning, 494

Reward function in reinforcement

learning, 481, 494, 500

RoboCup, 546, 615, 616, 617, 620, 628,

629, 637, 642

Robot (see also Agent; Task)

applications, 618±627, 629

arm, 441, 560 (see also Puma arm)

building, 538

choice of hardware, 548±562

cooperation, 291

cricket, 28, 101, 109, 132, 133, 579

demining, 618, 619, 620, 629

ecosystem, 289±291, 459, 466

garbage collecting (see Task, garbage

collecting)

humanoid, 28, 104, 106, 218, 313, 442,

587, 613, 614, 616, 637

kits, 618, 629

learning algorithms, requirements, 486

learning methods, 617

learning paradigms, 487±498, 500

learning problem, 486±487

radioactive waste cleanup, 621, 629

real, in arti®cial evolution, 255±257

real, physical, real-world, 81

self-suf®cient, 256±257, 357±374, 441,

376 (see also Agent, self-suf®cient)

service, 622±627, 629

sewage system monitoring, 621, 622, 629

SMC (see SMC agents)

snakelike, multisegment, 622

soccer-playing, 335

soda-can collecting, 86, 87

Robustness, 63, 75, 77, 139

in aviation, 311

lack of, 63

Rudimentary organs, 457±458

Sahabot, 96, 97, 109, 553, 554, 556, 557,

579, 581, 582, 593, 599, 614, 632

Scatterplot, 597, 602

Schema, 292

memory, 508 (see also Memory)

motor, 292, 293

perceptual, 293

Schema-based approaches, 292±294, 295

Schema theorem, 240

Script, 50, 52, 67

Secondary repertoire, 402

Selection, 229, 233, 234, 236±237, 239±

240, 246, 252, 275

cumulative, 229±231

developmental, 402

experiential, 402

pressure, 269

random, 229±231, 275

rank, 239

roulette wheel, 239, 243

somatic, 402

in Theory of Neuronal Group Selection,

402

tournament, 239

Self, 611, 628

Self-organization, 265±266, 270, 467, 475±

485, 500

in agent design, 482±485

in ant colonies, 478±479

in group of Didabot robots, 475±478

and the principle of parallel, loosely

coupled processes, 357

with structural changes, 479±482, 500

without structural changes, 475±479,

500

Self-suf®ciency, 79, 81, 83, 85±88, 136,

291, 556

Self-suf®cient agent (see Agent, self-

suf®cient)

Self-suf®cient robot (see Robot, self-

suf®cient)

Sense-think-act cycle, 23, 37, 55, 56, 201,

307, 393

Sense-model-plan-act (SMPA) cycle, 201

(see also Sense-think-act cycle)

Sensitivity analysis, 583±584, 601

Sensitization, 485

Sensors

active, 86, 108, 555

choice, 550±556

collision, 154, 156, 159, 161, 166, 191,

234, 235, 311, 449±450, 489

compass, 556

design considerations, 551±552

distance, 121, 154, 397, 399, 487, 552

(see also Sensor, proximity)

force, 214

GPS, 556, 620

infrared, 86, 108, 121, 154, 257, 313, 366,

389, 418±419, 425±426, 448, 492, 551±

552, 555
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IR (see Sensors, infrared)

light, 153±154, 156±157, 163, 246, 257,

283, 290, 358

omnidirectional camera, 553

polarization, 96, 557, 561, 584

proximity, 108, 121, 154, 166, 450 (see

also Sensor, distance)

pyroelectric, 214

robot vs. simulation, 107

skin, 121, 613

sonar (see Sensors, ultrasound)

speed (see also Sensors, wheel encoders)

tactile, 246, 559

touch, 121, 152, 551

ultrasound, 121, 154, 551, 552, 555, 560

vision, 121, 550, 552, 555

wheel encoders, 121, 350, 411

Sensory buffers, 50±51

Sensory maps, 403

in recategorization, 525

Sensory-motor

complexity, 629

control, 75, 219

coordination (see Sensory-motor

coordintion)

coupling, 194, 196, 224, 330

principle of (see Principle of sensory-

motor coordination)

skill, 12

space, 123, 137, 417, 500

Sensory-motor coordination, 29 (see also

SMC agents)

for categorization and category learning,

396

characterization and purpose, 395±396

in contrast to behavior in general, 395

dimensionality reduction, 395, 432

evolved, 396±401

exploiting, 392

generation of correlations, 396

mechanism through evolution, 398

and memory, 504

structuring of sensor space, 403

and value, 469

Sensory space, 123

Sensor-actuator coupling, 224 (see also

Sensor-to-motor coupling)

Sensor positioning, 311

Sensor-to-motor coupling, 290

Sequencing of processes, 336

Sewage pipes, 621, 622

Shakey, 53, 340±342

Shape, evolution of, 250

Shaping, 472

Short-term perspective for explanation of,

128, 129

Short-term store (see Memory, short-term)

Silas, T. Dog, 625±626

Simon's ant on the beach, 112±114

Sims's creatures (see Locomotion)

Simulation, 26

agent vs. classical, standard, 110, 110±

111, 137, 580 (see also Model, agent

vs. traditional)

and real robots, 106±109, 274, 573, 574

Situatedness, 68, 71±73, 79, 81, 83, 88±91

and self-organization, 484

Situated

agent (see Agent, situated)

cognition (see Cognition, situated)

design, 556

Size constancy problem, 394

Sleeping dog strategy, 67

SMC agents, 407±431, 545, 578

for studying general principles of

intelligence, 586

SMC I, 408±427, 598

categorization behavior, 408

SMC II, 427±431

and network memory, 526

Snapshot model, 105

Soccer, 60, 61, 615

Social interaction, 28, 478, 482, 614

Social science, 267

Sojourner (see Mars Sojourner)

Space-variant vision sensor, 553

Spatio-temporal correlations, 411, 412

generation of, 411

Speech signal processing, 168

Spike, 142, 143

Spreading activation mechanism, 348

Stability-¯exibility trade-off, 21

State space for agent, 287 (see also Phase

space)

Statistical analysis, 589, 590

Steady-state scheme (for arti®cial

evolution), 234, 240

Storehouse metaphor of memory, 504, 505

(see also Memory, storage)

problems, 509±512

STRIPS, 53, 63, 341, 342, 376

and Action Selection Dynamics, 350

Structural description of object, 379

Subsumption architecture, 25, 199±255,

292, 330, 347±348, 620

inhibition of output, 204

layers of control, 203±205, 329

and learning, 482±483

level of competence, 201, 202

relation to EBA, 356

relation to immunoid approach, 356

relation to principle of parallel, loosely

coupled processes, 307

suppression of input, 204
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Subsumption architecture (cont.)

task-achieving behavior, 200±203, 224

Successor link in Action Selection

Dynamics, 348±349, 376

Sugerscape, 269

Supervised networks (see Neural network,

supervised)

Swimming (see Locomotion)

Symbol

grounding problem, 69±71, 74, 76, 77,

172, 173, 176, 309, 600

processing, 44, 48

structure, 44

system, 63, 70, 71

Synapse, 141±143

excitatory, 142

inhibitory, 142

Synaptic strength, 149 (see also

Connection strength)

Synthetic methodology, approach,

modeling, 21±23, 25±26, 28, 30, 32,

79, 114, 269, 270, 458, 464, 612, 632,

633 (see also Embodied cognitive

science)

Synthetic psychology, 181

System

complete, 83, 87, 135

complete autonomous, 85 (see also

Agents, complete autonomous)

logic-based vs. embodied, 111±127

reactive, 168, 342

System-environment coupling, 25

System-environment interaction, 68, 72,

196

exploiting the physics, 309±310, 436±

440, 377, 464

Systems theory, 278

Tamagotchi, 625

Task, 82 (see also Robot)

agent, 27, 30, 33, 65, 82, 85±86, 99±100,

132±132, 297

autonomous robot, 82

environment (see Task environment)

garbage collecting, 305, 315±316, 332,

357±374, 376, 408

of the mind, 48, 53

object collecting, 428 (see also Task,

garbage collecting)

speci®cation in agent design, 132±132,

134, 302, 304, 305

Task environment, 132, 202

de®nition, design, 544±548, 546, 570,

574

and the frame problem, 460

for garbage collecting robot, 358±359,

546

in measure of agent complexity, 461

for SMC I agent, 409

Temporal correlation of sensory signals,

398, 403

Test phase, 381

Test set, 153

Theory of intelligence, steps toward (see

Intelligence, theory)

Theory of communication, 312

Three-constituents principle, 302±304

Theory of Neuronal Group Selection, 401±

404, 495

as alternative to information processing

model, 402

Thinking, 8±9

Threshold model, 289, 294

Time perspectives

for explaining behavior, 127±130, 643

principle, 633

Timid vehicle, 181, 192±194

Tit-for-tat strategy, 267

TNGS (see Theory of Neuronal Group

Selection)

Top-down design, 55

Total Turing Test, 600

TOTE, 37, 376

problems of, 345

system, 338±340

unit, 37

Tracking system, 594±596

Trade-off

between tasks, 86

Training phase, 176, 381

Training set, 153

Transcription factor in the Arti®cial

Evolutionary System, 250±253

Transitivity of choice, 285

Turing machine, 40±42, 57, 97

Turing test, 15±17, 19, 32, 584, 600, 637

Type, 1, 2 data, problem, 389±392, 399,

400, 434

Ultimate perspective in explanation of

behavior, 130 (see also Functional

perspective for explanation of

behavior)

Unconditioned response, 485

Unconditioned stimulus, 485

Underwater vehicle, 619, 620

Underlying substrate, problem of, 74

Uphill analysis, 197

Utility, 285±286, 289, 291, 295

Validity

internal, 580, 582±584, 601±602

outcome, 582, 584, 601±602

process, 582, 584, 602
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Value (see Value principle)

and evolution, 498±499

implicit, 315, 412

map, 430

Value-based learning, 171±172, 176, 488,

490±495, 500

comparison of rules, 496

difference to supervised learning,

backpropagation, 471

difference to reinforcement learning,

471±471

Value principle, 303, 315, 467±501, 617

Value signal, 315, 316

explicit, 430, 467

in SMC I, 421

in SMC II, 430

Value system, 290, 315, 424, 458, 467,

469±474, 493, 499, 527, 617

difference to reinforcement learning, 470

explicit, 316, 467, 470, 499

implicit modulation in, 315, 500

in process coordination, 610

in SMC I, 419, 471

Velocity matching rule (see Flocking, local

rules)

Very Large Scale Integration (see VLSI)

Viability zone, 92

Virtual creatures, 229, 245, 260±265, 276,

625

Virtual reality, 26, 62, 245, 260

environment, 136

Virtual world (see World, virtual)

Vision

360-degree, 551, 553, 554, 559

active, 309, 431±432, 550

animate (see Vision, active)

biological, 431

classical view, 48±49, 634±635

computer, 60, 75

goal, 386

omnidirectional (see Vision, 360-degree)

theory of, 49, 73

Visual systems

and Gibson's theory, 393

parallel pathways in, 353±354

VLSI, 258, 571 (see also Analog VLSI)

Walking, 464, 465

humanlike, 443

insect (see Insect walking)

pattern (see Gait)

vs. wheeled locomotion, 557±558

Wallace system, 405±407

Wall-following (see Behavior, wall

following)

Weight of neural connection, 149 (see also

Connection strength)

Weight matrix, 149

Wheelchair, semiautonomous, 623, 624

Wheel encoders (see Sensors, wheel

encoders)

Whiskers, 214

Winner-take all strategy, 337

World

model, 201

modeling, 69, 72

model in Shakey, 340

real, 59±62, 68, 71, 77, 86, 136

virtual, 59±62, 77

XOR in real world, 440

Zen of robot programming, 441±444
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